]> git.proxmox.com Git - mirror_qemu.git/blob - include/exec/cpu_ldst.h
Merge tag 'qga-pull-2024-01-30' of https://github.com/kostyanf14/qemu into staging
[mirror_qemu.git] / include / exec / cpu_ldst.h
1 /*
2 * Software MMU support
3 *
4 * This library is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU Lesser General Public
6 * License as published by the Free Software Foundation; either
7 * version 2.1 of the License, or (at your option) any later version.
8 *
9 * This library is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * Lesser General Public License for more details.
13 *
14 * You should have received a copy of the GNU Lesser General Public
15 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
16 *
17 */
18
19 /*
20 * Generate inline load/store functions for all MMU modes (typically
21 * at least _user and _kernel) as well as _data versions, for all data
22 * sizes.
23 *
24 * Used by target op helpers.
25 *
26 * The syntax for the accessors is:
27 *
28 * load: cpu_ld{sign}{size}{end}_{mmusuffix}(env, ptr)
29 * cpu_ld{sign}{size}{end}_{mmusuffix}_ra(env, ptr, retaddr)
30 * cpu_ld{sign}{size}{end}_mmuidx_ra(env, ptr, mmu_idx, retaddr)
31 * cpu_ld{sign}{size}{end}_mmu(env, ptr, oi, retaddr)
32 *
33 * store: cpu_st{size}{end}_{mmusuffix}(env, ptr, val)
34 * cpu_st{size}{end}_{mmusuffix}_ra(env, ptr, val, retaddr)
35 * cpu_st{size}{end}_mmuidx_ra(env, ptr, val, mmu_idx, retaddr)
36 * cpu_st{size}{end}_mmu(env, ptr, val, oi, retaddr)
37 *
38 * sign is:
39 * (empty): for 32 and 64 bit sizes
40 * u : unsigned
41 * s : signed
42 *
43 * size is:
44 * b: 8 bits
45 * w: 16 bits
46 * l: 32 bits
47 * q: 64 bits
48 *
49 * end is:
50 * (empty): for target native endian, or for 8 bit access
51 * _be: for forced big endian
52 * _le: for forced little endian
53 *
54 * mmusuffix is one of the generic suffixes "data" or "code", or "mmuidx".
55 * The "mmuidx" suffix carries an extra mmu_idx argument that specifies
56 * the index to use; the "data" and "code" suffixes take the index from
57 * cpu_mmu_index().
58 *
59 * The "mmu" suffix carries the full MemOpIdx, with both mmu_idx and the
60 * MemOp including alignment requirements. The alignment will be enforced.
61 */
62 #ifndef CPU_LDST_H
63 #define CPU_LDST_H
64
65 #include "exec/memopidx.h"
66 #include "qemu/int128.h"
67 #include "cpu.h"
68
69 #if defined(CONFIG_USER_ONLY)
70 /* sparc32plus has 64bit long but 32bit space address
71 * this can make bad result with g2h() and h2g()
72 */
73 #if TARGET_VIRT_ADDR_SPACE_BITS <= 32
74 typedef uint32_t abi_ptr;
75 #define TARGET_ABI_FMT_ptr "%x"
76 #else
77 typedef uint64_t abi_ptr;
78 #define TARGET_ABI_FMT_ptr "%"PRIx64
79 #endif
80
81 #ifndef TARGET_TAGGED_ADDRESSES
82 static inline abi_ptr cpu_untagged_addr(CPUState *cs, abi_ptr x)
83 {
84 return x;
85 }
86 #endif
87
88 /* All direct uses of g2h and h2g need to go away for usermode softmmu. */
89 static inline void *g2h_untagged(abi_ptr x)
90 {
91 return (void *)((uintptr_t)(x) + guest_base);
92 }
93
94 static inline void *g2h(CPUState *cs, abi_ptr x)
95 {
96 return g2h_untagged(cpu_untagged_addr(cs, x));
97 }
98
99 static inline bool guest_addr_valid_untagged(abi_ulong x)
100 {
101 return x <= GUEST_ADDR_MAX;
102 }
103
104 static inline bool guest_range_valid_untagged(abi_ulong start, abi_ulong len)
105 {
106 return len - 1 <= GUEST_ADDR_MAX && start <= GUEST_ADDR_MAX - len + 1;
107 }
108
109 #define h2g_valid(x) \
110 (HOST_LONG_BITS <= TARGET_VIRT_ADDR_SPACE_BITS || \
111 (uintptr_t)(x) - guest_base <= GUEST_ADDR_MAX)
112
113 #define h2g_nocheck(x) ({ \
114 uintptr_t __ret = (uintptr_t)(x) - guest_base; \
115 (abi_ptr)__ret; \
116 })
117
118 #define h2g(x) ({ \
119 /* Check if given address fits target address space */ \
120 assert(h2g_valid(x)); \
121 h2g_nocheck(x); \
122 })
123 #else
124 typedef vaddr abi_ptr;
125 #define TARGET_ABI_FMT_ptr VADDR_PRIx
126 #endif
127
128 uint32_t cpu_ldub_data(CPUArchState *env, abi_ptr ptr);
129 int cpu_ldsb_data(CPUArchState *env, abi_ptr ptr);
130 uint32_t cpu_lduw_be_data(CPUArchState *env, abi_ptr ptr);
131 int cpu_ldsw_be_data(CPUArchState *env, abi_ptr ptr);
132 uint32_t cpu_ldl_be_data(CPUArchState *env, abi_ptr ptr);
133 uint64_t cpu_ldq_be_data(CPUArchState *env, abi_ptr ptr);
134 uint32_t cpu_lduw_le_data(CPUArchState *env, abi_ptr ptr);
135 int cpu_ldsw_le_data(CPUArchState *env, abi_ptr ptr);
136 uint32_t cpu_ldl_le_data(CPUArchState *env, abi_ptr ptr);
137 uint64_t cpu_ldq_le_data(CPUArchState *env, abi_ptr ptr);
138
139 uint32_t cpu_ldub_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t ra);
140 int cpu_ldsb_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t ra);
141 uint32_t cpu_lduw_be_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t ra);
142 int cpu_ldsw_be_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t ra);
143 uint32_t cpu_ldl_be_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t ra);
144 uint64_t cpu_ldq_be_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t ra);
145 uint32_t cpu_lduw_le_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t ra);
146 int cpu_ldsw_le_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t ra);
147 uint32_t cpu_ldl_le_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t ra);
148 uint64_t cpu_ldq_le_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t ra);
149
150 void cpu_stb_data(CPUArchState *env, abi_ptr ptr, uint32_t val);
151 void cpu_stw_be_data(CPUArchState *env, abi_ptr ptr, uint32_t val);
152 void cpu_stl_be_data(CPUArchState *env, abi_ptr ptr, uint32_t val);
153 void cpu_stq_be_data(CPUArchState *env, abi_ptr ptr, uint64_t val);
154 void cpu_stw_le_data(CPUArchState *env, abi_ptr ptr, uint32_t val);
155 void cpu_stl_le_data(CPUArchState *env, abi_ptr ptr, uint32_t val);
156 void cpu_stq_le_data(CPUArchState *env, abi_ptr ptr, uint64_t val);
157
158 void cpu_stb_data_ra(CPUArchState *env, abi_ptr ptr,
159 uint32_t val, uintptr_t ra);
160 void cpu_stw_be_data_ra(CPUArchState *env, abi_ptr ptr,
161 uint32_t val, uintptr_t ra);
162 void cpu_stl_be_data_ra(CPUArchState *env, abi_ptr ptr,
163 uint32_t val, uintptr_t ra);
164 void cpu_stq_be_data_ra(CPUArchState *env, abi_ptr ptr,
165 uint64_t val, uintptr_t ra);
166 void cpu_stw_le_data_ra(CPUArchState *env, abi_ptr ptr,
167 uint32_t val, uintptr_t ra);
168 void cpu_stl_le_data_ra(CPUArchState *env, abi_ptr ptr,
169 uint32_t val, uintptr_t ra);
170 void cpu_stq_le_data_ra(CPUArchState *env, abi_ptr ptr,
171 uint64_t val, uintptr_t ra);
172
173 uint32_t cpu_ldub_mmuidx_ra(CPUArchState *env, abi_ptr ptr,
174 int mmu_idx, uintptr_t ra);
175 int cpu_ldsb_mmuidx_ra(CPUArchState *env, abi_ptr ptr,
176 int mmu_idx, uintptr_t ra);
177 uint32_t cpu_lduw_be_mmuidx_ra(CPUArchState *env, abi_ptr ptr,
178 int mmu_idx, uintptr_t ra);
179 int cpu_ldsw_be_mmuidx_ra(CPUArchState *env, abi_ptr ptr,
180 int mmu_idx, uintptr_t ra);
181 uint32_t cpu_ldl_be_mmuidx_ra(CPUArchState *env, abi_ptr ptr,
182 int mmu_idx, uintptr_t ra);
183 uint64_t cpu_ldq_be_mmuidx_ra(CPUArchState *env, abi_ptr ptr,
184 int mmu_idx, uintptr_t ra);
185 uint32_t cpu_lduw_le_mmuidx_ra(CPUArchState *env, abi_ptr ptr,
186 int mmu_idx, uintptr_t ra);
187 int cpu_ldsw_le_mmuidx_ra(CPUArchState *env, abi_ptr ptr,
188 int mmu_idx, uintptr_t ra);
189 uint32_t cpu_ldl_le_mmuidx_ra(CPUArchState *env, abi_ptr ptr,
190 int mmu_idx, uintptr_t ra);
191 uint64_t cpu_ldq_le_mmuidx_ra(CPUArchState *env, abi_ptr ptr,
192 int mmu_idx, uintptr_t ra);
193
194 void cpu_stb_mmuidx_ra(CPUArchState *env, abi_ptr ptr, uint32_t val,
195 int mmu_idx, uintptr_t ra);
196 void cpu_stw_be_mmuidx_ra(CPUArchState *env, abi_ptr ptr, uint32_t val,
197 int mmu_idx, uintptr_t ra);
198 void cpu_stl_be_mmuidx_ra(CPUArchState *env, abi_ptr ptr, uint32_t val,
199 int mmu_idx, uintptr_t ra);
200 void cpu_stq_be_mmuidx_ra(CPUArchState *env, abi_ptr ptr, uint64_t val,
201 int mmu_idx, uintptr_t ra);
202 void cpu_stw_le_mmuidx_ra(CPUArchState *env, abi_ptr ptr, uint32_t val,
203 int mmu_idx, uintptr_t ra);
204 void cpu_stl_le_mmuidx_ra(CPUArchState *env, abi_ptr ptr, uint32_t val,
205 int mmu_idx, uintptr_t ra);
206 void cpu_stq_le_mmuidx_ra(CPUArchState *env, abi_ptr ptr, uint64_t val,
207 int mmu_idx, uintptr_t ra);
208
209 uint8_t cpu_ldb_mmu(CPUArchState *env, abi_ptr ptr, MemOpIdx oi, uintptr_t ra);
210 uint16_t cpu_ldw_mmu(CPUArchState *env, abi_ptr ptr, MemOpIdx oi, uintptr_t ra);
211 uint32_t cpu_ldl_mmu(CPUArchState *env, abi_ptr ptr, MemOpIdx oi, uintptr_t ra);
212 uint64_t cpu_ldq_mmu(CPUArchState *env, abi_ptr ptr, MemOpIdx oi, uintptr_t ra);
213 Int128 cpu_ld16_mmu(CPUArchState *env, abi_ptr addr, MemOpIdx oi, uintptr_t ra);
214
215 void cpu_stb_mmu(CPUArchState *env, abi_ptr ptr, uint8_t val,
216 MemOpIdx oi, uintptr_t ra);
217 void cpu_stw_mmu(CPUArchState *env, abi_ptr ptr, uint16_t val,
218 MemOpIdx oi, uintptr_t ra);
219 void cpu_stl_mmu(CPUArchState *env, abi_ptr ptr, uint32_t val,
220 MemOpIdx oi, uintptr_t ra);
221 void cpu_stq_mmu(CPUArchState *env, abi_ptr ptr, uint64_t val,
222 MemOpIdx oi, uintptr_t ra);
223 void cpu_st16_mmu(CPUArchState *env, abi_ptr addr, Int128 val,
224 MemOpIdx oi, uintptr_t ra);
225
226 uint32_t cpu_atomic_cmpxchgb_mmu(CPUArchState *env, abi_ptr addr,
227 uint32_t cmpv, uint32_t newv,
228 MemOpIdx oi, uintptr_t retaddr);
229 uint32_t cpu_atomic_cmpxchgw_le_mmu(CPUArchState *env, abi_ptr addr,
230 uint32_t cmpv, uint32_t newv,
231 MemOpIdx oi, uintptr_t retaddr);
232 uint32_t cpu_atomic_cmpxchgl_le_mmu(CPUArchState *env, abi_ptr addr,
233 uint32_t cmpv, uint32_t newv,
234 MemOpIdx oi, uintptr_t retaddr);
235 uint64_t cpu_atomic_cmpxchgq_le_mmu(CPUArchState *env, abi_ptr addr,
236 uint64_t cmpv, uint64_t newv,
237 MemOpIdx oi, uintptr_t retaddr);
238 uint32_t cpu_atomic_cmpxchgw_be_mmu(CPUArchState *env, abi_ptr addr,
239 uint32_t cmpv, uint32_t newv,
240 MemOpIdx oi, uintptr_t retaddr);
241 uint32_t cpu_atomic_cmpxchgl_be_mmu(CPUArchState *env, abi_ptr addr,
242 uint32_t cmpv, uint32_t newv,
243 MemOpIdx oi, uintptr_t retaddr);
244 uint64_t cpu_atomic_cmpxchgq_be_mmu(CPUArchState *env, abi_ptr addr,
245 uint64_t cmpv, uint64_t newv,
246 MemOpIdx oi, uintptr_t retaddr);
247
248 #define GEN_ATOMIC_HELPER(NAME, TYPE, SUFFIX) \
249 TYPE cpu_atomic_ ## NAME ## SUFFIX ## _mmu \
250 (CPUArchState *env, abi_ptr addr, TYPE val, \
251 MemOpIdx oi, uintptr_t retaddr);
252
253 #ifdef CONFIG_ATOMIC64
254 #define GEN_ATOMIC_HELPER_ALL(NAME) \
255 GEN_ATOMIC_HELPER(NAME, uint32_t, b) \
256 GEN_ATOMIC_HELPER(NAME, uint32_t, w_le) \
257 GEN_ATOMIC_HELPER(NAME, uint32_t, w_be) \
258 GEN_ATOMIC_HELPER(NAME, uint32_t, l_le) \
259 GEN_ATOMIC_HELPER(NAME, uint32_t, l_be) \
260 GEN_ATOMIC_HELPER(NAME, uint64_t, q_le) \
261 GEN_ATOMIC_HELPER(NAME, uint64_t, q_be)
262 #else
263 #define GEN_ATOMIC_HELPER_ALL(NAME) \
264 GEN_ATOMIC_HELPER(NAME, uint32_t, b) \
265 GEN_ATOMIC_HELPER(NAME, uint32_t, w_le) \
266 GEN_ATOMIC_HELPER(NAME, uint32_t, w_be) \
267 GEN_ATOMIC_HELPER(NAME, uint32_t, l_le) \
268 GEN_ATOMIC_HELPER(NAME, uint32_t, l_be)
269 #endif
270
271 GEN_ATOMIC_HELPER_ALL(fetch_add)
272 GEN_ATOMIC_HELPER_ALL(fetch_sub)
273 GEN_ATOMIC_HELPER_ALL(fetch_and)
274 GEN_ATOMIC_HELPER_ALL(fetch_or)
275 GEN_ATOMIC_HELPER_ALL(fetch_xor)
276 GEN_ATOMIC_HELPER_ALL(fetch_smin)
277 GEN_ATOMIC_HELPER_ALL(fetch_umin)
278 GEN_ATOMIC_HELPER_ALL(fetch_smax)
279 GEN_ATOMIC_HELPER_ALL(fetch_umax)
280
281 GEN_ATOMIC_HELPER_ALL(add_fetch)
282 GEN_ATOMIC_HELPER_ALL(sub_fetch)
283 GEN_ATOMIC_HELPER_ALL(and_fetch)
284 GEN_ATOMIC_HELPER_ALL(or_fetch)
285 GEN_ATOMIC_HELPER_ALL(xor_fetch)
286 GEN_ATOMIC_HELPER_ALL(smin_fetch)
287 GEN_ATOMIC_HELPER_ALL(umin_fetch)
288 GEN_ATOMIC_HELPER_ALL(smax_fetch)
289 GEN_ATOMIC_HELPER_ALL(umax_fetch)
290
291 GEN_ATOMIC_HELPER_ALL(xchg)
292
293 #undef GEN_ATOMIC_HELPER_ALL
294 #undef GEN_ATOMIC_HELPER
295
296 Int128 cpu_atomic_cmpxchgo_le_mmu(CPUArchState *env, abi_ptr addr,
297 Int128 cmpv, Int128 newv,
298 MemOpIdx oi, uintptr_t retaddr);
299 Int128 cpu_atomic_cmpxchgo_be_mmu(CPUArchState *env, abi_ptr addr,
300 Int128 cmpv, Int128 newv,
301 MemOpIdx oi, uintptr_t retaddr);
302
303 #if defined(CONFIG_USER_ONLY)
304
305 extern __thread uintptr_t helper_retaddr;
306
307 static inline void set_helper_retaddr(uintptr_t ra)
308 {
309 helper_retaddr = ra;
310 /*
311 * Ensure that this write is visible to the SIGSEGV handler that
312 * may be invoked due to a subsequent invalid memory operation.
313 */
314 signal_barrier();
315 }
316
317 static inline void clear_helper_retaddr(void)
318 {
319 /*
320 * Ensure that previous memory operations have succeeded before
321 * removing the data visible to the signal handler.
322 */
323 signal_barrier();
324 helper_retaddr = 0;
325 }
326
327 #else
328
329 #include "tcg/oversized-guest.h"
330
331 static inline uint64_t tlb_read_idx(const CPUTLBEntry *entry,
332 MMUAccessType access_type)
333 {
334 /* Do not rearrange the CPUTLBEntry structure members. */
335 QEMU_BUILD_BUG_ON(offsetof(CPUTLBEntry, addr_read) !=
336 MMU_DATA_LOAD * sizeof(uint64_t));
337 QEMU_BUILD_BUG_ON(offsetof(CPUTLBEntry, addr_write) !=
338 MMU_DATA_STORE * sizeof(uint64_t));
339 QEMU_BUILD_BUG_ON(offsetof(CPUTLBEntry, addr_code) !=
340 MMU_INST_FETCH * sizeof(uint64_t));
341
342 #if TARGET_LONG_BITS == 32
343 /* Use qatomic_read, in case of addr_write; only care about low bits. */
344 const uint32_t *ptr = (uint32_t *)&entry->addr_idx[access_type];
345 ptr += HOST_BIG_ENDIAN;
346 return qatomic_read(ptr);
347 #else
348 const uint64_t *ptr = &entry->addr_idx[access_type];
349 # if TCG_OVERSIZED_GUEST
350 return *ptr;
351 # else
352 /* ofs might correspond to .addr_write, so use qatomic_read */
353 return qatomic_read(ptr);
354 # endif
355 #endif
356 }
357
358 static inline uint64_t tlb_addr_write(const CPUTLBEntry *entry)
359 {
360 return tlb_read_idx(entry, MMU_DATA_STORE);
361 }
362
363 /* Find the TLB index corresponding to the mmu_idx + address pair. */
364 static inline uintptr_t tlb_index(CPUState *cpu, uintptr_t mmu_idx,
365 vaddr addr)
366 {
367 uintptr_t size_mask = cpu->neg.tlb.f[mmu_idx].mask >> CPU_TLB_ENTRY_BITS;
368
369 return (addr >> TARGET_PAGE_BITS) & size_mask;
370 }
371
372 /* Find the TLB entry corresponding to the mmu_idx + address pair. */
373 static inline CPUTLBEntry *tlb_entry(CPUState *cpu, uintptr_t mmu_idx,
374 vaddr addr)
375 {
376 return &cpu->neg.tlb.f[mmu_idx].table[tlb_index(cpu, mmu_idx, addr)];
377 }
378
379 #endif /* defined(CONFIG_USER_ONLY) */
380
381 #if TARGET_BIG_ENDIAN
382 # define cpu_lduw_data cpu_lduw_be_data
383 # define cpu_ldsw_data cpu_ldsw_be_data
384 # define cpu_ldl_data cpu_ldl_be_data
385 # define cpu_ldq_data cpu_ldq_be_data
386 # define cpu_lduw_data_ra cpu_lduw_be_data_ra
387 # define cpu_ldsw_data_ra cpu_ldsw_be_data_ra
388 # define cpu_ldl_data_ra cpu_ldl_be_data_ra
389 # define cpu_ldq_data_ra cpu_ldq_be_data_ra
390 # define cpu_lduw_mmuidx_ra cpu_lduw_be_mmuidx_ra
391 # define cpu_ldsw_mmuidx_ra cpu_ldsw_be_mmuidx_ra
392 # define cpu_ldl_mmuidx_ra cpu_ldl_be_mmuidx_ra
393 # define cpu_ldq_mmuidx_ra cpu_ldq_be_mmuidx_ra
394 # define cpu_stw_data cpu_stw_be_data
395 # define cpu_stl_data cpu_stl_be_data
396 # define cpu_stq_data cpu_stq_be_data
397 # define cpu_stw_data_ra cpu_stw_be_data_ra
398 # define cpu_stl_data_ra cpu_stl_be_data_ra
399 # define cpu_stq_data_ra cpu_stq_be_data_ra
400 # define cpu_stw_mmuidx_ra cpu_stw_be_mmuidx_ra
401 # define cpu_stl_mmuidx_ra cpu_stl_be_mmuidx_ra
402 # define cpu_stq_mmuidx_ra cpu_stq_be_mmuidx_ra
403 #else
404 # define cpu_lduw_data cpu_lduw_le_data
405 # define cpu_ldsw_data cpu_ldsw_le_data
406 # define cpu_ldl_data cpu_ldl_le_data
407 # define cpu_ldq_data cpu_ldq_le_data
408 # define cpu_lduw_data_ra cpu_lduw_le_data_ra
409 # define cpu_ldsw_data_ra cpu_ldsw_le_data_ra
410 # define cpu_ldl_data_ra cpu_ldl_le_data_ra
411 # define cpu_ldq_data_ra cpu_ldq_le_data_ra
412 # define cpu_lduw_mmuidx_ra cpu_lduw_le_mmuidx_ra
413 # define cpu_ldsw_mmuidx_ra cpu_ldsw_le_mmuidx_ra
414 # define cpu_ldl_mmuidx_ra cpu_ldl_le_mmuidx_ra
415 # define cpu_ldq_mmuidx_ra cpu_ldq_le_mmuidx_ra
416 # define cpu_stw_data cpu_stw_le_data
417 # define cpu_stl_data cpu_stl_le_data
418 # define cpu_stq_data cpu_stq_le_data
419 # define cpu_stw_data_ra cpu_stw_le_data_ra
420 # define cpu_stl_data_ra cpu_stl_le_data_ra
421 # define cpu_stq_data_ra cpu_stq_le_data_ra
422 # define cpu_stw_mmuidx_ra cpu_stw_le_mmuidx_ra
423 # define cpu_stl_mmuidx_ra cpu_stl_le_mmuidx_ra
424 # define cpu_stq_mmuidx_ra cpu_stq_le_mmuidx_ra
425 #endif
426
427 uint8_t cpu_ldb_code_mmu(CPUArchState *env, abi_ptr addr,
428 MemOpIdx oi, uintptr_t ra);
429 uint16_t cpu_ldw_code_mmu(CPUArchState *env, abi_ptr addr,
430 MemOpIdx oi, uintptr_t ra);
431 uint32_t cpu_ldl_code_mmu(CPUArchState *env, abi_ptr addr,
432 MemOpIdx oi, uintptr_t ra);
433 uint64_t cpu_ldq_code_mmu(CPUArchState *env, abi_ptr addr,
434 MemOpIdx oi, uintptr_t ra);
435
436 uint32_t cpu_ldub_code(CPUArchState *env, abi_ptr addr);
437 uint32_t cpu_lduw_code(CPUArchState *env, abi_ptr addr);
438 uint32_t cpu_ldl_code(CPUArchState *env, abi_ptr addr);
439 uint64_t cpu_ldq_code(CPUArchState *env, abi_ptr addr);
440
441 static inline int cpu_ldsb_code(CPUArchState *env, abi_ptr addr)
442 {
443 return (int8_t)cpu_ldub_code(env, addr);
444 }
445
446 static inline int cpu_ldsw_code(CPUArchState *env, abi_ptr addr)
447 {
448 return (int16_t)cpu_lduw_code(env, addr);
449 }
450
451 /**
452 * tlb_vaddr_to_host:
453 * @env: CPUArchState
454 * @addr: guest virtual address to look up
455 * @access_type: 0 for read, 1 for write, 2 for execute
456 * @mmu_idx: MMU index to use for lookup
457 *
458 * Look up the specified guest virtual index in the TCG softmmu TLB.
459 * If we can translate a host virtual address suitable for direct RAM
460 * access, without causing a guest exception, then return it.
461 * Otherwise (TLB entry is for an I/O access, guest software
462 * TLB fill required, etc) return NULL.
463 */
464 #ifdef CONFIG_USER_ONLY
465 static inline void *tlb_vaddr_to_host(CPUArchState *env, abi_ptr addr,
466 MMUAccessType access_type, int mmu_idx)
467 {
468 return g2h(env_cpu(env), addr);
469 }
470 #else
471 void *tlb_vaddr_to_host(CPUArchState *env, abi_ptr addr,
472 MMUAccessType access_type, int mmu_idx);
473 #endif
474
475 #endif /* CPU_LDST_H */