]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - include/crypto/hash.h
Merge tag 'tegra-for-5.2-arm64-dt-fixes' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-eoan-kernel.git] / include / crypto / hash.h
1 /*
2 * Hash: Hash algorithms under the crypto API
3 *
4 * Copyright (c) 2008 Herbert Xu <herbert@gondor.apana.org.au>
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License as published by the Free
8 * Software Foundation; either version 2 of the License, or (at your option)
9 * any later version.
10 *
11 */
12
13 #ifndef _CRYPTO_HASH_H
14 #define _CRYPTO_HASH_H
15
16 #include <linux/crypto.h>
17 #include <linux/string.h>
18
19 struct crypto_ahash;
20
21 /**
22 * DOC: Message Digest Algorithm Definitions
23 *
24 * These data structures define modular message digest algorithm
25 * implementations, managed via crypto_register_ahash(),
26 * crypto_register_shash(), crypto_unregister_ahash() and
27 * crypto_unregister_shash().
28 */
29
30 /**
31 * struct hash_alg_common - define properties of message digest
32 * @digestsize: Size of the result of the transformation. A buffer of this size
33 * must be available to the @final and @finup calls, so they can
34 * store the resulting hash into it. For various predefined sizes,
35 * search include/crypto/ using
36 * git grep _DIGEST_SIZE include/crypto.
37 * @statesize: Size of the block for partial state of the transformation. A
38 * buffer of this size must be passed to the @export function as it
39 * will save the partial state of the transformation into it. On the
40 * other side, the @import function will load the state from a
41 * buffer of this size as well.
42 * @base: Start of data structure of cipher algorithm. The common data
43 * structure of crypto_alg contains information common to all ciphers.
44 * The hash_alg_common data structure now adds the hash-specific
45 * information.
46 */
47 struct hash_alg_common {
48 unsigned int digestsize;
49 unsigned int statesize;
50
51 struct crypto_alg base;
52 };
53
54 struct ahash_request {
55 struct crypto_async_request base;
56
57 unsigned int nbytes;
58 struct scatterlist *src;
59 u8 *result;
60
61 /* This field may only be used by the ahash API code. */
62 void *priv;
63
64 void *__ctx[] CRYPTO_MINALIGN_ATTR;
65 };
66
67 #define AHASH_REQUEST_ON_STACK(name, ahash) \
68 char __##name##_desc[sizeof(struct ahash_request) + \
69 crypto_ahash_reqsize(ahash)] CRYPTO_MINALIGN_ATTR; \
70 struct ahash_request *name = (void *)__##name##_desc
71
72 /**
73 * struct ahash_alg - asynchronous message digest definition
74 * @init: **[mandatory]** Initialize the transformation context. Intended only to initialize the
75 * state of the HASH transformation at the beginning. This shall fill in
76 * the internal structures used during the entire duration of the whole
77 * transformation. No data processing happens at this point. Driver code
78 * implementation must not use req->result.
79 * @update: **[mandatory]** Push a chunk of data into the driver for transformation. This
80 * function actually pushes blocks of data from upper layers into the
81 * driver, which then passes those to the hardware as seen fit. This
82 * function must not finalize the HASH transformation by calculating the
83 * final message digest as this only adds more data into the
84 * transformation. This function shall not modify the transformation
85 * context, as this function may be called in parallel with the same
86 * transformation object. Data processing can happen synchronously
87 * [SHASH] or asynchronously [AHASH] at this point. Driver must not use
88 * req->result.
89 * @final: **[mandatory]** Retrieve result from the driver. This function finalizes the
90 * transformation and retrieves the resulting hash from the driver and
91 * pushes it back to upper layers. No data processing happens at this
92 * point unless hardware requires it to finish the transformation
93 * (then the data buffered by the device driver is processed).
94 * @finup: **[optional]** Combination of @update and @final. This function is effectively a
95 * combination of @update and @final calls issued in sequence. As some
96 * hardware cannot do @update and @final separately, this callback was
97 * added to allow such hardware to be used at least by IPsec. Data
98 * processing can happen synchronously [SHASH] or asynchronously [AHASH]
99 * at this point.
100 * @digest: Combination of @init and @update and @final. This function
101 * effectively behaves as the entire chain of operations, @init,
102 * @update and @final issued in sequence. Just like @finup, this was
103 * added for hardware which cannot do even the @finup, but can only do
104 * the whole transformation in one run. Data processing can happen
105 * synchronously [SHASH] or asynchronously [AHASH] at this point.
106 * @setkey: Set optional key used by the hashing algorithm. Intended to push
107 * optional key used by the hashing algorithm from upper layers into
108 * the driver. This function can store the key in the transformation
109 * context or can outright program it into the hardware. In the former
110 * case, one must be careful to program the key into the hardware at
111 * appropriate time and one must be careful that .setkey() can be
112 * called multiple times during the existence of the transformation
113 * object. Not all hashing algorithms do implement this function as it
114 * is only needed for keyed message digests. SHAx/MDx/CRCx do NOT
115 * implement this function. HMAC(MDx)/HMAC(SHAx)/CMAC(AES) do implement
116 * this function. This function must be called before any other of the
117 * @init, @update, @final, @finup, @digest is called. No data
118 * processing happens at this point.
119 * @export: Export partial state of the transformation. This function dumps the
120 * entire state of the ongoing transformation into a provided block of
121 * data so it can be @import 'ed back later on. This is useful in case
122 * you want to save partial result of the transformation after
123 * processing certain amount of data and reload this partial result
124 * multiple times later on for multiple re-use. No data processing
125 * happens at this point. Driver must not use req->result.
126 * @import: Import partial state of the transformation. This function loads the
127 * entire state of the ongoing transformation from a provided block of
128 * data so the transformation can continue from this point onward. No
129 * data processing happens at this point. Driver must not use
130 * req->result.
131 * @halg: see struct hash_alg_common
132 */
133 struct ahash_alg {
134 int (*init)(struct ahash_request *req);
135 int (*update)(struct ahash_request *req);
136 int (*final)(struct ahash_request *req);
137 int (*finup)(struct ahash_request *req);
138 int (*digest)(struct ahash_request *req);
139 int (*export)(struct ahash_request *req, void *out);
140 int (*import)(struct ahash_request *req, const void *in);
141 int (*setkey)(struct crypto_ahash *tfm, const u8 *key,
142 unsigned int keylen);
143
144 struct hash_alg_common halg;
145 };
146
147 struct shash_desc {
148 struct crypto_shash *tfm;
149 void *__ctx[] CRYPTO_MINALIGN_ATTR;
150 };
151
152 #define HASH_MAX_DIGESTSIZE 64
153 #define HASH_MAX_DESCSIZE 360
154 #define HASH_MAX_STATESIZE 512
155
156 #define SHASH_DESC_ON_STACK(shash, ctx) \
157 char __##shash##_desc[sizeof(struct shash_desc) + \
158 HASH_MAX_DESCSIZE] CRYPTO_MINALIGN_ATTR; \
159 struct shash_desc *shash = (struct shash_desc *)__##shash##_desc
160
161 /**
162 * struct shash_alg - synchronous message digest definition
163 * @init: see struct ahash_alg
164 * @update: see struct ahash_alg
165 * @final: see struct ahash_alg
166 * @finup: see struct ahash_alg
167 * @digest: see struct ahash_alg
168 * @export: see struct ahash_alg
169 * @import: see struct ahash_alg
170 * @setkey: see struct ahash_alg
171 * @digestsize: see struct ahash_alg
172 * @statesize: see struct ahash_alg
173 * @descsize: Size of the operational state for the message digest. This state
174 * size is the memory size that needs to be allocated for
175 * shash_desc.__ctx
176 * @base: internally used
177 */
178 struct shash_alg {
179 int (*init)(struct shash_desc *desc);
180 int (*update)(struct shash_desc *desc, const u8 *data,
181 unsigned int len);
182 int (*final)(struct shash_desc *desc, u8 *out);
183 int (*finup)(struct shash_desc *desc, const u8 *data,
184 unsigned int len, u8 *out);
185 int (*digest)(struct shash_desc *desc, const u8 *data,
186 unsigned int len, u8 *out);
187 int (*export)(struct shash_desc *desc, void *out);
188 int (*import)(struct shash_desc *desc, const void *in);
189 int (*setkey)(struct crypto_shash *tfm, const u8 *key,
190 unsigned int keylen);
191
192 unsigned int descsize;
193
194 /* These fields must match hash_alg_common. */
195 unsigned int digestsize
196 __attribute__ ((aligned(__alignof__(struct hash_alg_common))));
197 unsigned int statesize;
198
199 struct crypto_alg base;
200 };
201
202 struct crypto_ahash {
203 int (*init)(struct ahash_request *req);
204 int (*update)(struct ahash_request *req);
205 int (*final)(struct ahash_request *req);
206 int (*finup)(struct ahash_request *req);
207 int (*digest)(struct ahash_request *req);
208 int (*export)(struct ahash_request *req, void *out);
209 int (*import)(struct ahash_request *req, const void *in);
210 int (*setkey)(struct crypto_ahash *tfm, const u8 *key,
211 unsigned int keylen);
212
213 unsigned int reqsize;
214 struct crypto_tfm base;
215 };
216
217 struct crypto_shash {
218 unsigned int descsize;
219 struct crypto_tfm base;
220 };
221
222 /**
223 * DOC: Asynchronous Message Digest API
224 *
225 * The asynchronous message digest API is used with the ciphers of type
226 * CRYPTO_ALG_TYPE_AHASH (listed as type "ahash" in /proc/crypto)
227 *
228 * The asynchronous cipher operation discussion provided for the
229 * CRYPTO_ALG_TYPE_ABLKCIPHER API applies here as well.
230 */
231
232 static inline struct crypto_ahash *__crypto_ahash_cast(struct crypto_tfm *tfm)
233 {
234 return container_of(tfm, struct crypto_ahash, base);
235 }
236
237 /**
238 * crypto_alloc_ahash() - allocate ahash cipher handle
239 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
240 * ahash cipher
241 * @type: specifies the type of the cipher
242 * @mask: specifies the mask for the cipher
243 *
244 * Allocate a cipher handle for an ahash. The returned struct
245 * crypto_ahash is the cipher handle that is required for any subsequent
246 * API invocation for that ahash.
247 *
248 * Return: allocated cipher handle in case of success; IS_ERR() is true in case
249 * of an error, PTR_ERR() returns the error code.
250 */
251 struct crypto_ahash *crypto_alloc_ahash(const char *alg_name, u32 type,
252 u32 mask);
253
254 static inline struct crypto_tfm *crypto_ahash_tfm(struct crypto_ahash *tfm)
255 {
256 return &tfm->base;
257 }
258
259 /**
260 * crypto_free_ahash() - zeroize and free the ahash handle
261 * @tfm: cipher handle to be freed
262 */
263 static inline void crypto_free_ahash(struct crypto_ahash *tfm)
264 {
265 crypto_destroy_tfm(tfm, crypto_ahash_tfm(tfm));
266 }
267
268 /**
269 * crypto_has_ahash() - Search for the availability of an ahash.
270 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
271 * ahash
272 * @type: specifies the type of the ahash
273 * @mask: specifies the mask for the ahash
274 *
275 * Return: true when the ahash is known to the kernel crypto API; false
276 * otherwise
277 */
278 int crypto_has_ahash(const char *alg_name, u32 type, u32 mask);
279
280 static inline const char *crypto_ahash_alg_name(struct crypto_ahash *tfm)
281 {
282 return crypto_tfm_alg_name(crypto_ahash_tfm(tfm));
283 }
284
285 static inline const char *crypto_ahash_driver_name(struct crypto_ahash *tfm)
286 {
287 return crypto_tfm_alg_driver_name(crypto_ahash_tfm(tfm));
288 }
289
290 static inline unsigned int crypto_ahash_alignmask(
291 struct crypto_ahash *tfm)
292 {
293 return crypto_tfm_alg_alignmask(crypto_ahash_tfm(tfm));
294 }
295
296 /**
297 * crypto_ahash_blocksize() - obtain block size for cipher
298 * @tfm: cipher handle
299 *
300 * The block size for the message digest cipher referenced with the cipher
301 * handle is returned.
302 *
303 * Return: block size of cipher
304 */
305 static inline unsigned int crypto_ahash_blocksize(struct crypto_ahash *tfm)
306 {
307 return crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
308 }
309
310 static inline struct hash_alg_common *__crypto_hash_alg_common(
311 struct crypto_alg *alg)
312 {
313 return container_of(alg, struct hash_alg_common, base);
314 }
315
316 static inline struct hash_alg_common *crypto_hash_alg_common(
317 struct crypto_ahash *tfm)
318 {
319 return __crypto_hash_alg_common(crypto_ahash_tfm(tfm)->__crt_alg);
320 }
321
322 /**
323 * crypto_ahash_digestsize() - obtain message digest size
324 * @tfm: cipher handle
325 *
326 * The size for the message digest created by the message digest cipher
327 * referenced with the cipher handle is returned.
328 *
329 *
330 * Return: message digest size of cipher
331 */
332 static inline unsigned int crypto_ahash_digestsize(struct crypto_ahash *tfm)
333 {
334 return crypto_hash_alg_common(tfm)->digestsize;
335 }
336
337 /**
338 * crypto_ahash_statesize() - obtain size of the ahash state
339 * @tfm: cipher handle
340 *
341 * Return the size of the ahash state. With the crypto_ahash_export()
342 * function, the caller can export the state into a buffer whose size is
343 * defined with this function.
344 *
345 * Return: size of the ahash state
346 */
347 static inline unsigned int crypto_ahash_statesize(struct crypto_ahash *tfm)
348 {
349 return crypto_hash_alg_common(tfm)->statesize;
350 }
351
352 static inline u32 crypto_ahash_get_flags(struct crypto_ahash *tfm)
353 {
354 return crypto_tfm_get_flags(crypto_ahash_tfm(tfm));
355 }
356
357 static inline void crypto_ahash_set_flags(struct crypto_ahash *tfm, u32 flags)
358 {
359 crypto_tfm_set_flags(crypto_ahash_tfm(tfm), flags);
360 }
361
362 static inline void crypto_ahash_clear_flags(struct crypto_ahash *tfm, u32 flags)
363 {
364 crypto_tfm_clear_flags(crypto_ahash_tfm(tfm), flags);
365 }
366
367 /**
368 * crypto_ahash_reqtfm() - obtain cipher handle from request
369 * @req: asynchronous request handle that contains the reference to the ahash
370 * cipher handle
371 *
372 * Return the ahash cipher handle that is registered with the asynchronous
373 * request handle ahash_request.
374 *
375 * Return: ahash cipher handle
376 */
377 static inline struct crypto_ahash *crypto_ahash_reqtfm(
378 struct ahash_request *req)
379 {
380 return __crypto_ahash_cast(req->base.tfm);
381 }
382
383 /**
384 * crypto_ahash_reqsize() - obtain size of the request data structure
385 * @tfm: cipher handle
386 *
387 * Return: size of the request data
388 */
389 static inline unsigned int crypto_ahash_reqsize(struct crypto_ahash *tfm)
390 {
391 return tfm->reqsize;
392 }
393
394 static inline void *ahash_request_ctx(struct ahash_request *req)
395 {
396 return req->__ctx;
397 }
398
399 /**
400 * crypto_ahash_setkey - set key for cipher handle
401 * @tfm: cipher handle
402 * @key: buffer holding the key
403 * @keylen: length of the key in bytes
404 *
405 * The caller provided key is set for the ahash cipher. The cipher
406 * handle must point to a keyed hash in order for this function to succeed.
407 *
408 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
409 */
410 int crypto_ahash_setkey(struct crypto_ahash *tfm, const u8 *key,
411 unsigned int keylen);
412
413 /**
414 * crypto_ahash_finup() - update and finalize message digest
415 * @req: reference to the ahash_request handle that holds all information
416 * needed to perform the cipher operation
417 *
418 * This function is a "short-hand" for the function calls of
419 * crypto_ahash_update and crypto_ahash_final. The parameters have the same
420 * meaning as discussed for those separate functions.
421 *
422 * Return: see crypto_ahash_final()
423 */
424 int crypto_ahash_finup(struct ahash_request *req);
425
426 /**
427 * crypto_ahash_final() - calculate message digest
428 * @req: reference to the ahash_request handle that holds all information
429 * needed to perform the cipher operation
430 *
431 * Finalize the message digest operation and create the message digest
432 * based on all data added to the cipher handle. The message digest is placed
433 * into the output buffer registered with the ahash_request handle.
434 *
435 * Return:
436 * 0 if the message digest was successfully calculated;
437 * -EINPROGRESS if data is feeded into hardware (DMA) or queued for later;
438 * -EBUSY if queue is full and request should be resubmitted later;
439 * other < 0 if an error occurred
440 */
441 int crypto_ahash_final(struct ahash_request *req);
442
443 /**
444 * crypto_ahash_digest() - calculate message digest for a buffer
445 * @req: reference to the ahash_request handle that holds all information
446 * needed to perform the cipher operation
447 *
448 * This function is a "short-hand" for the function calls of crypto_ahash_init,
449 * crypto_ahash_update and crypto_ahash_final. The parameters have the same
450 * meaning as discussed for those separate three functions.
451 *
452 * Return: see crypto_ahash_final()
453 */
454 int crypto_ahash_digest(struct ahash_request *req);
455
456 /**
457 * crypto_ahash_export() - extract current message digest state
458 * @req: reference to the ahash_request handle whose state is exported
459 * @out: output buffer of sufficient size that can hold the hash state
460 *
461 * This function exports the hash state of the ahash_request handle into the
462 * caller-allocated output buffer out which must have sufficient size (e.g. by
463 * calling crypto_ahash_statesize()).
464 *
465 * Return: 0 if the export was successful; < 0 if an error occurred
466 */
467 static inline int crypto_ahash_export(struct ahash_request *req, void *out)
468 {
469 return crypto_ahash_reqtfm(req)->export(req, out);
470 }
471
472 /**
473 * crypto_ahash_import() - import message digest state
474 * @req: reference to ahash_request handle the state is imported into
475 * @in: buffer holding the state
476 *
477 * This function imports the hash state into the ahash_request handle from the
478 * input buffer. That buffer should have been generated with the
479 * crypto_ahash_export function.
480 *
481 * Return: 0 if the import was successful; < 0 if an error occurred
482 */
483 static inline int crypto_ahash_import(struct ahash_request *req, const void *in)
484 {
485 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
486
487 if (crypto_ahash_get_flags(tfm) & CRYPTO_TFM_NEED_KEY)
488 return -ENOKEY;
489
490 return tfm->import(req, in);
491 }
492
493 /**
494 * crypto_ahash_init() - (re)initialize message digest handle
495 * @req: ahash_request handle that already is initialized with all necessary
496 * data using the ahash_request_* API functions
497 *
498 * The call (re-)initializes the message digest referenced by the ahash_request
499 * handle. Any potentially existing state created by previous operations is
500 * discarded.
501 *
502 * Return: see crypto_ahash_final()
503 */
504 static inline int crypto_ahash_init(struct ahash_request *req)
505 {
506 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
507
508 if (crypto_ahash_get_flags(tfm) & CRYPTO_TFM_NEED_KEY)
509 return -ENOKEY;
510
511 return tfm->init(req);
512 }
513
514 /**
515 * crypto_ahash_update() - add data to message digest for processing
516 * @req: ahash_request handle that was previously initialized with the
517 * crypto_ahash_init call.
518 *
519 * Updates the message digest state of the &ahash_request handle. The input data
520 * is pointed to by the scatter/gather list registered in the &ahash_request
521 * handle
522 *
523 * Return: see crypto_ahash_final()
524 */
525 static inline int crypto_ahash_update(struct ahash_request *req)
526 {
527 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
528 struct crypto_alg *alg = tfm->base.__crt_alg;
529 unsigned int nbytes = req->nbytes;
530 int ret;
531
532 crypto_stats_get(alg);
533 ret = crypto_ahash_reqtfm(req)->update(req);
534 crypto_stats_ahash_update(nbytes, ret, alg);
535 return ret;
536 }
537
538 /**
539 * DOC: Asynchronous Hash Request Handle
540 *
541 * The &ahash_request data structure contains all pointers to data
542 * required for the asynchronous cipher operation. This includes the cipher
543 * handle (which can be used by multiple &ahash_request instances), pointer
544 * to plaintext and the message digest output buffer, asynchronous callback
545 * function, etc. It acts as a handle to the ahash_request_* API calls in a
546 * similar way as ahash handle to the crypto_ahash_* API calls.
547 */
548
549 /**
550 * ahash_request_set_tfm() - update cipher handle reference in request
551 * @req: request handle to be modified
552 * @tfm: cipher handle that shall be added to the request handle
553 *
554 * Allow the caller to replace the existing ahash handle in the request
555 * data structure with a different one.
556 */
557 static inline void ahash_request_set_tfm(struct ahash_request *req,
558 struct crypto_ahash *tfm)
559 {
560 req->base.tfm = crypto_ahash_tfm(tfm);
561 }
562
563 /**
564 * ahash_request_alloc() - allocate request data structure
565 * @tfm: cipher handle to be registered with the request
566 * @gfp: memory allocation flag that is handed to kmalloc by the API call.
567 *
568 * Allocate the request data structure that must be used with the ahash
569 * message digest API calls. During
570 * the allocation, the provided ahash handle
571 * is registered in the request data structure.
572 *
573 * Return: allocated request handle in case of success, or NULL if out of memory
574 */
575 static inline struct ahash_request *ahash_request_alloc(
576 struct crypto_ahash *tfm, gfp_t gfp)
577 {
578 struct ahash_request *req;
579
580 req = kmalloc(sizeof(struct ahash_request) +
581 crypto_ahash_reqsize(tfm), gfp);
582
583 if (likely(req))
584 ahash_request_set_tfm(req, tfm);
585
586 return req;
587 }
588
589 /**
590 * ahash_request_free() - zeroize and free the request data structure
591 * @req: request data structure cipher handle to be freed
592 */
593 static inline void ahash_request_free(struct ahash_request *req)
594 {
595 kzfree(req);
596 }
597
598 static inline void ahash_request_zero(struct ahash_request *req)
599 {
600 memzero_explicit(req, sizeof(*req) +
601 crypto_ahash_reqsize(crypto_ahash_reqtfm(req)));
602 }
603
604 static inline struct ahash_request *ahash_request_cast(
605 struct crypto_async_request *req)
606 {
607 return container_of(req, struct ahash_request, base);
608 }
609
610 /**
611 * ahash_request_set_callback() - set asynchronous callback function
612 * @req: request handle
613 * @flags: specify zero or an ORing of the flags
614 * CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and
615 * increase the wait queue beyond the initial maximum size;
616 * CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep
617 * @compl: callback function pointer to be registered with the request handle
618 * @data: The data pointer refers to memory that is not used by the kernel
619 * crypto API, but provided to the callback function for it to use. Here,
620 * the caller can provide a reference to memory the callback function can
621 * operate on. As the callback function is invoked asynchronously to the
622 * related functionality, it may need to access data structures of the
623 * related functionality which can be referenced using this pointer. The
624 * callback function can access the memory via the "data" field in the
625 * &crypto_async_request data structure provided to the callback function.
626 *
627 * This function allows setting the callback function that is triggered once
628 * the cipher operation completes.
629 *
630 * The callback function is registered with the &ahash_request handle and
631 * must comply with the following template::
632 *
633 * void callback_function(struct crypto_async_request *req, int error)
634 */
635 static inline void ahash_request_set_callback(struct ahash_request *req,
636 u32 flags,
637 crypto_completion_t compl,
638 void *data)
639 {
640 req->base.complete = compl;
641 req->base.data = data;
642 req->base.flags = flags;
643 }
644
645 /**
646 * ahash_request_set_crypt() - set data buffers
647 * @req: ahash_request handle to be updated
648 * @src: source scatter/gather list
649 * @result: buffer that is filled with the message digest -- the caller must
650 * ensure that the buffer has sufficient space by, for example, calling
651 * crypto_ahash_digestsize()
652 * @nbytes: number of bytes to process from the source scatter/gather list
653 *
654 * By using this call, the caller references the source scatter/gather list.
655 * The source scatter/gather list points to the data the message digest is to
656 * be calculated for.
657 */
658 static inline void ahash_request_set_crypt(struct ahash_request *req,
659 struct scatterlist *src, u8 *result,
660 unsigned int nbytes)
661 {
662 req->src = src;
663 req->nbytes = nbytes;
664 req->result = result;
665 }
666
667 /**
668 * DOC: Synchronous Message Digest API
669 *
670 * The synchronous message digest API is used with the ciphers of type
671 * CRYPTO_ALG_TYPE_SHASH (listed as type "shash" in /proc/crypto)
672 *
673 * The message digest API is able to maintain state information for the
674 * caller.
675 *
676 * The synchronous message digest API can store user-related context in in its
677 * shash_desc request data structure.
678 */
679
680 /**
681 * crypto_alloc_shash() - allocate message digest handle
682 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
683 * message digest cipher
684 * @type: specifies the type of the cipher
685 * @mask: specifies the mask for the cipher
686 *
687 * Allocate a cipher handle for a message digest. The returned &struct
688 * crypto_shash is the cipher handle that is required for any subsequent
689 * API invocation for that message digest.
690 *
691 * Return: allocated cipher handle in case of success; IS_ERR() is true in case
692 * of an error, PTR_ERR() returns the error code.
693 */
694 struct crypto_shash *crypto_alloc_shash(const char *alg_name, u32 type,
695 u32 mask);
696
697 static inline struct crypto_tfm *crypto_shash_tfm(struct crypto_shash *tfm)
698 {
699 return &tfm->base;
700 }
701
702 /**
703 * crypto_free_shash() - zeroize and free the message digest handle
704 * @tfm: cipher handle to be freed
705 */
706 static inline void crypto_free_shash(struct crypto_shash *tfm)
707 {
708 crypto_destroy_tfm(tfm, crypto_shash_tfm(tfm));
709 }
710
711 static inline const char *crypto_shash_alg_name(struct crypto_shash *tfm)
712 {
713 return crypto_tfm_alg_name(crypto_shash_tfm(tfm));
714 }
715
716 static inline const char *crypto_shash_driver_name(struct crypto_shash *tfm)
717 {
718 return crypto_tfm_alg_driver_name(crypto_shash_tfm(tfm));
719 }
720
721 static inline unsigned int crypto_shash_alignmask(
722 struct crypto_shash *tfm)
723 {
724 return crypto_tfm_alg_alignmask(crypto_shash_tfm(tfm));
725 }
726
727 /**
728 * crypto_shash_blocksize() - obtain block size for cipher
729 * @tfm: cipher handle
730 *
731 * The block size for the message digest cipher referenced with the cipher
732 * handle is returned.
733 *
734 * Return: block size of cipher
735 */
736 static inline unsigned int crypto_shash_blocksize(struct crypto_shash *tfm)
737 {
738 return crypto_tfm_alg_blocksize(crypto_shash_tfm(tfm));
739 }
740
741 static inline struct shash_alg *__crypto_shash_alg(struct crypto_alg *alg)
742 {
743 return container_of(alg, struct shash_alg, base);
744 }
745
746 static inline struct shash_alg *crypto_shash_alg(struct crypto_shash *tfm)
747 {
748 return __crypto_shash_alg(crypto_shash_tfm(tfm)->__crt_alg);
749 }
750
751 /**
752 * crypto_shash_digestsize() - obtain message digest size
753 * @tfm: cipher handle
754 *
755 * The size for the message digest created by the message digest cipher
756 * referenced with the cipher handle is returned.
757 *
758 * Return: digest size of cipher
759 */
760 static inline unsigned int crypto_shash_digestsize(struct crypto_shash *tfm)
761 {
762 return crypto_shash_alg(tfm)->digestsize;
763 }
764
765 static inline unsigned int crypto_shash_statesize(struct crypto_shash *tfm)
766 {
767 return crypto_shash_alg(tfm)->statesize;
768 }
769
770 static inline u32 crypto_shash_get_flags(struct crypto_shash *tfm)
771 {
772 return crypto_tfm_get_flags(crypto_shash_tfm(tfm));
773 }
774
775 static inline void crypto_shash_set_flags(struct crypto_shash *tfm, u32 flags)
776 {
777 crypto_tfm_set_flags(crypto_shash_tfm(tfm), flags);
778 }
779
780 static inline void crypto_shash_clear_flags(struct crypto_shash *tfm, u32 flags)
781 {
782 crypto_tfm_clear_flags(crypto_shash_tfm(tfm), flags);
783 }
784
785 /**
786 * crypto_shash_descsize() - obtain the operational state size
787 * @tfm: cipher handle
788 *
789 * The size of the operational state the cipher needs during operation is
790 * returned for the hash referenced with the cipher handle. This size is
791 * required to calculate the memory requirements to allow the caller allocating
792 * sufficient memory for operational state.
793 *
794 * The operational state is defined with struct shash_desc where the size of
795 * that data structure is to be calculated as
796 * sizeof(struct shash_desc) + crypto_shash_descsize(alg)
797 *
798 * Return: size of the operational state
799 */
800 static inline unsigned int crypto_shash_descsize(struct crypto_shash *tfm)
801 {
802 return tfm->descsize;
803 }
804
805 static inline void *shash_desc_ctx(struct shash_desc *desc)
806 {
807 return desc->__ctx;
808 }
809
810 /**
811 * crypto_shash_setkey() - set key for message digest
812 * @tfm: cipher handle
813 * @key: buffer holding the key
814 * @keylen: length of the key in bytes
815 *
816 * The caller provided key is set for the keyed message digest cipher. The
817 * cipher handle must point to a keyed message digest cipher in order for this
818 * function to succeed.
819 *
820 * Context: Any context.
821 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
822 */
823 int crypto_shash_setkey(struct crypto_shash *tfm, const u8 *key,
824 unsigned int keylen);
825
826 /**
827 * crypto_shash_digest() - calculate message digest for buffer
828 * @desc: see crypto_shash_final()
829 * @data: see crypto_shash_update()
830 * @len: see crypto_shash_update()
831 * @out: see crypto_shash_final()
832 *
833 * This function is a "short-hand" for the function calls of crypto_shash_init,
834 * crypto_shash_update and crypto_shash_final. The parameters have the same
835 * meaning as discussed for those separate three functions.
836 *
837 * Context: Any context.
838 * Return: 0 if the message digest creation was successful; < 0 if an error
839 * occurred
840 */
841 int crypto_shash_digest(struct shash_desc *desc, const u8 *data,
842 unsigned int len, u8 *out);
843
844 /**
845 * crypto_shash_export() - extract operational state for message digest
846 * @desc: reference to the operational state handle whose state is exported
847 * @out: output buffer of sufficient size that can hold the hash state
848 *
849 * This function exports the hash state of the operational state handle into the
850 * caller-allocated output buffer out which must have sufficient size (e.g. by
851 * calling crypto_shash_descsize).
852 *
853 * Context: Any context.
854 * Return: 0 if the export creation was successful; < 0 if an error occurred
855 */
856 static inline int crypto_shash_export(struct shash_desc *desc, void *out)
857 {
858 return crypto_shash_alg(desc->tfm)->export(desc, out);
859 }
860
861 /**
862 * crypto_shash_import() - import operational state
863 * @desc: reference to the operational state handle the state imported into
864 * @in: buffer holding the state
865 *
866 * This function imports the hash state into the operational state handle from
867 * the input buffer. That buffer should have been generated with the
868 * crypto_ahash_export function.
869 *
870 * Context: Any context.
871 * Return: 0 if the import was successful; < 0 if an error occurred
872 */
873 static inline int crypto_shash_import(struct shash_desc *desc, const void *in)
874 {
875 struct crypto_shash *tfm = desc->tfm;
876
877 if (crypto_shash_get_flags(tfm) & CRYPTO_TFM_NEED_KEY)
878 return -ENOKEY;
879
880 return crypto_shash_alg(tfm)->import(desc, in);
881 }
882
883 /**
884 * crypto_shash_init() - (re)initialize message digest
885 * @desc: operational state handle that is already filled
886 *
887 * The call (re-)initializes the message digest referenced by the
888 * operational state handle. Any potentially existing state created by
889 * previous operations is discarded.
890 *
891 * Context: Any context.
892 * Return: 0 if the message digest initialization was successful; < 0 if an
893 * error occurred
894 */
895 static inline int crypto_shash_init(struct shash_desc *desc)
896 {
897 struct crypto_shash *tfm = desc->tfm;
898
899 if (crypto_shash_get_flags(tfm) & CRYPTO_TFM_NEED_KEY)
900 return -ENOKEY;
901
902 return crypto_shash_alg(tfm)->init(desc);
903 }
904
905 /**
906 * crypto_shash_update() - add data to message digest for processing
907 * @desc: operational state handle that is already initialized
908 * @data: input data to be added to the message digest
909 * @len: length of the input data
910 *
911 * Updates the message digest state of the operational state handle.
912 *
913 * Context: Any context.
914 * Return: 0 if the message digest update was successful; < 0 if an error
915 * occurred
916 */
917 int crypto_shash_update(struct shash_desc *desc, const u8 *data,
918 unsigned int len);
919
920 /**
921 * crypto_shash_final() - calculate message digest
922 * @desc: operational state handle that is already filled with data
923 * @out: output buffer filled with the message digest
924 *
925 * Finalize the message digest operation and create the message digest
926 * based on all data added to the cipher handle. The message digest is placed
927 * into the output buffer. The caller must ensure that the output buffer is
928 * large enough by using crypto_shash_digestsize.
929 *
930 * Context: Any context.
931 * Return: 0 if the message digest creation was successful; < 0 if an error
932 * occurred
933 */
934 int crypto_shash_final(struct shash_desc *desc, u8 *out);
935
936 /**
937 * crypto_shash_finup() - calculate message digest of buffer
938 * @desc: see crypto_shash_final()
939 * @data: see crypto_shash_update()
940 * @len: see crypto_shash_update()
941 * @out: see crypto_shash_final()
942 *
943 * This function is a "short-hand" for the function calls of
944 * crypto_shash_update and crypto_shash_final. The parameters have the same
945 * meaning as discussed for those separate functions.
946 *
947 * Context: Any context.
948 * Return: 0 if the message digest creation was successful; < 0 if an error
949 * occurred
950 */
951 int crypto_shash_finup(struct shash_desc *desc, const u8 *data,
952 unsigned int len, u8 *out);
953
954 static inline void shash_desc_zero(struct shash_desc *desc)
955 {
956 memzero_explicit(desc,
957 sizeof(*desc) + crypto_shash_descsize(desc->tfm));
958 }
959
960 #endif /* _CRYPTO_HASH_H */