]> git.proxmox.com Git - mirror_qemu.git/blob - include/exec/exec-all.h
e94e6849ddfe4a82a775de02b436e9004971f5d0
[mirror_qemu.git] / include / exec / exec-all.h
1 /*
2 * internal execution defines for qemu
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #ifndef EXEC_ALL_H
21 #define EXEC_ALL_H
22
23 #include "qemu-common.h"
24 #include "exec/tb-context.h"
25
26 /* allow to see translation results - the slowdown should be negligible, so we leave it */
27 #define DEBUG_DISAS
28
29 /* Page tracking code uses ram addresses in system mode, and virtual
30 addresses in userspace mode. Define tb_page_addr_t to be an appropriate
31 type. */
32 #if defined(CONFIG_USER_ONLY)
33 typedef abi_ulong tb_page_addr_t;
34 #else
35 typedef ram_addr_t tb_page_addr_t;
36 #endif
37
38 /* is_jmp field values */
39 #define DISAS_NEXT 0 /* next instruction can be analyzed */
40 #define DISAS_JUMP 1 /* only pc was modified dynamically */
41 #define DISAS_UPDATE 2 /* cpu state was modified dynamically */
42 #define DISAS_TB_JUMP 3 /* only pc was modified statically */
43
44 #include "qemu/log.h"
45
46 void gen_intermediate_code(CPUArchState *env, struct TranslationBlock *tb);
47 void restore_state_to_opc(CPUArchState *env, struct TranslationBlock *tb,
48 target_ulong *data);
49
50 void cpu_gen_init(void);
51 bool cpu_restore_state(CPUState *cpu, uintptr_t searched_pc);
52
53 void QEMU_NORETURN cpu_loop_exit_noexc(CPUState *cpu);
54 void QEMU_NORETURN cpu_io_recompile(CPUState *cpu, uintptr_t retaddr);
55 TranslationBlock *tb_gen_code(CPUState *cpu,
56 target_ulong pc, target_ulong cs_base,
57 uint32_t flags,
58 int cflags);
59
60 void QEMU_NORETURN cpu_loop_exit(CPUState *cpu);
61 void QEMU_NORETURN cpu_loop_exit_restore(CPUState *cpu, uintptr_t pc);
62 void QEMU_NORETURN cpu_loop_exit_atomic(CPUState *cpu, uintptr_t pc);
63
64 #if !defined(CONFIG_USER_ONLY)
65 void cpu_reloading_memory_map(void);
66 /**
67 * cpu_address_space_init:
68 * @cpu: CPU to add this address space to
69 * @as: address space to add
70 * @asidx: integer index of this address space
71 *
72 * Add the specified address space to the CPU's cpu_ases list.
73 * The address space added with @asidx 0 is the one used for the
74 * convenience pointer cpu->as.
75 * The target-specific code which registers ASes is responsible
76 * for defining what semantics address space 0, 1, 2, etc have.
77 *
78 * Before the first call to this function, the caller must set
79 * cpu->num_ases to the total number of address spaces it needs
80 * to support.
81 *
82 * Note that with KVM only one address space is supported.
83 */
84 void cpu_address_space_init(CPUState *cpu, AddressSpace *as, int asidx);
85 /* cputlb.c */
86 /**
87 * tlb_flush_page:
88 * @cpu: CPU whose TLB should be flushed
89 * @addr: virtual address of page to be flushed
90 *
91 * Flush one page from the TLB of the specified CPU, for all
92 * MMU indexes.
93 */
94 void tlb_flush_page(CPUState *cpu, target_ulong addr);
95 /**
96 * tlb_flush:
97 * @cpu: CPU whose TLB should be flushed
98 *
99 * Flush the entire TLB for the specified CPU. Most CPU architectures
100 * allow the implementation to drop entries from the TLB at any time
101 * so this is generally safe. If more selective flushing is required
102 * use one of the other functions for efficiency.
103 */
104 void tlb_flush(CPUState *cpu);
105 /**
106 * tlb_flush_page_by_mmuidx:
107 * @cpu: CPU whose TLB should be flushed
108 * @addr: virtual address of page to be flushed
109 * @idxmap: bitmap of MMU indexes to flush
110 *
111 * Flush one page from the TLB of the specified CPU, for the specified
112 * MMU indexes.
113 */
114 void tlb_flush_page_by_mmuidx(CPUState *cpu, target_ulong addr,
115 uint16_t idxmap);
116 /**
117 * tlb_flush_by_mmuidx:
118 * @cpu: CPU whose TLB should be flushed
119 * @idxmap: bitmap of MMU indexes to flush
120 *
121 * Flush all entries from the TLB of the specified CPU, for the specified
122 * MMU indexes.
123 */
124 void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap);
125 /**
126 * tlb_set_page_with_attrs:
127 * @cpu: CPU to add this TLB entry for
128 * @vaddr: virtual address of page to add entry for
129 * @paddr: physical address of the page
130 * @attrs: memory transaction attributes
131 * @prot: access permissions (PAGE_READ/PAGE_WRITE/PAGE_EXEC bits)
132 * @mmu_idx: MMU index to insert TLB entry for
133 * @size: size of the page in bytes
134 *
135 * Add an entry to this CPU's TLB (a mapping from virtual address
136 * @vaddr to physical address @paddr) with the specified memory
137 * transaction attributes. This is generally called by the target CPU
138 * specific code after it has been called through the tlb_fill()
139 * entry point and performed a successful page table walk to find
140 * the physical address and attributes for the virtual address
141 * which provoked the TLB miss.
142 *
143 * At most one entry for a given virtual address is permitted. Only a
144 * single TARGET_PAGE_SIZE region is mapped; the supplied @size is only
145 * used by tlb_flush_page.
146 */
147 void tlb_set_page_with_attrs(CPUState *cpu, target_ulong vaddr,
148 hwaddr paddr, MemTxAttrs attrs,
149 int prot, int mmu_idx, target_ulong size);
150 /* tlb_set_page:
151 *
152 * This function is equivalent to calling tlb_set_page_with_attrs()
153 * with an @attrs argument of MEMTXATTRS_UNSPECIFIED. It's provided
154 * as a convenience for CPUs which don't use memory transaction attributes.
155 */
156 void tlb_set_page(CPUState *cpu, target_ulong vaddr,
157 hwaddr paddr, int prot,
158 int mmu_idx, target_ulong size);
159 void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr);
160 void probe_write(CPUArchState *env, target_ulong addr, int mmu_idx,
161 uintptr_t retaddr);
162 void tlb_flush_page_all(target_ulong addr);
163 #else
164 static inline void tlb_flush_page(CPUState *cpu, target_ulong addr)
165 {
166 }
167
168 static inline void tlb_flush(CPUState *cpu)
169 {
170 }
171
172 static inline void tlb_flush_page_by_mmuidx(CPUState *cpu,
173 target_ulong addr, uint16_t idxmap)
174 {
175 }
176
177 static inline void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap)
178 {
179 }
180 #endif
181
182 #define CODE_GEN_ALIGN 16 /* must be >= of the size of a icache line */
183
184 /* Estimated block size for TB allocation. */
185 /* ??? The following is based on a 2015 survey of x86_64 host output.
186 Better would seem to be some sort of dynamically sized TB array,
187 adapting to the block sizes actually being produced. */
188 #if defined(CONFIG_SOFTMMU)
189 #define CODE_GEN_AVG_BLOCK_SIZE 400
190 #else
191 #define CODE_GEN_AVG_BLOCK_SIZE 150
192 #endif
193
194 #if defined(__arm__) || defined(_ARCH_PPC) \
195 || defined(__x86_64__) || defined(__i386__) \
196 || defined(__sparc__) || defined(__aarch64__) \
197 || defined(__s390x__) || defined(__mips__) \
198 || defined(CONFIG_TCG_INTERPRETER)
199 /* NOTE: Direct jump patching must be atomic to be thread-safe. */
200 #define USE_DIRECT_JUMP
201 #endif
202
203 struct TranslationBlock {
204 target_ulong pc; /* simulated PC corresponding to this block (EIP + CS base) */
205 target_ulong cs_base; /* CS base for this block */
206 uint32_t flags; /* flags defining in which context the code was generated */
207 uint16_t size; /* size of target code for this block (1 <=
208 size <= TARGET_PAGE_SIZE) */
209 uint16_t icount;
210 uint32_t cflags; /* compile flags */
211 #define CF_COUNT_MASK 0x7fff
212 #define CF_LAST_IO 0x8000 /* Last insn may be an IO access. */
213 #define CF_NOCACHE 0x10000 /* To be freed after execution */
214 #define CF_USE_ICOUNT 0x20000
215 #define CF_IGNORE_ICOUNT 0x40000 /* Do not generate icount code */
216
217 uint16_t invalid;
218
219 void *tc_ptr; /* pointer to the translated code */
220 uint8_t *tc_search; /* pointer to search data */
221 /* original tb when cflags has CF_NOCACHE */
222 struct TranslationBlock *orig_tb;
223 /* first and second physical page containing code. The lower bit
224 of the pointer tells the index in page_next[] */
225 struct TranslationBlock *page_next[2];
226 tb_page_addr_t page_addr[2];
227
228 /* The following data are used to directly call another TB from
229 * the code of this one. This can be done either by emitting direct or
230 * indirect native jump instructions. These jumps are reset so that the TB
231 * just continue its execution. The TB can be linked to another one by
232 * setting one of the jump targets (or patching the jump instruction). Only
233 * two of such jumps are supported.
234 */
235 uint16_t jmp_reset_offset[2]; /* offset of original jump target */
236 #define TB_JMP_RESET_OFFSET_INVALID 0xffff /* indicates no jump generated */
237 #ifdef USE_DIRECT_JUMP
238 uint16_t jmp_insn_offset[2]; /* offset of native jump instruction */
239 #else
240 uintptr_t jmp_target_addr[2]; /* target address for indirect jump */
241 #endif
242 /* Each TB has an assosiated circular list of TBs jumping to this one.
243 * jmp_list_first points to the first TB jumping to this one.
244 * jmp_list_next is used to point to the next TB in a list.
245 * Since each TB can have two jumps, it can participate in two lists.
246 * jmp_list_first and jmp_list_next are 4-byte aligned pointers to a
247 * TranslationBlock structure, but the two least significant bits of
248 * them are used to encode which data field of the pointed TB should
249 * be used to traverse the list further from that TB:
250 * 0 => jmp_list_next[0], 1 => jmp_list_next[1], 2 => jmp_list_first.
251 * In other words, 0/1 tells which jump is used in the pointed TB,
252 * and 2 means that this is a pointer back to the target TB of this list.
253 */
254 uintptr_t jmp_list_next[2];
255 uintptr_t jmp_list_first;
256 };
257
258 void tb_free(TranslationBlock *tb);
259 void tb_flush(CPUState *cpu);
260 void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr);
261
262 #if defined(USE_DIRECT_JUMP)
263
264 #if defined(CONFIG_TCG_INTERPRETER)
265 static inline void tb_set_jmp_target1(uintptr_t jmp_addr, uintptr_t addr)
266 {
267 /* patch the branch destination */
268 atomic_set((int32_t *)jmp_addr, addr - (jmp_addr + 4));
269 /* no need to flush icache explicitly */
270 }
271 #elif defined(_ARCH_PPC)
272 void ppc_tb_set_jmp_target(uintptr_t jmp_addr, uintptr_t addr);
273 #define tb_set_jmp_target1 ppc_tb_set_jmp_target
274 #elif defined(__i386__) || defined(__x86_64__)
275 static inline void tb_set_jmp_target1(uintptr_t jmp_addr, uintptr_t addr)
276 {
277 /* patch the branch destination */
278 atomic_set((int32_t *)jmp_addr, addr - (jmp_addr + 4));
279 /* no need to flush icache explicitly */
280 }
281 #elif defined(__s390x__)
282 static inline void tb_set_jmp_target1(uintptr_t jmp_addr, uintptr_t addr)
283 {
284 /* patch the branch destination */
285 intptr_t disp = addr - (jmp_addr - 2);
286 atomic_set((int32_t *)jmp_addr, disp / 2);
287 /* no need to flush icache explicitly */
288 }
289 #elif defined(__aarch64__)
290 void aarch64_tb_set_jmp_target(uintptr_t jmp_addr, uintptr_t addr);
291 #define tb_set_jmp_target1 aarch64_tb_set_jmp_target
292 #elif defined(__arm__)
293 void arm_tb_set_jmp_target(uintptr_t jmp_addr, uintptr_t addr);
294 #define tb_set_jmp_target1 arm_tb_set_jmp_target
295 #elif defined(__sparc__) || defined(__mips__)
296 void tb_set_jmp_target1(uintptr_t jmp_addr, uintptr_t addr);
297 #else
298 #error tb_set_jmp_target1 is missing
299 #endif
300
301 static inline void tb_set_jmp_target(TranslationBlock *tb,
302 int n, uintptr_t addr)
303 {
304 uint16_t offset = tb->jmp_insn_offset[n];
305 tb_set_jmp_target1((uintptr_t)(tb->tc_ptr + offset), addr);
306 }
307
308 #else
309
310 /* set the jump target */
311 static inline void tb_set_jmp_target(TranslationBlock *tb,
312 int n, uintptr_t addr)
313 {
314 tb->jmp_target_addr[n] = addr;
315 }
316
317 #endif
318
319 /* Called with tb_lock held. */
320 static inline void tb_add_jump(TranslationBlock *tb, int n,
321 TranslationBlock *tb_next)
322 {
323 assert(n < ARRAY_SIZE(tb->jmp_list_next));
324 if (tb->jmp_list_next[n]) {
325 /* Another thread has already done this while we were
326 * outside of the lock; nothing to do in this case */
327 return;
328 }
329 qemu_log_mask_and_addr(CPU_LOG_EXEC, tb->pc,
330 "Linking TBs %p [" TARGET_FMT_lx
331 "] index %d -> %p [" TARGET_FMT_lx "]\n",
332 tb->tc_ptr, tb->pc, n,
333 tb_next->tc_ptr, tb_next->pc);
334
335 /* patch the native jump address */
336 tb_set_jmp_target(tb, n, (uintptr_t)tb_next->tc_ptr);
337
338 /* add in TB jmp circular list */
339 tb->jmp_list_next[n] = tb_next->jmp_list_first;
340 tb_next->jmp_list_first = (uintptr_t)tb | n;
341 }
342
343 /* GETPC is the true target of the return instruction that we'll execute. */
344 #if defined(CONFIG_TCG_INTERPRETER)
345 extern uintptr_t tci_tb_ptr;
346 # define GETPC() tci_tb_ptr
347 #else
348 # define GETPC() \
349 ((uintptr_t)__builtin_extract_return_addr(__builtin_return_address(0)))
350 #endif
351
352 /* The true return address will often point to a host insn that is part of
353 the next translated guest insn. Adjust the address backward to point to
354 the middle of the call insn. Subtracting one would do the job except for
355 several compressed mode architectures (arm, mips) which set the low bit
356 to indicate the compressed mode; subtracting two works around that. It
357 is also the case that there are no host isas that contain a call insn
358 smaller than 4 bytes, so we don't worry about special-casing this. */
359 #define GETPC_ADJ 2
360
361 #if !defined(CONFIG_USER_ONLY)
362
363 struct MemoryRegion *iotlb_to_region(CPUState *cpu,
364 hwaddr index, MemTxAttrs attrs);
365
366 void tlb_fill(CPUState *cpu, target_ulong addr, MMUAccessType access_type,
367 int mmu_idx, uintptr_t retaddr);
368
369 #endif
370
371 #if defined(CONFIG_USER_ONLY)
372 void mmap_lock(void);
373 void mmap_unlock(void);
374 bool have_mmap_lock(void);
375
376 static inline tb_page_addr_t get_page_addr_code(CPUArchState *env1, target_ulong addr)
377 {
378 return addr;
379 }
380 #else
381 static inline void mmap_lock(void) {}
382 static inline void mmap_unlock(void) {}
383
384 /* cputlb.c */
385 tb_page_addr_t get_page_addr_code(CPUArchState *env1, target_ulong addr);
386
387 void tlb_reset_dirty(CPUState *cpu, ram_addr_t start1, ram_addr_t length);
388 void tlb_set_dirty(CPUState *cpu, target_ulong vaddr);
389
390 /* exec.c */
391 void tb_flush_jmp_cache(CPUState *cpu, target_ulong addr);
392
393 MemoryRegionSection *
394 address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
395 hwaddr *xlat, hwaddr *plen);
396 hwaddr memory_region_section_get_iotlb(CPUState *cpu,
397 MemoryRegionSection *section,
398 target_ulong vaddr,
399 hwaddr paddr, hwaddr xlat,
400 int prot,
401 target_ulong *address);
402 bool memory_region_is_unassigned(MemoryRegion *mr);
403
404 #endif
405
406 /* vl.c */
407 extern int singlestep;
408
409 #endif