]> git.proxmox.com Git - mirror_qemu.git/blob - include/exec/exec-all.h
Merge tag 'for_upstream' of https://git.kernel.org/pub/scm/virt/kvm/mst/qemu into...
[mirror_qemu.git] / include / exec / exec-all.h
1 /*
2 * internal execution defines for qemu
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #ifndef EXEC_ALL_H
21 #define EXEC_ALL_H
22
23 #include "cpu.h"
24 #ifdef CONFIG_TCG
25 #include "exec/cpu_ldst.h"
26 #endif
27 #include "qemu/interval-tree.h"
28
29 /* allow to see translation results - the slowdown should be negligible, so we leave it */
30 #define DEBUG_DISAS
31
32 /* Page tracking code uses ram addresses in system mode, and virtual
33 addresses in userspace mode. Define tb_page_addr_t to be an appropriate
34 type. */
35 #if defined(CONFIG_USER_ONLY)
36 typedef abi_ulong tb_page_addr_t;
37 #define TB_PAGE_ADDR_FMT TARGET_ABI_FMT_lx
38 #else
39 typedef ram_addr_t tb_page_addr_t;
40 #define TB_PAGE_ADDR_FMT RAM_ADDR_FMT
41 #endif
42
43 /**
44 * cpu_unwind_state_data:
45 * @cpu: the cpu context
46 * @host_pc: the host pc within the translation
47 * @data: output data
48 *
49 * Attempt to load the the unwind state for a host pc occurring in
50 * translated code. If @host_pc is not in translated code, the
51 * function returns false; otherwise @data is loaded.
52 * This is the same unwind info as given to restore_state_to_opc.
53 */
54 bool cpu_unwind_state_data(CPUState *cpu, uintptr_t host_pc, uint64_t *data);
55
56 /**
57 * cpu_restore_state:
58 * @cpu: the cpu context
59 * @host_pc: the host pc within the translation
60 * @return: true if state was restored, false otherwise
61 *
62 * Attempt to restore the state for a fault occurring in translated
63 * code. If @host_pc is not in translated code no state is
64 * restored and the function returns false.
65 */
66 bool cpu_restore_state(CPUState *cpu, uintptr_t host_pc);
67
68 G_NORETURN void cpu_loop_exit_noexc(CPUState *cpu);
69 G_NORETURN void cpu_loop_exit(CPUState *cpu);
70 G_NORETURN void cpu_loop_exit_restore(CPUState *cpu, uintptr_t pc);
71 G_NORETURN void cpu_loop_exit_atomic(CPUState *cpu, uintptr_t pc);
72
73 /**
74 * cpu_loop_exit_requested:
75 * @cpu: The CPU state to be tested
76 *
77 * Indicate if somebody asked for a return of the CPU to the main loop
78 * (e.g., via cpu_exit() or cpu_interrupt()).
79 *
80 * This is helpful for architectures that support interruptible
81 * instructions. After writing back all state to registers/memory, this
82 * call can be used to check if it makes sense to return to the main loop
83 * or to continue executing the interruptible instruction.
84 */
85 static inline bool cpu_loop_exit_requested(CPUState *cpu)
86 {
87 return (int32_t)qatomic_read(&cpu_neg(cpu)->icount_decr.u32) < 0;
88 }
89
90 #if !defined(CONFIG_USER_ONLY) && defined(CONFIG_TCG)
91 /* cputlb.c */
92 /**
93 * tlb_init - initialize a CPU's TLB
94 * @cpu: CPU whose TLB should be initialized
95 */
96 void tlb_init(CPUState *cpu);
97 /**
98 * tlb_destroy - destroy a CPU's TLB
99 * @cpu: CPU whose TLB should be destroyed
100 */
101 void tlb_destroy(CPUState *cpu);
102 /**
103 * tlb_flush_page:
104 * @cpu: CPU whose TLB should be flushed
105 * @addr: virtual address of page to be flushed
106 *
107 * Flush one page from the TLB of the specified CPU, for all
108 * MMU indexes.
109 */
110 void tlb_flush_page(CPUState *cpu, target_ulong addr);
111 /**
112 * tlb_flush_page_all_cpus:
113 * @cpu: src CPU of the flush
114 * @addr: virtual address of page to be flushed
115 *
116 * Flush one page from the TLB of the specified CPU, for all
117 * MMU indexes.
118 */
119 void tlb_flush_page_all_cpus(CPUState *src, target_ulong addr);
120 /**
121 * tlb_flush_page_all_cpus_synced:
122 * @cpu: src CPU of the flush
123 * @addr: virtual address of page to be flushed
124 *
125 * Flush one page from the TLB of the specified CPU, for all MMU
126 * indexes like tlb_flush_page_all_cpus except the source vCPUs work
127 * is scheduled as safe work meaning all flushes will be complete once
128 * the source vCPUs safe work is complete. This will depend on when
129 * the guests translation ends the TB.
130 */
131 void tlb_flush_page_all_cpus_synced(CPUState *src, target_ulong addr);
132 /**
133 * tlb_flush:
134 * @cpu: CPU whose TLB should be flushed
135 *
136 * Flush the entire TLB for the specified CPU. Most CPU architectures
137 * allow the implementation to drop entries from the TLB at any time
138 * so this is generally safe. If more selective flushing is required
139 * use one of the other functions for efficiency.
140 */
141 void tlb_flush(CPUState *cpu);
142 /**
143 * tlb_flush_all_cpus:
144 * @cpu: src CPU of the flush
145 */
146 void tlb_flush_all_cpus(CPUState *src_cpu);
147 /**
148 * tlb_flush_all_cpus_synced:
149 * @cpu: src CPU of the flush
150 *
151 * Like tlb_flush_all_cpus except this except the source vCPUs work is
152 * scheduled as safe work meaning all flushes will be complete once
153 * the source vCPUs safe work is complete. This will depend on when
154 * the guests translation ends the TB.
155 */
156 void tlb_flush_all_cpus_synced(CPUState *src_cpu);
157 /**
158 * tlb_flush_page_by_mmuidx:
159 * @cpu: CPU whose TLB should be flushed
160 * @addr: virtual address of page to be flushed
161 * @idxmap: bitmap of MMU indexes to flush
162 *
163 * Flush one page from the TLB of the specified CPU, for the specified
164 * MMU indexes.
165 */
166 void tlb_flush_page_by_mmuidx(CPUState *cpu, target_ulong addr,
167 uint16_t idxmap);
168 /**
169 * tlb_flush_page_by_mmuidx_all_cpus:
170 * @cpu: Originating CPU of the flush
171 * @addr: virtual address of page to be flushed
172 * @idxmap: bitmap of MMU indexes to flush
173 *
174 * Flush one page from the TLB of all CPUs, for the specified
175 * MMU indexes.
176 */
177 void tlb_flush_page_by_mmuidx_all_cpus(CPUState *cpu, target_ulong addr,
178 uint16_t idxmap);
179 /**
180 * tlb_flush_page_by_mmuidx_all_cpus_synced:
181 * @cpu: Originating CPU of the flush
182 * @addr: virtual address of page to be flushed
183 * @idxmap: bitmap of MMU indexes to flush
184 *
185 * Flush one page from the TLB of all CPUs, for the specified MMU
186 * indexes like tlb_flush_page_by_mmuidx_all_cpus except the source
187 * vCPUs work is scheduled as safe work meaning all flushes will be
188 * complete once the source vCPUs safe work is complete. This will
189 * depend on when the guests translation ends the TB.
190 */
191 void tlb_flush_page_by_mmuidx_all_cpus_synced(CPUState *cpu, target_ulong addr,
192 uint16_t idxmap);
193 /**
194 * tlb_flush_by_mmuidx:
195 * @cpu: CPU whose TLB should be flushed
196 * @wait: If true ensure synchronisation by exiting the cpu_loop
197 * @idxmap: bitmap of MMU indexes to flush
198 *
199 * Flush all entries from the TLB of the specified CPU, for the specified
200 * MMU indexes.
201 */
202 void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap);
203 /**
204 * tlb_flush_by_mmuidx_all_cpus:
205 * @cpu: Originating CPU of the flush
206 * @idxmap: bitmap of MMU indexes to flush
207 *
208 * Flush all entries from all TLBs of all CPUs, for the specified
209 * MMU indexes.
210 */
211 void tlb_flush_by_mmuidx_all_cpus(CPUState *cpu, uint16_t idxmap);
212 /**
213 * tlb_flush_by_mmuidx_all_cpus_synced:
214 * @cpu: Originating CPU of the flush
215 * @idxmap: bitmap of MMU indexes to flush
216 *
217 * Flush all entries from all TLBs of all CPUs, for the specified
218 * MMU indexes like tlb_flush_by_mmuidx_all_cpus except except the source
219 * vCPUs work is scheduled as safe work meaning all flushes will be
220 * complete once the source vCPUs safe work is complete. This will
221 * depend on when the guests translation ends the TB.
222 */
223 void tlb_flush_by_mmuidx_all_cpus_synced(CPUState *cpu, uint16_t idxmap);
224
225 /**
226 * tlb_flush_page_bits_by_mmuidx
227 * @cpu: CPU whose TLB should be flushed
228 * @addr: virtual address of page to be flushed
229 * @idxmap: bitmap of mmu indexes to flush
230 * @bits: number of significant bits in address
231 *
232 * Similar to tlb_flush_page_mask, but with a bitmap of indexes.
233 */
234 void tlb_flush_page_bits_by_mmuidx(CPUState *cpu, target_ulong addr,
235 uint16_t idxmap, unsigned bits);
236
237 /* Similarly, with broadcast and syncing. */
238 void tlb_flush_page_bits_by_mmuidx_all_cpus(CPUState *cpu, target_ulong addr,
239 uint16_t idxmap, unsigned bits);
240 void tlb_flush_page_bits_by_mmuidx_all_cpus_synced
241 (CPUState *cpu, target_ulong addr, uint16_t idxmap, unsigned bits);
242
243 /**
244 * tlb_flush_range_by_mmuidx
245 * @cpu: CPU whose TLB should be flushed
246 * @addr: virtual address of the start of the range to be flushed
247 * @len: length of range to be flushed
248 * @idxmap: bitmap of mmu indexes to flush
249 * @bits: number of significant bits in address
250 *
251 * For each mmuidx in @idxmap, flush all pages within [@addr,@addr+@len),
252 * comparing only the low @bits worth of each virtual page.
253 */
254 void tlb_flush_range_by_mmuidx(CPUState *cpu, target_ulong addr,
255 target_ulong len, uint16_t idxmap,
256 unsigned bits);
257
258 /* Similarly, with broadcast and syncing. */
259 void tlb_flush_range_by_mmuidx_all_cpus(CPUState *cpu, target_ulong addr,
260 target_ulong len, uint16_t idxmap,
261 unsigned bits);
262 void tlb_flush_range_by_mmuidx_all_cpus_synced(CPUState *cpu,
263 target_ulong addr,
264 target_ulong len,
265 uint16_t idxmap,
266 unsigned bits);
267
268 /**
269 * tlb_set_page_full:
270 * @cpu: CPU context
271 * @mmu_idx: mmu index of the tlb to modify
272 * @vaddr: virtual address of the entry to add
273 * @full: the details of the tlb entry
274 *
275 * Add an entry to @cpu tlb index @mmu_idx. All of the fields of
276 * @full must be filled, except for xlat_section, and constitute
277 * the complete description of the translated page.
278 *
279 * This is generally called by the target tlb_fill function after
280 * having performed a successful page table walk to find the physical
281 * address and attributes for the translation.
282 *
283 * At most one entry for a given virtual address is permitted. Only a
284 * single TARGET_PAGE_SIZE region is mapped; @full->lg_page_size is only
285 * used by tlb_flush_page.
286 */
287 void tlb_set_page_full(CPUState *cpu, int mmu_idx, target_ulong vaddr,
288 CPUTLBEntryFull *full);
289
290 /**
291 * tlb_set_page_with_attrs:
292 * @cpu: CPU to add this TLB entry for
293 * @vaddr: virtual address of page to add entry for
294 * @paddr: physical address of the page
295 * @attrs: memory transaction attributes
296 * @prot: access permissions (PAGE_READ/PAGE_WRITE/PAGE_EXEC bits)
297 * @mmu_idx: MMU index to insert TLB entry for
298 * @size: size of the page in bytes
299 *
300 * Add an entry to this CPU's TLB (a mapping from virtual address
301 * @vaddr to physical address @paddr) with the specified memory
302 * transaction attributes. This is generally called by the target CPU
303 * specific code after it has been called through the tlb_fill()
304 * entry point and performed a successful page table walk to find
305 * the physical address and attributes for the virtual address
306 * which provoked the TLB miss.
307 *
308 * At most one entry for a given virtual address is permitted. Only a
309 * single TARGET_PAGE_SIZE region is mapped; the supplied @size is only
310 * used by tlb_flush_page.
311 */
312 void tlb_set_page_with_attrs(CPUState *cpu, target_ulong vaddr,
313 hwaddr paddr, MemTxAttrs attrs,
314 int prot, int mmu_idx, target_ulong size);
315 /* tlb_set_page:
316 *
317 * This function is equivalent to calling tlb_set_page_with_attrs()
318 * with an @attrs argument of MEMTXATTRS_UNSPECIFIED. It's provided
319 * as a convenience for CPUs which don't use memory transaction attributes.
320 */
321 void tlb_set_page(CPUState *cpu, target_ulong vaddr,
322 hwaddr paddr, int prot,
323 int mmu_idx, target_ulong size);
324 #else
325 static inline void tlb_init(CPUState *cpu)
326 {
327 }
328 static inline void tlb_destroy(CPUState *cpu)
329 {
330 }
331 static inline void tlb_flush_page(CPUState *cpu, target_ulong addr)
332 {
333 }
334 static inline void tlb_flush_page_all_cpus(CPUState *src, target_ulong addr)
335 {
336 }
337 static inline void tlb_flush_page_all_cpus_synced(CPUState *src,
338 target_ulong addr)
339 {
340 }
341 static inline void tlb_flush(CPUState *cpu)
342 {
343 }
344 static inline void tlb_flush_all_cpus(CPUState *src_cpu)
345 {
346 }
347 static inline void tlb_flush_all_cpus_synced(CPUState *src_cpu)
348 {
349 }
350 static inline void tlb_flush_page_by_mmuidx(CPUState *cpu,
351 target_ulong addr, uint16_t idxmap)
352 {
353 }
354
355 static inline void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap)
356 {
357 }
358 static inline void tlb_flush_page_by_mmuidx_all_cpus(CPUState *cpu,
359 target_ulong addr,
360 uint16_t idxmap)
361 {
362 }
363 static inline void tlb_flush_page_by_mmuidx_all_cpus_synced(CPUState *cpu,
364 target_ulong addr,
365 uint16_t idxmap)
366 {
367 }
368 static inline void tlb_flush_by_mmuidx_all_cpus(CPUState *cpu, uint16_t idxmap)
369 {
370 }
371
372 static inline void tlb_flush_by_mmuidx_all_cpus_synced(CPUState *cpu,
373 uint16_t idxmap)
374 {
375 }
376 static inline void tlb_flush_page_bits_by_mmuidx(CPUState *cpu,
377 target_ulong addr,
378 uint16_t idxmap,
379 unsigned bits)
380 {
381 }
382 static inline void tlb_flush_page_bits_by_mmuidx_all_cpus(CPUState *cpu,
383 target_ulong addr,
384 uint16_t idxmap,
385 unsigned bits)
386 {
387 }
388 static inline void
389 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(CPUState *cpu, target_ulong addr,
390 uint16_t idxmap, unsigned bits)
391 {
392 }
393 static inline void tlb_flush_range_by_mmuidx(CPUState *cpu, target_ulong addr,
394 target_ulong len, uint16_t idxmap,
395 unsigned bits)
396 {
397 }
398 static inline void tlb_flush_range_by_mmuidx_all_cpus(CPUState *cpu,
399 target_ulong addr,
400 target_ulong len,
401 uint16_t idxmap,
402 unsigned bits)
403 {
404 }
405 static inline void tlb_flush_range_by_mmuidx_all_cpus_synced(CPUState *cpu,
406 target_ulong addr,
407 target_long len,
408 uint16_t idxmap,
409 unsigned bits)
410 {
411 }
412 #endif
413 /**
414 * probe_access:
415 * @env: CPUArchState
416 * @addr: guest virtual address to look up
417 * @size: size of the access
418 * @access_type: read, write or execute permission
419 * @mmu_idx: MMU index to use for lookup
420 * @retaddr: return address for unwinding
421 *
422 * Look up the guest virtual address @addr. Raise an exception if the
423 * page does not satisfy @access_type. Raise an exception if the
424 * access (@addr, @size) hits a watchpoint. For writes, mark a clean
425 * page as dirty.
426 *
427 * Finally, return the host address for a page that is backed by RAM,
428 * or NULL if the page requires I/O.
429 */
430 void *probe_access(CPUArchState *env, target_ulong addr, int size,
431 MMUAccessType access_type, int mmu_idx, uintptr_t retaddr);
432
433 static inline void *probe_write(CPUArchState *env, target_ulong addr, int size,
434 int mmu_idx, uintptr_t retaddr)
435 {
436 return probe_access(env, addr, size, MMU_DATA_STORE, mmu_idx, retaddr);
437 }
438
439 static inline void *probe_read(CPUArchState *env, target_ulong addr, int size,
440 int mmu_idx, uintptr_t retaddr)
441 {
442 return probe_access(env, addr, size, MMU_DATA_LOAD, mmu_idx, retaddr);
443 }
444
445 /**
446 * probe_access_flags:
447 * @env: CPUArchState
448 * @addr: guest virtual address to look up
449 * @access_type: read, write or execute permission
450 * @mmu_idx: MMU index to use for lookup
451 * @nonfault: suppress the fault
452 * @phost: return value for host address
453 * @retaddr: return address for unwinding
454 *
455 * Similar to probe_access, loosely returning the TLB_FLAGS_MASK for
456 * the page, and storing the host address for RAM in @phost.
457 *
458 * If @nonfault is set, do not raise an exception but return TLB_INVALID_MASK.
459 * Do not handle watchpoints, but include TLB_WATCHPOINT in the returned flags.
460 * Do handle clean pages, so exclude TLB_NOTDIRY from the returned flags.
461 * For simplicity, all "mmio-like" flags are folded to TLB_MMIO.
462 */
463 int probe_access_flags(CPUArchState *env, target_ulong addr,
464 MMUAccessType access_type, int mmu_idx,
465 bool nonfault, void **phost, uintptr_t retaddr);
466
467 #ifndef CONFIG_USER_ONLY
468 /**
469 * probe_access_full:
470 * Like probe_access_flags, except also return into @pfull.
471 *
472 * The CPUTLBEntryFull structure returned via @pfull is transient
473 * and must be consumed or copied immediately, before any further
474 * access or changes to TLB @mmu_idx.
475 */
476 int probe_access_full(CPUArchState *env, target_ulong addr,
477 MMUAccessType access_type, int mmu_idx,
478 bool nonfault, void **phost,
479 CPUTLBEntryFull **pfull, uintptr_t retaddr);
480 #endif
481
482 #define CODE_GEN_ALIGN 16 /* must be >= of the size of a icache line */
483
484 /* Estimated block size for TB allocation. */
485 /* ??? The following is based on a 2015 survey of x86_64 host output.
486 Better would seem to be some sort of dynamically sized TB array,
487 adapting to the block sizes actually being produced. */
488 #if defined(CONFIG_SOFTMMU)
489 #define CODE_GEN_AVG_BLOCK_SIZE 400
490 #else
491 #define CODE_GEN_AVG_BLOCK_SIZE 150
492 #endif
493
494 /*
495 * Translation Cache-related fields of a TB.
496 * This struct exists just for convenience; we keep track of TB's in a binary
497 * search tree, and the only fields needed to compare TB's in the tree are
498 * @ptr and @size.
499 * Note: the address of search data can be obtained by adding @size to @ptr.
500 */
501 struct tb_tc {
502 const void *ptr; /* pointer to the translated code */
503 size_t size;
504 };
505
506 struct TranslationBlock {
507 #if !TARGET_TB_PCREL
508 /*
509 * Guest PC corresponding to this block. This must be the true
510 * virtual address. Therefore e.g. x86 stores EIP + CS_BASE, and
511 * targets like Arm, MIPS, HP-PA, which reuse low bits for ISA or
512 * privilege, must store those bits elsewhere.
513 *
514 * If TARGET_TB_PCREL, the opcodes for the TranslationBlock are
515 * written such that the TB is associated only with the physical
516 * page and may be run in any virtual address context. In this case,
517 * PC must always be taken from ENV in a target-specific manner.
518 * Unwind information is taken as offsets from the page, to be
519 * deposited into the "current" PC.
520 */
521 target_ulong pc;
522 #endif
523
524 /*
525 * Target-specific data associated with the TranslationBlock, e.g.:
526 * x86: the original user, the Code Segment virtual base,
527 * arm: an extension of tb->flags,
528 * s390x: instruction data for EXECUTE,
529 * sparc: the next pc of the instruction queue (for delay slots).
530 */
531 target_ulong cs_base;
532
533 uint32_t flags; /* flags defining in which context the code was generated */
534 uint32_t cflags; /* compile flags */
535
536 /* Note that TCG_MAX_INSNS is 512; we validate this match elsewhere. */
537 #define CF_COUNT_MASK 0x000001ff
538 #define CF_NO_GOTO_TB 0x00000200 /* Do not chain with goto_tb */
539 #define CF_NO_GOTO_PTR 0x00000400 /* Do not chain with goto_ptr */
540 #define CF_SINGLE_STEP 0x00000800 /* gdbstub single-step in effect */
541 #define CF_LAST_IO 0x00008000 /* Last insn may be an IO access. */
542 #define CF_MEMI_ONLY 0x00010000 /* Only instrument memory ops */
543 #define CF_USE_ICOUNT 0x00020000
544 #define CF_INVALID 0x00040000 /* TB is stale. Set with @jmp_lock held */
545 #define CF_PARALLEL 0x00080000 /* Generate code for a parallel context */
546 #define CF_NOIRQ 0x00100000 /* Generate an uninterruptible TB */
547 #define CF_CLUSTER_MASK 0xff000000 /* Top 8 bits are cluster ID */
548 #define CF_CLUSTER_SHIFT 24
549
550 /* Per-vCPU dynamic tracing state used to generate this TB */
551 uint32_t trace_vcpu_dstate;
552
553 /*
554 * Above fields used for comparing
555 */
556
557 /* size of target code for this block (1 <= size <= TARGET_PAGE_SIZE) */
558 uint16_t size;
559 uint16_t icount;
560
561 struct tb_tc tc;
562
563 /*
564 * Track tb_page_addr_t intervals that intersect this TB.
565 * For user-only, the virtual addresses are always contiguous,
566 * and we use a unified interval tree. For system, we use a
567 * linked list headed in each PageDesc. Within the list, the lsb
568 * of the previous pointer tells the index of page_next[], and the
569 * list is protected by the PageDesc lock(s).
570 */
571 #ifdef CONFIG_USER_ONLY
572 IntervalTreeNode itree;
573 #else
574 uintptr_t page_next[2];
575 tb_page_addr_t page_addr[2];
576 #endif
577
578 /* jmp_lock placed here to fill a 4-byte hole. Its documentation is below */
579 QemuSpin jmp_lock;
580
581 /* The following data are used to directly call another TB from
582 * the code of this one. This can be done either by emitting direct or
583 * indirect native jump instructions. These jumps are reset so that the TB
584 * just continues its execution. The TB can be linked to another one by
585 * setting one of the jump targets (or patching the jump instruction). Only
586 * two of such jumps are supported.
587 */
588 uint16_t jmp_reset_offset[2]; /* offset of original jump target */
589 #define TB_JMP_RESET_OFFSET_INVALID 0xffff /* indicates no jump generated */
590 uintptr_t jmp_target_arg[2]; /* target address or offset */
591
592 /*
593 * Each TB has a NULL-terminated list (jmp_list_head) of incoming jumps.
594 * Each TB can have two outgoing jumps, and therefore can participate
595 * in two lists. The list entries are kept in jmp_list_next[2]. The least
596 * significant bit (LSB) of the pointers in these lists is used to encode
597 * which of the two list entries is to be used in the pointed TB.
598 *
599 * List traversals are protected by jmp_lock. The destination TB of each
600 * outgoing jump is kept in jmp_dest[] so that the appropriate jmp_lock
601 * can be acquired from any origin TB.
602 *
603 * jmp_dest[] are tagged pointers as well. The LSB is set when the TB is
604 * being invalidated, so that no further outgoing jumps from it can be set.
605 *
606 * jmp_lock also protects the CF_INVALID cflag; a jump must not be chained
607 * to a destination TB that has CF_INVALID set.
608 */
609 uintptr_t jmp_list_head;
610 uintptr_t jmp_list_next[2];
611 uintptr_t jmp_dest[2];
612 };
613
614 /* Hide the read to avoid ifdefs for TARGET_TB_PCREL. */
615 static inline target_ulong tb_pc(const TranslationBlock *tb)
616 {
617 #if TARGET_TB_PCREL
618 qemu_build_not_reached();
619 #else
620 return tb->pc;
621 #endif
622 }
623
624 /* Hide the qatomic_read to make code a little easier on the eyes */
625 static inline uint32_t tb_cflags(const TranslationBlock *tb)
626 {
627 return qatomic_read(&tb->cflags);
628 }
629
630 static inline tb_page_addr_t tb_page_addr0(const TranslationBlock *tb)
631 {
632 #ifdef CONFIG_USER_ONLY
633 return tb->itree.start;
634 #else
635 return tb->page_addr[0];
636 #endif
637 }
638
639 static inline tb_page_addr_t tb_page_addr1(const TranslationBlock *tb)
640 {
641 #ifdef CONFIG_USER_ONLY
642 tb_page_addr_t next = tb->itree.last & TARGET_PAGE_MASK;
643 return next == (tb->itree.start & TARGET_PAGE_MASK) ? -1 : next;
644 #else
645 return tb->page_addr[1];
646 #endif
647 }
648
649 static inline void tb_set_page_addr0(TranslationBlock *tb,
650 tb_page_addr_t addr)
651 {
652 #ifdef CONFIG_USER_ONLY
653 tb->itree.start = addr;
654 /*
655 * To begin, we record an interval of one byte. When the translation
656 * loop encounters a second page, the interval will be extended to
657 * include the first byte of the second page, which is sufficient to
658 * allow tb_page_addr1() above to work properly. The final corrected
659 * interval will be set by tb_page_add() from tb->size before the
660 * node is added to the interval tree.
661 */
662 tb->itree.last = addr;
663 #else
664 tb->page_addr[0] = addr;
665 #endif
666 }
667
668 static inline void tb_set_page_addr1(TranslationBlock *tb,
669 tb_page_addr_t addr)
670 {
671 #ifdef CONFIG_USER_ONLY
672 /* Extend the interval to the first byte of the second page. See above. */
673 tb->itree.last = addr;
674 #else
675 tb->page_addr[1] = addr;
676 #endif
677 }
678
679 /* current cflags for hashing/comparison */
680 uint32_t curr_cflags(CPUState *cpu);
681
682 /* TranslationBlock invalidate API */
683 #if defined(CONFIG_USER_ONLY)
684 void tb_invalidate_phys_addr(target_ulong addr);
685 #else
686 void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr, MemTxAttrs attrs);
687 #endif
688 void tb_flush(CPUState *cpu);
689 void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr);
690 void tb_invalidate_phys_range(tb_page_addr_t start, tb_page_addr_t end);
691 void tb_set_jmp_target(TranslationBlock *tb, int n, uintptr_t addr);
692
693 /* GETPC is the true target of the return instruction that we'll execute. */
694 #if defined(CONFIG_TCG_INTERPRETER)
695 extern __thread uintptr_t tci_tb_ptr;
696 # define GETPC() tci_tb_ptr
697 #else
698 # define GETPC() \
699 ((uintptr_t)__builtin_extract_return_addr(__builtin_return_address(0)))
700 #endif
701
702 /* The true return address will often point to a host insn that is part of
703 the next translated guest insn. Adjust the address backward to point to
704 the middle of the call insn. Subtracting one would do the job except for
705 several compressed mode architectures (arm, mips) which set the low bit
706 to indicate the compressed mode; subtracting two works around that. It
707 is also the case that there are no host isas that contain a call insn
708 smaller than 4 bytes, so we don't worry about special-casing this. */
709 #define GETPC_ADJ 2
710
711 #if !defined(CONFIG_USER_ONLY)
712
713 /**
714 * iotlb_to_section:
715 * @cpu: CPU performing the access
716 * @index: TCG CPU IOTLB entry
717 *
718 * Given a TCG CPU IOTLB entry, return the MemoryRegionSection that
719 * it refers to. @index will have been initially created and returned
720 * by memory_region_section_get_iotlb().
721 */
722 struct MemoryRegionSection *iotlb_to_section(CPUState *cpu,
723 hwaddr index, MemTxAttrs attrs);
724 #endif
725
726 /**
727 * get_page_addr_code_hostp()
728 * @env: CPUArchState
729 * @addr: guest virtual address of guest code
730 *
731 * See get_page_addr_code() (full-system version) for documentation on the
732 * return value.
733 *
734 * Sets *@hostp (when @hostp is non-NULL) as follows.
735 * If the return value is -1, sets *@hostp to NULL. Otherwise, sets *@hostp
736 * to the host address where @addr's content is kept.
737 *
738 * Note: this function can trigger an exception.
739 */
740 tb_page_addr_t get_page_addr_code_hostp(CPUArchState *env, target_ulong addr,
741 void **hostp);
742
743 /**
744 * get_page_addr_code()
745 * @env: CPUArchState
746 * @addr: guest virtual address of guest code
747 *
748 * If we cannot translate and execute from the entire RAM page, or if
749 * the region is not backed by RAM, returns -1. Otherwise, returns the
750 * ram_addr_t corresponding to the guest code at @addr.
751 *
752 * Note: this function can trigger an exception.
753 */
754 static inline tb_page_addr_t get_page_addr_code(CPUArchState *env,
755 target_ulong addr)
756 {
757 return get_page_addr_code_hostp(env, addr, NULL);
758 }
759
760 #if defined(CONFIG_USER_ONLY)
761 void mmap_lock(void);
762 void mmap_unlock(void);
763 bool have_mmap_lock(void);
764
765 /**
766 * adjust_signal_pc:
767 * @pc: raw pc from the host signal ucontext_t.
768 * @is_write: host memory operation was write, or read-modify-write.
769 *
770 * Alter @pc as required for unwinding. Return the type of the
771 * guest memory access -- host reads may be for guest execution.
772 */
773 MMUAccessType adjust_signal_pc(uintptr_t *pc, bool is_write);
774
775 /**
776 * handle_sigsegv_accerr_write:
777 * @cpu: the cpu context
778 * @old_set: the sigset_t from the signal ucontext_t
779 * @host_pc: the host pc, adjusted for the signal
780 * @host_addr: the host address of the fault
781 *
782 * Return true if the write fault has been handled, and should be re-tried.
783 */
784 bool handle_sigsegv_accerr_write(CPUState *cpu, sigset_t *old_set,
785 uintptr_t host_pc, abi_ptr guest_addr);
786
787 /**
788 * cpu_loop_exit_sigsegv:
789 * @cpu: the cpu context
790 * @addr: the guest address of the fault
791 * @access_type: access was read/write/execute
792 * @maperr: true for invalid page, false for permission fault
793 * @ra: host pc for unwinding
794 *
795 * Use the TCGCPUOps hook to record cpu state, do guest operating system
796 * specific things to raise SIGSEGV, and jump to the main cpu loop.
797 */
798 G_NORETURN void cpu_loop_exit_sigsegv(CPUState *cpu, target_ulong addr,
799 MMUAccessType access_type,
800 bool maperr, uintptr_t ra);
801
802 /**
803 * cpu_loop_exit_sigbus:
804 * @cpu: the cpu context
805 * @addr: the guest address of the alignment fault
806 * @access_type: access was read/write/execute
807 * @ra: host pc for unwinding
808 *
809 * Use the TCGCPUOps hook to record cpu state, do guest operating system
810 * specific things to raise SIGBUS, and jump to the main cpu loop.
811 */
812 G_NORETURN void cpu_loop_exit_sigbus(CPUState *cpu, target_ulong addr,
813 MMUAccessType access_type,
814 uintptr_t ra);
815
816 #else
817 static inline void mmap_lock(void) {}
818 static inline void mmap_unlock(void) {}
819
820 void tlb_reset_dirty(CPUState *cpu, ram_addr_t start1, ram_addr_t length);
821 void tlb_set_dirty(CPUState *cpu, target_ulong vaddr);
822
823 MemoryRegionSection *
824 address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
825 hwaddr *xlat, hwaddr *plen,
826 MemTxAttrs attrs, int *prot);
827 hwaddr memory_region_section_get_iotlb(CPUState *cpu,
828 MemoryRegionSection *section);
829 #endif
830
831 #endif