]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - include/crypto/hash.h
mlxsw: spectrum_router: Fix use-after-free in route replace
[mirror_ubuntu-artful-kernel.git] / include / crypto / hash.h
1 /*
2 * Hash: Hash algorithms under the crypto API
3 *
4 * Copyright (c) 2008 Herbert Xu <herbert@gondor.apana.org.au>
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License as published by the Free
8 * Software Foundation; either version 2 of the License, or (at your option)
9 * any later version.
10 *
11 */
12
13 #ifndef _CRYPTO_HASH_H
14 #define _CRYPTO_HASH_H
15
16 #include <linux/crypto.h>
17 #include <linux/string.h>
18
19 struct crypto_ahash;
20
21 /**
22 * DOC: Message Digest Algorithm Definitions
23 *
24 * These data structures define modular message digest algorithm
25 * implementations, managed via crypto_register_ahash(),
26 * crypto_register_shash(), crypto_unregister_ahash() and
27 * crypto_unregister_shash().
28 */
29
30 /**
31 * struct hash_alg_common - define properties of message digest
32 * @digestsize: Size of the result of the transformation. A buffer of this size
33 * must be available to the @final and @finup calls, so they can
34 * store the resulting hash into it. For various predefined sizes,
35 * search include/crypto/ using
36 * git grep _DIGEST_SIZE include/crypto.
37 * @statesize: Size of the block for partial state of the transformation. A
38 * buffer of this size must be passed to the @export function as it
39 * will save the partial state of the transformation into it. On the
40 * other side, the @import function will load the state from a
41 * buffer of this size as well.
42 * @base: Start of data structure of cipher algorithm. The common data
43 * structure of crypto_alg contains information common to all ciphers.
44 * The hash_alg_common data structure now adds the hash-specific
45 * information.
46 */
47 struct hash_alg_common {
48 unsigned int digestsize;
49 unsigned int statesize;
50
51 struct crypto_alg base;
52 };
53
54 struct ahash_request {
55 struct crypto_async_request base;
56
57 unsigned int nbytes;
58 struct scatterlist *src;
59 u8 *result;
60
61 /* This field may only be used by the ahash API code. */
62 void *priv;
63
64 void *__ctx[] CRYPTO_MINALIGN_ATTR;
65 };
66
67 #define AHASH_REQUEST_ON_STACK(name, ahash) \
68 char __##name##_desc[sizeof(struct ahash_request) + \
69 crypto_ahash_reqsize(ahash)] CRYPTO_MINALIGN_ATTR; \
70 struct ahash_request *name = (void *)__##name##_desc
71
72 /**
73 * struct ahash_alg - asynchronous message digest definition
74 * @init: Initialize the transformation context. Intended only to initialize the
75 * state of the HASH transformation at the beginning. This shall fill in
76 * the internal structures used during the entire duration of the whole
77 * transformation. No data processing happens at this point.
78 * @update: Push a chunk of data into the driver for transformation. This
79 * function actually pushes blocks of data from upper layers into the
80 * driver, which then passes those to the hardware as seen fit. This
81 * function must not finalize the HASH transformation by calculating the
82 * final message digest as this only adds more data into the
83 * transformation. This function shall not modify the transformation
84 * context, as this function may be called in parallel with the same
85 * transformation object. Data processing can happen synchronously
86 * [SHASH] or asynchronously [AHASH] at this point.
87 * @final: Retrieve result from the driver. This function finalizes the
88 * transformation and retrieves the resulting hash from the driver and
89 * pushes it back to upper layers. No data processing happens at this
90 * point.
91 * @finup: Combination of @update and @final. This function is effectively a
92 * combination of @update and @final calls issued in sequence. As some
93 * hardware cannot do @update and @final separately, this callback was
94 * added to allow such hardware to be used at least by IPsec. Data
95 * processing can happen synchronously [SHASH] or asynchronously [AHASH]
96 * at this point.
97 * @digest: Combination of @init and @update and @final. This function
98 * effectively behaves as the entire chain of operations, @init,
99 * @update and @final issued in sequence. Just like @finup, this was
100 * added for hardware which cannot do even the @finup, but can only do
101 * the whole transformation in one run. Data processing can happen
102 * synchronously [SHASH] or asynchronously [AHASH] at this point.
103 * @setkey: Set optional key used by the hashing algorithm. Intended to push
104 * optional key used by the hashing algorithm from upper layers into
105 * the driver. This function can store the key in the transformation
106 * context or can outright program it into the hardware. In the former
107 * case, one must be careful to program the key into the hardware at
108 * appropriate time and one must be careful that .setkey() can be
109 * called multiple times during the existence of the transformation
110 * object. Not all hashing algorithms do implement this function as it
111 * is only needed for keyed message digests. SHAx/MDx/CRCx do NOT
112 * implement this function. HMAC(MDx)/HMAC(SHAx)/CMAC(AES) do implement
113 * this function. This function must be called before any other of the
114 * @init, @update, @final, @finup, @digest is called. No data
115 * processing happens at this point.
116 * @export: Export partial state of the transformation. This function dumps the
117 * entire state of the ongoing transformation into a provided block of
118 * data so it can be @import 'ed back later on. This is useful in case
119 * you want to save partial result of the transformation after
120 * processing certain amount of data and reload this partial result
121 * multiple times later on for multiple re-use. No data processing
122 * happens at this point.
123 * @import: Import partial state of the transformation. This function loads the
124 * entire state of the ongoing transformation from a provided block of
125 * data so the transformation can continue from this point onward. No
126 * data processing happens at this point.
127 * @halg: see struct hash_alg_common
128 */
129 struct ahash_alg {
130 int (*init)(struct ahash_request *req);
131 int (*update)(struct ahash_request *req);
132 int (*final)(struct ahash_request *req);
133 int (*finup)(struct ahash_request *req);
134 int (*digest)(struct ahash_request *req);
135 int (*export)(struct ahash_request *req, void *out);
136 int (*import)(struct ahash_request *req, const void *in);
137 int (*setkey)(struct crypto_ahash *tfm, const u8 *key,
138 unsigned int keylen);
139
140 struct hash_alg_common halg;
141 };
142
143 struct shash_desc {
144 struct crypto_shash *tfm;
145 u32 flags;
146
147 void *__ctx[] CRYPTO_MINALIGN_ATTR;
148 };
149
150 #define SHASH_DESC_ON_STACK(shash, ctx) \
151 char __##shash##_desc[sizeof(struct shash_desc) + \
152 crypto_shash_descsize(ctx)] CRYPTO_MINALIGN_ATTR; \
153 struct shash_desc *shash = (struct shash_desc *)__##shash##_desc
154
155 /**
156 * struct shash_alg - synchronous message digest definition
157 * @init: see struct ahash_alg
158 * @update: see struct ahash_alg
159 * @final: see struct ahash_alg
160 * @finup: see struct ahash_alg
161 * @digest: see struct ahash_alg
162 * @export: see struct ahash_alg
163 * @import: see struct ahash_alg
164 * @setkey: see struct ahash_alg
165 * @digestsize: see struct ahash_alg
166 * @statesize: see struct ahash_alg
167 * @descsize: Size of the operational state for the message digest. This state
168 * size is the memory size that needs to be allocated for
169 * shash_desc.__ctx
170 * @base: internally used
171 */
172 struct shash_alg {
173 int (*init)(struct shash_desc *desc);
174 int (*update)(struct shash_desc *desc, const u8 *data,
175 unsigned int len);
176 int (*final)(struct shash_desc *desc, u8 *out);
177 int (*finup)(struct shash_desc *desc, const u8 *data,
178 unsigned int len, u8 *out);
179 int (*digest)(struct shash_desc *desc, const u8 *data,
180 unsigned int len, u8 *out);
181 int (*export)(struct shash_desc *desc, void *out);
182 int (*import)(struct shash_desc *desc, const void *in);
183 int (*setkey)(struct crypto_shash *tfm, const u8 *key,
184 unsigned int keylen);
185
186 unsigned int descsize;
187
188 /* These fields must match hash_alg_common. */
189 unsigned int digestsize
190 __attribute__ ((aligned(__alignof__(struct hash_alg_common))));
191 unsigned int statesize;
192
193 struct crypto_alg base;
194 };
195
196 struct crypto_ahash {
197 int (*init)(struct ahash_request *req);
198 int (*update)(struct ahash_request *req);
199 int (*final)(struct ahash_request *req);
200 int (*finup)(struct ahash_request *req);
201 int (*digest)(struct ahash_request *req);
202 int (*export)(struct ahash_request *req, void *out);
203 int (*import)(struct ahash_request *req, const void *in);
204 int (*setkey)(struct crypto_ahash *tfm, const u8 *key,
205 unsigned int keylen);
206
207 unsigned int reqsize;
208 bool has_setkey;
209 struct crypto_tfm base;
210 };
211
212 struct crypto_shash {
213 unsigned int descsize;
214 struct crypto_tfm base;
215 };
216
217 /**
218 * DOC: Asynchronous Message Digest API
219 *
220 * The asynchronous message digest API is used with the ciphers of type
221 * CRYPTO_ALG_TYPE_AHASH (listed as type "ahash" in /proc/crypto)
222 *
223 * The asynchronous cipher operation discussion provided for the
224 * CRYPTO_ALG_TYPE_ABLKCIPHER API applies here as well.
225 */
226
227 static inline struct crypto_ahash *__crypto_ahash_cast(struct crypto_tfm *tfm)
228 {
229 return container_of(tfm, struct crypto_ahash, base);
230 }
231
232 /**
233 * crypto_alloc_ahash() - allocate ahash cipher handle
234 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
235 * ahash cipher
236 * @type: specifies the type of the cipher
237 * @mask: specifies the mask for the cipher
238 *
239 * Allocate a cipher handle for an ahash. The returned struct
240 * crypto_ahash is the cipher handle that is required for any subsequent
241 * API invocation for that ahash.
242 *
243 * Return: allocated cipher handle in case of success; IS_ERR() is true in case
244 * of an error, PTR_ERR() returns the error code.
245 */
246 struct crypto_ahash *crypto_alloc_ahash(const char *alg_name, u32 type,
247 u32 mask);
248
249 static inline struct crypto_tfm *crypto_ahash_tfm(struct crypto_ahash *tfm)
250 {
251 return &tfm->base;
252 }
253
254 /**
255 * crypto_free_ahash() - zeroize and free the ahash handle
256 * @tfm: cipher handle to be freed
257 */
258 static inline void crypto_free_ahash(struct crypto_ahash *tfm)
259 {
260 crypto_destroy_tfm(tfm, crypto_ahash_tfm(tfm));
261 }
262
263 /**
264 * crypto_has_ahash() - Search for the availability of an ahash.
265 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
266 * ahash
267 * @type: specifies the type of the ahash
268 * @mask: specifies the mask for the ahash
269 *
270 * Return: true when the ahash is known to the kernel crypto API; false
271 * otherwise
272 */
273 int crypto_has_ahash(const char *alg_name, u32 type, u32 mask);
274
275 static inline const char *crypto_ahash_alg_name(struct crypto_ahash *tfm)
276 {
277 return crypto_tfm_alg_name(crypto_ahash_tfm(tfm));
278 }
279
280 static inline const char *crypto_ahash_driver_name(struct crypto_ahash *tfm)
281 {
282 return crypto_tfm_alg_driver_name(crypto_ahash_tfm(tfm));
283 }
284
285 static inline unsigned int crypto_ahash_alignmask(
286 struct crypto_ahash *tfm)
287 {
288 return crypto_tfm_alg_alignmask(crypto_ahash_tfm(tfm));
289 }
290
291 /**
292 * crypto_ahash_blocksize() - obtain block size for cipher
293 * @tfm: cipher handle
294 *
295 * The block size for the message digest cipher referenced with the cipher
296 * handle is returned.
297 *
298 * Return: block size of cipher
299 */
300 static inline unsigned int crypto_ahash_blocksize(struct crypto_ahash *tfm)
301 {
302 return crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
303 }
304
305 static inline struct hash_alg_common *__crypto_hash_alg_common(
306 struct crypto_alg *alg)
307 {
308 return container_of(alg, struct hash_alg_common, base);
309 }
310
311 static inline struct hash_alg_common *crypto_hash_alg_common(
312 struct crypto_ahash *tfm)
313 {
314 return __crypto_hash_alg_common(crypto_ahash_tfm(tfm)->__crt_alg);
315 }
316
317 /**
318 * crypto_ahash_digestsize() - obtain message digest size
319 * @tfm: cipher handle
320 *
321 * The size for the message digest created by the message digest cipher
322 * referenced with the cipher handle is returned.
323 *
324 *
325 * Return: message digest size of cipher
326 */
327 static inline unsigned int crypto_ahash_digestsize(struct crypto_ahash *tfm)
328 {
329 return crypto_hash_alg_common(tfm)->digestsize;
330 }
331
332 /**
333 * crypto_ahash_statesize() - obtain size of the ahash state
334 * @tfm: cipher handle
335 *
336 * Return the size of the ahash state. With the crypto_ahash_export()
337 * function, the caller can export the state into a buffer whose size is
338 * defined with this function.
339 *
340 * Return: size of the ahash state
341 */
342 static inline unsigned int crypto_ahash_statesize(struct crypto_ahash *tfm)
343 {
344 return crypto_hash_alg_common(tfm)->statesize;
345 }
346
347 static inline u32 crypto_ahash_get_flags(struct crypto_ahash *tfm)
348 {
349 return crypto_tfm_get_flags(crypto_ahash_tfm(tfm));
350 }
351
352 static inline void crypto_ahash_set_flags(struct crypto_ahash *tfm, u32 flags)
353 {
354 crypto_tfm_set_flags(crypto_ahash_tfm(tfm), flags);
355 }
356
357 static inline void crypto_ahash_clear_flags(struct crypto_ahash *tfm, u32 flags)
358 {
359 crypto_tfm_clear_flags(crypto_ahash_tfm(tfm), flags);
360 }
361
362 /**
363 * crypto_ahash_reqtfm() - obtain cipher handle from request
364 * @req: asynchronous request handle that contains the reference to the ahash
365 * cipher handle
366 *
367 * Return the ahash cipher handle that is registered with the asynchronous
368 * request handle ahash_request.
369 *
370 * Return: ahash cipher handle
371 */
372 static inline struct crypto_ahash *crypto_ahash_reqtfm(
373 struct ahash_request *req)
374 {
375 return __crypto_ahash_cast(req->base.tfm);
376 }
377
378 /**
379 * crypto_ahash_reqsize() - obtain size of the request data structure
380 * @tfm: cipher handle
381 *
382 * Return: size of the request data
383 */
384 static inline unsigned int crypto_ahash_reqsize(struct crypto_ahash *tfm)
385 {
386 return tfm->reqsize;
387 }
388
389 static inline void *ahash_request_ctx(struct ahash_request *req)
390 {
391 return req->__ctx;
392 }
393
394 /**
395 * crypto_ahash_setkey - set key for cipher handle
396 * @tfm: cipher handle
397 * @key: buffer holding the key
398 * @keylen: length of the key in bytes
399 *
400 * The caller provided key is set for the ahash cipher. The cipher
401 * handle must point to a keyed hash in order for this function to succeed.
402 *
403 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
404 */
405 int crypto_ahash_setkey(struct crypto_ahash *tfm, const u8 *key,
406 unsigned int keylen);
407
408 static inline bool crypto_ahash_has_setkey(struct crypto_ahash *tfm)
409 {
410 return tfm->has_setkey;
411 }
412
413 /**
414 * crypto_ahash_finup() - update and finalize message digest
415 * @req: reference to the ahash_request handle that holds all information
416 * needed to perform the cipher operation
417 *
418 * This function is a "short-hand" for the function calls of
419 * crypto_ahash_update and crypto_shash_final. The parameters have the same
420 * meaning as discussed for those separate functions.
421 *
422 * Return: 0 if the message digest creation was successful; < 0 if an error
423 * occurred
424 */
425 int crypto_ahash_finup(struct ahash_request *req);
426
427 /**
428 * crypto_ahash_final() - calculate message digest
429 * @req: reference to the ahash_request handle that holds all information
430 * needed to perform the cipher operation
431 *
432 * Finalize the message digest operation and create the message digest
433 * based on all data added to the cipher handle. The message digest is placed
434 * into the output buffer registered with the ahash_request handle.
435 *
436 * Return: 0 if the message digest creation was successful; < 0 if an error
437 * occurred
438 */
439 int crypto_ahash_final(struct ahash_request *req);
440
441 /**
442 * crypto_ahash_digest() - calculate message digest for a buffer
443 * @req: reference to the ahash_request handle that holds all information
444 * needed to perform the cipher operation
445 *
446 * This function is a "short-hand" for the function calls of crypto_ahash_init,
447 * crypto_ahash_update and crypto_ahash_final. The parameters have the same
448 * meaning as discussed for those separate three functions.
449 *
450 * Return: 0 if the message digest creation was successful; < 0 if an error
451 * occurred
452 */
453 int crypto_ahash_digest(struct ahash_request *req);
454
455 /**
456 * crypto_ahash_export() - extract current message digest state
457 * @req: reference to the ahash_request handle whose state is exported
458 * @out: output buffer of sufficient size that can hold the hash state
459 *
460 * This function exports the hash state of the ahash_request handle into the
461 * caller-allocated output buffer out which must have sufficient size (e.g. by
462 * calling crypto_ahash_statesize()).
463 *
464 * Return: 0 if the export was successful; < 0 if an error occurred
465 */
466 static inline int crypto_ahash_export(struct ahash_request *req, void *out)
467 {
468 return crypto_ahash_reqtfm(req)->export(req, out);
469 }
470
471 /**
472 * crypto_ahash_import() - import message digest state
473 * @req: reference to ahash_request handle the state is imported into
474 * @in: buffer holding the state
475 *
476 * This function imports the hash state into the ahash_request handle from the
477 * input buffer. That buffer should have been generated with the
478 * crypto_ahash_export function.
479 *
480 * Return: 0 if the import was successful; < 0 if an error occurred
481 */
482 static inline int crypto_ahash_import(struct ahash_request *req, const void *in)
483 {
484 return crypto_ahash_reqtfm(req)->import(req, in);
485 }
486
487 /**
488 * crypto_ahash_init() - (re)initialize message digest handle
489 * @req: ahash_request handle that already is initialized with all necessary
490 * data using the ahash_request_* API functions
491 *
492 * The call (re-)initializes the message digest referenced by the ahash_request
493 * handle. Any potentially existing state created by previous operations is
494 * discarded.
495 *
496 * Return: 0 if the message digest initialization was successful; < 0 if an
497 * error occurred
498 */
499 static inline int crypto_ahash_init(struct ahash_request *req)
500 {
501 return crypto_ahash_reqtfm(req)->init(req);
502 }
503
504 /**
505 * crypto_ahash_update() - add data to message digest for processing
506 * @req: ahash_request handle that was previously initialized with the
507 * crypto_ahash_init call.
508 *
509 * Updates the message digest state of the &ahash_request handle. The input data
510 * is pointed to by the scatter/gather list registered in the &ahash_request
511 * handle
512 *
513 * Return: 0 if the message digest update was successful; < 0 if an error
514 * occurred
515 */
516 static inline int crypto_ahash_update(struct ahash_request *req)
517 {
518 return crypto_ahash_reqtfm(req)->update(req);
519 }
520
521 /**
522 * DOC: Asynchronous Hash Request Handle
523 *
524 * The &ahash_request data structure contains all pointers to data
525 * required for the asynchronous cipher operation. This includes the cipher
526 * handle (which can be used by multiple &ahash_request instances), pointer
527 * to plaintext and the message digest output buffer, asynchronous callback
528 * function, etc. It acts as a handle to the ahash_request_* API calls in a
529 * similar way as ahash handle to the crypto_ahash_* API calls.
530 */
531
532 /**
533 * ahash_request_set_tfm() - update cipher handle reference in request
534 * @req: request handle to be modified
535 * @tfm: cipher handle that shall be added to the request handle
536 *
537 * Allow the caller to replace the existing ahash handle in the request
538 * data structure with a different one.
539 */
540 static inline void ahash_request_set_tfm(struct ahash_request *req,
541 struct crypto_ahash *tfm)
542 {
543 req->base.tfm = crypto_ahash_tfm(tfm);
544 }
545
546 /**
547 * ahash_request_alloc() - allocate request data structure
548 * @tfm: cipher handle to be registered with the request
549 * @gfp: memory allocation flag that is handed to kmalloc by the API call.
550 *
551 * Allocate the request data structure that must be used with the ahash
552 * message digest API calls. During
553 * the allocation, the provided ahash handle
554 * is registered in the request data structure.
555 *
556 * Return: allocated request handle in case of success, or NULL if out of memory
557 */
558 static inline struct ahash_request *ahash_request_alloc(
559 struct crypto_ahash *tfm, gfp_t gfp)
560 {
561 struct ahash_request *req;
562
563 req = kmalloc(sizeof(struct ahash_request) +
564 crypto_ahash_reqsize(tfm), gfp);
565
566 if (likely(req))
567 ahash_request_set_tfm(req, tfm);
568
569 return req;
570 }
571
572 /**
573 * ahash_request_free() - zeroize and free the request data structure
574 * @req: request data structure cipher handle to be freed
575 */
576 static inline void ahash_request_free(struct ahash_request *req)
577 {
578 kzfree(req);
579 }
580
581 static inline void ahash_request_zero(struct ahash_request *req)
582 {
583 memzero_explicit(req, sizeof(*req) +
584 crypto_ahash_reqsize(crypto_ahash_reqtfm(req)));
585 }
586
587 static inline struct ahash_request *ahash_request_cast(
588 struct crypto_async_request *req)
589 {
590 return container_of(req, struct ahash_request, base);
591 }
592
593 /**
594 * ahash_request_set_callback() - set asynchronous callback function
595 * @req: request handle
596 * @flags: specify zero or an ORing of the flags
597 * CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and
598 * increase the wait queue beyond the initial maximum size;
599 * CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep
600 * @compl: callback function pointer to be registered with the request handle
601 * @data: The data pointer refers to memory that is not used by the kernel
602 * crypto API, but provided to the callback function for it to use. Here,
603 * the caller can provide a reference to memory the callback function can
604 * operate on. As the callback function is invoked asynchronously to the
605 * related functionality, it may need to access data structures of the
606 * related functionality which can be referenced using this pointer. The
607 * callback function can access the memory via the "data" field in the
608 * &crypto_async_request data structure provided to the callback function.
609 *
610 * This function allows setting the callback function that is triggered once
611 * the cipher operation completes.
612 *
613 * The callback function is registered with the &ahash_request handle and
614 * must comply with the following template::
615 *
616 * void callback_function(struct crypto_async_request *req, int error)
617 */
618 static inline void ahash_request_set_callback(struct ahash_request *req,
619 u32 flags,
620 crypto_completion_t compl,
621 void *data)
622 {
623 req->base.complete = compl;
624 req->base.data = data;
625 req->base.flags = flags;
626 }
627
628 /**
629 * ahash_request_set_crypt() - set data buffers
630 * @req: ahash_request handle to be updated
631 * @src: source scatter/gather list
632 * @result: buffer that is filled with the message digest -- the caller must
633 * ensure that the buffer has sufficient space by, for example, calling
634 * crypto_ahash_digestsize()
635 * @nbytes: number of bytes to process from the source scatter/gather list
636 *
637 * By using this call, the caller references the source scatter/gather list.
638 * The source scatter/gather list points to the data the message digest is to
639 * be calculated for.
640 */
641 static inline void ahash_request_set_crypt(struct ahash_request *req,
642 struct scatterlist *src, u8 *result,
643 unsigned int nbytes)
644 {
645 req->src = src;
646 req->nbytes = nbytes;
647 req->result = result;
648 }
649
650 /**
651 * DOC: Synchronous Message Digest API
652 *
653 * The synchronous message digest API is used with the ciphers of type
654 * CRYPTO_ALG_TYPE_SHASH (listed as type "shash" in /proc/crypto)
655 *
656 * The message digest API is able to maintain state information for the
657 * caller.
658 *
659 * The synchronous message digest API can store user-related context in in its
660 * shash_desc request data structure.
661 */
662
663 /**
664 * crypto_alloc_shash() - allocate message digest handle
665 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
666 * message digest cipher
667 * @type: specifies the type of the cipher
668 * @mask: specifies the mask for the cipher
669 *
670 * Allocate a cipher handle for a message digest. The returned &struct
671 * crypto_shash is the cipher handle that is required for any subsequent
672 * API invocation for that message digest.
673 *
674 * Return: allocated cipher handle in case of success; IS_ERR() is true in case
675 * of an error, PTR_ERR() returns the error code.
676 */
677 struct crypto_shash *crypto_alloc_shash(const char *alg_name, u32 type,
678 u32 mask);
679
680 static inline struct crypto_tfm *crypto_shash_tfm(struct crypto_shash *tfm)
681 {
682 return &tfm->base;
683 }
684
685 /**
686 * crypto_free_shash() - zeroize and free the message digest handle
687 * @tfm: cipher handle to be freed
688 */
689 static inline void crypto_free_shash(struct crypto_shash *tfm)
690 {
691 crypto_destroy_tfm(tfm, crypto_shash_tfm(tfm));
692 }
693
694 static inline const char *crypto_shash_alg_name(struct crypto_shash *tfm)
695 {
696 return crypto_tfm_alg_name(crypto_shash_tfm(tfm));
697 }
698
699 static inline const char *crypto_shash_driver_name(struct crypto_shash *tfm)
700 {
701 return crypto_tfm_alg_driver_name(crypto_shash_tfm(tfm));
702 }
703
704 static inline unsigned int crypto_shash_alignmask(
705 struct crypto_shash *tfm)
706 {
707 return crypto_tfm_alg_alignmask(crypto_shash_tfm(tfm));
708 }
709
710 /**
711 * crypto_shash_blocksize() - obtain block size for cipher
712 * @tfm: cipher handle
713 *
714 * The block size for the message digest cipher referenced with the cipher
715 * handle is returned.
716 *
717 * Return: block size of cipher
718 */
719 static inline unsigned int crypto_shash_blocksize(struct crypto_shash *tfm)
720 {
721 return crypto_tfm_alg_blocksize(crypto_shash_tfm(tfm));
722 }
723
724 static inline struct shash_alg *__crypto_shash_alg(struct crypto_alg *alg)
725 {
726 return container_of(alg, struct shash_alg, base);
727 }
728
729 static inline struct shash_alg *crypto_shash_alg(struct crypto_shash *tfm)
730 {
731 return __crypto_shash_alg(crypto_shash_tfm(tfm)->__crt_alg);
732 }
733
734 /**
735 * crypto_shash_digestsize() - obtain message digest size
736 * @tfm: cipher handle
737 *
738 * The size for the message digest created by the message digest cipher
739 * referenced with the cipher handle is returned.
740 *
741 * Return: digest size of cipher
742 */
743 static inline unsigned int crypto_shash_digestsize(struct crypto_shash *tfm)
744 {
745 return crypto_shash_alg(tfm)->digestsize;
746 }
747
748 static inline unsigned int crypto_shash_statesize(struct crypto_shash *tfm)
749 {
750 return crypto_shash_alg(tfm)->statesize;
751 }
752
753 static inline u32 crypto_shash_get_flags(struct crypto_shash *tfm)
754 {
755 return crypto_tfm_get_flags(crypto_shash_tfm(tfm));
756 }
757
758 static inline void crypto_shash_set_flags(struct crypto_shash *tfm, u32 flags)
759 {
760 crypto_tfm_set_flags(crypto_shash_tfm(tfm), flags);
761 }
762
763 static inline void crypto_shash_clear_flags(struct crypto_shash *tfm, u32 flags)
764 {
765 crypto_tfm_clear_flags(crypto_shash_tfm(tfm), flags);
766 }
767
768 /**
769 * crypto_shash_descsize() - obtain the operational state size
770 * @tfm: cipher handle
771 *
772 * The size of the operational state the cipher needs during operation is
773 * returned for the hash referenced with the cipher handle. This size is
774 * required to calculate the memory requirements to allow the caller allocating
775 * sufficient memory for operational state.
776 *
777 * The operational state is defined with struct shash_desc where the size of
778 * that data structure is to be calculated as
779 * sizeof(struct shash_desc) + crypto_shash_descsize(alg)
780 *
781 * Return: size of the operational state
782 */
783 static inline unsigned int crypto_shash_descsize(struct crypto_shash *tfm)
784 {
785 return tfm->descsize;
786 }
787
788 static inline void *shash_desc_ctx(struct shash_desc *desc)
789 {
790 return desc->__ctx;
791 }
792
793 /**
794 * crypto_shash_setkey() - set key for message digest
795 * @tfm: cipher handle
796 * @key: buffer holding the key
797 * @keylen: length of the key in bytes
798 *
799 * The caller provided key is set for the keyed message digest cipher. The
800 * cipher handle must point to a keyed message digest cipher in order for this
801 * function to succeed.
802 *
803 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
804 */
805 int crypto_shash_setkey(struct crypto_shash *tfm, const u8 *key,
806 unsigned int keylen);
807
808 /**
809 * crypto_shash_digest() - calculate message digest for buffer
810 * @desc: see crypto_shash_final()
811 * @data: see crypto_shash_update()
812 * @len: see crypto_shash_update()
813 * @out: see crypto_shash_final()
814 *
815 * This function is a "short-hand" for the function calls of crypto_shash_init,
816 * crypto_shash_update and crypto_shash_final. The parameters have the same
817 * meaning as discussed for those separate three functions.
818 *
819 * Return: 0 if the message digest creation was successful; < 0 if an error
820 * occurred
821 */
822 int crypto_shash_digest(struct shash_desc *desc, const u8 *data,
823 unsigned int len, u8 *out);
824
825 /**
826 * crypto_shash_export() - extract operational state for message digest
827 * @desc: reference to the operational state handle whose state is exported
828 * @out: output buffer of sufficient size that can hold the hash state
829 *
830 * This function exports the hash state of the operational state handle into the
831 * caller-allocated output buffer out which must have sufficient size (e.g. by
832 * calling crypto_shash_descsize).
833 *
834 * Return: 0 if the export creation was successful; < 0 if an error occurred
835 */
836 static inline int crypto_shash_export(struct shash_desc *desc, void *out)
837 {
838 return crypto_shash_alg(desc->tfm)->export(desc, out);
839 }
840
841 /**
842 * crypto_shash_import() - import operational state
843 * @desc: reference to the operational state handle the state imported into
844 * @in: buffer holding the state
845 *
846 * This function imports the hash state into the operational state handle from
847 * the input buffer. That buffer should have been generated with the
848 * crypto_ahash_export function.
849 *
850 * Return: 0 if the import was successful; < 0 if an error occurred
851 */
852 static inline int crypto_shash_import(struct shash_desc *desc, const void *in)
853 {
854 return crypto_shash_alg(desc->tfm)->import(desc, in);
855 }
856
857 /**
858 * crypto_shash_init() - (re)initialize message digest
859 * @desc: operational state handle that is already filled
860 *
861 * The call (re-)initializes the message digest referenced by the
862 * operational state handle. Any potentially existing state created by
863 * previous operations is discarded.
864 *
865 * Return: 0 if the message digest initialization was successful; < 0 if an
866 * error occurred
867 */
868 static inline int crypto_shash_init(struct shash_desc *desc)
869 {
870 return crypto_shash_alg(desc->tfm)->init(desc);
871 }
872
873 /**
874 * crypto_shash_update() - add data to message digest for processing
875 * @desc: operational state handle that is already initialized
876 * @data: input data to be added to the message digest
877 * @len: length of the input data
878 *
879 * Updates the message digest state of the operational state handle.
880 *
881 * Return: 0 if the message digest update was successful; < 0 if an error
882 * occurred
883 */
884 int crypto_shash_update(struct shash_desc *desc, const u8 *data,
885 unsigned int len);
886
887 /**
888 * crypto_shash_final() - calculate message digest
889 * @desc: operational state handle that is already filled with data
890 * @out: output buffer filled with the message digest
891 *
892 * Finalize the message digest operation and create the message digest
893 * based on all data added to the cipher handle. The message digest is placed
894 * into the output buffer. The caller must ensure that the output buffer is
895 * large enough by using crypto_shash_digestsize.
896 *
897 * Return: 0 if the message digest creation was successful; < 0 if an error
898 * occurred
899 */
900 int crypto_shash_final(struct shash_desc *desc, u8 *out);
901
902 /**
903 * crypto_shash_finup() - calculate message digest of buffer
904 * @desc: see crypto_shash_final()
905 * @data: see crypto_shash_update()
906 * @len: see crypto_shash_update()
907 * @out: see crypto_shash_final()
908 *
909 * This function is a "short-hand" for the function calls of
910 * crypto_shash_update and crypto_shash_final. The parameters have the same
911 * meaning as discussed for those separate functions.
912 *
913 * Return: 0 if the message digest creation was successful; < 0 if an error
914 * occurred
915 */
916 int crypto_shash_finup(struct shash_desc *desc, const u8 *data,
917 unsigned int len, u8 *out);
918
919 static inline void shash_desc_zero(struct shash_desc *desc)
920 {
921 memzero_explicit(desc,
922 sizeof(*desc) + crypto_shash_descsize(desc->tfm));
923 }
924
925 #endif /* _CRYPTO_HASH_H */