]> git.proxmox.com Git - mirror_qemu.git/blob - include/exec/exec-all.h
Merge tag 'pull-tcg-20221004' of https://gitlab.com/rth7680/qemu into staging
[mirror_qemu.git] / include / exec / exec-all.h
1 /*
2 * internal execution defines for qemu
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #ifndef EXEC_ALL_H
21 #define EXEC_ALL_H
22
23 #include "cpu.h"
24 #ifdef CONFIG_TCG
25 #include "exec/cpu_ldst.h"
26 #endif
27
28 /* allow to see translation results - the slowdown should be negligible, so we leave it */
29 #define DEBUG_DISAS
30
31 /* Page tracking code uses ram addresses in system mode, and virtual
32 addresses in userspace mode. Define tb_page_addr_t to be an appropriate
33 type. */
34 #if defined(CONFIG_USER_ONLY)
35 typedef abi_ulong tb_page_addr_t;
36 #define TB_PAGE_ADDR_FMT TARGET_ABI_FMT_lx
37 #else
38 typedef ram_addr_t tb_page_addr_t;
39 #define TB_PAGE_ADDR_FMT RAM_ADDR_FMT
40 #endif
41
42 void restore_state_to_opc(CPUArchState *env, TranslationBlock *tb,
43 target_ulong *data);
44
45 /**
46 * cpu_restore_state:
47 * @cpu: the vCPU state is to be restore to
48 * @searched_pc: the host PC the fault occurred at
49 * @will_exit: true if the TB executed will be interrupted after some
50 cpu adjustments. Required for maintaining the correct
51 icount valus
52 * @return: true if state was restored, false otherwise
53 *
54 * Attempt to restore the state for a fault occurring in translated
55 * code. If the searched_pc is not in translated code no state is
56 * restored and the function returns false.
57 */
58 bool cpu_restore_state(CPUState *cpu, uintptr_t searched_pc, bool will_exit);
59
60 G_NORETURN void cpu_loop_exit_noexc(CPUState *cpu);
61 G_NORETURN void cpu_loop_exit(CPUState *cpu);
62 G_NORETURN void cpu_loop_exit_restore(CPUState *cpu, uintptr_t pc);
63 G_NORETURN void cpu_loop_exit_atomic(CPUState *cpu, uintptr_t pc);
64
65 /**
66 * cpu_loop_exit_requested:
67 * @cpu: The CPU state to be tested
68 *
69 * Indicate if somebody asked for a return of the CPU to the main loop
70 * (e.g., via cpu_exit() or cpu_interrupt()).
71 *
72 * This is helpful for architectures that support interruptible
73 * instructions. After writing back all state to registers/memory, this
74 * call can be used to check if it makes sense to return to the main loop
75 * or to continue executing the interruptible instruction.
76 */
77 static inline bool cpu_loop_exit_requested(CPUState *cpu)
78 {
79 return (int32_t)qatomic_read(&cpu_neg(cpu)->icount_decr.u32) < 0;
80 }
81
82 #if !defined(CONFIG_USER_ONLY) && defined(CONFIG_TCG)
83 /* cputlb.c */
84 /**
85 * tlb_init - initialize a CPU's TLB
86 * @cpu: CPU whose TLB should be initialized
87 */
88 void tlb_init(CPUState *cpu);
89 /**
90 * tlb_destroy - destroy a CPU's TLB
91 * @cpu: CPU whose TLB should be destroyed
92 */
93 void tlb_destroy(CPUState *cpu);
94 /**
95 * tlb_flush_page:
96 * @cpu: CPU whose TLB should be flushed
97 * @addr: virtual address of page to be flushed
98 *
99 * Flush one page from the TLB of the specified CPU, for all
100 * MMU indexes.
101 */
102 void tlb_flush_page(CPUState *cpu, target_ulong addr);
103 /**
104 * tlb_flush_page_all_cpus:
105 * @cpu: src CPU of the flush
106 * @addr: virtual address of page to be flushed
107 *
108 * Flush one page from the TLB of the specified CPU, for all
109 * MMU indexes.
110 */
111 void tlb_flush_page_all_cpus(CPUState *src, target_ulong addr);
112 /**
113 * tlb_flush_page_all_cpus_synced:
114 * @cpu: src CPU of the flush
115 * @addr: virtual address of page to be flushed
116 *
117 * Flush one page from the TLB of the specified CPU, for all MMU
118 * indexes like tlb_flush_page_all_cpus except the source vCPUs work
119 * is scheduled as safe work meaning all flushes will be complete once
120 * the source vCPUs safe work is complete. This will depend on when
121 * the guests translation ends the TB.
122 */
123 void tlb_flush_page_all_cpus_synced(CPUState *src, target_ulong addr);
124 /**
125 * tlb_flush:
126 * @cpu: CPU whose TLB should be flushed
127 *
128 * Flush the entire TLB for the specified CPU. Most CPU architectures
129 * allow the implementation to drop entries from the TLB at any time
130 * so this is generally safe. If more selective flushing is required
131 * use one of the other functions for efficiency.
132 */
133 void tlb_flush(CPUState *cpu);
134 /**
135 * tlb_flush_all_cpus:
136 * @cpu: src CPU of the flush
137 */
138 void tlb_flush_all_cpus(CPUState *src_cpu);
139 /**
140 * tlb_flush_all_cpus_synced:
141 * @cpu: src CPU of the flush
142 *
143 * Like tlb_flush_all_cpus except this except the source vCPUs work is
144 * scheduled as safe work meaning all flushes will be complete once
145 * the source vCPUs safe work is complete. This will depend on when
146 * the guests translation ends the TB.
147 */
148 void tlb_flush_all_cpus_synced(CPUState *src_cpu);
149 /**
150 * tlb_flush_page_by_mmuidx:
151 * @cpu: CPU whose TLB should be flushed
152 * @addr: virtual address of page to be flushed
153 * @idxmap: bitmap of MMU indexes to flush
154 *
155 * Flush one page from the TLB of the specified CPU, for the specified
156 * MMU indexes.
157 */
158 void tlb_flush_page_by_mmuidx(CPUState *cpu, target_ulong addr,
159 uint16_t idxmap);
160 /**
161 * tlb_flush_page_by_mmuidx_all_cpus:
162 * @cpu: Originating CPU of the flush
163 * @addr: virtual address of page to be flushed
164 * @idxmap: bitmap of MMU indexes to flush
165 *
166 * Flush one page from the TLB of all CPUs, for the specified
167 * MMU indexes.
168 */
169 void tlb_flush_page_by_mmuidx_all_cpus(CPUState *cpu, target_ulong addr,
170 uint16_t idxmap);
171 /**
172 * tlb_flush_page_by_mmuidx_all_cpus_synced:
173 * @cpu: Originating CPU of the flush
174 * @addr: virtual address of page to be flushed
175 * @idxmap: bitmap of MMU indexes to flush
176 *
177 * Flush one page from the TLB of all CPUs, for the specified MMU
178 * indexes like tlb_flush_page_by_mmuidx_all_cpus except the source
179 * vCPUs work is scheduled as safe work meaning all flushes will be
180 * complete once the source vCPUs safe work is complete. This will
181 * depend on when the guests translation ends the TB.
182 */
183 void tlb_flush_page_by_mmuidx_all_cpus_synced(CPUState *cpu, target_ulong addr,
184 uint16_t idxmap);
185 /**
186 * tlb_flush_by_mmuidx:
187 * @cpu: CPU whose TLB should be flushed
188 * @wait: If true ensure synchronisation by exiting the cpu_loop
189 * @idxmap: bitmap of MMU indexes to flush
190 *
191 * Flush all entries from the TLB of the specified CPU, for the specified
192 * MMU indexes.
193 */
194 void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap);
195 /**
196 * tlb_flush_by_mmuidx_all_cpus:
197 * @cpu: Originating CPU of the flush
198 * @idxmap: bitmap of MMU indexes to flush
199 *
200 * Flush all entries from all TLBs of all CPUs, for the specified
201 * MMU indexes.
202 */
203 void tlb_flush_by_mmuidx_all_cpus(CPUState *cpu, uint16_t idxmap);
204 /**
205 * tlb_flush_by_mmuidx_all_cpus_synced:
206 * @cpu: Originating CPU of the flush
207 * @idxmap: bitmap of MMU indexes to flush
208 *
209 * Flush all entries from all TLBs of all CPUs, for the specified
210 * MMU indexes like tlb_flush_by_mmuidx_all_cpus except except the source
211 * vCPUs work is scheduled as safe work meaning all flushes will be
212 * complete once the source vCPUs safe work is complete. This will
213 * depend on when the guests translation ends the TB.
214 */
215 void tlb_flush_by_mmuidx_all_cpus_synced(CPUState *cpu, uint16_t idxmap);
216
217 /**
218 * tlb_flush_page_bits_by_mmuidx
219 * @cpu: CPU whose TLB should be flushed
220 * @addr: virtual address of page to be flushed
221 * @idxmap: bitmap of mmu indexes to flush
222 * @bits: number of significant bits in address
223 *
224 * Similar to tlb_flush_page_mask, but with a bitmap of indexes.
225 */
226 void tlb_flush_page_bits_by_mmuidx(CPUState *cpu, target_ulong addr,
227 uint16_t idxmap, unsigned bits);
228
229 /* Similarly, with broadcast and syncing. */
230 void tlb_flush_page_bits_by_mmuidx_all_cpus(CPUState *cpu, target_ulong addr,
231 uint16_t idxmap, unsigned bits);
232 void tlb_flush_page_bits_by_mmuidx_all_cpus_synced
233 (CPUState *cpu, target_ulong addr, uint16_t idxmap, unsigned bits);
234
235 /**
236 * tlb_flush_range_by_mmuidx
237 * @cpu: CPU whose TLB should be flushed
238 * @addr: virtual address of the start of the range to be flushed
239 * @len: length of range to be flushed
240 * @idxmap: bitmap of mmu indexes to flush
241 * @bits: number of significant bits in address
242 *
243 * For each mmuidx in @idxmap, flush all pages within [@addr,@addr+@len),
244 * comparing only the low @bits worth of each virtual page.
245 */
246 void tlb_flush_range_by_mmuidx(CPUState *cpu, target_ulong addr,
247 target_ulong len, uint16_t idxmap,
248 unsigned bits);
249
250 /* Similarly, with broadcast and syncing. */
251 void tlb_flush_range_by_mmuidx_all_cpus(CPUState *cpu, target_ulong addr,
252 target_ulong len, uint16_t idxmap,
253 unsigned bits);
254 void tlb_flush_range_by_mmuidx_all_cpus_synced(CPUState *cpu,
255 target_ulong addr,
256 target_ulong len,
257 uint16_t idxmap,
258 unsigned bits);
259
260 /**
261 * tlb_set_page_full:
262 * @cpu: CPU context
263 * @mmu_idx: mmu index of the tlb to modify
264 * @vaddr: virtual address of the entry to add
265 * @full: the details of the tlb entry
266 *
267 * Add an entry to @cpu tlb index @mmu_idx. All of the fields of
268 * @full must be filled, except for xlat_section, and constitute
269 * the complete description of the translated page.
270 *
271 * This is generally called by the target tlb_fill function after
272 * having performed a successful page table walk to find the physical
273 * address and attributes for the translation.
274 *
275 * At most one entry for a given virtual address is permitted. Only a
276 * single TARGET_PAGE_SIZE region is mapped; @full->lg_page_size is only
277 * used by tlb_flush_page.
278 */
279 void tlb_set_page_full(CPUState *cpu, int mmu_idx, target_ulong vaddr,
280 CPUTLBEntryFull *full);
281
282 /**
283 * tlb_set_page_with_attrs:
284 * @cpu: CPU to add this TLB entry for
285 * @vaddr: virtual address of page to add entry for
286 * @paddr: physical address of the page
287 * @attrs: memory transaction attributes
288 * @prot: access permissions (PAGE_READ/PAGE_WRITE/PAGE_EXEC bits)
289 * @mmu_idx: MMU index to insert TLB entry for
290 * @size: size of the page in bytes
291 *
292 * Add an entry to this CPU's TLB (a mapping from virtual address
293 * @vaddr to physical address @paddr) with the specified memory
294 * transaction attributes. This is generally called by the target CPU
295 * specific code after it has been called through the tlb_fill()
296 * entry point and performed a successful page table walk to find
297 * the physical address and attributes for the virtual address
298 * which provoked the TLB miss.
299 *
300 * At most one entry for a given virtual address is permitted. Only a
301 * single TARGET_PAGE_SIZE region is mapped; the supplied @size is only
302 * used by tlb_flush_page.
303 */
304 void tlb_set_page_with_attrs(CPUState *cpu, target_ulong vaddr,
305 hwaddr paddr, MemTxAttrs attrs,
306 int prot, int mmu_idx, target_ulong size);
307 /* tlb_set_page:
308 *
309 * This function is equivalent to calling tlb_set_page_with_attrs()
310 * with an @attrs argument of MEMTXATTRS_UNSPECIFIED. It's provided
311 * as a convenience for CPUs which don't use memory transaction attributes.
312 */
313 void tlb_set_page(CPUState *cpu, target_ulong vaddr,
314 hwaddr paddr, int prot,
315 int mmu_idx, target_ulong size);
316 #else
317 static inline void tlb_init(CPUState *cpu)
318 {
319 }
320 static inline void tlb_destroy(CPUState *cpu)
321 {
322 }
323 static inline void tlb_flush_page(CPUState *cpu, target_ulong addr)
324 {
325 }
326 static inline void tlb_flush_page_all_cpus(CPUState *src, target_ulong addr)
327 {
328 }
329 static inline void tlb_flush_page_all_cpus_synced(CPUState *src,
330 target_ulong addr)
331 {
332 }
333 static inline void tlb_flush(CPUState *cpu)
334 {
335 }
336 static inline void tlb_flush_all_cpus(CPUState *src_cpu)
337 {
338 }
339 static inline void tlb_flush_all_cpus_synced(CPUState *src_cpu)
340 {
341 }
342 static inline void tlb_flush_page_by_mmuidx(CPUState *cpu,
343 target_ulong addr, uint16_t idxmap)
344 {
345 }
346
347 static inline void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap)
348 {
349 }
350 static inline void tlb_flush_page_by_mmuidx_all_cpus(CPUState *cpu,
351 target_ulong addr,
352 uint16_t idxmap)
353 {
354 }
355 static inline void tlb_flush_page_by_mmuidx_all_cpus_synced(CPUState *cpu,
356 target_ulong addr,
357 uint16_t idxmap)
358 {
359 }
360 static inline void tlb_flush_by_mmuidx_all_cpus(CPUState *cpu, uint16_t idxmap)
361 {
362 }
363
364 static inline void tlb_flush_by_mmuidx_all_cpus_synced(CPUState *cpu,
365 uint16_t idxmap)
366 {
367 }
368 static inline void tlb_flush_page_bits_by_mmuidx(CPUState *cpu,
369 target_ulong addr,
370 uint16_t idxmap,
371 unsigned bits)
372 {
373 }
374 static inline void tlb_flush_page_bits_by_mmuidx_all_cpus(CPUState *cpu,
375 target_ulong addr,
376 uint16_t idxmap,
377 unsigned bits)
378 {
379 }
380 static inline void
381 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(CPUState *cpu, target_ulong addr,
382 uint16_t idxmap, unsigned bits)
383 {
384 }
385 static inline void tlb_flush_range_by_mmuidx(CPUState *cpu, target_ulong addr,
386 target_ulong len, uint16_t idxmap,
387 unsigned bits)
388 {
389 }
390 static inline void tlb_flush_range_by_mmuidx_all_cpus(CPUState *cpu,
391 target_ulong addr,
392 target_ulong len,
393 uint16_t idxmap,
394 unsigned bits)
395 {
396 }
397 static inline void tlb_flush_range_by_mmuidx_all_cpus_synced(CPUState *cpu,
398 target_ulong addr,
399 target_long len,
400 uint16_t idxmap,
401 unsigned bits)
402 {
403 }
404 #endif
405 /**
406 * probe_access:
407 * @env: CPUArchState
408 * @addr: guest virtual address to look up
409 * @size: size of the access
410 * @access_type: read, write or execute permission
411 * @mmu_idx: MMU index to use for lookup
412 * @retaddr: return address for unwinding
413 *
414 * Look up the guest virtual address @addr. Raise an exception if the
415 * page does not satisfy @access_type. Raise an exception if the
416 * access (@addr, @size) hits a watchpoint. For writes, mark a clean
417 * page as dirty.
418 *
419 * Finally, return the host address for a page that is backed by RAM,
420 * or NULL if the page requires I/O.
421 */
422 void *probe_access(CPUArchState *env, target_ulong addr, int size,
423 MMUAccessType access_type, int mmu_idx, uintptr_t retaddr);
424
425 static inline void *probe_write(CPUArchState *env, target_ulong addr, int size,
426 int mmu_idx, uintptr_t retaddr)
427 {
428 return probe_access(env, addr, size, MMU_DATA_STORE, mmu_idx, retaddr);
429 }
430
431 static inline void *probe_read(CPUArchState *env, target_ulong addr, int size,
432 int mmu_idx, uintptr_t retaddr)
433 {
434 return probe_access(env, addr, size, MMU_DATA_LOAD, mmu_idx, retaddr);
435 }
436
437 /**
438 * probe_access_flags:
439 * @env: CPUArchState
440 * @addr: guest virtual address to look up
441 * @access_type: read, write or execute permission
442 * @mmu_idx: MMU index to use for lookup
443 * @nonfault: suppress the fault
444 * @phost: return value for host address
445 * @retaddr: return address for unwinding
446 *
447 * Similar to probe_access, loosely returning the TLB_FLAGS_MASK for
448 * the page, and storing the host address for RAM in @phost.
449 *
450 * If @nonfault is set, do not raise an exception but return TLB_INVALID_MASK.
451 * Do not handle watchpoints, but include TLB_WATCHPOINT in the returned flags.
452 * Do handle clean pages, so exclude TLB_NOTDIRY from the returned flags.
453 * For simplicity, all "mmio-like" flags are folded to TLB_MMIO.
454 */
455 int probe_access_flags(CPUArchState *env, target_ulong addr,
456 MMUAccessType access_type, int mmu_idx,
457 bool nonfault, void **phost, uintptr_t retaddr);
458
459 #ifndef CONFIG_USER_ONLY
460 /**
461 * probe_access_full:
462 * Like probe_access_flags, except also return into @pfull.
463 *
464 * The CPUTLBEntryFull structure returned via @pfull is transient
465 * and must be consumed or copied immediately, before any further
466 * access or changes to TLB @mmu_idx.
467 */
468 int probe_access_full(CPUArchState *env, target_ulong addr,
469 MMUAccessType access_type, int mmu_idx,
470 bool nonfault, void **phost,
471 CPUTLBEntryFull **pfull, uintptr_t retaddr);
472 #endif
473
474 #define CODE_GEN_ALIGN 16 /* must be >= of the size of a icache line */
475
476 /* Estimated block size for TB allocation. */
477 /* ??? The following is based on a 2015 survey of x86_64 host output.
478 Better would seem to be some sort of dynamically sized TB array,
479 adapting to the block sizes actually being produced. */
480 #if defined(CONFIG_SOFTMMU)
481 #define CODE_GEN_AVG_BLOCK_SIZE 400
482 #else
483 #define CODE_GEN_AVG_BLOCK_SIZE 150
484 #endif
485
486 /*
487 * Translation Cache-related fields of a TB.
488 * This struct exists just for convenience; we keep track of TB's in a binary
489 * search tree, and the only fields needed to compare TB's in the tree are
490 * @ptr and @size.
491 * Note: the address of search data can be obtained by adding @size to @ptr.
492 */
493 struct tb_tc {
494 const void *ptr; /* pointer to the translated code */
495 size_t size;
496 };
497
498 struct TranslationBlock {
499 #if !TARGET_TB_PCREL
500 /*
501 * Guest PC corresponding to this block. This must be the true
502 * virtual address. Therefore e.g. x86 stores EIP + CS_BASE, and
503 * targets like Arm, MIPS, HP-PA, which reuse low bits for ISA or
504 * privilege, must store those bits elsewhere.
505 *
506 * If TARGET_TB_PCREL, the opcodes for the TranslationBlock are
507 * written such that the TB is associated only with the physical
508 * page and may be run in any virtual address context. In this case,
509 * PC must always be taken from ENV in a target-specific manner.
510 * Unwind information is taken as offsets from the page, to be
511 * deposited into the "current" PC.
512 */
513 target_ulong pc;
514 #endif
515
516 /*
517 * Target-specific data associated with the TranslationBlock, e.g.:
518 * x86: the original user, the Code Segment virtual base,
519 * arm: an extension of tb->flags,
520 * s390x: instruction data for EXECUTE,
521 * sparc: the next pc of the instruction queue (for delay slots).
522 */
523 target_ulong cs_base;
524
525 uint32_t flags; /* flags defining in which context the code was generated */
526 uint32_t cflags; /* compile flags */
527
528 /* Note that TCG_MAX_INSNS is 512; we validate this match elsewhere. */
529 #define CF_COUNT_MASK 0x000001ff
530 #define CF_NO_GOTO_TB 0x00000200 /* Do not chain with goto_tb */
531 #define CF_NO_GOTO_PTR 0x00000400 /* Do not chain with goto_ptr */
532 #define CF_SINGLE_STEP 0x00000800 /* gdbstub single-step in effect */
533 #define CF_LAST_IO 0x00008000 /* Last insn may be an IO access. */
534 #define CF_MEMI_ONLY 0x00010000 /* Only instrument memory ops */
535 #define CF_USE_ICOUNT 0x00020000
536 #define CF_INVALID 0x00040000 /* TB is stale. Set with @jmp_lock held */
537 #define CF_PARALLEL 0x00080000 /* Generate code for a parallel context */
538 #define CF_NOIRQ 0x00100000 /* Generate an uninterruptible TB */
539 #define CF_CLUSTER_MASK 0xff000000 /* Top 8 bits are cluster ID */
540 #define CF_CLUSTER_SHIFT 24
541
542 /* Per-vCPU dynamic tracing state used to generate this TB */
543 uint32_t trace_vcpu_dstate;
544
545 /*
546 * Above fields used for comparing
547 */
548
549 /* size of target code for this block (1 <= size <= TARGET_PAGE_SIZE) */
550 uint16_t size;
551 uint16_t icount;
552
553 struct tb_tc tc;
554
555 /* first and second physical page containing code. The lower bit
556 of the pointer tells the index in page_next[].
557 The list is protected by the TB's page('s) lock(s) */
558 uintptr_t page_next[2];
559 tb_page_addr_t page_addr[2];
560
561 /* jmp_lock placed here to fill a 4-byte hole. Its documentation is below */
562 QemuSpin jmp_lock;
563
564 /* The following data are used to directly call another TB from
565 * the code of this one. This can be done either by emitting direct or
566 * indirect native jump instructions. These jumps are reset so that the TB
567 * just continues its execution. The TB can be linked to another one by
568 * setting one of the jump targets (or patching the jump instruction). Only
569 * two of such jumps are supported.
570 */
571 uint16_t jmp_reset_offset[2]; /* offset of original jump target */
572 #define TB_JMP_RESET_OFFSET_INVALID 0xffff /* indicates no jump generated */
573 uintptr_t jmp_target_arg[2]; /* target address or offset */
574
575 /*
576 * Each TB has a NULL-terminated list (jmp_list_head) of incoming jumps.
577 * Each TB can have two outgoing jumps, and therefore can participate
578 * in two lists. The list entries are kept in jmp_list_next[2]. The least
579 * significant bit (LSB) of the pointers in these lists is used to encode
580 * which of the two list entries is to be used in the pointed TB.
581 *
582 * List traversals are protected by jmp_lock. The destination TB of each
583 * outgoing jump is kept in jmp_dest[] so that the appropriate jmp_lock
584 * can be acquired from any origin TB.
585 *
586 * jmp_dest[] are tagged pointers as well. The LSB is set when the TB is
587 * being invalidated, so that no further outgoing jumps from it can be set.
588 *
589 * jmp_lock also protects the CF_INVALID cflag; a jump must not be chained
590 * to a destination TB that has CF_INVALID set.
591 */
592 uintptr_t jmp_list_head;
593 uintptr_t jmp_list_next[2];
594 uintptr_t jmp_dest[2];
595 };
596
597 /* Hide the read to avoid ifdefs for TARGET_TB_PCREL. */
598 static inline target_ulong tb_pc(const TranslationBlock *tb)
599 {
600 #if TARGET_TB_PCREL
601 qemu_build_not_reached();
602 #else
603 return tb->pc;
604 #endif
605 }
606
607 /* Hide the qatomic_read to make code a little easier on the eyes */
608 static inline uint32_t tb_cflags(const TranslationBlock *tb)
609 {
610 return qatomic_read(&tb->cflags);
611 }
612
613 /* current cflags for hashing/comparison */
614 uint32_t curr_cflags(CPUState *cpu);
615
616 /* TranslationBlock invalidate API */
617 #if defined(CONFIG_USER_ONLY)
618 void tb_invalidate_phys_addr(target_ulong addr);
619 void tb_invalidate_phys_range(target_ulong start, target_ulong end);
620 #else
621 void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr, MemTxAttrs attrs);
622 #endif
623 void tb_flush(CPUState *cpu);
624 void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr);
625 void tb_set_jmp_target(TranslationBlock *tb, int n, uintptr_t addr);
626
627 /* GETPC is the true target of the return instruction that we'll execute. */
628 #if defined(CONFIG_TCG_INTERPRETER)
629 extern __thread uintptr_t tci_tb_ptr;
630 # define GETPC() tci_tb_ptr
631 #else
632 # define GETPC() \
633 ((uintptr_t)__builtin_extract_return_addr(__builtin_return_address(0)))
634 #endif
635
636 /* The true return address will often point to a host insn that is part of
637 the next translated guest insn. Adjust the address backward to point to
638 the middle of the call insn. Subtracting one would do the job except for
639 several compressed mode architectures (arm, mips) which set the low bit
640 to indicate the compressed mode; subtracting two works around that. It
641 is also the case that there are no host isas that contain a call insn
642 smaller than 4 bytes, so we don't worry about special-casing this. */
643 #define GETPC_ADJ 2
644
645 #if !defined(CONFIG_USER_ONLY) && defined(CONFIG_DEBUG_TCG)
646 void assert_no_pages_locked(void);
647 #else
648 static inline void assert_no_pages_locked(void)
649 {
650 }
651 #endif
652
653 #if !defined(CONFIG_USER_ONLY)
654
655 /**
656 * iotlb_to_section:
657 * @cpu: CPU performing the access
658 * @index: TCG CPU IOTLB entry
659 *
660 * Given a TCG CPU IOTLB entry, return the MemoryRegionSection that
661 * it refers to. @index will have been initially created and returned
662 * by memory_region_section_get_iotlb().
663 */
664 struct MemoryRegionSection *iotlb_to_section(CPUState *cpu,
665 hwaddr index, MemTxAttrs attrs);
666 #endif
667
668 /**
669 * get_page_addr_code_hostp()
670 * @env: CPUArchState
671 * @addr: guest virtual address of guest code
672 *
673 * See get_page_addr_code() (full-system version) for documentation on the
674 * return value.
675 *
676 * Sets *@hostp (when @hostp is non-NULL) as follows.
677 * If the return value is -1, sets *@hostp to NULL. Otherwise, sets *@hostp
678 * to the host address where @addr's content is kept.
679 *
680 * Note: this function can trigger an exception.
681 */
682 tb_page_addr_t get_page_addr_code_hostp(CPUArchState *env, target_ulong addr,
683 void **hostp);
684
685 /**
686 * get_page_addr_code()
687 * @env: CPUArchState
688 * @addr: guest virtual address of guest code
689 *
690 * If we cannot translate and execute from the entire RAM page, or if
691 * the region is not backed by RAM, returns -1. Otherwise, returns the
692 * ram_addr_t corresponding to the guest code at @addr.
693 *
694 * Note: this function can trigger an exception.
695 */
696 static inline tb_page_addr_t get_page_addr_code(CPUArchState *env,
697 target_ulong addr)
698 {
699 return get_page_addr_code_hostp(env, addr, NULL);
700 }
701
702 #if defined(CONFIG_USER_ONLY)
703 void mmap_lock(void);
704 void mmap_unlock(void);
705 bool have_mmap_lock(void);
706
707 /**
708 * adjust_signal_pc:
709 * @pc: raw pc from the host signal ucontext_t.
710 * @is_write: host memory operation was write, or read-modify-write.
711 *
712 * Alter @pc as required for unwinding. Return the type of the
713 * guest memory access -- host reads may be for guest execution.
714 */
715 MMUAccessType adjust_signal_pc(uintptr_t *pc, bool is_write);
716
717 /**
718 * handle_sigsegv_accerr_write:
719 * @cpu: the cpu context
720 * @old_set: the sigset_t from the signal ucontext_t
721 * @host_pc: the host pc, adjusted for the signal
722 * @host_addr: the host address of the fault
723 *
724 * Return true if the write fault has been handled, and should be re-tried.
725 */
726 bool handle_sigsegv_accerr_write(CPUState *cpu, sigset_t *old_set,
727 uintptr_t host_pc, abi_ptr guest_addr);
728
729 /**
730 * cpu_loop_exit_sigsegv:
731 * @cpu: the cpu context
732 * @addr: the guest address of the fault
733 * @access_type: access was read/write/execute
734 * @maperr: true for invalid page, false for permission fault
735 * @ra: host pc for unwinding
736 *
737 * Use the TCGCPUOps hook to record cpu state, do guest operating system
738 * specific things to raise SIGSEGV, and jump to the main cpu loop.
739 */
740 G_NORETURN void cpu_loop_exit_sigsegv(CPUState *cpu, target_ulong addr,
741 MMUAccessType access_type,
742 bool maperr, uintptr_t ra);
743
744 /**
745 * cpu_loop_exit_sigbus:
746 * @cpu: the cpu context
747 * @addr: the guest address of the alignment fault
748 * @access_type: access was read/write/execute
749 * @ra: host pc for unwinding
750 *
751 * Use the TCGCPUOps hook to record cpu state, do guest operating system
752 * specific things to raise SIGBUS, and jump to the main cpu loop.
753 */
754 G_NORETURN void cpu_loop_exit_sigbus(CPUState *cpu, target_ulong addr,
755 MMUAccessType access_type,
756 uintptr_t ra);
757
758 #else
759 static inline void mmap_lock(void) {}
760 static inline void mmap_unlock(void) {}
761
762 void tlb_reset_dirty(CPUState *cpu, ram_addr_t start1, ram_addr_t length);
763 void tlb_set_dirty(CPUState *cpu, target_ulong vaddr);
764
765 MemoryRegionSection *
766 address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
767 hwaddr *xlat, hwaddr *plen,
768 MemTxAttrs attrs, int *prot);
769 hwaddr memory_region_section_get_iotlb(CPUState *cpu,
770 MemoryRegionSection *section);
771 #endif
772
773 #endif