]> git.proxmox.com Git - mirror_qemu.git/blob - include/exec/memory.h
79ccaaba1faadf61a9379ec8eba04e1a7fd741c3
[mirror_qemu.git] / include / exec / memory.h
1 /*
2 * Physical memory management API
3 *
4 * Copyright 2011 Red Hat, Inc. and/or its affiliates
5 *
6 * Authors:
7 * Avi Kivity <avi@redhat.com>
8 *
9 * This work is licensed under the terms of the GNU GPL, version 2. See
10 * the COPYING file in the top-level directory.
11 *
12 */
13
14 #ifndef MEMORY_H
15 #define MEMORY_H
16
17 #ifndef CONFIG_USER_ONLY
18
19 #define DIRTY_MEMORY_VGA 0
20 #define DIRTY_MEMORY_CODE 1
21 #define DIRTY_MEMORY_MIGRATION 2
22 #define DIRTY_MEMORY_NUM 3 /* num of dirty bits */
23
24 #include "exec/cpu-common.h"
25 #ifndef CONFIG_USER_ONLY
26 #include "exec/hwaddr.h"
27 #endif
28 #include "exec/memattrs.h"
29 #include "qemu/queue.h"
30 #include "qemu/int128.h"
31 #include "qemu/notify.h"
32 #include "qom/object.h"
33 #include "qemu/rcu.h"
34
35 #define RAM_ADDR_INVALID (~(ram_addr_t)0)
36
37 #define MAX_PHYS_ADDR_SPACE_BITS 62
38 #define MAX_PHYS_ADDR (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1)
39
40 #define TYPE_MEMORY_REGION "qemu:memory-region"
41 #define MEMORY_REGION(obj) \
42 OBJECT_CHECK(MemoryRegion, (obj), TYPE_MEMORY_REGION)
43
44 typedef struct MemoryRegionOps MemoryRegionOps;
45 typedef struct MemoryRegionMmio MemoryRegionMmio;
46
47 struct MemoryRegionMmio {
48 CPUReadMemoryFunc *read[3];
49 CPUWriteMemoryFunc *write[3];
50 };
51
52 typedef struct IOMMUTLBEntry IOMMUTLBEntry;
53
54 /* See address_space_translate: bit 0 is read, bit 1 is write. */
55 typedef enum {
56 IOMMU_NONE = 0,
57 IOMMU_RO = 1,
58 IOMMU_WO = 2,
59 IOMMU_RW = 3,
60 } IOMMUAccessFlags;
61
62 struct IOMMUTLBEntry {
63 AddressSpace *target_as;
64 hwaddr iova;
65 hwaddr translated_addr;
66 hwaddr addr_mask; /* 0xfff = 4k translation */
67 IOMMUAccessFlags perm;
68 };
69
70 /*
71 * Bitmap for different IOMMUNotifier capabilities. Each notifier can
72 * register with one or multiple IOMMU Notifier capability bit(s).
73 */
74 typedef enum {
75 IOMMU_NOTIFIER_NONE = 0,
76 /* Notify cache invalidations */
77 IOMMU_NOTIFIER_UNMAP = 0x1,
78 /* Notify entry changes (newly created entries) */
79 IOMMU_NOTIFIER_MAP = 0x2,
80 } IOMMUNotifierFlag;
81
82 #define IOMMU_NOTIFIER_ALL (IOMMU_NOTIFIER_MAP | IOMMU_NOTIFIER_UNMAP)
83
84 struct IOMMUNotifier {
85 void (*notify)(struct IOMMUNotifier *notifier, IOMMUTLBEntry *data);
86 IOMMUNotifierFlag notifier_flags;
87 QLIST_ENTRY(IOMMUNotifier) node;
88 };
89 typedef struct IOMMUNotifier IOMMUNotifier;
90
91 /* New-style MMIO accessors can indicate that the transaction failed.
92 * A zero (MEMTX_OK) response means success; anything else is a failure
93 * of some kind. The memory subsystem will bitwise-OR together results
94 * if it is synthesizing an operation from multiple smaller accesses.
95 */
96 #define MEMTX_OK 0
97 #define MEMTX_ERROR (1U << 0) /* device returned an error */
98 #define MEMTX_DECODE_ERROR (1U << 1) /* nothing at that address */
99 typedef uint32_t MemTxResult;
100
101 /*
102 * Memory region callbacks
103 */
104 struct MemoryRegionOps {
105 /* Read from the memory region. @addr is relative to @mr; @size is
106 * in bytes. */
107 uint64_t (*read)(void *opaque,
108 hwaddr addr,
109 unsigned size);
110 /* Write to the memory region. @addr is relative to @mr; @size is
111 * in bytes. */
112 void (*write)(void *opaque,
113 hwaddr addr,
114 uint64_t data,
115 unsigned size);
116
117 MemTxResult (*read_with_attrs)(void *opaque,
118 hwaddr addr,
119 uint64_t *data,
120 unsigned size,
121 MemTxAttrs attrs);
122 MemTxResult (*write_with_attrs)(void *opaque,
123 hwaddr addr,
124 uint64_t data,
125 unsigned size,
126 MemTxAttrs attrs);
127
128 enum device_endian endianness;
129 /* Guest-visible constraints: */
130 struct {
131 /* If nonzero, specify bounds on access sizes beyond which a machine
132 * check is thrown.
133 */
134 unsigned min_access_size;
135 unsigned max_access_size;
136 /* If true, unaligned accesses are supported. Otherwise unaligned
137 * accesses throw machine checks.
138 */
139 bool unaligned;
140 /*
141 * If present, and returns #false, the transaction is not accepted
142 * by the device (and results in machine dependent behaviour such
143 * as a machine check exception).
144 */
145 bool (*accepts)(void *opaque, hwaddr addr,
146 unsigned size, bool is_write);
147 } valid;
148 /* Internal implementation constraints: */
149 struct {
150 /* If nonzero, specifies the minimum size implemented. Smaller sizes
151 * will be rounded upwards and a partial result will be returned.
152 */
153 unsigned min_access_size;
154 /* If nonzero, specifies the maximum size implemented. Larger sizes
155 * will be done as a series of accesses with smaller sizes.
156 */
157 unsigned max_access_size;
158 /* If true, unaligned accesses are supported. Otherwise all accesses
159 * are converted to (possibly multiple) naturally aligned accesses.
160 */
161 bool unaligned;
162 } impl;
163
164 /* If .read and .write are not present, old_mmio may be used for
165 * backwards compatibility with old mmio registration
166 */
167 const MemoryRegionMmio old_mmio;
168 };
169
170 typedef struct MemoryRegionIOMMUOps MemoryRegionIOMMUOps;
171
172 struct MemoryRegionIOMMUOps {
173 /* Return a TLB entry that contains a given address. */
174 IOMMUTLBEntry (*translate)(MemoryRegion *iommu, hwaddr addr, bool is_write);
175 /* Returns minimum supported page size */
176 uint64_t (*get_min_page_size)(MemoryRegion *iommu);
177 /* Called when IOMMU Notifier flag changed */
178 void (*notify_flag_changed)(MemoryRegion *iommu,
179 IOMMUNotifierFlag old_flags,
180 IOMMUNotifierFlag new_flags);
181 };
182
183 typedef struct CoalescedMemoryRange CoalescedMemoryRange;
184 typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd;
185
186 struct MemoryRegion {
187 Object parent_obj;
188
189 /* All fields are private - violators will be prosecuted */
190
191 /* The following fields should fit in a cache line */
192 bool romd_mode;
193 bool ram;
194 bool subpage;
195 bool readonly; /* For RAM regions */
196 bool rom_device;
197 bool flush_coalesced_mmio;
198 bool global_locking;
199 uint8_t dirty_log_mask;
200 RAMBlock *ram_block;
201 Object *owner;
202 const MemoryRegionIOMMUOps *iommu_ops;
203
204 const MemoryRegionOps *ops;
205 void *opaque;
206 MemoryRegion *container;
207 Int128 size;
208 hwaddr addr;
209 void (*destructor)(MemoryRegion *mr);
210 uint64_t align;
211 bool terminates;
212 bool skip_dump;
213 bool enabled;
214 bool warning_printed; /* For reservations */
215 uint8_t vga_logging_count;
216 MemoryRegion *alias;
217 hwaddr alias_offset;
218 int32_t priority;
219 QTAILQ_HEAD(subregions, MemoryRegion) subregions;
220 QTAILQ_ENTRY(MemoryRegion) subregions_link;
221 QTAILQ_HEAD(coalesced_ranges, CoalescedMemoryRange) coalesced;
222 const char *name;
223 unsigned ioeventfd_nb;
224 MemoryRegionIoeventfd *ioeventfds;
225 QLIST_HEAD(, IOMMUNotifier) iommu_notify;
226 IOMMUNotifierFlag iommu_notify_flags;
227 };
228
229 /**
230 * MemoryListener: callbacks structure for updates to the physical memory map
231 *
232 * Allows a component to adjust to changes in the guest-visible memory map.
233 * Use with memory_listener_register() and memory_listener_unregister().
234 */
235 struct MemoryListener {
236 void (*begin)(MemoryListener *listener);
237 void (*commit)(MemoryListener *listener);
238 void (*region_add)(MemoryListener *listener, MemoryRegionSection *section);
239 void (*region_del)(MemoryListener *listener, MemoryRegionSection *section);
240 void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section);
241 void (*log_start)(MemoryListener *listener, MemoryRegionSection *section,
242 int old, int new);
243 void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section,
244 int old, int new);
245 void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section);
246 void (*log_global_start)(MemoryListener *listener);
247 void (*log_global_stop)(MemoryListener *listener);
248 void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section,
249 bool match_data, uint64_t data, EventNotifier *e);
250 void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section,
251 bool match_data, uint64_t data, EventNotifier *e);
252 void (*coalesced_mmio_add)(MemoryListener *listener, MemoryRegionSection *section,
253 hwaddr addr, hwaddr len);
254 void (*coalesced_mmio_del)(MemoryListener *listener, MemoryRegionSection *section,
255 hwaddr addr, hwaddr len);
256 /* Lower = earlier (during add), later (during del) */
257 unsigned priority;
258 AddressSpace *address_space;
259 QTAILQ_ENTRY(MemoryListener) link;
260 QTAILQ_ENTRY(MemoryListener) link_as;
261 };
262
263 /**
264 * AddressSpace: describes a mapping of addresses to #MemoryRegion objects
265 */
266 struct AddressSpace {
267 /* All fields are private. */
268 struct rcu_head rcu;
269 char *name;
270 MemoryRegion *root;
271 int ref_count;
272 bool malloced;
273
274 /* Accessed via RCU. */
275 struct FlatView *current_map;
276
277 int ioeventfd_nb;
278 struct MemoryRegionIoeventfd *ioeventfds;
279 struct AddressSpaceDispatch *dispatch;
280 struct AddressSpaceDispatch *next_dispatch;
281 MemoryListener dispatch_listener;
282 QTAILQ_HEAD(memory_listeners_as, MemoryListener) listeners;
283 QTAILQ_ENTRY(AddressSpace) address_spaces_link;
284 };
285
286 /**
287 * MemoryRegionSection: describes a fragment of a #MemoryRegion
288 *
289 * @mr: the region, or %NULL if empty
290 * @address_space: the address space the region is mapped in
291 * @offset_within_region: the beginning of the section, relative to @mr's start
292 * @size: the size of the section; will not exceed @mr's boundaries
293 * @offset_within_address_space: the address of the first byte of the section
294 * relative to the region's address space
295 * @readonly: writes to this section are ignored
296 */
297 struct MemoryRegionSection {
298 MemoryRegion *mr;
299 AddressSpace *address_space;
300 hwaddr offset_within_region;
301 Int128 size;
302 hwaddr offset_within_address_space;
303 bool readonly;
304 };
305
306 /**
307 * memory_region_init: Initialize a memory region
308 *
309 * The region typically acts as a container for other memory regions. Use
310 * memory_region_add_subregion() to add subregions.
311 *
312 * @mr: the #MemoryRegion to be initialized
313 * @owner: the object that tracks the region's reference count
314 * @name: used for debugging; not visible to the user or ABI
315 * @size: size of the region; any subregions beyond this size will be clipped
316 */
317 void memory_region_init(MemoryRegion *mr,
318 struct Object *owner,
319 const char *name,
320 uint64_t size);
321
322 /**
323 * memory_region_ref: Add 1 to a memory region's reference count
324 *
325 * Whenever memory regions are accessed outside the BQL, they need to be
326 * preserved against hot-unplug. MemoryRegions actually do not have their
327 * own reference count; they piggyback on a QOM object, their "owner".
328 * This function adds a reference to the owner.
329 *
330 * All MemoryRegions must have an owner if they can disappear, even if the
331 * device they belong to operates exclusively under the BQL. This is because
332 * the region could be returned at any time by memory_region_find, and this
333 * is usually under guest control.
334 *
335 * @mr: the #MemoryRegion
336 */
337 void memory_region_ref(MemoryRegion *mr);
338
339 /**
340 * memory_region_unref: Remove 1 to a memory region's reference count
341 *
342 * Whenever memory regions are accessed outside the BQL, they need to be
343 * preserved against hot-unplug. MemoryRegions actually do not have their
344 * own reference count; they piggyback on a QOM object, their "owner".
345 * This function removes a reference to the owner and possibly destroys it.
346 *
347 * @mr: the #MemoryRegion
348 */
349 void memory_region_unref(MemoryRegion *mr);
350
351 /**
352 * memory_region_init_io: Initialize an I/O memory region.
353 *
354 * Accesses into the region will cause the callbacks in @ops to be called.
355 * if @size is nonzero, subregions will be clipped to @size.
356 *
357 * @mr: the #MemoryRegion to be initialized.
358 * @owner: the object that tracks the region's reference count
359 * @ops: a structure containing read and write callbacks to be used when
360 * I/O is performed on the region.
361 * @opaque: passed to the read and write callbacks of the @ops structure.
362 * @name: used for debugging; not visible to the user or ABI
363 * @size: size of the region.
364 */
365 void memory_region_init_io(MemoryRegion *mr,
366 struct Object *owner,
367 const MemoryRegionOps *ops,
368 void *opaque,
369 const char *name,
370 uint64_t size);
371
372 /**
373 * memory_region_init_ram: Initialize RAM memory region. Accesses into the
374 * region will modify memory directly.
375 *
376 * @mr: the #MemoryRegion to be initialized.
377 * @owner: the object that tracks the region's reference count
378 * @name: the name of the region.
379 * @size: size of the region.
380 * @errp: pointer to Error*, to store an error if it happens.
381 */
382 void memory_region_init_ram(MemoryRegion *mr,
383 struct Object *owner,
384 const char *name,
385 uint64_t size,
386 Error **errp);
387
388 /**
389 * memory_region_init_resizeable_ram: Initialize memory region with resizeable
390 * RAM. Accesses into the region will
391 * modify memory directly. Only an initial
392 * portion of this RAM is actually used.
393 * The used size can change across reboots.
394 *
395 * @mr: the #MemoryRegion to be initialized.
396 * @owner: the object that tracks the region's reference count
397 * @name: the name of the region.
398 * @size: used size of the region.
399 * @max_size: max size of the region.
400 * @resized: callback to notify owner about used size change.
401 * @errp: pointer to Error*, to store an error if it happens.
402 */
403 void memory_region_init_resizeable_ram(MemoryRegion *mr,
404 struct Object *owner,
405 const char *name,
406 uint64_t size,
407 uint64_t max_size,
408 void (*resized)(const char*,
409 uint64_t length,
410 void *host),
411 Error **errp);
412 #ifdef __linux__
413 /**
414 * memory_region_init_ram_from_file: Initialize RAM memory region with a
415 * mmap-ed backend.
416 *
417 * @mr: the #MemoryRegion to be initialized.
418 * @owner: the object that tracks the region's reference count
419 * @name: the name of the region.
420 * @size: size of the region.
421 * @share: %true if memory must be mmaped with the MAP_SHARED flag
422 * @path: the path in which to allocate the RAM.
423 * @errp: pointer to Error*, to store an error if it happens.
424 */
425 void memory_region_init_ram_from_file(MemoryRegion *mr,
426 struct Object *owner,
427 const char *name,
428 uint64_t size,
429 bool share,
430 const char *path,
431 Error **errp);
432 #endif
433
434 /**
435 * memory_region_init_ram_ptr: Initialize RAM memory region from a
436 * user-provided pointer. Accesses into the
437 * region will modify memory directly.
438 *
439 * @mr: the #MemoryRegion to be initialized.
440 * @owner: the object that tracks the region's reference count
441 * @name: the name of the region.
442 * @size: size of the region.
443 * @ptr: memory to be mapped; must contain at least @size bytes.
444 */
445 void memory_region_init_ram_ptr(MemoryRegion *mr,
446 struct Object *owner,
447 const char *name,
448 uint64_t size,
449 void *ptr);
450
451 /**
452 * memory_region_init_alias: Initialize a memory region that aliases all or a
453 * part of another memory region.
454 *
455 * @mr: the #MemoryRegion to be initialized.
456 * @owner: the object that tracks the region's reference count
457 * @name: used for debugging; not visible to the user or ABI
458 * @orig: the region to be referenced; @mr will be equivalent to
459 * @orig between @offset and @offset + @size - 1.
460 * @offset: start of the section in @orig to be referenced.
461 * @size: size of the region.
462 */
463 void memory_region_init_alias(MemoryRegion *mr,
464 struct Object *owner,
465 const char *name,
466 MemoryRegion *orig,
467 hwaddr offset,
468 uint64_t size);
469
470 /**
471 * memory_region_init_rom: Initialize a ROM memory region.
472 *
473 * This has the same effect as calling memory_region_init_ram()
474 * and then marking the resulting region read-only with
475 * memory_region_set_readonly().
476 *
477 * @mr: the #MemoryRegion to be initialized.
478 * @owner: the object that tracks the region's reference count
479 * @name: the name of the region.
480 * @size: size of the region.
481 * @errp: pointer to Error*, to store an error if it happens.
482 */
483 void memory_region_init_rom(MemoryRegion *mr,
484 struct Object *owner,
485 const char *name,
486 uint64_t size,
487 Error **errp);
488
489 /**
490 * memory_region_init_rom_device: Initialize a ROM memory region. Writes are
491 * handled via callbacks.
492 *
493 * @mr: the #MemoryRegion to be initialized.
494 * @owner: the object that tracks the region's reference count
495 * @ops: callbacks for write access handling (must not be NULL).
496 * @name: the name of the region.
497 * @size: size of the region.
498 * @errp: pointer to Error*, to store an error if it happens.
499 */
500 void memory_region_init_rom_device(MemoryRegion *mr,
501 struct Object *owner,
502 const MemoryRegionOps *ops,
503 void *opaque,
504 const char *name,
505 uint64_t size,
506 Error **errp);
507
508 /**
509 * memory_region_init_reservation: Initialize a memory region that reserves
510 * I/O space.
511 *
512 * A reservation region primariy serves debugging purposes. It claims I/O
513 * space that is not supposed to be handled by QEMU itself. Any access via
514 * the memory API will cause an abort().
515 * This function is deprecated. Use memory_region_init_io() with NULL
516 * callbacks instead.
517 *
518 * @mr: the #MemoryRegion to be initialized
519 * @owner: the object that tracks the region's reference count
520 * @name: used for debugging; not visible to the user or ABI
521 * @size: size of the region.
522 */
523 static inline void memory_region_init_reservation(MemoryRegion *mr,
524 Object *owner,
525 const char *name,
526 uint64_t size)
527 {
528 memory_region_init_io(mr, owner, NULL, mr, name, size);
529 }
530
531 /**
532 * memory_region_init_iommu: Initialize a memory region that translates
533 * addresses
534 *
535 * An IOMMU region translates addresses and forwards accesses to a target
536 * memory region.
537 *
538 * @mr: the #MemoryRegion to be initialized
539 * @owner: the object that tracks the region's reference count
540 * @ops: a function that translates addresses into the @target region
541 * @name: used for debugging; not visible to the user or ABI
542 * @size: size of the region.
543 */
544 void memory_region_init_iommu(MemoryRegion *mr,
545 struct Object *owner,
546 const MemoryRegionIOMMUOps *ops,
547 const char *name,
548 uint64_t size);
549
550 /**
551 * memory_region_owner: get a memory region's owner.
552 *
553 * @mr: the memory region being queried.
554 */
555 struct Object *memory_region_owner(MemoryRegion *mr);
556
557 /**
558 * memory_region_size: get a memory region's size.
559 *
560 * @mr: the memory region being queried.
561 */
562 uint64_t memory_region_size(MemoryRegion *mr);
563
564 /**
565 * memory_region_is_ram: check whether a memory region is random access
566 *
567 * Returns %true is a memory region is random access.
568 *
569 * @mr: the memory region being queried
570 */
571 static inline bool memory_region_is_ram(MemoryRegion *mr)
572 {
573 return mr->ram;
574 }
575
576 /**
577 * memory_region_is_skip_dump: check whether a memory region should not be
578 * dumped
579 *
580 * Returns %true is a memory region should not be dumped(e.g. VFIO BAR MMAP).
581 *
582 * @mr: the memory region being queried
583 */
584 bool memory_region_is_skip_dump(MemoryRegion *mr);
585
586 /**
587 * memory_region_set_skip_dump: Set skip_dump flag, dump will ignore this memory
588 * region
589 *
590 * @mr: the memory region being queried
591 */
592 void memory_region_set_skip_dump(MemoryRegion *mr);
593
594 /**
595 * memory_region_is_romd: check whether a memory region is in ROMD mode
596 *
597 * Returns %true if a memory region is a ROM device and currently set to allow
598 * direct reads.
599 *
600 * @mr: the memory region being queried
601 */
602 static inline bool memory_region_is_romd(MemoryRegion *mr)
603 {
604 return mr->rom_device && mr->romd_mode;
605 }
606
607 /**
608 * memory_region_is_iommu: check whether a memory region is an iommu
609 *
610 * Returns %true is a memory region is an iommu.
611 *
612 * @mr: the memory region being queried
613 */
614 static inline bool memory_region_is_iommu(MemoryRegion *mr)
615 {
616 return mr->iommu_ops;
617 }
618
619
620 /**
621 * memory_region_iommu_get_min_page_size: get minimum supported page size
622 * for an iommu
623 *
624 * Returns minimum supported page size for an iommu.
625 *
626 * @mr: the memory region being queried
627 */
628 uint64_t memory_region_iommu_get_min_page_size(MemoryRegion *mr);
629
630 /**
631 * memory_region_notify_iommu: notify a change in an IOMMU translation entry.
632 *
633 * The notification type will be decided by entry.perm bits:
634 *
635 * - For UNMAP (cache invalidation) notifies: set entry.perm to IOMMU_NONE.
636 * - For MAP (newly added entry) notifies: set entry.perm to the
637 * permission of the page (which is definitely !IOMMU_NONE).
638 *
639 * Note: for any IOMMU implementation, an in-place mapping change
640 * should be notified with an UNMAP followed by a MAP.
641 *
642 * @mr: the memory region that was changed
643 * @entry: the new entry in the IOMMU translation table. The entry
644 * replaces all old entries for the same virtual I/O address range.
645 * Deleted entries have .@perm == 0.
646 */
647 void memory_region_notify_iommu(MemoryRegion *mr,
648 IOMMUTLBEntry entry);
649
650 /**
651 * memory_region_register_iommu_notifier: register a notifier for changes to
652 * IOMMU translation entries.
653 *
654 * @mr: the memory region to observe
655 * @n: the IOMMUNotifier to be added; the notify callback receives a
656 * pointer to an #IOMMUTLBEntry as the opaque value; the pointer
657 * ceases to be valid on exit from the notifier.
658 */
659 void memory_region_register_iommu_notifier(MemoryRegion *mr,
660 IOMMUNotifier *n);
661
662 /**
663 * memory_region_iommu_replay: replay existing IOMMU translations to
664 * a notifier with the minimum page granularity returned by
665 * mr->iommu_ops->get_page_size().
666 *
667 * @mr: the memory region to observe
668 * @n: the notifier to which to replay iommu mappings
669 * @is_write: Whether to treat the replay as a translate "write"
670 * through the iommu
671 */
672 void memory_region_iommu_replay(MemoryRegion *mr, IOMMUNotifier *n,
673 bool is_write);
674
675 /**
676 * memory_region_unregister_iommu_notifier: unregister a notifier for
677 * changes to IOMMU translation entries.
678 *
679 * @mr: the memory region which was observed and for which notity_stopped()
680 * needs to be called
681 * @n: the notifier to be removed.
682 */
683 void memory_region_unregister_iommu_notifier(MemoryRegion *mr,
684 IOMMUNotifier *n);
685
686 /**
687 * memory_region_name: get a memory region's name
688 *
689 * Returns the string that was used to initialize the memory region.
690 *
691 * @mr: the memory region being queried
692 */
693 const char *memory_region_name(const MemoryRegion *mr);
694
695 /**
696 * memory_region_is_logging: return whether a memory region is logging writes
697 *
698 * Returns %true if the memory region is logging writes for the given client
699 *
700 * @mr: the memory region being queried
701 * @client: the client being queried
702 */
703 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client);
704
705 /**
706 * memory_region_get_dirty_log_mask: return the clients for which a
707 * memory region is logging writes.
708 *
709 * Returns a bitmap of clients, in which the DIRTY_MEMORY_* constants
710 * are the bit indices.
711 *
712 * @mr: the memory region being queried
713 */
714 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr);
715
716 /**
717 * memory_region_is_rom: check whether a memory region is ROM
718 *
719 * Returns %true is a memory region is read-only memory.
720 *
721 * @mr: the memory region being queried
722 */
723 static inline bool memory_region_is_rom(MemoryRegion *mr)
724 {
725 return mr->ram && mr->readonly;
726 }
727
728
729 /**
730 * memory_region_get_fd: Get a file descriptor backing a RAM memory region.
731 *
732 * Returns a file descriptor backing a file-based RAM memory region,
733 * or -1 if the region is not a file-based RAM memory region.
734 *
735 * @mr: the RAM or alias memory region being queried.
736 */
737 int memory_region_get_fd(MemoryRegion *mr);
738
739 /**
740 * memory_region_set_fd: Mark a RAM memory region as backed by a
741 * file descriptor.
742 *
743 * This function is typically used after memory_region_init_ram_ptr().
744 *
745 * @mr: the memory region being queried.
746 * @fd: the file descriptor that backs @mr.
747 */
748 void memory_region_set_fd(MemoryRegion *mr, int fd);
749
750 /**
751 * memory_region_from_host: Convert a pointer into a RAM memory region
752 * and an offset within it.
753 *
754 * Given a host pointer inside a RAM memory region (created with
755 * memory_region_init_ram() or memory_region_init_ram_ptr()), return
756 * the MemoryRegion and the offset within it.
757 *
758 * Use with care; by the time this function returns, the returned pointer is
759 * not protected by RCU anymore. If the caller is not within an RCU critical
760 * section and does not hold the iothread lock, it must have other means of
761 * protecting the pointer, such as a reference to the region that includes
762 * the incoming ram_addr_t.
763 *
764 * @mr: the memory region being queried.
765 */
766 MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset);
767
768 /**
769 * memory_region_get_ram_ptr: Get a pointer into a RAM memory region.
770 *
771 * Returns a host pointer to a RAM memory region (created with
772 * memory_region_init_ram() or memory_region_init_ram_ptr()).
773 *
774 * Use with care; by the time this function returns, the returned pointer is
775 * not protected by RCU anymore. If the caller is not within an RCU critical
776 * section and does not hold the iothread lock, it must have other means of
777 * protecting the pointer, such as a reference to the region that includes
778 * the incoming ram_addr_t.
779 *
780 * @mr: the memory region being queried.
781 */
782 void *memory_region_get_ram_ptr(MemoryRegion *mr);
783
784 /* memory_region_ram_resize: Resize a RAM region.
785 *
786 * Only legal before guest might have detected the memory size: e.g. on
787 * incoming migration, or right after reset.
788 *
789 * @mr: a memory region created with @memory_region_init_resizeable_ram.
790 * @newsize: the new size the region
791 * @errp: pointer to Error*, to store an error if it happens.
792 */
793 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize,
794 Error **errp);
795
796 /**
797 * memory_region_set_log: Turn dirty logging on or off for a region.
798 *
799 * Turns dirty logging on or off for a specified client (display, migration).
800 * Only meaningful for RAM regions.
801 *
802 * @mr: the memory region being updated.
803 * @log: whether dirty logging is to be enabled or disabled.
804 * @client: the user of the logging information; %DIRTY_MEMORY_VGA only.
805 */
806 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client);
807
808 /**
809 * memory_region_get_dirty: Check whether a range of bytes is dirty
810 * for a specified client.
811 *
812 * Checks whether a range of bytes has been written to since the last
813 * call to memory_region_reset_dirty() with the same @client. Dirty logging
814 * must be enabled.
815 *
816 * @mr: the memory region being queried.
817 * @addr: the address (relative to the start of the region) being queried.
818 * @size: the size of the range being queried.
819 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
820 * %DIRTY_MEMORY_VGA.
821 */
822 bool memory_region_get_dirty(MemoryRegion *mr, hwaddr addr,
823 hwaddr size, unsigned client);
824
825 /**
826 * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region.
827 *
828 * Marks a range of bytes as dirty, after it has been dirtied outside
829 * guest code.
830 *
831 * @mr: the memory region being dirtied.
832 * @addr: the address (relative to the start of the region) being dirtied.
833 * @size: size of the range being dirtied.
834 */
835 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
836 hwaddr size);
837
838 /**
839 * memory_region_test_and_clear_dirty: Check whether a range of bytes is dirty
840 * for a specified client. It clears them.
841 *
842 * Checks whether a range of bytes has been written to since the last
843 * call to memory_region_reset_dirty() with the same @client. Dirty logging
844 * must be enabled.
845 *
846 * @mr: the memory region being queried.
847 * @addr: the address (relative to the start of the region) being queried.
848 * @size: the size of the range being queried.
849 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
850 * %DIRTY_MEMORY_VGA.
851 */
852 bool memory_region_test_and_clear_dirty(MemoryRegion *mr, hwaddr addr,
853 hwaddr size, unsigned client);
854 /**
855 * memory_region_sync_dirty_bitmap: Synchronize a region's dirty bitmap with
856 * any external TLBs (e.g. kvm)
857 *
858 * Flushes dirty information from accelerators such as kvm and vhost-net
859 * and makes it available to users of the memory API.
860 *
861 * @mr: the region being flushed.
862 */
863 void memory_region_sync_dirty_bitmap(MemoryRegion *mr);
864
865 /**
866 * memory_region_reset_dirty: Mark a range of pages as clean, for a specified
867 * client.
868 *
869 * Marks a range of pages as no longer dirty.
870 *
871 * @mr: the region being updated.
872 * @addr: the start of the subrange being cleaned.
873 * @size: the size of the subrange being cleaned.
874 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
875 * %DIRTY_MEMORY_VGA.
876 */
877 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
878 hwaddr size, unsigned client);
879
880 /**
881 * memory_region_set_readonly: Turn a memory region read-only (or read-write)
882 *
883 * Allows a memory region to be marked as read-only (turning it into a ROM).
884 * only useful on RAM regions.
885 *
886 * @mr: the region being updated.
887 * @readonly: whether rhe region is to be ROM or RAM.
888 */
889 void memory_region_set_readonly(MemoryRegion *mr, bool readonly);
890
891 /**
892 * memory_region_rom_device_set_romd: enable/disable ROMD mode
893 *
894 * Allows a ROM device (initialized with memory_region_init_rom_device() to
895 * set to ROMD mode (default) or MMIO mode. When it is in ROMD mode, the
896 * device is mapped to guest memory and satisfies read access directly.
897 * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function.
898 * Writes are always handled by the #MemoryRegion.write function.
899 *
900 * @mr: the memory region to be updated
901 * @romd_mode: %true to put the region into ROMD mode
902 */
903 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode);
904
905 /**
906 * memory_region_set_coalescing: Enable memory coalescing for the region.
907 *
908 * Enabled writes to a region to be queued for later processing. MMIO ->write
909 * callbacks may be delayed until a non-coalesced MMIO is issued.
910 * Only useful for IO regions. Roughly similar to write-combining hardware.
911 *
912 * @mr: the memory region to be write coalesced
913 */
914 void memory_region_set_coalescing(MemoryRegion *mr);
915
916 /**
917 * memory_region_add_coalescing: Enable memory coalescing for a sub-range of
918 * a region.
919 *
920 * Like memory_region_set_coalescing(), but works on a sub-range of a region.
921 * Multiple calls can be issued coalesced disjoint ranges.
922 *
923 * @mr: the memory region to be updated.
924 * @offset: the start of the range within the region to be coalesced.
925 * @size: the size of the subrange to be coalesced.
926 */
927 void memory_region_add_coalescing(MemoryRegion *mr,
928 hwaddr offset,
929 uint64_t size);
930
931 /**
932 * memory_region_clear_coalescing: Disable MMIO coalescing for the region.
933 *
934 * Disables any coalescing caused by memory_region_set_coalescing() or
935 * memory_region_add_coalescing(). Roughly equivalent to uncacheble memory
936 * hardware.
937 *
938 * @mr: the memory region to be updated.
939 */
940 void memory_region_clear_coalescing(MemoryRegion *mr);
941
942 /**
943 * memory_region_set_flush_coalesced: Enforce memory coalescing flush before
944 * accesses.
945 *
946 * Ensure that pending coalesced MMIO request are flushed before the memory
947 * region is accessed. This property is automatically enabled for all regions
948 * passed to memory_region_set_coalescing() and memory_region_add_coalescing().
949 *
950 * @mr: the memory region to be updated.
951 */
952 void memory_region_set_flush_coalesced(MemoryRegion *mr);
953
954 /**
955 * memory_region_clear_flush_coalesced: Disable memory coalescing flush before
956 * accesses.
957 *
958 * Clear the automatic coalesced MMIO flushing enabled via
959 * memory_region_set_flush_coalesced. Note that this service has no effect on
960 * memory regions that have MMIO coalescing enabled for themselves. For them,
961 * automatic flushing will stop once coalescing is disabled.
962 *
963 * @mr: the memory region to be updated.
964 */
965 void memory_region_clear_flush_coalesced(MemoryRegion *mr);
966
967 /**
968 * memory_region_set_global_locking: Declares the access processing requires
969 * QEMU's global lock.
970 *
971 * When this is invoked, accesses to the memory region will be processed while
972 * holding the global lock of QEMU. This is the default behavior of memory
973 * regions.
974 *
975 * @mr: the memory region to be updated.
976 */
977 void memory_region_set_global_locking(MemoryRegion *mr);
978
979 /**
980 * memory_region_clear_global_locking: Declares that access processing does
981 * not depend on the QEMU global lock.
982 *
983 * By clearing this property, accesses to the memory region will be processed
984 * outside of QEMU's global lock (unless the lock is held on when issuing the
985 * access request). In this case, the device model implementing the access
986 * handlers is responsible for synchronization of concurrency.
987 *
988 * @mr: the memory region to be updated.
989 */
990 void memory_region_clear_global_locking(MemoryRegion *mr);
991
992 /**
993 * memory_region_add_eventfd: Request an eventfd to be triggered when a word
994 * is written to a location.
995 *
996 * Marks a word in an IO region (initialized with memory_region_init_io())
997 * as a trigger for an eventfd event. The I/O callback will not be called.
998 * The caller must be prepared to handle failure (that is, take the required
999 * action if the callback _is_ called).
1000 *
1001 * @mr: the memory region being updated.
1002 * @addr: the address within @mr that is to be monitored
1003 * @size: the size of the access to trigger the eventfd
1004 * @match_data: whether to match against @data, instead of just @addr
1005 * @data: the data to match against the guest write
1006 * @fd: the eventfd to be triggered when @addr, @size, and @data all match.
1007 **/
1008 void memory_region_add_eventfd(MemoryRegion *mr,
1009 hwaddr addr,
1010 unsigned size,
1011 bool match_data,
1012 uint64_t data,
1013 EventNotifier *e);
1014
1015 /**
1016 * memory_region_del_eventfd: Cancel an eventfd.
1017 *
1018 * Cancels an eventfd trigger requested by a previous
1019 * memory_region_add_eventfd() call.
1020 *
1021 * @mr: the memory region being updated.
1022 * @addr: the address within @mr that is to be monitored
1023 * @size: the size of the access to trigger the eventfd
1024 * @match_data: whether to match against @data, instead of just @addr
1025 * @data: the data to match against the guest write
1026 * @fd: the eventfd to be triggered when @addr, @size, and @data all match.
1027 */
1028 void memory_region_del_eventfd(MemoryRegion *mr,
1029 hwaddr addr,
1030 unsigned size,
1031 bool match_data,
1032 uint64_t data,
1033 EventNotifier *e);
1034
1035 /**
1036 * memory_region_add_subregion: Add a subregion to a container.
1037 *
1038 * Adds a subregion at @offset. The subregion may not overlap with other
1039 * subregions (except for those explicitly marked as overlapping). A region
1040 * may only be added once as a subregion (unless removed with
1041 * memory_region_del_subregion()); use memory_region_init_alias() if you
1042 * want a region to be a subregion in multiple locations.
1043 *
1044 * @mr: the region to contain the new subregion; must be a container
1045 * initialized with memory_region_init().
1046 * @offset: the offset relative to @mr where @subregion is added.
1047 * @subregion: the subregion to be added.
1048 */
1049 void memory_region_add_subregion(MemoryRegion *mr,
1050 hwaddr offset,
1051 MemoryRegion *subregion);
1052 /**
1053 * memory_region_add_subregion_overlap: Add a subregion to a container
1054 * with overlap.
1055 *
1056 * Adds a subregion at @offset. The subregion may overlap with other
1057 * subregions. Conflicts are resolved by having a higher @priority hide a
1058 * lower @priority. Subregions without priority are taken as @priority 0.
1059 * A region may only be added once as a subregion (unless removed with
1060 * memory_region_del_subregion()); use memory_region_init_alias() if you
1061 * want a region to be a subregion in multiple locations.
1062 *
1063 * @mr: the region to contain the new subregion; must be a container
1064 * initialized with memory_region_init().
1065 * @offset: the offset relative to @mr where @subregion is added.
1066 * @subregion: the subregion to be added.
1067 * @priority: used for resolving overlaps; highest priority wins.
1068 */
1069 void memory_region_add_subregion_overlap(MemoryRegion *mr,
1070 hwaddr offset,
1071 MemoryRegion *subregion,
1072 int priority);
1073
1074 /**
1075 * memory_region_get_ram_addr: Get the ram address associated with a memory
1076 * region
1077 */
1078 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr);
1079
1080 uint64_t memory_region_get_alignment(const MemoryRegion *mr);
1081 /**
1082 * memory_region_del_subregion: Remove a subregion.
1083 *
1084 * Removes a subregion from its container.
1085 *
1086 * @mr: the container to be updated.
1087 * @subregion: the region being removed; must be a current subregion of @mr.
1088 */
1089 void memory_region_del_subregion(MemoryRegion *mr,
1090 MemoryRegion *subregion);
1091
1092 /*
1093 * memory_region_set_enabled: dynamically enable or disable a region
1094 *
1095 * Enables or disables a memory region. A disabled memory region
1096 * ignores all accesses to itself and its subregions. It does not
1097 * obscure sibling subregions with lower priority - it simply behaves as
1098 * if it was removed from the hierarchy.
1099 *
1100 * Regions default to being enabled.
1101 *
1102 * @mr: the region to be updated
1103 * @enabled: whether to enable or disable the region
1104 */
1105 void memory_region_set_enabled(MemoryRegion *mr, bool enabled);
1106
1107 /*
1108 * memory_region_set_address: dynamically update the address of a region
1109 *
1110 * Dynamically updates the address of a region, relative to its container.
1111 * May be used on regions are currently part of a memory hierarchy.
1112 *
1113 * @mr: the region to be updated
1114 * @addr: new address, relative to container region
1115 */
1116 void memory_region_set_address(MemoryRegion *mr, hwaddr addr);
1117
1118 /*
1119 * memory_region_set_size: dynamically update the size of a region.
1120 *
1121 * Dynamically updates the size of a region.
1122 *
1123 * @mr: the region to be updated
1124 * @size: used size of the region.
1125 */
1126 void memory_region_set_size(MemoryRegion *mr, uint64_t size);
1127
1128 /*
1129 * memory_region_set_alias_offset: dynamically update a memory alias's offset
1130 *
1131 * Dynamically updates the offset into the target region that an alias points
1132 * to, as if the fourth argument to memory_region_init_alias() has changed.
1133 *
1134 * @mr: the #MemoryRegion to be updated; should be an alias.
1135 * @offset: the new offset into the target memory region
1136 */
1137 void memory_region_set_alias_offset(MemoryRegion *mr,
1138 hwaddr offset);
1139
1140 /**
1141 * memory_region_present: checks if an address relative to a @container
1142 * translates into #MemoryRegion within @container
1143 *
1144 * Answer whether a #MemoryRegion within @container covers the address
1145 * @addr.
1146 *
1147 * @container: a #MemoryRegion within which @addr is a relative address
1148 * @addr: the area within @container to be searched
1149 */
1150 bool memory_region_present(MemoryRegion *container, hwaddr addr);
1151
1152 /**
1153 * memory_region_is_mapped: returns true if #MemoryRegion is mapped
1154 * into any address space.
1155 *
1156 * @mr: a #MemoryRegion which should be checked if it's mapped
1157 */
1158 bool memory_region_is_mapped(MemoryRegion *mr);
1159
1160 /**
1161 * memory_region_find: translate an address/size relative to a
1162 * MemoryRegion into a #MemoryRegionSection.
1163 *
1164 * Locates the first #MemoryRegion within @mr that overlaps the range
1165 * given by @addr and @size.
1166 *
1167 * Returns a #MemoryRegionSection that describes a contiguous overlap.
1168 * It will have the following characteristics:
1169 * .@size = 0 iff no overlap was found
1170 * .@mr is non-%NULL iff an overlap was found
1171 *
1172 * Remember that in the return value the @offset_within_region is
1173 * relative to the returned region (in the .@mr field), not to the
1174 * @mr argument.
1175 *
1176 * Similarly, the .@offset_within_address_space is relative to the
1177 * address space that contains both regions, the passed and the
1178 * returned one. However, in the special case where the @mr argument
1179 * has no container (and thus is the root of the address space), the
1180 * following will hold:
1181 * .@offset_within_address_space >= @addr
1182 * .@offset_within_address_space + .@size <= @addr + @size
1183 *
1184 * @mr: a MemoryRegion within which @addr is a relative address
1185 * @addr: start of the area within @as to be searched
1186 * @size: size of the area to be searched
1187 */
1188 MemoryRegionSection memory_region_find(MemoryRegion *mr,
1189 hwaddr addr, uint64_t size);
1190
1191 /**
1192 * memory_global_dirty_log_sync: synchronize the dirty log for all memory
1193 *
1194 * Synchronizes the dirty page log for all address spaces.
1195 */
1196 void memory_global_dirty_log_sync(void);
1197
1198 /**
1199 * memory_region_transaction_begin: Start a transaction.
1200 *
1201 * During a transaction, changes will be accumulated and made visible
1202 * only when the transaction ends (is committed).
1203 */
1204 void memory_region_transaction_begin(void);
1205
1206 /**
1207 * memory_region_transaction_commit: Commit a transaction and make changes
1208 * visible to the guest.
1209 */
1210 void memory_region_transaction_commit(void);
1211
1212 /**
1213 * memory_listener_register: register callbacks to be called when memory
1214 * sections are mapped or unmapped into an address
1215 * space
1216 *
1217 * @listener: an object containing the callbacks to be called
1218 * @filter: if non-%NULL, only regions in this address space will be observed
1219 */
1220 void memory_listener_register(MemoryListener *listener, AddressSpace *filter);
1221
1222 /**
1223 * memory_listener_unregister: undo the effect of memory_listener_register()
1224 *
1225 * @listener: an object containing the callbacks to be removed
1226 */
1227 void memory_listener_unregister(MemoryListener *listener);
1228
1229 /**
1230 * memory_global_dirty_log_start: begin dirty logging for all regions
1231 */
1232 void memory_global_dirty_log_start(void);
1233
1234 /**
1235 * memory_global_dirty_log_stop: end dirty logging for all regions
1236 */
1237 void memory_global_dirty_log_stop(void);
1238
1239 void mtree_info(fprintf_function mon_printf, void *f);
1240
1241 /**
1242 * memory_region_dispatch_read: perform a read directly to the specified
1243 * MemoryRegion.
1244 *
1245 * @mr: #MemoryRegion to access
1246 * @addr: address within that region
1247 * @pval: pointer to uint64_t which the data is written to
1248 * @size: size of the access in bytes
1249 * @attrs: memory transaction attributes to use for the access
1250 */
1251 MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
1252 hwaddr addr,
1253 uint64_t *pval,
1254 unsigned size,
1255 MemTxAttrs attrs);
1256 /**
1257 * memory_region_dispatch_write: perform a write directly to the specified
1258 * MemoryRegion.
1259 *
1260 * @mr: #MemoryRegion to access
1261 * @addr: address within that region
1262 * @data: data to write
1263 * @size: size of the access in bytes
1264 * @attrs: memory transaction attributes to use for the access
1265 */
1266 MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
1267 hwaddr addr,
1268 uint64_t data,
1269 unsigned size,
1270 MemTxAttrs attrs);
1271
1272 /**
1273 * address_space_init: initializes an address space
1274 *
1275 * @as: an uninitialized #AddressSpace
1276 * @root: a #MemoryRegion that routes addresses for the address space
1277 * @name: an address space name. The name is only used for debugging
1278 * output.
1279 */
1280 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name);
1281
1282 /**
1283 * address_space_init_shareable: return an address space for a memory region,
1284 * creating it if it does not already exist
1285 *
1286 * @root: a #MemoryRegion that routes addresses for the address space
1287 * @name: an address space name. The name is only used for debugging
1288 * output.
1289 *
1290 * This function will return a pointer to an existing AddressSpace
1291 * which was initialized with the specified MemoryRegion, or it will
1292 * create and initialize one if it does not already exist. The ASes
1293 * are reference-counted, so the memory will be freed automatically
1294 * when the AddressSpace is destroyed via address_space_destroy.
1295 */
1296 AddressSpace *address_space_init_shareable(MemoryRegion *root,
1297 const char *name);
1298
1299 /**
1300 * address_space_destroy: destroy an address space
1301 *
1302 * Releases all resources associated with an address space. After an address space
1303 * is destroyed, its root memory region (given by address_space_init()) may be destroyed
1304 * as well.
1305 *
1306 * @as: address space to be destroyed
1307 */
1308 void address_space_destroy(AddressSpace *as);
1309
1310 /**
1311 * address_space_rw: read from or write to an address space.
1312 *
1313 * Return a MemTxResult indicating whether the operation succeeded
1314 * or failed (eg unassigned memory, device rejected the transaction,
1315 * IOMMU fault).
1316 *
1317 * @as: #AddressSpace to be accessed
1318 * @addr: address within that address space
1319 * @attrs: memory transaction attributes
1320 * @buf: buffer with the data transferred
1321 * @is_write: indicates the transfer direction
1322 */
1323 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr,
1324 MemTxAttrs attrs, uint8_t *buf,
1325 int len, bool is_write);
1326
1327 /**
1328 * address_space_write: write to address space.
1329 *
1330 * Return a MemTxResult indicating whether the operation succeeded
1331 * or failed (eg unassigned memory, device rejected the transaction,
1332 * IOMMU fault).
1333 *
1334 * @as: #AddressSpace to be accessed
1335 * @addr: address within that address space
1336 * @attrs: memory transaction attributes
1337 * @buf: buffer with the data transferred
1338 */
1339 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
1340 MemTxAttrs attrs,
1341 const uint8_t *buf, int len);
1342
1343 /* address_space_ld*: load from an address space
1344 * address_space_st*: store to an address space
1345 *
1346 * These functions perform a load or store of the byte, word,
1347 * longword or quad to the specified address within the AddressSpace.
1348 * The _le suffixed functions treat the data as little endian;
1349 * _be indicates big endian; no suffix indicates "same endianness
1350 * as guest CPU".
1351 *
1352 * The "guest CPU endianness" accessors are deprecated for use outside
1353 * target-* code; devices should be CPU-agnostic and use either the LE
1354 * or the BE accessors.
1355 *
1356 * @as #AddressSpace to be accessed
1357 * @addr: address within that address space
1358 * @val: data value, for stores
1359 * @attrs: memory transaction attributes
1360 * @result: location to write the success/failure of the transaction;
1361 * if NULL, this information is discarded
1362 */
1363 uint32_t address_space_ldub(AddressSpace *as, hwaddr addr,
1364 MemTxAttrs attrs, MemTxResult *result);
1365 uint32_t address_space_lduw_le(AddressSpace *as, hwaddr addr,
1366 MemTxAttrs attrs, MemTxResult *result);
1367 uint32_t address_space_lduw_be(AddressSpace *as, hwaddr addr,
1368 MemTxAttrs attrs, MemTxResult *result);
1369 uint32_t address_space_ldl_le(AddressSpace *as, hwaddr addr,
1370 MemTxAttrs attrs, MemTxResult *result);
1371 uint32_t address_space_ldl_be(AddressSpace *as, hwaddr addr,
1372 MemTxAttrs attrs, MemTxResult *result);
1373 uint64_t address_space_ldq_le(AddressSpace *as, hwaddr addr,
1374 MemTxAttrs attrs, MemTxResult *result);
1375 uint64_t address_space_ldq_be(AddressSpace *as, hwaddr addr,
1376 MemTxAttrs attrs, MemTxResult *result);
1377 void address_space_stb(AddressSpace *as, hwaddr addr, uint32_t val,
1378 MemTxAttrs attrs, MemTxResult *result);
1379 void address_space_stw_le(AddressSpace *as, hwaddr addr, uint32_t val,
1380 MemTxAttrs attrs, MemTxResult *result);
1381 void address_space_stw_be(AddressSpace *as, hwaddr addr, uint32_t val,
1382 MemTxAttrs attrs, MemTxResult *result);
1383 void address_space_stl_le(AddressSpace *as, hwaddr addr, uint32_t val,
1384 MemTxAttrs attrs, MemTxResult *result);
1385 void address_space_stl_be(AddressSpace *as, hwaddr addr, uint32_t val,
1386 MemTxAttrs attrs, MemTxResult *result);
1387 void address_space_stq_le(AddressSpace *as, hwaddr addr, uint64_t val,
1388 MemTxAttrs attrs, MemTxResult *result);
1389 void address_space_stq_be(AddressSpace *as, hwaddr addr, uint64_t val,
1390 MemTxAttrs attrs, MemTxResult *result);
1391
1392 /* address_space_translate: translate an address range into an address space
1393 * into a MemoryRegion and an address range into that section. Should be
1394 * called from an RCU critical section, to avoid that the last reference
1395 * to the returned region disappears after address_space_translate returns.
1396 *
1397 * @as: #AddressSpace to be accessed
1398 * @addr: address within that address space
1399 * @xlat: pointer to address within the returned memory region section's
1400 * #MemoryRegion.
1401 * @len: pointer to length
1402 * @is_write: indicates the transfer direction
1403 */
1404 MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr,
1405 hwaddr *xlat, hwaddr *len,
1406 bool is_write);
1407
1408 /* address_space_access_valid: check for validity of accessing an address
1409 * space range
1410 *
1411 * Check whether memory is assigned to the given address space range, and
1412 * access is permitted by any IOMMU regions that are active for the address
1413 * space.
1414 *
1415 * For now, addr and len should be aligned to a page size. This limitation
1416 * will be lifted in the future.
1417 *
1418 * @as: #AddressSpace to be accessed
1419 * @addr: address within that address space
1420 * @len: length of the area to be checked
1421 * @is_write: indicates the transfer direction
1422 */
1423 bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write);
1424
1425 /* address_space_map: map a physical memory region into a host virtual address
1426 *
1427 * May map a subset of the requested range, given by and returned in @plen.
1428 * May return %NULL if resources needed to perform the mapping are exhausted.
1429 * Use only for reads OR writes - not for read-modify-write operations.
1430 * Use cpu_register_map_client() to know when retrying the map operation is
1431 * likely to succeed.
1432 *
1433 * @as: #AddressSpace to be accessed
1434 * @addr: address within that address space
1435 * @plen: pointer to length of buffer; updated on return
1436 * @is_write: indicates the transfer direction
1437 */
1438 void *address_space_map(AddressSpace *as, hwaddr addr,
1439 hwaddr *plen, bool is_write);
1440
1441 /* address_space_unmap: Unmaps a memory region previously mapped by address_space_map()
1442 *
1443 * Will also mark the memory as dirty if @is_write == %true. @access_len gives
1444 * the amount of memory that was actually read or written by the caller.
1445 *
1446 * @as: #AddressSpace used
1447 * @addr: address within that address space
1448 * @len: buffer length as returned by address_space_map()
1449 * @access_len: amount of data actually transferred
1450 * @is_write: indicates the transfer direction
1451 */
1452 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
1453 int is_write, hwaddr access_len);
1454
1455
1456 /* Internal functions, part of the implementation of address_space_read. */
1457 MemTxResult address_space_read_continue(AddressSpace *as, hwaddr addr,
1458 MemTxAttrs attrs, uint8_t *buf,
1459 int len, hwaddr addr1, hwaddr l,
1460 MemoryRegion *mr);
1461 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
1462 MemTxAttrs attrs, uint8_t *buf, int len);
1463 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr);
1464
1465 static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write)
1466 {
1467 if (is_write) {
1468 return memory_region_is_ram(mr) && !mr->readonly;
1469 } else {
1470 return memory_region_is_ram(mr) || memory_region_is_romd(mr);
1471 }
1472 }
1473
1474 /**
1475 * address_space_read: read from an address space.
1476 *
1477 * Return a MemTxResult indicating whether the operation succeeded
1478 * or failed (eg unassigned memory, device rejected the transaction,
1479 * IOMMU fault).
1480 *
1481 * @as: #AddressSpace to be accessed
1482 * @addr: address within that address space
1483 * @attrs: memory transaction attributes
1484 * @buf: buffer with the data transferred
1485 */
1486 static inline __attribute__((__always_inline__))
1487 MemTxResult address_space_read(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
1488 uint8_t *buf, int len)
1489 {
1490 MemTxResult result = MEMTX_OK;
1491 hwaddr l, addr1;
1492 void *ptr;
1493 MemoryRegion *mr;
1494
1495 if (__builtin_constant_p(len)) {
1496 if (len) {
1497 rcu_read_lock();
1498 l = len;
1499 mr = address_space_translate(as, addr, &addr1, &l, false);
1500 if (len == l && memory_access_is_direct(mr, false)) {
1501 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
1502 memcpy(buf, ptr, len);
1503 } else {
1504 result = address_space_read_continue(as, addr, attrs, buf, len,
1505 addr1, l, mr);
1506 }
1507 rcu_read_unlock();
1508 }
1509 } else {
1510 result = address_space_read_full(as, addr, attrs, buf, len);
1511 }
1512 return result;
1513 }
1514
1515 #endif
1516
1517 #endif