]> git.proxmox.com Git - mirror_qemu.git/blob - include/exec/exec-all.h
TCG: Move translation block variables to new context inside tcg_ctx: tb_ctx
[mirror_qemu.git] / include / exec / exec-all.h
1 /*
2 * internal execution defines for qemu
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #ifndef _EXEC_ALL_H_
21 #define _EXEC_ALL_H_
22
23 #include "qemu-common.h"
24
25 /* allow to see translation results - the slowdown should be negligible, so we leave it */
26 #define DEBUG_DISAS
27
28 /* Page tracking code uses ram addresses in system mode, and virtual
29 addresses in userspace mode. Define tb_page_addr_t to be an appropriate
30 type. */
31 #if defined(CONFIG_USER_ONLY)
32 typedef abi_ulong tb_page_addr_t;
33 #else
34 typedef ram_addr_t tb_page_addr_t;
35 #endif
36
37 /* is_jmp field values */
38 #define DISAS_NEXT 0 /* next instruction can be analyzed */
39 #define DISAS_JUMP 1 /* only pc was modified dynamically */
40 #define DISAS_UPDATE 2 /* cpu state was modified dynamically */
41 #define DISAS_TB_JUMP 3 /* only pc was modified statically */
42
43 struct TranslationBlock;
44 typedef struct TranslationBlock TranslationBlock;
45
46 /* XXX: make safe guess about sizes */
47 #define MAX_OP_PER_INSTR 208
48
49 #if HOST_LONG_BITS == 32
50 #define MAX_OPC_PARAM_PER_ARG 2
51 #else
52 #define MAX_OPC_PARAM_PER_ARG 1
53 #endif
54 #define MAX_OPC_PARAM_IARGS 5
55 #define MAX_OPC_PARAM_OARGS 1
56 #define MAX_OPC_PARAM_ARGS (MAX_OPC_PARAM_IARGS + MAX_OPC_PARAM_OARGS)
57
58 /* A Call op needs up to 4 + 2N parameters on 32-bit archs,
59 * and up to 4 + N parameters on 64-bit archs
60 * (N = number of input arguments + output arguments). */
61 #define MAX_OPC_PARAM (4 + (MAX_OPC_PARAM_PER_ARG * MAX_OPC_PARAM_ARGS))
62 #define OPC_BUF_SIZE 640
63 #define OPC_MAX_SIZE (OPC_BUF_SIZE - MAX_OP_PER_INSTR)
64
65 /* Maximum size a TCG op can expand to. This is complicated because a
66 single op may require several host instructions and register reloads.
67 For now take a wild guess at 192 bytes, which should allow at least
68 a couple of fixup instructions per argument. */
69 #define TCG_MAX_OP_SIZE 192
70
71 #define OPPARAM_BUF_SIZE (OPC_BUF_SIZE * MAX_OPC_PARAM)
72
73 #include "qemu/log.h"
74
75 void gen_intermediate_code(CPUArchState *env, struct TranslationBlock *tb);
76 void gen_intermediate_code_pc(CPUArchState *env, struct TranslationBlock *tb);
77 void restore_state_to_opc(CPUArchState *env, struct TranslationBlock *tb,
78 int pc_pos);
79
80 void cpu_gen_init(void);
81 int cpu_gen_code(CPUArchState *env, struct TranslationBlock *tb,
82 int *gen_code_size_ptr);
83 bool cpu_restore_state(CPUArchState *env, uintptr_t searched_pc);
84
85 void QEMU_NORETURN cpu_resume_from_signal(CPUArchState *env1, void *puc);
86 void QEMU_NORETURN cpu_io_recompile(CPUArchState *env, uintptr_t retaddr);
87 TranslationBlock *tb_gen_code(CPUArchState *env,
88 target_ulong pc, target_ulong cs_base, int flags,
89 int cflags);
90 void cpu_exec_init(CPUArchState *env);
91 void QEMU_NORETURN cpu_loop_exit(CPUArchState *env1);
92 int page_unprotect(target_ulong address, uintptr_t pc, void *puc);
93 void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
94 int is_cpu_write_access);
95 void tb_invalidate_phys_range(tb_page_addr_t start, tb_page_addr_t end,
96 int is_cpu_write_access);
97 #if !defined(CONFIG_USER_ONLY)
98 /* cputlb.c */
99 void tlb_flush_page(CPUArchState *env, target_ulong addr);
100 void tlb_flush(CPUArchState *env, int flush_global);
101 void tlb_set_page(CPUArchState *env, target_ulong vaddr,
102 hwaddr paddr, int prot,
103 int mmu_idx, target_ulong size);
104 void tb_invalidate_phys_addr(hwaddr addr);
105 #else
106 static inline void tlb_flush_page(CPUArchState *env, target_ulong addr)
107 {
108 }
109
110 static inline void tlb_flush(CPUArchState *env, int flush_global)
111 {
112 }
113 #endif
114
115 #define CODE_GEN_ALIGN 16 /* must be >= of the size of a icache line */
116
117 #define CODE_GEN_PHYS_HASH_BITS 15
118 #define CODE_GEN_PHYS_HASH_SIZE (1 << CODE_GEN_PHYS_HASH_BITS)
119
120 /* estimated block size for TB allocation */
121 /* XXX: use a per code average code fragment size and modulate it
122 according to the host CPU */
123 #if defined(CONFIG_SOFTMMU)
124 #define CODE_GEN_AVG_BLOCK_SIZE 128
125 #else
126 #define CODE_GEN_AVG_BLOCK_SIZE 64
127 #endif
128
129 #if defined(__arm__) || defined(_ARCH_PPC) \
130 || defined(__x86_64__) || defined(__i386__) \
131 || defined(__sparc__) \
132 || defined(CONFIG_TCG_INTERPRETER)
133 #define USE_DIRECT_JUMP
134 #endif
135
136 struct TranslationBlock {
137 target_ulong pc; /* simulated PC corresponding to this block (EIP + CS base) */
138 target_ulong cs_base; /* CS base for this block */
139 uint64_t flags; /* flags defining in which context the code was generated */
140 uint16_t size; /* size of target code for this block (1 <=
141 size <= TARGET_PAGE_SIZE) */
142 uint16_t cflags; /* compile flags */
143 #define CF_COUNT_MASK 0x7fff
144 #define CF_LAST_IO 0x8000 /* Last insn may be an IO access. */
145
146 uint8_t *tc_ptr; /* pointer to the translated code */
147 /* next matching tb for physical address. */
148 struct TranslationBlock *phys_hash_next;
149 /* first and second physical page containing code. The lower bit
150 of the pointer tells the index in page_next[] */
151 struct TranslationBlock *page_next[2];
152 tb_page_addr_t page_addr[2];
153
154 /* the following data are used to directly call another TB from
155 the code of this one. */
156 uint16_t tb_next_offset[2]; /* offset of original jump target */
157 #ifdef USE_DIRECT_JUMP
158 uint16_t tb_jmp_offset[2]; /* offset of jump instruction */
159 #else
160 uintptr_t tb_next[2]; /* address of jump generated code */
161 #endif
162 /* list of TBs jumping to this one. This is a circular list using
163 the two least significant bits of the pointers to tell what is
164 the next pointer: 0 = jmp_next[0], 1 = jmp_next[1], 2 =
165 jmp_first */
166 struct TranslationBlock *jmp_next[2];
167 struct TranslationBlock *jmp_first;
168 uint32_t icount;
169 };
170
171 #include "exec/spinlock.h"
172
173 typedef struct TBContext TBContext;
174
175 struct TBContext {
176
177 TranslationBlock *tbs;
178 TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
179 int nb_tbs;
180 /* any access to the tbs or the page table must use this lock */
181 spinlock_t tb_lock;
182
183 /* statistics */
184 int tb_flush_count;
185 int tb_phys_invalidate_count;
186
187 int tb_invalidated_flag;
188 };
189
190 static inline unsigned int tb_jmp_cache_hash_page(target_ulong pc)
191 {
192 target_ulong tmp;
193 tmp = pc ^ (pc >> (TARGET_PAGE_BITS - TB_JMP_PAGE_BITS));
194 return (tmp >> (TARGET_PAGE_BITS - TB_JMP_PAGE_BITS)) & TB_JMP_PAGE_MASK;
195 }
196
197 static inline unsigned int tb_jmp_cache_hash_func(target_ulong pc)
198 {
199 target_ulong tmp;
200 tmp = pc ^ (pc >> (TARGET_PAGE_BITS - TB_JMP_PAGE_BITS));
201 return (((tmp >> (TARGET_PAGE_BITS - TB_JMP_PAGE_BITS)) & TB_JMP_PAGE_MASK)
202 | (tmp & TB_JMP_ADDR_MASK));
203 }
204
205 static inline unsigned int tb_phys_hash_func(tb_page_addr_t pc)
206 {
207 return (pc >> 2) & (CODE_GEN_PHYS_HASH_SIZE - 1);
208 }
209
210 void tb_free(TranslationBlock *tb);
211 void tb_flush(CPUArchState *env);
212 void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr);
213
214 #if defined(USE_DIRECT_JUMP)
215
216 #if defined(CONFIG_TCG_INTERPRETER)
217 static inline void tb_set_jmp_target1(uintptr_t jmp_addr, uintptr_t addr)
218 {
219 /* patch the branch destination */
220 *(uint32_t *)jmp_addr = addr - (jmp_addr + 4);
221 /* no need to flush icache explicitly */
222 }
223 #elif defined(_ARCH_PPC)
224 void ppc_tb_set_jmp_target(unsigned long jmp_addr, unsigned long addr);
225 #define tb_set_jmp_target1 ppc_tb_set_jmp_target
226 #elif defined(__i386__) || defined(__x86_64__)
227 static inline void tb_set_jmp_target1(uintptr_t jmp_addr, uintptr_t addr)
228 {
229 /* patch the branch destination */
230 *(uint32_t *)jmp_addr = addr - (jmp_addr + 4);
231 /* no need to flush icache explicitly */
232 }
233 #elif defined(__arm__)
234 static inline void tb_set_jmp_target1(uintptr_t jmp_addr, uintptr_t addr)
235 {
236 #if !QEMU_GNUC_PREREQ(4, 1)
237 register unsigned long _beg __asm ("a1");
238 register unsigned long _end __asm ("a2");
239 register unsigned long _flg __asm ("a3");
240 #endif
241
242 /* we could use a ldr pc, [pc, #-4] kind of branch and avoid the flush */
243 *(uint32_t *)jmp_addr =
244 (*(uint32_t *)jmp_addr & ~0xffffff)
245 | (((addr - (jmp_addr + 8)) >> 2) & 0xffffff);
246
247 #if QEMU_GNUC_PREREQ(4, 1)
248 __builtin___clear_cache((char *) jmp_addr, (char *) jmp_addr + 4);
249 #else
250 /* flush icache */
251 _beg = jmp_addr;
252 _end = jmp_addr + 4;
253 _flg = 0;
254 __asm __volatile__ ("swi 0x9f0002" : : "r" (_beg), "r" (_end), "r" (_flg));
255 #endif
256 }
257 #elif defined(__sparc__)
258 void tb_set_jmp_target1(uintptr_t jmp_addr, uintptr_t addr);
259 #else
260 #error tb_set_jmp_target1 is missing
261 #endif
262
263 static inline void tb_set_jmp_target(TranslationBlock *tb,
264 int n, uintptr_t addr)
265 {
266 uint16_t offset = tb->tb_jmp_offset[n];
267 tb_set_jmp_target1((uintptr_t)(tb->tc_ptr + offset), addr);
268 }
269
270 #else
271
272 /* set the jump target */
273 static inline void tb_set_jmp_target(TranslationBlock *tb,
274 int n, uintptr_t addr)
275 {
276 tb->tb_next[n] = addr;
277 }
278
279 #endif
280
281 static inline void tb_add_jump(TranslationBlock *tb, int n,
282 TranslationBlock *tb_next)
283 {
284 /* NOTE: this test is only needed for thread safety */
285 if (!tb->jmp_next[n]) {
286 /* patch the native jump address */
287 tb_set_jmp_target(tb, n, (uintptr_t)tb_next->tc_ptr);
288
289 /* add in TB jmp circular list */
290 tb->jmp_next[n] = tb_next->jmp_first;
291 tb_next->jmp_first = (TranslationBlock *)((uintptr_t)(tb) | (n));
292 }
293 }
294
295 /* The return address may point to the start of the next instruction.
296 Subtracting one gets us the call instruction itself. */
297 #if defined(CONFIG_TCG_INTERPRETER)
298 extern uintptr_t tci_tb_ptr;
299 # define GETPC() tci_tb_ptr
300 #elif defined(__s390__) && !defined(__s390x__)
301 # define GETPC() \
302 (((uintptr_t)__builtin_return_address(0) & 0x7fffffffUL) - 1)
303 #elif defined(__arm__)
304 /* Thumb return addresses have the low bit set, so we need to subtract two.
305 This is still safe in ARM mode because instructions are 4 bytes. */
306 # define GETPC() ((uintptr_t)__builtin_return_address(0) - 2)
307 #else
308 # define GETPC() ((uintptr_t)__builtin_return_address(0) - 1)
309 #endif
310
311 #if defined(CONFIG_QEMU_LDST_OPTIMIZATION) && defined(CONFIG_SOFTMMU)
312 /* qemu_ld/st optimization split code generation to fast and slow path, thus,
313 it needs special handling for an MMU helper which is called from the slow
314 path, to get the fast path's pc without any additional argument.
315 It uses a tricky solution which embeds the fast path pc into the slow path.
316
317 Code flow in slow path:
318 (1) pre-process
319 (2) call MMU helper
320 (3) jump to (5)
321 (4) fast path information (implementation specific)
322 (5) post-process (e.g. stack adjust)
323 (6) jump to corresponding code of the next of fast path
324 */
325 # if defined(__i386__) || defined(__x86_64__)
326 /* To avoid broken disassembling, long jmp is used for embedding fast path pc,
327 so that the destination is the next code of fast path, though this jmp is
328 never executed.
329
330 call MMU helper
331 jmp POST_PROC (2byte) <- GETRA()
332 jmp NEXT_CODE (5byte)
333 POST_PROCESS ... <- GETRA() + 7
334 */
335 # define GETRA() ((uintptr_t)__builtin_return_address(0))
336 # define GETPC_LDST() ((uintptr_t)(GETRA() + 7 + \
337 *(int32_t *)((void *)GETRA() + 3) - 1))
338 # elif defined (_ARCH_PPC) && !defined (_ARCH_PPC64)
339 # define GETRA() ((uintptr_t)__builtin_return_address(0))
340 # define GETPC_LDST() ((uintptr_t) ((*(int32_t *)(GETRA() - 4)) - 1))
341 # else
342 # error "CONFIG_QEMU_LDST_OPTIMIZATION needs GETPC_LDST() implementation!"
343 # endif
344 bool is_tcg_gen_code(uintptr_t pc_ptr);
345 # define GETPC_EXT() (is_tcg_gen_code(GETRA()) ? GETPC_LDST() : GETPC())
346 #else
347 # define GETPC_EXT() GETPC()
348 #endif
349
350 #if !defined(CONFIG_USER_ONLY)
351
352 struct MemoryRegion *iotlb_to_region(hwaddr index);
353 uint64_t io_mem_read(struct MemoryRegion *mr, hwaddr addr,
354 unsigned size);
355 void io_mem_write(struct MemoryRegion *mr, hwaddr addr,
356 uint64_t value, unsigned size);
357
358 void tlb_fill(CPUArchState *env1, target_ulong addr, int is_write, int mmu_idx,
359 uintptr_t retaddr);
360
361 #include "exec/softmmu_defs.h"
362
363 #define ACCESS_TYPE (NB_MMU_MODES + 1)
364 #define MEMSUFFIX _code
365
366 #define DATA_SIZE 1
367 #include "exec/softmmu_header.h"
368
369 #define DATA_SIZE 2
370 #include "exec/softmmu_header.h"
371
372 #define DATA_SIZE 4
373 #include "exec/softmmu_header.h"
374
375 #define DATA_SIZE 8
376 #include "exec/softmmu_header.h"
377
378 #undef ACCESS_TYPE
379 #undef MEMSUFFIX
380
381 #endif
382
383 #if defined(CONFIG_USER_ONLY)
384 static inline tb_page_addr_t get_page_addr_code(CPUArchState *env1, target_ulong addr)
385 {
386 return addr;
387 }
388 #else
389 /* cputlb.c */
390 tb_page_addr_t get_page_addr_code(CPUArchState *env1, target_ulong addr);
391 #endif
392
393 typedef void (CPUDebugExcpHandler)(CPUArchState *env);
394
395 void cpu_set_debug_excp_handler(CPUDebugExcpHandler *handler);
396
397 /* vl.c */
398 extern int singlestep;
399
400 /* cpu-exec.c */
401 extern volatile sig_atomic_t exit_request;
402
403 /* Deterministic execution requires that IO only be performed on the last
404 instruction of a TB so that interrupts take effect immediately. */
405 static inline int can_do_io(CPUArchState *env)
406 {
407 if (!use_icount) {
408 return 1;
409 }
410 /* If not executing code then assume we are ok. */
411 if (!env->current_tb) {
412 return 1;
413 }
414 return env->can_do_io != 0;
415 }
416
417 #endif