]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - include/crypto/hash.h
Merge branch 'next-lsm' of git://git.kernel.org/pub/scm/linux/kernel/git/jmorris...
[mirror_ubuntu-eoan-kernel.git] / include / crypto / hash.h
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3 * Hash: Hash algorithms under the crypto API
4 *
5 * Copyright (c) 2008 Herbert Xu <herbert@gondor.apana.org.au>
6 */
7
8 #ifndef _CRYPTO_HASH_H
9 #define _CRYPTO_HASH_H
10
11 #include <linux/crypto.h>
12 #include <linux/string.h>
13
14 struct crypto_ahash;
15
16 /**
17 * DOC: Message Digest Algorithm Definitions
18 *
19 * These data structures define modular message digest algorithm
20 * implementations, managed via crypto_register_ahash(),
21 * crypto_register_shash(), crypto_unregister_ahash() and
22 * crypto_unregister_shash().
23 */
24
25 /**
26 * struct hash_alg_common - define properties of message digest
27 * @digestsize: Size of the result of the transformation. A buffer of this size
28 * must be available to the @final and @finup calls, so they can
29 * store the resulting hash into it. For various predefined sizes,
30 * search include/crypto/ using
31 * git grep _DIGEST_SIZE include/crypto.
32 * @statesize: Size of the block for partial state of the transformation. A
33 * buffer of this size must be passed to the @export function as it
34 * will save the partial state of the transformation into it. On the
35 * other side, the @import function will load the state from a
36 * buffer of this size as well.
37 * @base: Start of data structure of cipher algorithm. The common data
38 * structure of crypto_alg contains information common to all ciphers.
39 * The hash_alg_common data structure now adds the hash-specific
40 * information.
41 */
42 struct hash_alg_common {
43 unsigned int digestsize;
44 unsigned int statesize;
45
46 struct crypto_alg base;
47 };
48
49 struct ahash_request {
50 struct crypto_async_request base;
51
52 unsigned int nbytes;
53 struct scatterlist *src;
54 u8 *result;
55
56 /* This field may only be used by the ahash API code. */
57 void *priv;
58
59 void *__ctx[] CRYPTO_MINALIGN_ATTR;
60 };
61
62 #define AHASH_REQUEST_ON_STACK(name, ahash) \
63 char __##name##_desc[sizeof(struct ahash_request) + \
64 crypto_ahash_reqsize(ahash)] CRYPTO_MINALIGN_ATTR; \
65 struct ahash_request *name = (void *)__##name##_desc
66
67 /**
68 * struct ahash_alg - asynchronous message digest definition
69 * @init: **[mandatory]** Initialize the transformation context. Intended only to initialize the
70 * state of the HASH transformation at the beginning. This shall fill in
71 * the internal structures used during the entire duration of the whole
72 * transformation. No data processing happens at this point. Driver code
73 * implementation must not use req->result.
74 * @update: **[mandatory]** Push a chunk of data into the driver for transformation. This
75 * function actually pushes blocks of data from upper layers into the
76 * driver, which then passes those to the hardware as seen fit. This
77 * function must not finalize the HASH transformation by calculating the
78 * final message digest as this only adds more data into the
79 * transformation. This function shall not modify the transformation
80 * context, as this function may be called in parallel with the same
81 * transformation object. Data processing can happen synchronously
82 * [SHASH] or asynchronously [AHASH] at this point. Driver must not use
83 * req->result.
84 * @final: **[mandatory]** Retrieve result from the driver. This function finalizes the
85 * transformation and retrieves the resulting hash from the driver and
86 * pushes it back to upper layers. No data processing happens at this
87 * point unless hardware requires it to finish the transformation
88 * (then the data buffered by the device driver is processed).
89 * @finup: **[optional]** Combination of @update and @final. This function is effectively a
90 * combination of @update and @final calls issued in sequence. As some
91 * hardware cannot do @update and @final separately, this callback was
92 * added to allow such hardware to be used at least by IPsec. Data
93 * processing can happen synchronously [SHASH] or asynchronously [AHASH]
94 * at this point.
95 * @digest: Combination of @init and @update and @final. This function
96 * effectively behaves as the entire chain of operations, @init,
97 * @update and @final issued in sequence. Just like @finup, this was
98 * added for hardware which cannot do even the @finup, but can only do
99 * the whole transformation in one run. Data processing can happen
100 * synchronously [SHASH] or asynchronously [AHASH] at this point.
101 * @setkey: Set optional key used by the hashing algorithm. Intended to push
102 * optional key used by the hashing algorithm from upper layers into
103 * the driver. This function can store the key in the transformation
104 * context or can outright program it into the hardware. In the former
105 * case, one must be careful to program the key into the hardware at
106 * appropriate time and one must be careful that .setkey() can be
107 * called multiple times during the existence of the transformation
108 * object. Not all hashing algorithms do implement this function as it
109 * is only needed for keyed message digests. SHAx/MDx/CRCx do NOT
110 * implement this function. HMAC(MDx)/HMAC(SHAx)/CMAC(AES) do implement
111 * this function. This function must be called before any other of the
112 * @init, @update, @final, @finup, @digest is called. No data
113 * processing happens at this point.
114 * @export: Export partial state of the transformation. This function dumps the
115 * entire state of the ongoing transformation into a provided block of
116 * data so it can be @import 'ed back later on. This is useful in case
117 * you want to save partial result of the transformation after
118 * processing certain amount of data and reload this partial result
119 * multiple times later on for multiple re-use. No data processing
120 * happens at this point. Driver must not use req->result.
121 * @import: Import partial state of the transformation. This function loads the
122 * entire state of the ongoing transformation from a provided block of
123 * data so the transformation can continue from this point onward. No
124 * data processing happens at this point. Driver must not use
125 * req->result.
126 * @halg: see struct hash_alg_common
127 */
128 struct ahash_alg {
129 int (*init)(struct ahash_request *req);
130 int (*update)(struct ahash_request *req);
131 int (*final)(struct ahash_request *req);
132 int (*finup)(struct ahash_request *req);
133 int (*digest)(struct ahash_request *req);
134 int (*export)(struct ahash_request *req, void *out);
135 int (*import)(struct ahash_request *req, const void *in);
136 int (*setkey)(struct crypto_ahash *tfm, const u8 *key,
137 unsigned int keylen);
138
139 struct hash_alg_common halg;
140 };
141
142 struct shash_desc {
143 struct crypto_shash *tfm;
144 void *__ctx[] CRYPTO_MINALIGN_ATTR;
145 };
146
147 #define HASH_MAX_DIGESTSIZE 64
148
149 /*
150 * Worst case is hmac(sha3-224-generic). Its context is a nested 'shash_desc'
151 * containing a 'struct sha3_state'.
152 */
153 #define HASH_MAX_DESCSIZE (sizeof(struct shash_desc) + 360)
154
155 #define HASH_MAX_STATESIZE 512
156
157 #define SHASH_DESC_ON_STACK(shash, ctx) \
158 char __##shash##_desc[sizeof(struct shash_desc) + \
159 HASH_MAX_DESCSIZE] CRYPTO_MINALIGN_ATTR; \
160 struct shash_desc *shash = (struct shash_desc *)__##shash##_desc
161
162 /**
163 * struct shash_alg - synchronous message digest definition
164 * @init: see struct ahash_alg
165 * @update: see struct ahash_alg
166 * @final: see struct ahash_alg
167 * @finup: see struct ahash_alg
168 * @digest: see struct ahash_alg
169 * @export: see struct ahash_alg
170 * @import: see struct ahash_alg
171 * @setkey: see struct ahash_alg
172 * @digestsize: see struct ahash_alg
173 * @statesize: see struct ahash_alg
174 * @descsize: Size of the operational state for the message digest. This state
175 * size is the memory size that needs to be allocated for
176 * shash_desc.__ctx
177 * @base: internally used
178 */
179 struct shash_alg {
180 int (*init)(struct shash_desc *desc);
181 int (*update)(struct shash_desc *desc, const u8 *data,
182 unsigned int len);
183 int (*final)(struct shash_desc *desc, u8 *out);
184 int (*finup)(struct shash_desc *desc, const u8 *data,
185 unsigned int len, u8 *out);
186 int (*digest)(struct shash_desc *desc, const u8 *data,
187 unsigned int len, u8 *out);
188 int (*export)(struct shash_desc *desc, void *out);
189 int (*import)(struct shash_desc *desc, const void *in);
190 int (*setkey)(struct crypto_shash *tfm, const u8 *key,
191 unsigned int keylen);
192
193 unsigned int descsize;
194
195 /* These fields must match hash_alg_common. */
196 unsigned int digestsize
197 __attribute__ ((aligned(__alignof__(struct hash_alg_common))));
198 unsigned int statesize;
199
200 struct crypto_alg base;
201 };
202
203 struct crypto_ahash {
204 int (*init)(struct ahash_request *req);
205 int (*update)(struct ahash_request *req);
206 int (*final)(struct ahash_request *req);
207 int (*finup)(struct ahash_request *req);
208 int (*digest)(struct ahash_request *req);
209 int (*export)(struct ahash_request *req, void *out);
210 int (*import)(struct ahash_request *req, const void *in);
211 int (*setkey)(struct crypto_ahash *tfm, const u8 *key,
212 unsigned int keylen);
213
214 unsigned int reqsize;
215 struct crypto_tfm base;
216 };
217
218 struct crypto_shash {
219 unsigned int descsize;
220 struct crypto_tfm base;
221 };
222
223 /**
224 * DOC: Asynchronous Message Digest API
225 *
226 * The asynchronous message digest API is used with the ciphers of type
227 * CRYPTO_ALG_TYPE_AHASH (listed as type "ahash" in /proc/crypto)
228 *
229 * The asynchronous cipher operation discussion provided for the
230 * CRYPTO_ALG_TYPE_ABLKCIPHER API applies here as well.
231 */
232
233 static inline struct crypto_ahash *__crypto_ahash_cast(struct crypto_tfm *tfm)
234 {
235 return container_of(tfm, struct crypto_ahash, base);
236 }
237
238 /**
239 * crypto_alloc_ahash() - allocate ahash cipher handle
240 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
241 * ahash cipher
242 * @type: specifies the type of the cipher
243 * @mask: specifies the mask for the cipher
244 *
245 * Allocate a cipher handle for an ahash. The returned struct
246 * crypto_ahash is the cipher handle that is required for any subsequent
247 * API invocation for that ahash.
248 *
249 * Return: allocated cipher handle in case of success; IS_ERR() is true in case
250 * of an error, PTR_ERR() returns the error code.
251 */
252 struct crypto_ahash *crypto_alloc_ahash(const char *alg_name, u32 type,
253 u32 mask);
254
255 static inline struct crypto_tfm *crypto_ahash_tfm(struct crypto_ahash *tfm)
256 {
257 return &tfm->base;
258 }
259
260 /**
261 * crypto_free_ahash() - zeroize and free the ahash handle
262 * @tfm: cipher handle to be freed
263 */
264 static inline void crypto_free_ahash(struct crypto_ahash *tfm)
265 {
266 crypto_destroy_tfm(tfm, crypto_ahash_tfm(tfm));
267 }
268
269 /**
270 * crypto_has_ahash() - Search for the availability of an ahash.
271 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
272 * ahash
273 * @type: specifies the type of the ahash
274 * @mask: specifies the mask for the ahash
275 *
276 * Return: true when the ahash is known to the kernel crypto API; false
277 * otherwise
278 */
279 int crypto_has_ahash(const char *alg_name, u32 type, u32 mask);
280
281 static inline const char *crypto_ahash_alg_name(struct crypto_ahash *tfm)
282 {
283 return crypto_tfm_alg_name(crypto_ahash_tfm(tfm));
284 }
285
286 static inline const char *crypto_ahash_driver_name(struct crypto_ahash *tfm)
287 {
288 return crypto_tfm_alg_driver_name(crypto_ahash_tfm(tfm));
289 }
290
291 static inline unsigned int crypto_ahash_alignmask(
292 struct crypto_ahash *tfm)
293 {
294 return crypto_tfm_alg_alignmask(crypto_ahash_tfm(tfm));
295 }
296
297 /**
298 * crypto_ahash_blocksize() - obtain block size for cipher
299 * @tfm: cipher handle
300 *
301 * The block size for the message digest cipher referenced with the cipher
302 * handle is returned.
303 *
304 * Return: block size of cipher
305 */
306 static inline unsigned int crypto_ahash_blocksize(struct crypto_ahash *tfm)
307 {
308 return crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
309 }
310
311 static inline struct hash_alg_common *__crypto_hash_alg_common(
312 struct crypto_alg *alg)
313 {
314 return container_of(alg, struct hash_alg_common, base);
315 }
316
317 static inline struct hash_alg_common *crypto_hash_alg_common(
318 struct crypto_ahash *tfm)
319 {
320 return __crypto_hash_alg_common(crypto_ahash_tfm(tfm)->__crt_alg);
321 }
322
323 /**
324 * crypto_ahash_digestsize() - obtain message digest size
325 * @tfm: cipher handle
326 *
327 * The size for the message digest created by the message digest cipher
328 * referenced with the cipher handle is returned.
329 *
330 *
331 * Return: message digest size of cipher
332 */
333 static inline unsigned int crypto_ahash_digestsize(struct crypto_ahash *tfm)
334 {
335 return crypto_hash_alg_common(tfm)->digestsize;
336 }
337
338 /**
339 * crypto_ahash_statesize() - obtain size of the ahash state
340 * @tfm: cipher handle
341 *
342 * Return the size of the ahash state. With the crypto_ahash_export()
343 * function, the caller can export the state into a buffer whose size is
344 * defined with this function.
345 *
346 * Return: size of the ahash state
347 */
348 static inline unsigned int crypto_ahash_statesize(struct crypto_ahash *tfm)
349 {
350 return crypto_hash_alg_common(tfm)->statesize;
351 }
352
353 static inline u32 crypto_ahash_get_flags(struct crypto_ahash *tfm)
354 {
355 return crypto_tfm_get_flags(crypto_ahash_tfm(tfm));
356 }
357
358 static inline void crypto_ahash_set_flags(struct crypto_ahash *tfm, u32 flags)
359 {
360 crypto_tfm_set_flags(crypto_ahash_tfm(tfm), flags);
361 }
362
363 static inline void crypto_ahash_clear_flags(struct crypto_ahash *tfm, u32 flags)
364 {
365 crypto_tfm_clear_flags(crypto_ahash_tfm(tfm), flags);
366 }
367
368 /**
369 * crypto_ahash_reqtfm() - obtain cipher handle from request
370 * @req: asynchronous request handle that contains the reference to the ahash
371 * cipher handle
372 *
373 * Return the ahash cipher handle that is registered with the asynchronous
374 * request handle ahash_request.
375 *
376 * Return: ahash cipher handle
377 */
378 static inline struct crypto_ahash *crypto_ahash_reqtfm(
379 struct ahash_request *req)
380 {
381 return __crypto_ahash_cast(req->base.tfm);
382 }
383
384 /**
385 * crypto_ahash_reqsize() - obtain size of the request data structure
386 * @tfm: cipher handle
387 *
388 * Return: size of the request data
389 */
390 static inline unsigned int crypto_ahash_reqsize(struct crypto_ahash *tfm)
391 {
392 return tfm->reqsize;
393 }
394
395 static inline void *ahash_request_ctx(struct ahash_request *req)
396 {
397 return req->__ctx;
398 }
399
400 /**
401 * crypto_ahash_setkey - set key for cipher handle
402 * @tfm: cipher handle
403 * @key: buffer holding the key
404 * @keylen: length of the key in bytes
405 *
406 * The caller provided key is set for the ahash cipher. The cipher
407 * handle must point to a keyed hash in order for this function to succeed.
408 *
409 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
410 */
411 int crypto_ahash_setkey(struct crypto_ahash *tfm, const u8 *key,
412 unsigned int keylen);
413
414 /**
415 * crypto_ahash_finup() - update and finalize message digest
416 * @req: reference to the ahash_request handle that holds all information
417 * needed to perform the cipher operation
418 *
419 * This function is a "short-hand" for the function calls of
420 * crypto_ahash_update and crypto_ahash_final. The parameters have the same
421 * meaning as discussed for those separate functions.
422 *
423 * Return: see crypto_ahash_final()
424 */
425 int crypto_ahash_finup(struct ahash_request *req);
426
427 /**
428 * crypto_ahash_final() - calculate message digest
429 * @req: reference to the ahash_request handle that holds all information
430 * needed to perform the cipher operation
431 *
432 * Finalize the message digest operation and create the message digest
433 * based on all data added to the cipher handle. The message digest is placed
434 * into the output buffer registered with the ahash_request handle.
435 *
436 * Return:
437 * 0 if the message digest was successfully calculated;
438 * -EINPROGRESS if data is feeded into hardware (DMA) or queued for later;
439 * -EBUSY if queue is full and request should be resubmitted later;
440 * other < 0 if an error occurred
441 */
442 int crypto_ahash_final(struct ahash_request *req);
443
444 /**
445 * crypto_ahash_digest() - calculate message digest for a buffer
446 * @req: reference to the ahash_request handle that holds all information
447 * needed to perform the cipher operation
448 *
449 * This function is a "short-hand" for the function calls of crypto_ahash_init,
450 * crypto_ahash_update and crypto_ahash_final. The parameters have the same
451 * meaning as discussed for those separate three functions.
452 *
453 * Return: see crypto_ahash_final()
454 */
455 int crypto_ahash_digest(struct ahash_request *req);
456
457 /**
458 * crypto_ahash_export() - extract current message digest state
459 * @req: reference to the ahash_request handle whose state is exported
460 * @out: output buffer of sufficient size that can hold the hash state
461 *
462 * This function exports the hash state of the ahash_request handle into the
463 * caller-allocated output buffer out which must have sufficient size (e.g. by
464 * calling crypto_ahash_statesize()).
465 *
466 * Return: 0 if the export was successful; < 0 if an error occurred
467 */
468 static inline int crypto_ahash_export(struct ahash_request *req, void *out)
469 {
470 return crypto_ahash_reqtfm(req)->export(req, out);
471 }
472
473 /**
474 * crypto_ahash_import() - import message digest state
475 * @req: reference to ahash_request handle the state is imported into
476 * @in: buffer holding the state
477 *
478 * This function imports the hash state into the ahash_request handle from the
479 * input buffer. That buffer should have been generated with the
480 * crypto_ahash_export function.
481 *
482 * Return: 0 if the import was successful; < 0 if an error occurred
483 */
484 static inline int crypto_ahash_import(struct ahash_request *req, const void *in)
485 {
486 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
487
488 if (crypto_ahash_get_flags(tfm) & CRYPTO_TFM_NEED_KEY)
489 return -ENOKEY;
490
491 return tfm->import(req, in);
492 }
493
494 /**
495 * crypto_ahash_init() - (re)initialize message digest handle
496 * @req: ahash_request handle that already is initialized with all necessary
497 * data using the ahash_request_* API functions
498 *
499 * The call (re-)initializes the message digest referenced by the ahash_request
500 * handle. Any potentially existing state created by previous operations is
501 * discarded.
502 *
503 * Return: see crypto_ahash_final()
504 */
505 static inline int crypto_ahash_init(struct ahash_request *req)
506 {
507 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
508
509 if (crypto_ahash_get_flags(tfm) & CRYPTO_TFM_NEED_KEY)
510 return -ENOKEY;
511
512 return tfm->init(req);
513 }
514
515 /**
516 * crypto_ahash_update() - add data to message digest for processing
517 * @req: ahash_request handle that was previously initialized with the
518 * crypto_ahash_init call.
519 *
520 * Updates the message digest state of the &ahash_request handle. The input data
521 * is pointed to by the scatter/gather list registered in the &ahash_request
522 * handle
523 *
524 * Return: see crypto_ahash_final()
525 */
526 static inline int crypto_ahash_update(struct ahash_request *req)
527 {
528 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
529 struct crypto_alg *alg = tfm->base.__crt_alg;
530 unsigned int nbytes = req->nbytes;
531 int ret;
532
533 crypto_stats_get(alg);
534 ret = crypto_ahash_reqtfm(req)->update(req);
535 crypto_stats_ahash_update(nbytes, ret, alg);
536 return ret;
537 }
538
539 /**
540 * DOC: Asynchronous Hash Request Handle
541 *
542 * The &ahash_request data structure contains all pointers to data
543 * required for the asynchronous cipher operation. This includes the cipher
544 * handle (which can be used by multiple &ahash_request instances), pointer
545 * to plaintext and the message digest output buffer, asynchronous callback
546 * function, etc. It acts as a handle to the ahash_request_* API calls in a
547 * similar way as ahash handle to the crypto_ahash_* API calls.
548 */
549
550 /**
551 * ahash_request_set_tfm() - update cipher handle reference in request
552 * @req: request handle to be modified
553 * @tfm: cipher handle that shall be added to the request handle
554 *
555 * Allow the caller to replace the existing ahash handle in the request
556 * data structure with a different one.
557 */
558 static inline void ahash_request_set_tfm(struct ahash_request *req,
559 struct crypto_ahash *tfm)
560 {
561 req->base.tfm = crypto_ahash_tfm(tfm);
562 }
563
564 /**
565 * ahash_request_alloc() - allocate request data structure
566 * @tfm: cipher handle to be registered with the request
567 * @gfp: memory allocation flag that is handed to kmalloc by the API call.
568 *
569 * Allocate the request data structure that must be used with the ahash
570 * message digest API calls. During
571 * the allocation, the provided ahash handle
572 * is registered in the request data structure.
573 *
574 * Return: allocated request handle in case of success, or NULL if out of memory
575 */
576 static inline struct ahash_request *ahash_request_alloc(
577 struct crypto_ahash *tfm, gfp_t gfp)
578 {
579 struct ahash_request *req;
580
581 req = kmalloc(sizeof(struct ahash_request) +
582 crypto_ahash_reqsize(tfm), gfp);
583
584 if (likely(req))
585 ahash_request_set_tfm(req, tfm);
586
587 return req;
588 }
589
590 /**
591 * ahash_request_free() - zeroize and free the request data structure
592 * @req: request data structure cipher handle to be freed
593 */
594 static inline void ahash_request_free(struct ahash_request *req)
595 {
596 kzfree(req);
597 }
598
599 static inline void ahash_request_zero(struct ahash_request *req)
600 {
601 memzero_explicit(req, sizeof(*req) +
602 crypto_ahash_reqsize(crypto_ahash_reqtfm(req)));
603 }
604
605 static inline struct ahash_request *ahash_request_cast(
606 struct crypto_async_request *req)
607 {
608 return container_of(req, struct ahash_request, base);
609 }
610
611 /**
612 * ahash_request_set_callback() - set asynchronous callback function
613 * @req: request handle
614 * @flags: specify zero or an ORing of the flags
615 * CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and
616 * increase the wait queue beyond the initial maximum size;
617 * CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep
618 * @compl: callback function pointer to be registered with the request handle
619 * @data: The data pointer refers to memory that is not used by the kernel
620 * crypto API, but provided to the callback function for it to use. Here,
621 * the caller can provide a reference to memory the callback function can
622 * operate on. As the callback function is invoked asynchronously to the
623 * related functionality, it may need to access data structures of the
624 * related functionality which can be referenced using this pointer. The
625 * callback function can access the memory via the "data" field in the
626 * &crypto_async_request data structure provided to the callback function.
627 *
628 * This function allows setting the callback function that is triggered once
629 * the cipher operation completes.
630 *
631 * The callback function is registered with the &ahash_request handle and
632 * must comply with the following template::
633 *
634 * void callback_function(struct crypto_async_request *req, int error)
635 */
636 static inline void ahash_request_set_callback(struct ahash_request *req,
637 u32 flags,
638 crypto_completion_t compl,
639 void *data)
640 {
641 req->base.complete = compl;
642 req->base.data = data;
643 req->base.flags = flags;
644 }
645
646 /**
647 * ahash_request_set_crypt() - set data buffers
648 * @req: ahash_request handle to be updated
649 * @src: source scatter/gather list
650 * @result: buffer that is filled with the message digest -- the caller must
651 * ensure that the buffer has sufficient space by, for example, calling
652 * crypto_ahash_digestsize()
653 * @nbytes: number of bytes to process from the source scatter/gather list
654 *
655 * By using this call, the caller references the source scatter/gather list.
656 * The source scatter/gather list points to the data the message digest is to
657 * be calculated for.
658 */
659 static inline void ahash_request_set_crypt(struct ahash_request *req,
660 struct scatterlist *src, u8 *result,
661 unsigned int nbytes)
662 {
663 req->src = src;
664 req->nbytes = nbytes;
665 req->result = result;
666 }
667
668 /**
669 * DOC: Synchronous Message Digest API
670 *
671 * The synchronous message digest API is used with the ciphers of type
672 * CRYPTO_ALG_TYPE_SHASH (listed as type "shash" in /proc/crypto)
673 *
674 * The message digest API is able to maintain state information for the
675 * caller.
676 *
677 * The synchronous message digest API can store user-related context in in its
678 * shash_desc request data structure.
679 */
680
681 /**
682 * crypto_alloc_shash() - allocate message digest handle
683 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
684 * message digest cipher
685 * @type: specifies the type of the cipher
686 * @mask: specifies the mask for the cipher
687 *
688 * Allocate a cipher handle for a message digest. The returned &struct
689 * crypto_shash is the cipher handle that is required for any subsequent
690 * API invocation for that message digest.
691 *
692 * Return: allocated cipher handle in case of success; IS_ERR() is true in case
693 * of an error, PTR_ERR() returns the error code.
694 */
695 struct crypto_shash *crypto_alloc_shash(const char *alg_name, u32 type,
696 u32 mask);
697
698 static inline struct crypto_tfm *crypto_shash_tfm(struct crypto_shash *tfm)
699 {
700 return &tfm->base;
701 }
702
703 /**
704 * crypto_free_shash() - zeroize and free the message digest handle
705 * @tfm: cipher handle to be freed
706 */
707 static inline void crypto_free_shash(struct crypto_shash *tfm)
708 {
709 crypto_destroy_tfm(tfm, crypto_shash_tfm(tfm));
710 }
711
712 static inline const char *crypto_shash_alg_name(struct crypto_shash *tfm)
713 {
714 return crypto_tfm_alg_name(crypto_shash_tfm(tfm));
715 }
716
717 static inline const char *crypto_shash_driver_name(struct crypto_shash *tfm)
718 {
719 return crypto_tfm_alg_driver_name(crypto_shash_tfm(tfm));
720 }
721
722 static inline unsigned int crypto_shash_alignmask(
723 struct crypto_shash *tfm)
724 {
725 return crypto_tfm_alg_alignmask(crypto_shash_tfm(tfm));
726 }
727
728 /**
729 * crypto_shash_blocksize() - obtain block size for cipher
730 * @tfm: cipher handle
731 *
732 * The block size for the message digest cipher referenced with the cipher
733 * handle is returned.
734 *
735 * Return: block size of cipher
736 */
737 static inline unsigned int crypto_shash_blocksize(struct crypto_shash *tfm)
738 {
739 return crypto_tfm_alg_blocksize(crypto_shash_tfm(tfm));
740 }
741
742 static inline struct shash_alg *__crypto_shash_alg(struct crypto_alg *alg)
743 {
744 return container_of(alg, struct shash_alg, base);
745 }
746
747 static inline struct shash_alg *crypto_shash_alg(struct crypto_shash *tfm)
748 {
749 return __crypto_shash_alg(crypto_shash_tfm(tfm)->__crt_alg);
750 }
751
752 /**
753 * crypto_shash_digestsize() - obtain message digest size
754 * @tfm: cipher handle
755 *
756 * The size for the message digest created by the message digest cipher
757 * referenced with the cipher handle is returned.
758 *
759 * Return: digest size of cipher
760 */
761 static inline unsigned int crypto_shash_digestsize(struct crypto_shash *tfm)
762 {
763 return crypto_shash_alg(tfm)->digestsize;
764 }
765
766 static inline unsigned int crypto_shash_statesize(struct crypto_shash *tfm)
767 {
768 return crypto_shash_alg(tfm)->statesize;
769 }
770
771 static inline u32 crypto_shash_get_flags(struct crypto_shash *tfm)
772 {
773 return crypto_tfm_get_flags(crypto_shash_tfm(tfm));
774 }
775
776 static inline void crypto_shash_set_flags(struct crypto_shash *tfm, u32 flags)
777 {
778 crypto_tfm_set_flags(crypto_shash_tfm(tfm), flags);
779 }
780
781 static inline void crypto_shash_clear_flags(struct crypto_shash *tfm, u32 flags)
782 {
783 crypto_tfm_clear_flags(crypto_shash_tfm(tfm), flags);
784 }
785
786 /**
787 * crypto_shash_descsize() - obtain the operational state size
788 * @tfm: cipher handle
789 *
790 * The size of the operational state the cipher needs during operation is
791 * returned for the hash referenced with the cipher handle. This size is
792 * required to calculate the memory requirements to allow the caller allocating
793 * sufficient memory for operational state.
794 *
795 * The operational state is defined with struct shash_desc where the size of
796 * that data structure is to be calculated as
797 * sizeof(struct shash_desc) + crypto_shash_descsize(alg)
798 *
799 * Return: size of the operational state
800 */
801 static inline unsigned int crypto_shash_descsize(struct crypto_shash *tfm)
802 {
803 return tfm->descsize;
804 }
805
806 static inline void *shash_desc_ctx(struct shash_desc *desc)
807 {
808 return desc->__ctx;
809 }
810
811 /**
812 * crypto_shash_setkey() - set key for message digest
813 * @tfm: cipher handle
814 * @key: buffer holding the key
815 * @keylen: length of the key in bytes
816 *
817 * The caller provided key is set for the keyed message digest cipher. The
818 * cipher handle must point to a keyed message digest cipher in order for this
819 * function to succeed.
820 *
821 * Context: Any context.
822 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
823 */
824 int crypto_shash_setkey(struct crypto_shash *tfm, const u8 *key,
825 unsigned int keylen);
826
827 /**
828 * crypto_shash_digest() - calculate message digest for buffer
829 * @desc: see crypto_shash_final()
830 * @data: see crypto_shash_update()
831 * @len: see crypto_shash_update()
832 * @out: see crypto_shash_final()
833 *
834 * This function is a "short-hand" for the function calls of crypto_shash_init,
835 * crypto_shash_update and crypto_shash_final. The parameters have the same
836 * meaning as discussed for those separate three functions.
837 *
838 * Context: Any context.
839 * Return: 0 if the message digest creation was successful; < 0 if an error
840 * occurred
841 */
842 int crypto_shash_digest(struct shash_desc *desc, const u8 *data,
843 unsigned int len, u8 *out);
844
845 /**
846 * crypto_shash_export() - extract operational state for message digest
847 * @desc: reference to the operational state handle whose state is exported
848 * @out: output buffer of sufficient size that can hold the hash state
849 *
850 * This function exports the hash state of the operational state handle into the
851 * caller-allocated output buffer out which must have sufficient size (e.g. by
852 * calling crypto_shash_descsize).
853 *
854 * Context: Any context.
855 * Return: 0 if the export creation was successful; < 0 if an error occurred
856 */
857 static inline int crypto_shash_export(struct shash_desc *desc, void *out)
858 {
859 return crypto_shash_alg(desc->tfm)->export(desc, out);
860 }
861
862 /**
863 * crypto_shash_import() - import operational state
864 * @desc: reference to the operational state handle the state imported into
865 * @in: buffer holding the state
866 *
867 * This function imports the hash state into the operational state handle from
868 * the input buffer. That buffer should have been generated with the
869 * crypto_ahash_export function.
870 *
871 * Context: Any context.
872 * Return: 0 if the import was successful; < 0 if an error occurred
873 */
874 static inline int crypto_shash_import(struct shash_desc *desc, const void *in)
875 {
876 struct crypto_shash *tfm = desc->tfm;
877
878 if (crypto_shash_get_flags(tfm) & CRYPTO_TFM_NEED_KEY)
879 return -ENOKEY;
880
881 return crypto_shash_alg(tfm)->import(desc, in);
882 }
883
884 /**
885 * crypto_shash_init() - (re)initialize message digest
886 * @desc: operational state handle that is already filled
887 *
888 * The call (re-)initializes the message digest referenced by the
889 * operational state handle. Any potentially existing state created by
890 * previous operations is discarded.
891 *
892 * Context: Any context.
893 * Return: 0 if the message digest initialization was successful; < 0 if an
894 * error occurred
895 */
896 static inline int crypto_shash_init(struct shash_desc *desc)
897 {
898 struct crypto_shash *tfm = desc->tfm;
899
900 if (crypto_shash_get_flags(tfm) & CRYPTO_TFM_NEED_KEY)
901 return -ENOKEY;
902
903 return crypto_shash_alg(tfm)->init(desc);
904 }
905
906 /**
907 * crypto_shash_update() - add data to message digest for processing
908 * @desc: operational state handle that is already initialized
909 * @data: input data to be added to the message digest
910 * @len: length of the input data
911 *
912 * Updates the message digest state of the operational state handle.
913 *
914 * Context: Any context.
915 * Return: 0 if the message digest update was successful; < 0 if an error
916 * occurred
917 */
918 int crypto_shash_update(struct shash_desc *desc, const u8 *data,
919 unsigned int len);
920
921 /**
922 * crypto_shash_final() - calculate message digest
923 * @desc: operational state handle that is already filled with data
924 * @out: output buffer filled with the message digest
925 *
926 * Finalize the message digest operation and create the message digest
927 * based on all data added to the cipher handle. The message digest is placed
928 * into the output buffer. The caller must ensure that the output buffer is
929 * large enough by using crypto_shash_digestsize.
930 *
931 * Context: Any context.
932 * Return: 0 if the message digest creation was successful; < 0 if an error
933 * occurred
934 */
935 int crypto_shash_final(struct shash_desc *desc, u8 *out);
936
937 /**
938 * crypto_shash_finup() - calculate message digest of buffer
939 * @desc: see crypto_shash_final()
940 * @data: see crypto_shash_update()
941 * @len: see crypto_shash_update()
942 * @out: see crypto_shash_final()
943 *
944 * This function is a "short-hand" for the function calls of
945 * crypto_shash_update and crypto_shash_final. The parameters have the same
946 * meaning as discussed for those separate functions.
947 *
948 * Context: Any context.
949 * Return: 0 if the message digest creation was successful; < 0 if an error
950 * occurred
951 */
952 int crypto_shash_finup(struct shash_desc *desc, const u8 *data,
953 unsigned int len, u8 *out);
954
955 static inline void shash_desc_zero(struct shash_desc *desc)
956 {
957 memzero_explicit(desc,
958 sizeof(*desc) + crypto_shash_descsize(desc->tfm));
959 }
960
961 #endif /* _CRYPTO_HASH_H */