]> git.proxmox.com Git - qemu.git/blob - include/exec/cpu-all.h
e1cc62ef5ea13ab267639917b05b3d255c1b7e7f
[qemu.git] / include / exec / cpu-all.h
1 /*
2 * defines common to all virtual CPUs
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #ifndef CPU_ALL_H
20 #define CPU_ALL_H
21
22 #include "qemu-common.h"
23 #include "qemu/tls.h"
24 #include "exec/cpu-common.h"
25 #include "qemu/thread.h"
26
27 /* some important defines:
28 *
29 * WORDS_ALIGNED : if defined, the host cpu can only make word aligned
30 * memory accesses.
31 *
32 * HOST_WORDS_BIGENDIAN : if defined, the host cpu is big endian and
33 * otherwise little endian.
34 *
35 * (TARGET_WORDS_ALIGNED : same for target cpu (not supported yet))
36 *
37 * TARGET_WORDS_BIGENDIAN : same for target cpu
38 */
39
40 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
41 #define BSWAP_NEEDED
42 #endif
43
44 #ifdef BSWAP_NEEDED
45
46 static inline uint16_t tswap16(uint16_t s)
47 {
48 return bswap16(s);
49 }
50
51 static inline uint32_t tswap32(uint32_t s)
52 {
53 return bswap32(s);
54 }
55
56 static inline uint64_t tswap64(uint64_t s)
57 {
58 return bswap64(s);
59 }
60
61 static inline void tswap16s(uint16_t *s)
62 {
63 *s = bswap16(*s);
64 }
65
66 static inline void tswap32s(uint32_t *s)
67 {
68 *s = bswap32(*s);
69 }
70
71 static inline void tswap64s(uint64_t *s)
72 {
73 *s = bswap64(*s);
74 }
75
76 #else
77
78 static inline uint16_t tswap16(uint16_t s)
79 {
80 return s;
81 }
82
83 static inline uint32_t tswap32(uint32_t s)
84 {
85 return s;
86 }
87
88 static inline uint64_t tswap64(uint64_t s)
89 {
90 return s;
91 }
92
93 static inline void tswap16s(uint16_t *s)
94 {
95 }
96
97 static inline void tswap32s(uint32_t *s)
98 {
99 }
100
101 static inline void tswap64s(uint64_t *s)
102 {
103 }
104
105 #endif
106
107 #if TARGET_LONG_SIZE == 4
108 #define tswapl(s) tswap32(s)
109 #define tswapls(s) tswap32s((uint32_t *)(s))
110 #define bswaptls(s) bswap32s(s)
111 #else
112 #define tswapl(s) tswap64(s)
113 #define tswapls(s) tswap64s((uint64_t *)(s))
114 #define bswaptls(s) bswap64s(s)
115 #endif
116
117 /* CPU memory access without any memory or io remapping */
118
119 /*
120 * the generic syntax for the memory accesses is:
121 *
122 * load: ld{type}{sign}{size}{endian}_{access_type}(ptr)
123 *
124 * store: st{type}{size}{endian}_{access_type}(ptr, val)
125 *
126 * type is:
127 * (empty): integer access
128 * f : float access
129 *
130 * sign is:
131 * (empty): for floats or 32 bit size
132 * u : unsigned
133 * s : signed
134 *
135 * size is:
136 * b: 8 bits
137 * w: 16 bits
138 * l: 32 bits
139 * q: 64 bits
140 *
141 * endian is:
142 * (empty): target cpu endianness or 8 bit access
143 * r : reversed target cpu endianness (not implemented yet)
144 * be : big endian (not implemented yet)
145 * le : little endian (not implemented yet)
146 *
147 * access_type is:
148 * raw : host memory access
149 * user : user mode access using soft MMU
150 * kernel : kernel mode access using soft MMU
151 */
152
153 /* target-endianness CPU memory access functions */
154 #if defined(TARGET_WORDS_BIGENDIAN)
155 #define lduw_p(p) lduw_be_p(p)
156 #define ldsw_p(p) ldsw_be_p(p)
157 #define ldl_p(p) ldl_be_p(p)
158 #define ldq_p(p) ldq_be_p(p)
159 #define ldfl_p(p) ldfl_be_p(p)
160 #define ldfq_p(p) ldfq_be_p(p)
161 #define stw_p(p, v) stw_be_p(p, v)
162 #define stl_p(p, v) stl_be_p(p, v)
163 #define stq_p(p, v) stq_be_p(p, v)
164 #define stfl_p(p, v) stfl_be_p(p, v)
165 #define stfq_p(p, v) stfq_be_p(p, v)
166 #else
167 #define lduw_p(p) lduw_le_p(p)
168 #define ldsw_p(p) ldsw_le_p(p)
169 #define ldl_p(p) ldl_le_p(p)
170 #define ldq_p(p) ldq_le_p(p)
171 #define ldfl_p(p) ldfl_le_p(p)
172 #define ldfq_p(p) ldfq_le_p(p)
173 #define stw_p(p, v) stw_le_p(p, v)
174 #define stl_p(p, v) stl_le_p(p, v)
175 #define stq_p(p, v) stq_le_p(p, v)
176 #define stfl_p(p, v) stfl_le_p(p, v)
177 #define stfq_p(p, v) stfq_le_p(p, v)
178 #endif
179
180 /* MMU memory access macros */
181
182 #if defined(CONFIG_USER_ONLY)
183 #include <assert.h>
184 #include "exec/user/abitypes.h"
185
186 /* On some host systems the guest address space is reserved on the host.
187 * This allows the guest address space to be offset to a convenient location.
188 */
189 #if defined(CONFIG_USE_GUEST_BASE)
190 extern unsigned long guest_base;
191 extern int have_guest_base;
192 extern unsigned long reserved_va;
193 #define GUEST_BASE guest_base
194 #define RESERVED_VA reserved_va
195 #else
196 #define GUEST_BASE 0ul
197 #define RESERVED_VA 0ul
198 #endif
199
200 /* All direct uses of g2h and h2g need to go away for usermode softmmu. */
201 #define g2h(x) ((void *)((unsigned long)(target_ulong)(x) + GUEST_BASE))
202
203 #if HOST_LONG_BITS <= TARGET_VIRT_ADDR_SPACE_BITS
204 #define h2g_valid(x) 1
205 #else
206 #define h2g_valid(x) ({ \
207 unsigned long __guest = (unsigned long)(x) - GUEST_BASE; \
208 (__guest < (1ul << TARGET_VIRT_ADDR_SPACE_BITS)) && \
209 (!RESERVED_VA || (__guest < RESERVED_VA)); \
210 })
211 #endif
212
213 #define h2g(x) ({ \
214 unsigned long __ret = (unsigned long)(x) - GUEST_BASE; \
215 /* Check if given address fits target address space */ \
216 assert(h2g_valid(x)); \
217 (abi_ulong)__ret; \
218 })
219
220 #define saddr(x) g2h(x)
221 #define laddr(x) g2h(x)
222
223 #else /* !CONFIG_USER_ONLY */
224 /* NOTE: we use double casts if pointers and target_ulong have
225 different sizes */
226 #define saddr(x) (uint8_t *)(intptr_t)(x)
227 #define laddr(x) (uint8_t *)(intptr_t)(x)
228 #endif
229
230 #define ldub_raw(p) ldub_p(laddr((p)))
231 #define ldsb_raw(p) ldsb_p(laddr((p)))
232 #define lduw_raw(p) lduw_p(laddr((p)))
233 #define ldsw_raw(p) ldsw_p(laddr((p)))
234 #define ldl_raw(p) ldl_p(laddr((p)))
235 #define ldq_raw(p) ldq_p(laddr((p)))
236 #define ldfl_raw(p) ldfl_p(laddr((p)))
237 #define ldfq_raw(p) ldfq_p(laddr((p)))
238 #define stb_raw(p, v) stb_p(saddr((p)), v)
239 #define stw_raw(p, v) stw_p(saddr((p)), v)
240 #define stl_raw(p, v) stl_p(saddr((p)), v)
241 #define stq_raw(p, v) stq_p(saddr((p)), v)
242 #define stfl_raw(p, v) stfl_p(saddr((p)), v)
243 #define stfq_raw(p, v) stfq_p(saddr((p)), v)
244
245
246 #if defined(CONFIG_USER_ONLY)
247
248 /* if user mode, no other memory access functions */
249 #define ldub(p) ldub_raw(p)
250 #define ldsb(p) ldsb_raw(p)
251 #define lduw(p) lduw_raw(p)
252 #define ldsw(p) ldsw_raw(p)
253 #define ldl(p) ldl_raw(p)
254 #define ldq(p) ldq_raw(p)
255 #define ldfl(p) ldfl_raw(p)
256 #define ldfq(p) ldfq_raw(p)
257 #define stb(p, v) stb_raw(p, v)
258 #define stw(p, v) stw_raw(p, v)
259 #define stl(p, v) stl_raw(p, v)
260 #define stq(p, v) stq_raw(p, v)
261 #define stfl(p, v) stfl_raw(p, v)
262 #define stfq(p, v) stfq_raw(p, v)
263
264 #define cpu_ldub_code(env1, p) ldub_raw(p)
265 #define cpu_ldsb_code(env1, p) ldsb_raw(p)
266 #define cpu_lduw_code(env1, p) lduw_raw(p)
267 #define cpu_ldsw_code(env1, p) ldsw_raw(p)
268 #define cpu_ldl_code(env1, p) ldl_raw(p)
269 #define cpu_ldq_code(env1, p) ldq_raw(p)
270
271 #define cpu_ldub_data(env, addr) ldub_raw(addr)
272 #define cpu_lduw_data(env, addr) lduw_raw(addr)
273 #define cpu_ldsw_data(env, addr) ldsw_raw(addr)
274 #define cpu_ldl_data(env, addr) ldl_raw(addr)
275 #define cpu_ldq_data(env, addr) ldq_raw(addr)
276
277 #define cpu_stb_data(env, addr, data) stb_raw(addr, data)
278 #define cpu_stw_data(env, addr, data) stw_raw(addr, data)
279 #define cpu_stl_data(env, addr, data) stl_raw(addr, data)
280 #define cpu_stq_data(env, addr, data) stq_raw(addr, data)
281
282 #define cpu_ldub_kernel(env, addr) ldub_raw(addr)
283 #define cpu_lduw_kernel(env, addr) lduw_raw(addr)
284 #define cpu_ldsw_kernel(env, addr) ldsw_raw(addr)
285 #define cpu_ldl_kernel(env, addr) ldl_raw(addr)
286 #define cpu_ldq_kernel(env, addr) ldq_raw(addr)
287
288 #define cpu_stb_kernel(env, addr, data) stb_raw(addr, data)
289 #define cpu_stw_kernel(env, addr, data) stw_raw(addr, data)
290 #define cpu_stl_kernel(env, addr, data) stl_raw(addr, data)
291 #define cpu_stq_kernel(env, addr, data) stq_raw(addr, data)
292
293 #define ldub_kernel(p) ldub_raw(p)
294 #define ldsb_kernel(p) ldsb_raw(p)
295 #define lduw_kernel(p) lduw_raw(p)
296 #define ldsw_kernel(p) ldsw_raw(p)
297 #define ldl_kernel(p) ldl_raw(p)
298 #define ldq_kernel(p) ldq_raw(p)
299 #define ldfl_kernel(p) ldfl_raw(p)
300 #define ldfq_kernel(p) ldfq_raw(p)
301 #define stb_kernel(p, v) stb_raw(p, v)
302 #define stw_kernel(p, v) stw_raw(p, v)
303 #define stl_kernel(p, v) stl_raw(p, v)
304 #define stq_kernel(p, v) stq_raw(p, v)
305 #define stfl_kernel(p, v) stfl_raw(p, v)
306 #define stfq_kernel(p, vt) stfq_raw(p, v)
307
308 #define cpu_ldub_data(env, addr) ldub_raw(addr)
309 #define cpu_lduw_data(env, addr) lduw_raw(addr)
310 #define cpu_ldl_data(env, addr) ldl_raw(addr)
311
312 #define cpu_stb_data(env, addr, data) stb_raw(addr, data)
313 #define cpu_stw_data(env, addr, data) stw_raw(addr, data)
314 #define cpu_stl_data(env, addr, data) stl_raw(addr, data)
315 #endif /* defined(CONFIG_USER_ONLY) */
316
317 /* page related stuff */
318
319 #define TARGET_PAGE_SIZE (1 << TARGET_PAGE_BITS)
320 #define TARGET_PAGE_MASK ~(TARGET_PAGE_SIZE - 1)
321 #define TARGET_PAGE_ALIGN(addr) (((addr) + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK)
322
323 /* ??? These should be the larger of uintptr_t and target_ulong. */
324 extern uintptr_t qemu_real_host_page_size;
325 extern uintptr_t qemu_host_page_size;
326 extern uintptr_t qemu_host_page_mask;
327
328 #define HOST_PAGE_ALIGN(addr) (((addr) + qemu_host_page_size - 1) & qemu_host_page_mask)
329
330 /* same as PROT_xxx */
331 #define PAGE_READ 0x0001
332 #define PAGE_WRITE 0x0002
333 #define PAGE_EXEC 0x0004
334 #define PAGE_BITS (PAGE_READ | PAGE_WRITE | PAGE_EXEC)
335 #define PAGE_VALID 0x0008
336 /* original state of the write flag (used when tracking self-modifying
337 code */
338 #define PAGE_WRITE_ORG 0x0010
339 #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
340 /* FIXME: Code that sets/uses this is broken and needs to go away. */
341 #define PAGE_RESERVED 0x0020
342 #endif
343
344 #if defined(CONFIG_USER_ONLY)
345 void page_dump(FILE *f);
346
347 typedef int (*walk_memory_regions_fn)(void *, abi_ulong,
348 abi_ulong, unsigned long);
349 int walk_memory_regions(void *, walk_memory_regions_fn);
350
351 int page_get_flags(target_ulong address);
352 void page_set_flags(target_ulong start, target_ulong end, int flags);
353 int page_check_range(target_ulong start, target_ulong len, int flags);
354 #endif
355
356 CPUArchState *cpu_copy(CPUArchState *env);
357
358 #define CPU_DUMP_CODE 0x00010000
359 #define CPU_DUMP_FPU 0x00020000 /* dump FPU register state, not just integer */
360 /* dump info about TCG QEMU's condition code optimization state */
361 #define CPU_DUMP_CCOP 0x00040000
362
363 void cpu_dump_state(CPUArchState *env, FILE *f, fprintf_function cpu_fprintf,
364 int flags);
365 void cpu_dump_statistics(CPUArchState *env, FILE *f, fprintf_function cpu_fprintf,
366 int flags);
367
368 void QEMU_NORETURN cpu_abort(CPUArchState *env, const char *fmt, ...)
369 GCC_FMT_ATTR(2, 3);
370 extern CPUArchState *first_cpu;
371 DECLARE_TLS(CPUArchState *,cpu_single_env);
372 #define cpu_single_env tls_var(cpu_single_env)
373
374 /* Flags for use in ENV->INTERRUPT_PENDING.
375
376 The numbers assigned here are non-sequential in order to preserve
377 binary compatibility with the vmstate dump. Bit 0 (0x0001) was
378 previously used for CPU_INTERRUPT_EXIT, and is cleared when loading
379 the vmstate dump. */
380
381 /* External hardware interrupt pending. This is typically used for
382 interrupts from devices. */
383 #define CPU_INTERRUPT_HARD 0x0002
384
385 /* Exit the current TB. This is typically used when some system-level device
386 makes some change to the memory mapping. E.g. the a20 line change. */
387 #define CPU_INTERRUPT_EXITTB 0x0004
388
389 /* Halt the CPU. */
390 #define CPU_INTERRUPT_HALT 0x0020
391
392 /* Debug event pending. */
393 #define CPU_INTERRUPT_DEBUG 0x0080
394
395 /* Several target-specific external hardware interrupts. Each target/cpu.h
396 should define proper names based on these defines. */
397 #define CPU_INTERRUPT_TGT_EXT_0 0x0008
398 #define CPU_INTERRUPT_TGT_EXT_1 0x0010
399 #define CPU_INTERRUPT_TGT_EXT_2 0x0040
400 #define CPU_INTERRUPT_TGT_EXT_3 0x0200
401 #define CPU_INTERRUPT_TGT_EXT_4 0x1000
402
403 /* Several target-specific internal interrupts. These differ from the
404 preceding target-specific interrupts in that they are intended to
405 originate from within the cpu itself, typically in response to some
406 instruction being executed. These, therefore, are not masked while
407 single-stepping within the debugger. */
408 #define CPU_INTERRUPT_TGT_INT_0 0x0100
409 #define CPU_INTERRUPT_TGT_INT_1 0x0400
410 #define CPU_INTERRUPT_TGT_INT_2 0x0800
411 #define CPU_INTERRUPT_TGT_INT_3 0x2000
412
413 /* First unused bit: 0x4000. */
414
415 /* The set of all bits that should be masked when single-stepping. */
416 #define CPU_INTERRUPT_SSTEP_MASK \
417 (CPU_INTERRUPT_HARD \
418 | CPU_INTERRUPT_TGT_EXT_0 \
419 | CPU_INTERRUPT_TGT_EXT_1 \
420 | CPU_INTERRUPT_TGT_EXT_2 \
421 | CPU_INTERRUPT_TGT_EXT_3 \
422 | CPU_INTERRUPT_TGT_EXT_4)
423
424 /* Breakpoint/watchpoint flags */
425 #define BP_MEM_READ 0x01
426 #define BP_MEM_WRITE 0x02
427 #define BP_MEM_ACCESS (BP_MEM_READ | BP_MEM_WRITE)
428 #define BP_STOP_BEFORE_ACCESS 0x04
429 #define BP_WATCHPOINT_HIT 0x08
430 #define BP_GDB 0x10
431 #define BP_CPU 0x20
432
433 int cpu_breakpoint_insert(CPUArchState *env, target_ulong pc, int flags,
434 CPUBreakpoint **breakpoint);
435 int cpu_breakpoint_remove(CPUArchState *env, target_ulong pc, int flags);
436 void cpu_breakpoint_remove_by_ref(CPUArchState *env, CPUBreakpoint *breakpoint);
437 void cpu_breakpoint_remove_all(CPUArchState *env, int mask);
438 int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len,
439 int flags, CPUWatchpoint **watchpoint);
440 int cpu_watchpoint_remove(CPUArchState *env, target_ulong addr,
441 target_ulong len, int flags);
442 void cpu_watchpoint_remove_by_ref(CPUArchState *env, CPUWatchpoint *watchpoint);
443 void cpu_watchpoint_remove_all(CPUArchState *env, int mask);
444
445 #define SSTEP_ENABLE 0x1 /* Enable simulated HW single stepping */
446 #define SSTEP_NOIRQ 0x2 /* Do not use IRQ while single stepping */
447 #define SSTEP_NOTIMER 0x4 /* Do not Timers while single stepping */
448
449 void cpu_single_step(CPUArchState *env, int enabled);
450
451 #if !defined(CONFIG_USER_ONLY)
452
453 /* Return the physical page corresponding to a virtual one. Use it
454 only for debugging because no protection checks are done. Return -1
455 if no page found. */
456 hwaddr cpu_get_phys_page_debug(CPUArchState *env, target_ulong addr);
457
458 /* memory API */
459
460 extern int phys_ram_fd;
461 extern ram_addr_t ram_size;
462
463 /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
464 #define RAM_PREALLOC_MASK (1 << 0)
465
466 typedef struct RAMBlock {
467 struct MemoryRegion *mr;
468 uint8_t *host;
469 ram_addr_t offset;
470 ram_addr_t length;
471 uint32_t flags;
472 char idstr[256];
473 /* Reads can take either the iothread or the ramlist lock.
474 * Writes must take both locks.
475 */
476 QTAILQ_ENTRY(RAMBlock) next;
477 #if defined(__linux__) && !defined(TARGET_S390X)
478 int fd;
479 #endif
480 } RAMBlock;
481
482 typedef struct RAMList {
483 QemuMutex mutex;
484 /* Protected by the iothread lock. */
485 uint8_t *phys_dirty;
486 RAMBlock *mru_block;
487 /* Protected by the ramlist lock. */
488 QTAILQ_HEAD(, RAMBlock) blocks;
489 uint32_t version;
490 } RAMList;
491 extern RAMList ram_list;
492
493 extern const char *mem_path;
494 extern int mem_prealloc;
495
496 /* Flags stored in the low bits of the TLB virtual address. These are
497 defined so that fast path ram access is all zeros. */
498 /* Zero if TLB entry is valid. */
499 #define TLB_INVALID_MASK (1 << 3)
500 /* Set if TLB entry references a clean RAM page. The iotlb entry will
501 contain the page physical address. */
502 #define TLB_NOTDIRTY (1 << 4)
503 /* Set if TLB entry is an IO callback. */
504 #define TLB_MMIO (1 << 5)
505
506 void dump_exec_info(FILE *f, fprintf_function cpu_fprintf);
507 ram_addr_t last_ram_offset(void);
508 void qemu_mutex_lock_ramlist(void);
509 void qemu_mutex_unlock_ramlist(void);
510 #endif /* !CONFIG_USER_ONLY */
511
512 int cpu_memory_rw_debug(CPUArchState *env, target_ulong addr,
513 uint8_t *buf, int len, int is_write);
514
515 #endif /* CPU_ALL_H */