]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - include/crypto/hash.h
Merge branch 'scsi-target-for-v4.10' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-zesty-kernel.git] / include / crypto / hash.h
1 /*
2 * Hash: Hash algorithms under the crypto API
3 *
4 * Copyright (c) 2008 Herbert Xu <herbert@gondor.apana.org.au>
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License as published by the Free
8 * Software Foundation; either version 2 of the License, or (at your option)
9 * any later version.
10 *
11 */
12
13 #ifndef _CRYPTO_HASH_H
14 #define _CRYPTO_HASH_H
15
16 #include <linux/crypto.h>
17 #include <linux/string.h>
18
19 struct crypto_ahash;
20
21 /**
22 * DOC: Message Digest Algorithm Definitions
23 *
24 * These data structures define modular message digest algorithm
25 * implementations, managed via crypto_register_ahash(),
26 * crypto_register_shash(), crypto_unregister_ahash() and
27 * crypto_unregister_shash().
28 */
29
30 /**
31 * struct hash_alg_common - define properties of message digest
32 * @digestsize: Size of the result of the transformation. A buffer of this size
33 * must be available to the @final and @finup calls, so they can
34 * store the resulting hash into it. For various predefined sizes,
35 * search include/crypto/ using
36 * git grep _DIGEST_SIZE include/crypto.
37 * @statesize: Size of the block for partial state of the transformation. A
38 * buffer of this size must be passed to the @export function as it
39 * will save the partial state of the transformation into it. On the
40 * other side, the @import function will load the state from a
41 * buffer of this size as well.
42 * @base: Start of data structure of cipher algorithm. The common data
43 * structure of crypto_alg contains information common to all ciphers.
44 * The hash_alg_common data structure now adds the hash-specific
45 * information.
46 */
47 struct hash_alg_common {
48 unsigned int digestsize;
49 unsigned int statesize;
50
51 struct crypto_alg base;
52 };
53
54 struct ahash_request {
55 struct crypto_async_request base;
56
57 unsigned int nbytes;
58 struct scatterlist *src;
59 u8 *result;
60
61 /* This field may only be used by the ahash API code. */
62 void *priv;
63
64 void *__ctx[] CRYPTO_MINALIGN_ATTR;
65 };
66
67 #define AHASH_REQUEST_ON_STACK(name, ahash) \
68 char __##name##_desc[sizeof(struct ahash_request) + \
69 crypto_ahash_reqsize(ahash)] CRYPTO_MINALIGN_ATTR; \
70 struct ahash_request *name = (void *)__##name##_desc
71
72 /**
73 * struct ahash_alg - asynchronous message digest definition
74 * @init: Initialize the transformation context. Intended only to initialize the
75 * state of the HASH transformation at the beginning. This shall fill in
76 * the internal structures used during the entire duration of the whole
77 * transformation. No data processing happens at this point.
78 * @update: Push a chunk of data into the driver for transformation. This
79 * function actually pushes blocks of data from upper layers into the
80 * driver, which then passes those to the hardware as seen fit. This
81 * function must not finalize the HASH transformation by calculating the
82 * final message digest as this only adds more data into the
83 * transformation. This function shall not modify the transformation
84 * context, as this function may be called in parallel with the same
85 * transformation object. Data processing can happen synchronously
86 * [SHASH] or asynchronously [AHASH] at this point.
87 * @final: Retrieve result from the driver. This function finalizes the
88 * transformation and retrieves the resulting hash from the driver and
89 * pushes it back to upper layers. No data processing happens at this
90 * point.
91 * @finup: Combination of @update and @final. This function is effectively a
92 * combination of @update and @final calls issued in sequence. As some
93 * hardware cannot do @update and @final separately, this callback was
94 * added to allow such hardware to be used at least by IPsec. Data
95 * processing can happen synchronously [SHASH] or asynchronously [AHASH]
96 * at this point.
97 * @digest: Combination of @init and @update and @final. This function
98 * effectively behaves as the entire chain of operations, @init,
99 * @update and @final issued in sequence. Just like @finup, this was
100 * added for hardware which cannot do even the @finup, but can only do
101 * the whole transformation in one run. Data processing can happen
102 * synchronously [SHASH] or asynchronously [AHASH] at this point.
103 * @setkey: Set optional key used by the hashing algorithm. Intended to push
104 * optional key used by the hashing algorithm from upper layers into
105 * the driver. This function can store the key in the transformation
106 * context or can outright program it into the hardware. In the former
107 * case, one must be careful to program the key into the hardware at
108 * appropriate time and one must be careful that .setkey() can be
109 * called multiple times during the existence of the transformation
110 * object. Not all hashing algorithms do implement this function as it
111 * is only needed for keyed message digests. SHAx/MDx/CRCx do NOT
112 * implement this function. HMAC(MDx)/HMAC(SHAx)/CMAC(AES) do implement
113 * this function. This function must be called before any other of the
114 * @init, @update, @final, @finup, @digest is called. No data
115 * processing happens at this point.
116 * @export: Export partial state of the transformation. This function dumps the
117 * entire state of the ongoing transformation into a provided block of
118 * data so it can be @import 'ed back later on. This is useful in case
119 * you want to save partial result of the transformation after
120 * processing certain amount of data and reload this partial result
121 * multiple times later on for multiple re-use. No data processing
122 * happens at this point.
123 * @import: Import partial state of the transformation. This function loads the
124 * entire state of the ongoing transformation from a provided block of
125 * data so the transformation can continue from this point onward. No
126 * data processing happens at this point.
127 * @halg: see struct hash_alg_common
128 */
129 struct ahash_alg {
130 int (*init)(struct ahash_request *req);
131 int (*update)(struct ahash_request *req);
132 int (*final)(struct ahash_request *req);
133 int (*finup)(struct ahash_request *req);
134 int (*digest)(struct ahash_request *req);
135 int (*export)(struct ahash_request *req, void *out);
136 int (*import)(struct ahash_request *req, const void *in);
137 int (*setkey)(struct crypto_ahash *tfm, const u8 *key,
138 unsigned int keylen);
139
140 struct hash_alg_common halg;
141 };
142
143 struct shash_desc {
144 struct crypto_shash *tfm;
145 u32 flags;
146
147 void *__ctx[] CRYPTO_MINALIGN_ATTR;
148 };
149
150 #define SHASH_DESC_ON_STACK(shash, ctx) \
151 char __##shash##_desc[sizeof(struct shash_desc) + \
152 crypto_shash_descsize(ctx)] CRYPTO_MINALIGN_ATTR; \
153 struct shash_desc *shash = (struct shash_desc *)__##shash##_desc
154
155 /**
156 * struct shash_alg - synchronous message digest definition
157 * @init: see struct ahash_alg
158 * @update: see struct ahash_alg
159 * @final: see struct ahash_alg
160 * @finup: see struct ahash_alg
161 * @digest: see struct ahash_alg
162 * @export: see struct ahash_alg
163 * @import: see struct ahash_alg
164 * @setkey: see struct ahash_alg
165 * @digestsize: see struct ahash_alg
166 * @statesize: see struct ahash_alg
167 * @descsize: Size of the operational state for the message digest. This state
168 * size is the memory size that needs to be allocated for
169 * shash_desc.__ctx
170 * @base: internally used
171 */
172 struct shash_alg {
173 int (*init)(struct shash_desc *desc);
174 int (*update)(struct shash_desc *desc, const u8 *data,
175 unsigned int len);
176 int (*final)(struct shash_desc *desc, u8 *out);
177 int (*finup)(struct shash_desc *desc, const u8 *data,
178 unsigned int len, u8 *out);
179 int (*digest)(struct shash_desc *desc, const u8 *data,
180 unsigned int len, u8 *out);
181 int (*export)(struct shash_desc *desc, void *out);
182 int (*import)(struct shash_desc *desc, const void *in);
183 int (*setkey)(struct crypto_shash *tfm, const u8 *key,
184 unsigned int keylen);
185
186 unsigned int descsize;
187
188 /* These fields must match hash_alg_common. */
189 unsigned int digestsize
190 __attribute__ ((aligned(__alignof__(struct hash_alg_common))));
191 unsigned int statesize;
192
193 struct crypto_alg base;
194 };
195
196 struct crypto_ahash {
197 int (*init)(struct ahash_request *req);
198 int (*update)(struct ahash_request *req);
199 int (*final)(struct ahash_request *req);
200 int (*finup)(struct ahash_request *req);
201 int (*digest)(struct ahash_request *req);
202 int (*export)(struct ahash_request *req, void *out);
203 int (*import)(struct ahash_request *req, const void *in);
204 int (*setkey)(struct crypto_ahash *tfm, const u8 *key,
205 unsigned int keylen);
206
207 unsigned int reqsize;
208 bool has_setkey;
209 struct crypto_tfm base;
210 };
211
212 struct crypto_shash {
213 unsigned int descsize;
214 struct crypto_tfm base;
215 };
216
217 /**
218 * DOC: Asynchronous Message Digest API
219 *
220 * The asynchronous message digest API is used with the ciphers of type
221 * CRYPTO_ALG_TYPE_AHASH (listed as type "ahash" in /proc/crypto)
222 *
223 * The asynchronous cipher operation discussion provided for the
224 * CRYPTO_ALG_TYPE_ABLKCIPHER API applies here as well.
225 */
226
227 static inline struct crypto_ahash *__crypto_ahash_cast(struct crypto_tfm *tfm)
228 {
229 return container_of(tfm, struct crypto_ahash, base);
230 }
231
232 /**
233 * crypto_alloc_ahash() - allocate ahash cipher handle
234 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
235 * ahash cipher
236 * @type: specifies the type of the cipher
237 * @mask: specifies the mask for the cipher
238 *
239 * Allocate a cipher handle for an ahash. The returned struct
240 * crypto_ahash is the cipher handle that is required for any subsequent
241 * API invocation for that ahash.
242 *
243 * Return: allocated cipher handle in case of success; IS_ERR() is true in case
244 * of an error, PTR_ERR() returns the error code.
245 */
246 struct crypto_ahash *crypto_alloc_ahash(const char *alg_name, u32 type,
247 u32 mask);
248
249 static inline struct crypto_tfm *crypto_ahash_tfm(struct crypto_ahash *tfm)
250 {
251 return &tfm->base;
252 }
253
254 /**
255 * crypto_free_ahash() - zeroize and free the ahash handle
256 * @tfm: cipher handle to be freed
257 */
258 static inline void crypto_free_ahash(struct crypto_ahash *tfm)
259 {
260 crypto_destroy_tfm(tfm, crypto_ahash_tfm(tfm));
261 }
262
263 /**
264 * crypto_has_ahash() - Search for the availability of an ahash.
265 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
266 * ahash
267 * @type: specifies the type of the ahash
268 * @mask: specifies the mask for the ahash
269 *
270 * Return: true when the ahash is known to the kernel crypto API; false
271 * otherwise
272 */
273 int crypto_has_ahash(const char *alg_name, u32 type, u32 mask);
274
275 static inline const char *crypto_ahash_alg_name(struct crypto_ahash *tfm)
276 {
277 return crypto_tfm_alg_name(crypto_ahash_tfm(tfm));
278 }
279
280 static inline const char *crypto_ahash_driver_name(struct crypto_ahash *tfm)
281 {
282 return crypto_tfm_alg_driver_name(crypto_ahash_tfm(tfm));
283 }
284
285 static inline unsigned int crypto_ahash_alignmask(
286 struct crypto_ahash *tfm)
287 {
288 return crypto_tfm_alg_alignmask(crypto_ahash_tfm(tfm));
289 }
290
291 /**
292 * crypto_ahash_blocksize() - obtain block size for cipher
293 * @tfm: cipher handle
294 *
295 * The block size for the message digest cipher referenced with the cipher
296 * handle is returned.
297 *
298 * Return: block size of cipher
299 */
300 static inline unsigned int crypto_ahash_blocksize(struct crypto_ahash *tfm)
301 {
302 return crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
303 }
304
305 static inline struct hash_alg_common *__crypto_hash_alg_common(
306 struct crypto_alg *alg)
307 {
308 return container_of(alg, struct hash_alg_common, base);
309 }
310
311 static inline struct hash_alg_common *crypto_hash_alg_common(
312 struct crypto_ahash *tfm)
313 {
314 return __crypto_hash_alg_common(crypto_ahash_tfm(tfm)->__crt_alg);
315 }
316
317 /**
318 * crypto_ahash_digestsize() - obtain message digest size
319 * @tfm: cipher handle
320 *
321 * The size for the message digest created by the message digest cipher
322 * referenced with the cipher handle is returned.
323 *
324 *
325 * Return: message digest size of cipher
326 */
327 static inline unsigned int crypto_ahash_digestsize(struct crypto_ahash *tfm)
328 {
329 return crypto_hash_alg_common(tfm)->digestsize;
330 }
331
332 static inline unsigned int crypto_ahash_statesize(struct crypto_ahash *tfm)
333 {
334 return crypto_hash_alg_common(tfm)->statesize;
335 }
336
337 static inline u32 crypto_ahash_get_flags(struct crypto_ahash *tfm)
338 {
339 return crypto_tfm_get_flags(crypto_ahash_tfm(tfm));
340 }
341
342 static inline void crypto_ahash_set_flags(struct crypto_ahash *tfm, u32 flags)
343 {
344 crypto_tfm_set_flags(crypto_ahash_tfm(tfm), flags);
345 }
346
347 static inline void crypto_ahash_clear_flags(struct crypto_ahash *tfm, u32 flags)
348 {
349 crypto_tfm_clear_flags(crypto_ahash_tfm(tfm), flags);
350 }
351
352 /**
353 * crypto_ahash_reqtfm() - obtain cipher handle from request
354 * @req: asynchronous request handle that contains the reference to the ahash
355 * cipher handle
356 *
357 * Return the ahash cipher handle that is registered with the asynchronous
358 * request handle ahash_request.
359 *
360 * Return: ahash cipher handle
361 */
362 static inline struct crypto_ahash *crypto_ahash_reqtfm(
363 struct ahash_request *req)
364 {
365 return __crypto_ahash_cast(req->base.tfm);
366 }
367
368 /**
369 * crypto_ahash_reqsize() - obtain size of the request data structure
370 * @tfm: cipher handle
371 *
372 * Return the size of the ahash state size. With the crypto_ahash_export
373 * function, the caller can export the state into a buffer whose size is
374 * defined with this function.
375 *
376 * Return: size of the ahash state
377 */
378 static inline unsigned int crypto_ahash_reqsize(struct crypto_ahash *tfm)
379 {
380 return tfm->reqsize;
381 }
382
383 static inline void *ahash_request_ctx(struct ahash_request *req)
384 {
385 return req->__ctx;
386 }
387
388 /**
389 * crypto_ahash_setkey - set key for cipher handle
390 * @tfm: cipher handle
391 * @key: buffer holding the key
392 * @keylen: length of the key in bytes
393 *
394 * The caller provided key is set for the ahash cipher. The cipher
395 * handle must point to a keyed hash in order for this function to succeed.
396 *
397 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
398 */
399 int crypto_ahash_setkey(struct crypto_ahash *tfm, const u8 *key,
400 unsigned int keylen);
401
402 static inline bool crypto_ahash_has_setkey(struct crypto_ahash *tfm)
403 {
404 return tfm->has_setkey;
405 }
406
407 /**
408 * crypto_ahash_finup() - update and finalize message digest
409 * @req: reference to the ahash_request handle that holds all information
410 * needed to perform the cipher operation
411 *
412 * This function is a "short-hand" for the function calls of
413 * crypto_ahash_update and crypto_shash_final. The parameters have the same
414 * meaning as discussed for those separate functions.
415 *
416 * Return: 0 if the message digest creation was successful; < 0 if an error
417 * occurred
418 */
419 int crypto_ahash_finup(struct ahash_request *req);
420
421 /**
422 * crypto_ahash_final() - calculate message digest
423 * @req: reference to the ahash_request handle that holds all information
424 * needed to perform the cipher operation
425 *
426 * Finalize the message digest operation and create the message digest
427 * based on all data added to the cipher handle. The message digest is placed
428 * into the output buffer registered with the ahash_request handle.
429 *
430 * Return: 0 if the message digest creation was successful; < 0 if an error
431 * occurred
432 */
433 int crypto_ahash_final(struct ahash_request *req);
434
435 /**
436 * crypto_ahash_digest() - calculate message digest for a buffer
437 * @req: reference to the ahash_request handle that holds all information
438 * needed to perform the cipher operation
439 *
440 * This function is a "short-hand" for the function calls of crypto_ahash_init,
441 * crypto_ahash_update and crypto_ahash_final. The parameters have the same
442 * meaning as discussed for those separate three functions.
443 *
444 * Return: 0 if the message digest creation was successful; < 0 if an error
445 * occurred
446 */
447 int crypto_ahash_digest(struct ahash_request *req);
448
449 /**
450 * crypto_ahash_export() - extract current message digest state
451 * @req: reference to the ahash_request handle whose state is exported
452 * @out: output buffer of sufficient size that can hold the hash state
453 *
454 * This function exports the hash state of the ahash_request handle into the
455 * caller-allocated output buffer out which must have sufficient size (e.g. by
456 * calling crypto_ahash_reqsize).
457 *
458 * Return: 0 if the export was successful; < 0 if an error occurred
459 */
460 static inline int crypto_ahash_export(struct ahash_request *req, void *out)
461 {
462 return crypto_ahash_reqtfm(req)->export(req, out);
463 }
464
465 /**
466 * crypto_ahash_import() - import message digest state
467 * @req: reference to ahash_request handle the state is imported into
468 * @in: buffer holding the state
469 *
470 * This function imports the hash state into the ahash_request handle from the
471 * input buffer. That buffer should have been generated with the
472 * crypto_ahash_export function.
473 *
474 * Return: 0 if the import was successful; < 0 if an error occurred
475 */
476 static inline int crypto_ahash_import(struct ahash_request *req, const void *in)
477 {
478 return crypto_ahash_reqtfm(req)->import(req, in);
479 }
480
481 /**
482 * crypto_ahash_init() - (re)initialize message digest handle
483 * @req: ahash_request handle that already is initialized with all necessary
484 * data using the ahash_request_* API functions
485 *
486 * The call (re-)initializes the message digest referenced by the ahash_request
487 * handle. Any potentially existing state created by previous operations is
488 * discarded.
489 *
490 * Return: 0 if the message digest initialization was successful; < 0 if an
491 * error occurred
492 */
493 static inline int crypto_ahash_init(struct ahash_request *req)
494 {
495 return crypto_ahash_reqtfm(req)->init(req);
496 }
497
498 /**
499 * crypto_ahash_update() - add data to message digest for processing
500 * @req: ahash_request handle that was previously initialized with the
501 * crypto_ahash_init call.
502 *
503 * Updates the message digest state of the &ahash_request handle. The input data
504 * is pointed to by the scatter/gather list registered in the &ahash_request
505 * handle
506 *
507 * Return: 0 if the message digest update was successful; < 0 if an error
508 * occurred
509 */
510 static inline int crypto_ahash_update(struct ahash_request *req)
511 {
512 return crypto_ahash_reqtfm(req)->update(req);
513 }
514
515 /**
516 * DOC: Asynchronous Hash Request Handle
517 *
518 * The &ahash_request data structure contains all pointers to data
519 * required for the asynchronous cipher operation. This includes the cipher
520 * handle (which can be used by multiple &ahash_request instances), pointer
521 * to plaintext and the message digest output buffer, asynchronous callback
522 * function, etc. It acts as a handle to the ahash_request_* API calls in a
523 * similar way as ahash handle to the crypto_ahash_* API calls.
524 */
525
526 /**
527 * ahash_request_set_tfm() - update cipher handle reference in request
528 * @req: request handle to be modified
529 * @tfm: cipher handle that shall be added to the request handle
530 *
531 * Allow the caller to replace the existing ahash handle in the request
532 * data structure with a different one.
533 */
534 static inline void ahash_request_set_tfm(struct ahash_request *req,
535 struct crypto_ahash *tfm)
536 {
537 req->base.tfm = crypto_ahash_tfm(tfm);
538 }
539
540 /**
541 * ahash_request_alloc() - allocate request data structure
542 * @tfm: cipher handle to be registered with the request
543 * @gfp: memory allocation flag that is handed to kmalloc by the API call.
544 *
545 * Allocate the request data structure that must be used with the ahash
546 * message digest API calls. During
547 * the allocation, the provided ahash handle
548 * is registered in the request data structure.
549 *
550 * Return: allocated request handle in case of success, or NULL if out of memory
551 */
552 static inline struct ahash_request *ahash_request_alloc(
553 struct crypto_ahash *tfm, gfp_t gfp)
554 {
555 struct ahash_request *req;
556
557 req = kmalloc(sizeof(struct ahash_request) +
558 crypto_ahash_reqsize(tfm), gfp);
559
560 if (likely(req))
561 ahash_request_set_tfm(req, tfm);
562
563 return req;
564 }
565
566 /**
567 * ahash_request_free() - zeroize and free the request data structure
568 * @req: request data structure cipher handle to be freed
569 */
570 static inline void ahash_request_free(struct ahash_request *req)
571 {
572 kzfree(req);
573 }
574
575 static inline void ahash_request_zero(struct ahash_request *req)
576 {
577 memzero_explicit(req, sizeof(*req) +
578 crypto_ahash_reqsize(crypto_ahash_reqtfm(req)));
579 }
580
581 static inline struct ahash_request *ahash_request_cast(
582 struct crypto_async_request *req)
583 {
584 return container_of(req, struct ahash_request, base);
585 }
586
587 /**
588 * ahash_request_set_callback() - set asynchronous callback function
589 * @req: request handle
590 * @flags: specify zero or an ORing of the flags
591 * CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and
592 * increase the wait queue beyond the initial maximum size;
593 * CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep
594 * @compl: callback function pointer to be registered with the request handle
595 * @data: The data pointer refers to memory that is not used by the kernel
596 * crypto API, but provided to the callback function for it to use. Here,
597 * the caller can provide a reference to memory the callback function can
598 * operate on. As the callback function is invoked asynchronously to the
599 * related functionality, it may need to access data structures of the
600 * related functionality which can be referenced using this pointer. The
601 * callback function can access the memory via the "data" field in the
602 * &crypto_async_request data structure provided to the callback function.
603 *
604 * This function allows setting the callback function that is triggered once
605 * the cipher operation completes.
606 *
607 * The callback function is registered with the &ahash_request handle and
608 * must comply with the following template::
609 *
610 * void callback_function(struct crypto_async_request *req, int error)
611 */
612 static inline void ahash_request_set_callback(struct ahash_request *req,
613 u32 flags,
614 crypto_completion_t compl,
615 void *data)
616 {
617 req->base.complete = compl;
618 req->base.data = data;
619 req->base.flags = flags;
620 }
621
622 /**
623 * ahash_request_set_crypt() - set data buffers
624 * @req: ahash_request handle to be updated
625 * @src: source scatter/gather list
626 * @result: buffer that is filled with the message digest -- the caller must
627 * ensure that the buffer has sufficient space by, for example, calling
628 * crypto_ahash_digestsize()
629 * @nbytes: number of bytes to process from the source scatter/gather list
630 *
631 * By using this call, the caller references the source scatter/gather list.
632 * The source scatter/gather list points to the data the message digest is to
633 * be calculated for.
634 */
635 static inline void ahash_request_set_crypt(struct ahash_request *req,
636 struct scatterlist *src, u8 *result,
637 unsigned int nbytes)
638 {
639 req->src = src;
640 req->nbytes = nbytes;
641 req->result = result;
642 }
643
644 /**
645 * DOC: Synchronous Message Digest API
646 *
647 * The synchronous message digest API is used with the ciphers of type
648 * CRYPTO_ALG_TYPE_SHASH (listed as type "shash" in /proc/crypto)
649 *
650 * The message digest API is able to maintain state information for the
651 * caller.
652 *
653 * The synchronous message digest API can store user-related context in in its
654 * shash_desc request data structure.
655 */
656
657 /**
658 * crypto_alloc_shash() - allocate message digest handle
659 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
660 * message digest cipher
661 * @type: specifies the type of the cipher
662 * @mask: specifies the mask for the cipher
663 *
664 * Allocate a cipher handle for a message digest. The returned &struct
665 * crypto_shash is the cipher handle that is required for any subsequent
666 * API invocation for that message digest.
667 *
668 * Return: allocated cipher handle in case of success; IS_ERR() is true in case
669 * of an error, PTR_ERR() returns the error code.
670 */
671 struct crypto_shash *crypto_alloc_shash(const char *alg_name, u32 type,
672 u32 mask);
673
674 static inline struct crypto_tfm *crypto_shash_tfm(struct crypto_shash *tfm)
675 {
676 return &tfm->base;
677 }
678
679 /**
680 * crypto_free_shash() - zeroize and free the message digest handle
681 * @tfm: cipher handle to be freed
682 */
683 static inline void crypto_free_shash(struct crypto_shash *tfm)
684 {
685 crypto_destroy_tfm(tfm, crypto_shash_tfm(tfm));
686 }
687
688 static inline const char *crypto_shash_alg_name(struct crypto_shash *tfm)
689 {
690 return crypto_tfm_alg_name(crypto_shash_tfm(tfm));
691 }
692
693 static inline const char *crypto_shash_driver_name(struct crypto_shash *tfm)
694 {
695 return crypto_tfm_alg_driver_name(crypto_shash_tfm(tfm));
696 }
697
698 static inline unsigned int crypto_shash_alignmask(
699 struct crypto_shash *tfm)
700 {
701 return crypto_tfm_alg_alignmask(crypto_shash_tfm(tfm));
702 }
703
704 /**
705 * crypto_shash_blocksize() - obtain block size for cipher
706 * @tfm: cipher handle
707 *
708 * The block size for the message digest cipher referenced with the cipher
709 * handle is returned.
710 *
711 * Return: block size of cipher
712 */
713 static inline unsigned int crypto_shash_blocksize(struct crypto_shash *tfm)
714 {
715 return crypto_tfm_alg_blocksize(crypto_shash_tfm(tfm));
716 }
717
718 static inline struct shash_alg *__crypto_shash_alg(struct crypto_alg *alg)
719 {
720 return container_of(alg, struct shash_alg, base);
721 }
722
723 static inline struct shash_alg *crypto_shash_alg(struct crypto_shash *tfm)
724 {
725 return __crypto_shash_alg(crypto_shash_tfm(tfm)->__crt_alg);
726 }
727
728 /**
729 * crypto_shash_digestsize() - obtain message digest size
730 * @tfm: cipher handle
731 *
732 * The size for the message digest created by the message digest cipher
733 * referenced with the cipher handle is returned.
734 *
735 * Return: digest size of cipher
736 */
737 static inline unsigned int crypto_shash_digestsize(struct crypto_shash *tfm)
738 {
739 return crypto_shash_alg(tfm)->digestsize;
740 }
741
742 static inline unsigned int crypto_shash_statesize(struct crypto_shash *tfm)
743 {
744 return crypto_shash_alg(tfm)->statesize;
745 }
746
747 static inline u32 crypto_shash_get_flags(struct crypto_shash *tfm)
748 {
749 return crypto_tfm_get_flags(crypto_shash_tfm(tfm));
750 }
751
752 static inline void crypto_shash_set_flags(struct crypto_shash *tfm, u32 flags)
753 {
754 crypto_tfm_set_flags(crypto_shash_tfm(tfm), flags);
755 }
756
757 static inline void crypto_shash_clear_flags(struct crypto_shash *tfm, u32 flags)
758 {
759 crypto_tfm_clear_flags(crypto_shash_tfm(tfm), flags);
760 }
761
762 /**
763 * crypto_shash_descsize() - obtain the operational state size
764 * @tfm: cipher handle
765 *
766 * The size of the operational state the cipher needs during operation is
767 * returned for the hash referenced with the cipher handle. This size is
768 * required to calculate the memory requirements to allow the caller allocating
769 * sufficient memory for operational state.
770 *
771 * The operational state is defined with struct shash_desc where the size of
772 * that data structure is to be calculated as
773 * sizeof(struct shash_desc) + crypto_shash_descsize(alg)
774 *
775 * Return: size of the operational state
776 */
777 static inline unsigned int crypto_shash_descsize(struct crypto_shash *tfm)
778 {
779 return tfm->descsize;
780 }
781
782 static inline void *shash_desc_ctx(struct shash_desc *desc)
783 {
784 return desc->__ctx;
785 }
786
787 /**
788 * crypto_shash_setkey() - set key for message digest
789 * @tfm: cipher handle
790 * @key: buffer holding the key
791 * @keylen: length of the key in bytes
792 *
793 * The caller provided key is set for the keyed message digest cipher. The
794 * cipher handle must point to a keyed message digest cipher in order for this
795 * function to succeed.
796 *
797 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
798 */
799 int crypto_shash_setkey(struct crypto_shash *tfm, const u8 *key,
800 unsigned int keylen);
801
802 /**
803 * crypto_shash_digest() - calculate message digest for buffer
804 * @desc: see crypto_shash_final()
805 * @data: see crypto_shash_update()
806 * @len: see crypto_shash_update()
807 * @out: see crypto_shash_final()
808 *
809 * This function is a "short-hand" for the function calls of crypto_shash_init,
810 * crypto_shash_update and crypto_shash_final. The parameters have the same
811 * meaning as discussed for those separate three functions.
812 *
813 * Return: 0 if the message digest creation was successful; < 0 if an error
814 * occurred
815 */
816 int crypto_shash_digest(struct shash_desc *desc, const u8 *data,
817 unsigned int len, u8 *out);
818
819 /**
820 * crypto_shash_export() - extract operational state for message digest
821 * @desc: reference to the operational state handle whose state is exported
822 * @out: output buffer of sufficient size that can hold the hash state
823 *
824 * This function exports the hash state of the operational state handle into the
825 * caller-allocated output buffer out which must have sufficient size (e.g. by
826 * calling crypto_shash_descsize).
827 *
828 * Return: 0 if the export creation was successful; < 0 if an error occurred
829 */
830 static inline int crypto_shash_export(struct shash_desc *desc, void *out)
831 {
832 return crypto_shash_alg(desc->tfm)->export(desc, out);
833 }
834
835 /**
836 * crypto_shash_import() - import operational state
837 * @desc: reference to the operational state handle the state imported into
838 * @in: buffer holding the state
839 *
840 * This function imports the hash state into the operational state handle from
841 * the input buffer. That buffer should have been generated with the
842 * crypto_ahash_export function.
843 *
844 * Return: 0 if the import was successful; < 0 if an error occurred
845 */
846 static inline int crypto_shash_import(struct shash_desc *desc, const void *in)
847 {
848 return crypto_shash_alg(desc->tfm)->import(desc, in);
849 }
850
851 /**
852 * crypto_shash_init() - (re)initialize message digest
853 * @desc: operational state handle that is already filled
854 *
855 * The call (re-)initializes the message digest referenced by the
856 * operational state handle. Any potentially existing state created by
857 * previous operations is discarded.
858 *
859 * Return: 0 if the message digest initialization was successful; < 0 if an
860 * error occurred
861 */
862 static inline int crypto_shash_init(struct shash_desc *desc)
863 {
864 return crypto_shash_alg(desc->tfm)->init(desc);
865 }
866
867 /**
868 * crypto_shash_update() - add data to message digest for processing
869 * @desc: operational state handle that is already initialized
870 * @data: input data to be added to the message digest
871 * @len: length of the input data
872 *
873 * Updates the message digest state of the operational state handle.
874 *
875 * Return: 0 if the message digest update was successful; < 0 if an error
876 * occurred
877 */
878 int crypto_shash_update(struct shash_desc *desc, const u8 *data,
879 unsigned int len);
880
881 /**
882 * crypto_shash_final() - calculate message digest
883 * @desc: operational state handle that is already filled with data
884 * @out: output buffer filled with the message digest
885 *
886 * Finalize the message digest operation and create the message digest
887 * based on all data added to the cipher handle. The message digest is placed
888 * into the output buffer. The caller must ensure that the output buffer is
889 * large enough by using crypto_shash_digestsize.
890 *
891 * Return: 0 if the message digest creation was successful; < 0 if an error
892 * occurred
893 */
894 int crypto_shash_final(struct shash_desc *desc, u8 *out);
895
896 /**
897 * crypto_shash_finup() - calculate message digest of buffer
898 * @desc: see crypto_shash_final()
899 * @data: see crypto_shash_update()
900 * @len: see crypto_shash_update()
901 * @out: see crypto_shash_final()
902 *
903 * This function is a "short-hand" for the function calls of
904 * crypto_shash_update and crypto_shash_final. The parameters have the same
905 * meaning as discussed for those separate functions.
906 *
907 * Return: 0 if the message digest creation was successful; < 0 if an error
908 * occurred
909 */
910 int crypto_shash_finup(struct shash_desc *desc, const u8 *data,
911 unsigned int len, u8 *out);
912
913 static inline void shash_desc_zero(struct shash_desc *desc)
914 {
915 memzero_explicit(desc,
916 sizeof(*desc) + crypto_shash_descsize(desc->tfm));
917 }
918
919 #endif /* _CRYPTO_HASH_H */