]> git.proxmox.com Git - mirror_qemu.git/blob - include/exec/memory.h
b7966014fe80e1c447a7f26e7014d16fc9d3979c
[mirror_qemu.git] / include / exec / memory.h
1 /*
2 * Physical memory management API
3 *
4 * Copyright 2011 Red Hat, Inc. and/or its affiliates
5 *
6 * Authors:
7 * Avi Kivity <avi@redhat.com>
8 *
9 * This work is licensed under the terms of the GNU GPL, version 2. See
10 * the COPYING file in the top-level directory.
11 *
12 */
13
14 #ifndef MEMORY_H
15 #define MEMORY_H
16
17 #ifndef CONFIG_USER_ONLY
18
19 #include "exec/cpu-common.h"
20 #include "exec/hwaddr.h"
21 #include "exec/memattrs.h"
22 #include "exec/ramlist.h"
23 #include "qemu/queue.h"
24 #include "qemu/int128.h"
25 #include "qemu/notify.h"
26 #include "qom/object.h"
27 #include "qemu/rcu.h"
28 #include "hw/qdev-core.h"
29
30 #define RAM_ADDR_INVALID (~(ram_addr_t)0)
31
32 #define MAX_PHYS_ADDR_SPACE_BITS 62
33 #define MAX_PHYS_ADDR (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1)
34
35 #define TYPE_MEMORY_REGION "qemu:memory-region"
36 #define MEMORY_REGION(obj) \
37 OBJECT_CHECK(MemoryRegion, (obj), TYPE_MEMORY_REGION)
38
39 #define TYPE_IOMMU_MEMORY_REGION "qemu:iommu-memory-region"
40 #define IOMMU_MEMORY_REGION(obj) \
41 OBJECT_CHECK(IOMMUMemoryRegion, (obj), TYPE_IOMMU_MEMORY_REGION)
42 #define IOMMU_MEMORY_REGION_CLASS(klass) \
43 OBJECT_CLASS_CHECK(IOMMUMemoryRegionClass, (klass), \
44 TYPE_IOMMU_MEMORY_REGION)
45 #define IOMMU_MEMORY_REGION_GET_CLASS(obj) \
46 OBJECT_GET_CLASS(IOMMUMemoryRegionClass, (obj), \
47 TYPE_IOMMU_MEMORY_REGION)
48
49 typedef struct MemoryRegionOps MemoryRegionOps;
50 typedef struct MemoryRegionMmio MemoryRegionMmio;
51
52 struct MemoryRegionMmio {
53 CPUReadMemoryFunc *read[3];
54 CPUWriteMemoryFunc *write[3];
55 };
56
57 typedef struct IOMMUTLBEntry IOMMUTLBEntry;
58
59 /* See address_space_translate: bit 0 is read, bit 1 is write. */
60 typedef enum {
61 IOMMU_NONE = 0,
62 IOMMU_RO = 1,
63 IOMMU_WO = 2,
64 IOMMU_RW = 3,
65 } IOMMUAccessFlags;
66
67 #define IOMMU_ACCESS_FLAG(r, w) (((r) ? IOMMU_RO : 0) | ((w) ? IOMMU_WO : 0))
68
69 struct IOMMUTLBEntry {
70 AddressSpace *target_as;
71 hwaddr iova;
72 hwaddr translated_addr;
73 hwaddr addr_mask; /* 0xfff = 4k translation */
74 IOMMUAccessFlags perm;
75 };
76
77 /*
78 * Bitmap for different IOMMUNotifier capabilities. Each notifier can
79 * register with one or multiple IOMMU Notifier capability bit(s).
80 */
81 typedef enum {
82 IOMMU_NOTIFIER_NONE = 0,
83 /* Notify cache invalidations */
84 IOMMU_NOTIFIER_UNMAP = 0x1,
85 /* Notify entry changes (newly created entries) */
86 IOMMU_NOTIFIER_MAP = 0x2,
87 } IOMMUNotifierFlag;
88
89 #define IOMMU_NOTIFIER_ALL (IOMMU_NOTIFIER_MAP | IOMMU_NOTIFIER_UNMAP)
90
91 struct IOMMUNotifier;
92 typedef void (*IOMMUNotify)(struct IOMMUNotifier *notifier,
93 IOMMUTLBEntry *data);
94
95 struct IOMMUNotifier {
96 IOMMUNotify notify;
97 IOMMUNotifierFlag notifier_flags;
98 /* Notify for address space range start <= addr <= end */
99 hwaddr start;
100 hwaddr end;
101 QLIST_ENTRY(IOMMUNotifier) node;
102 };
103 typedef struct IOMMUNotifier IOMMUNotifier;
104
105 static inline void iommu_notifier_init(IOMMUNotifier *n, IOMMUNotify fn,
106 IOMMUNotifierFlag flags,
107 hwaddr start, hwaddr end)
108 {
109 n->notify = fn;
110 n->notifier_flags = flags;
111 n->start = start;
112 n->end = end;
113 }
114
115 /* New-style MMIO accessors can indicate that the transaction failed.
116 * A zero (MEMTX_OK) response means success; anything else is a failure
117 * of some kind. The memory subsystem will bitwise-OR together results
118 * if it is synthesizing an operation from multiple smaller accesses.
119 */
120 #define MEMTX_OK 0
121 #define MEMTX_ERROR (1U << 0) /* device returned an error */
122 #define MEMTX_DECODE_ERROR (1U << 1) /* nothing at that address */
123 typedef uint32_t MemTxResult;
124
125 /*
126 * Memory region callbacks
127 */
128 struct MemoryRegionOps {
129 /* Read from the memory region. @addr is relative to @mr; @size is
130 * in bytes. */
131 uint64_t (*read)(void *opaque,
132 hwaddr addr,
133 unsigned size);
134 /* Write to the memory region. @addr is relative to @mr; @size is
135 * in bytes. */
136 void (*write)(void *opaque,
137 hwaddr addr,
138 uint64_t data,
139 unsigned size);
140
141 MemTxResult (*read_with_attrs)(void *opaque,
142 hwaddr addr,
143 uint64_t *data,
144 unsigned size,
145 MemTxAttrs attrs);
146 MemTxResult (*write_with_attrs)(void *opaque,
147 hwaddr addr,
148 uint64_t data,
149 unsigned size,
150 MemTxAttrs attrs);
151 /* Instruction execution pre-callback:
152 * @addr is the address of the access relative to the @mr.
153 * @size is the size of the area returned by the callback.
154 * @offset is the location of the pointer inside @mr.
155 *
156 * Returns a pointer to a location which contains guest code.
157 */
158 void *(*request_ptr)(void *opaque, hwaddr addr, unsigned *size,
159 unsigned *offset);
160
161 enum device_endian endianness;
162 /* Guest-visible constraints: */
163 struct {
164 /* If nonzero, specify bounds on access sizes beyond which a machine
165 * check is thrown.
166 */
167 unsigned min_access_size;
168 unsigned max_access_size;
169 /* If true, unaligned accesses are supported. Otherwise unaligned
170 * accesses throw machine checks.
171 */
172 bool unaligned;
173 /*
174 * If present, and returns #false, the transaction is not accepted
175 * by the device (and results in machine dependent behaviour such
176 * as a machine check exception).
177 */
178 bool (*accepts)(void *opaque, hwaddr addr,
179 unsigned size, bool is_write);
180 } valid;
181 /* Internal implementation constraints: */
182 struct {
183 /* If nonzero, specifies the minimum size implemented. Smaller sizes
184 * will be rounded upwards and a partial result will be returned.
185 */
186 unsigned min_access_size;
187 /* If nonzero, specifies the maximum size implemented. Larger sizes
188 * will be done as a series of accesses with smaller sizes.
189 */
190 unsigned max_access_size;
191 /* If true, unaligned accesses are supported. Otherwise all accesses
192 * are converted to (possibly multiple) naturally aligned accesses.
193 */
194 bool unaligned;
195 } impl;
196
197 /* If .read and .write are not present, old_mmio may be used for
198 * backwards compatibility with old mmio registration
199 */
200 const MemoryRegionMmio old_mmio;
201 };
202
203 typedef struct IOMMUMemoryRegionClass {
204 /* private */
205 struct DeviceClass parent_class;
206
207 /*
208 * Return a TLB entry that contains a given address. Flag should
209 * be the access permission of this translation operation. We can
210 * set flag to IOMMU_NONE to mean that we don't need any
211 * read/write permission checks, like, when for region replay.
212 */
213 IOMMUTLBEntry (*translate)(IOMMUMemoryRegion *iommu, hwaddr addr,
214 IOMMUAccessFlags flag);
215 /* Returns minimum supported page size */
216 uint64_t (*get_min_page_size)(IOMMUMemoryRegion *iommu);
217 /* Called when IOMMU Notifier flag changed */
218 void (*notify_flag_changed)(IOMMUMemoryRegion *iommu,
219 IOMMUNotifierFlag old_flags,
220 IOMMUNotifierFlag new_flags);
221 /* Set this up to provide customized IOMMU replay function */
222 void (*replay)(IOMMUMemoryRegion *iommu, IOMMUNotifier *notifier);
223 } IOMMUMemoryRegionClass;
224
225 typedef struct CoalescedMemoryRange CoalescedMemoryRange;
226 typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd;
227
228 struct MemoryRegion {
229 Object parent_obj;
230
231 /* All fields are private - violators will be prosecuted */
232
233 /* The following fields should fit in a cache line */
234 bool romd_mode;
235 bool ram;
236 bool subpage;
237 bool readonly; /* For RAM regions */
238 bool rom_device;
239 bool flush_coalesced_mmio;
240 bool global_locking;
241 uint8_t dirty_log_mask;
242 bool is_iommu;
243 RAMBlock *ram_block;
244 Object *owner;
245
246 const MemoryRegionOps *ops;
247 void *opaque;
248 MemoryRegion *container;
249 Int128 size;
250 hwaddr addr;
251 void (*destructor)(MemoryRegion *mr);
252 uint64_t align;
253 bool terminates;
254 bool ram_device;
255 bool enabled;
256 bool warning_printed; /* For reservations */
257 uint8_t vga_logging_count;
258 MemoryRegion *alias;
259 hwaddr alias_offset;
260 int32_t priority;
261 QTAILQ_HEAD(subregions, MemoryRegion) subregions;
262 QTAILQ_ENTRY(MemoryRegion) subregions_link;
263 QTAILQ_HEAD(coalesced_ranges, CoalescedMemoryRange) coalesced;
264 const char *name;
265 unsigned ioeventfd_nb;
266 MemoryRegionIoeventfd *ioeventfds;
267 };
268
269 struct IOMMUMemoryRegion {
270 MemoryRegion parent_obj;
271
272 QLIST_HEAD(, IOMMUNotifier) iommu_notify;
273 IOMMUNotifierFlag iommu_notify_flags;
274 };
275
276 #define IOMMU_NOTIFIER_FOREACH(n, mr) \
277 QLIST_FOREACH((n), &(mr)->iommu_notify, node)
278
279 /**
280 * MemoryListener: callbacks structure for updates to the physical memory map
281 *
282 * Allows a component to adjust to changes in the guest-visible memory map.
283 * Use with memory_listener_register() and memory_listener_unregister().
284 */
285 struct MemoryListener {
286 void (*begin)(MemoryListener *listener);
287 void (*commit)(MemoryListener *listener);
288 void (*region_add)(MemoryListener *listener, MemoryRegionSection *section);
289 void (*region_del)(MemoryListener *listener, MemoryRegionSection *section);
290 void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section);
291 void (*log_start)(MemoryListener *listener, MemoryRegionSection *section,
292 int old, int new);
293 void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section,
294 int old, int new);
295 void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section);
296 void (*log_global_start)(MemoryListener *listener);
297 void (*log_global_stop)(MemoryListener *listener);
298 void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section,
299 bool match_data, uint64_t data, EventNotifier *e);
300 void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section,
301 bool match_data, uint64_t data, EventNotifier *e);
302 void (*coalesced_mmio_add)(MemoryListener *listener, MemoryRegionSection *section,
303 hwaddr addr, hwaddr len);
304 void (*coalesced_mmio_del)(MemoryListener *listener, MemoryRegionSection *section,
305 hwaddr addr, hwaddr len);
306 /* Lower = earlier (during add), later (during del) */
307 unsigned priority;
308 AddressSpace *address_space;
309 QTAILQ_ENTRY(MemoryListener) link;
310 QTAILQ_ENTRY(MemoryListener) link_as;
311 };
312
313 /**
314 * AddressSpace: describes a mapping of addresses to #MemoryRegion objects
315 */
316 struct AddressSpace {
317 /* All fields are private. */
318 struct rcu_head rcu;
319 char *name;
320 MemoryRegion *root;
321 int ref_count;
322 bool malloced;
323
324 /* Accessed via RCU. */
325 struct FlatView *current_map;
326
327 int ioeventfd_nb;
328 struct MemoryRegionIoeventfd *ioeventfds;
329 struct AddressSpaceDispatch *dispatch;
330 struct AddressSpaceDispatch *next_dispatch;
331 MemoryListener dispatch_listener;
332 QTAILQ_HEAD(memory_listeners_as, MemoryListener) listeners;
333 QTAILQ_ENTRY(AddressSpace) address_spaces_link;
334 };
335
336 /**
337 * MemoryRegionSection: describes a fragment of a #MemoryRegion
338 *
339 * @mr: the region, or %NULL if empty
340 * @address_space: the address space the region is mapped in
341 * @offset_within_region: the beginning of the section, relative to @mr's start
342 * @size: the size of the section; will not exceed @mr's boundaries
343 * @offset_within_address_space: the address of the first byte of the section
344 * relative to the region's address space
345 * @readonly: writes to this section are ignored
346 */
347 struct MemoryRegionSection {
348 MemoryRegion *mr;
349 AddressSpace *address_space;
350 hwaddr offset_within_region;
351 Int128 size;
352 hwaddr offset_within_address_space;
353 bool readonly;
354 };
355
356 /**
357 * memory_region_init: Initialize a memory region
358 *
359 * The region typically acts as a container for other memory regions. Use
360 * memory_region_add_subregion() to add subregions.
361 *
362 * @mr: the #MemoryRegion to be initialized
363 * @owner: the object that tracks the region's reference count
364 * @name: used for debugging; not visible to the user or ABI
365 * @size: size of the region; any subregions beyond this size will be clipped
366 */
367 void memory_region_init(MemoryRegion *mr,
368 struct Object *owner,
369 const char *name,
370 uint64_t size);
371
372 /**
373 * memory_region_ref: Add 1 to a memory region's reference count
374 *
375 * Whenever memory regions are accessed outside the BQL, they need to be
376 * preserved against hot-unplug. MemoryRegions actually do not have their
377 * own reference count; they piggyback on a QOM object, their "owner".
378 * This function adds a reference to the owner.
379 *
380 * All MemoryRegions must have an owner if they can disappear, even if the
381 * device they belong to operates exclusively under the BQL. This is because
382 * the region could be returned at any time by memory_region_find, and this
383 * is usually under guest control.
384 *
385 * @mr: the #MemoryRegion
386 */
387 void memory_region_ref(MemoryRegion *mr);
388
389 /**
390 * memory_region_unref: Remove 1 to a memory region's reference count
391 *
392 * Whenever memory regions are accessed outside the BQL, they need to be
393 * preserved against hot-unplug. MemoryRegions actually do not have their
394 * own reference count; they piggyback on a QOM object, their "owner".
395 * This function removes a reference to the owner and possibly destroys it.
396 *
397 * @mr: the #MemoryRegion
398 */
399 void memory_region_unref(MemoryRegion *mr);
400
401 /**
402 * memory_region_init_io: Initialize an I/O memory region.
403 *
404 * Accesses into the region will cause the callbacks in @ops to be called.
405 * if @size is nonzero, subregions will be clipped to @size.
406 *
407 * @mr: the #MemoryRegion to be initialized.
408 * @owner: the object that tracks the region's reference count
409 * @ops: a structure containing read and write callbacks to be used when
410 * I/O is performed on the region.
411 * @opaque: passed to the read and write callbacks of the @ops structure.
412 * @name: used for debugging; not visible to the user or ABI
413 * @size: size of the region.
414 */
415 void memory_region_init_io(MemoryRegion *mr,
416 struct Object *owner,
417 const MemoryRegionOps *ops,
418 void *opaque,
419 const char *name,
420 uint64_t size);
421
422 /**
423 * memory_region_init_ram: Initialize RAM memory region. Accesses into the
424 * region will modify memory directly.
425 *
426 * @mr: the #MemoryRegion to be initialized.
427 * @owner: the object that tracks the region's reference count
428 * @name: Region name, becomes part of RAMBlock name used in migration stream
429 * must be unique within any device
430 * @size: size of the region.
431 * @errp: pointer to Error*, to store an error if it happens.
432 */
433 void memory_region_init_ram(MemoryRegion *mr,
434 struct Object *owner,
435 const char *name,
436 uint64_t size,
437 Error **errp);
438
439 /**
440 * memory_region_init_resizeable_ram: Initialize memory region with resizeable
441 * RAM. Accesses into the region will
442 * modify memory directly. Only an initial
443 * portion of this RAM is actually used.
444 * The used size can change across reboots.
445 *
446 * @mr: the #MemoryRegion to be initialized.
447 * @owner: the object that tracks the region's reference count
448 * @name: Region name, becomes part of RAMBlock name used in migration stream
449 * must be unique within any device
450 * @size: used size of the region.
451 * @max_size: max size of the region.
452 * @resized: callback to notify owner about used size change.
453 * @errp: pointer to Error*, to store an error if it happens.
454 */
455 void memory_region_init_resizeable_ram(MemoryRegion *mr,
456 struct Object *owner,
457 const char *name,
458 uint64_t size,
459 uint64_t max_size,
460 void (*resized)(const char*,
461 uint64_t length,
462 void *host),
463 Error **errp);
464 #ifdef __linux__
465 /**
466 * memory_region_init_ram_from_file: Initialize RAM memory region with a
467 * mmap-ed backend.
468 *
469 * @mr: the #MemoryRegion to be initialized.
470 * @owner: the object that tracks the region's reference count
471 * @name: Region name, becomes part of RAMBlock name used in migration stream
472 * must be unique within any device
473 * @size: size of the region.
474 * @share: %true if memory must be mmaped with the MAP_SHARED flag
475 * @path: the path in which to allocate the RAM.
476 * @errp: pointer to Error*, to store an error if it happens.
477 */
478 void memory_region_init_ram_from_file(MemoryRegion *mr,
479 struct Object *owner,
480 const char *name,
481 uint64_t size,
482 bool share,
483 const char *path,
484 Error **errp);
485
486 /**
487 * memory_region_init_ram_from_fd: Initialize RAM memory region with a
488 * mmap-ed backend.
489 *
490 * @mr: the #MemoryRegion to be initialized.
491 * @owner: the object that tracks the region's reference count
492 * @name: the name of the region.
493 * @size: size of the region.
494 * @share: %true if memory must be mmaped with the MAP_SHARED flag
495 * @fd: the fd to mmap.
496 * @errp: pointer to Error*, to store an error if it happens.
497 */
498 void memory_region_init_ram_from_fd(MemoryRegion *mr,
499 struct Object *owner,
500 const char *name,
501 uint64_t size,
502 bool share,
503 int fd,
504 Error **errp);
505 #endif
506
507 /**
508 * memory_region_init_ram_ptr: Initialize RAM memory region from a
509 * user-provided pointer. Accesses into the
510 * region will modify memory directly.
511 *
512 * @mr: the #MemoryRegion to be initialized.
513 * @owner: the object that tracks the region's reference count
514 * @name: Region name, becomes part of RAMBlock name used in migration stream
515 * must be unique within any device
516 * @size: size of the region.
517 * @ptr: memory to be mapped; must contain at least @size bytes.
518 */
519 void memory_region_init_ram_ptr(MemoryRegion *mr,
520 struct Object *owner,
521 const char *name,
522 uint64_t size,
523 void *ptr);
524
525 /**
526 * memory_region_init_ram_device_ptr: Initialize RAM device memory region from
527 * a user-provided pointer.
528 *
529 * A RAM device represents a mapping to a physical device, such as to a PCI
530 * MMIO BAR of an vfio-pci assigned device. The memory region may be mapped
531 * into the VM address space and access to the region will modify memory
532 * directly. However, the memory region should not be included in a memory
533 * dump (device may not be enabled/mapped at the time of the dump), and
534 * operations incompatible with manipulating MMIO should be avoided. Replaces
535 * skip_dump flag.
536 *
537 * @mr: the #MemoryRegion to be initialized.
538 * @owner: the object that tracks the region's reference count
539 * @name: the name of the region.
540 * @size: size of the region.
541 * @ptr: memory to be mapped; must contain at least @size bytes.
542 */
543 void memory_region_init_ram_device_ptr(MemoryRegion *mr,
544 struct Object *owner,
545 const char *name,
546 uint64_t size,
547 void *ptr);
548
549 /**
550 * memory_region_init_alias: Initialize a memory region that aliases all or a
551 * part of another memory region.
552 *
553 * @mr: the #MemoryRegion to be initialized.
554 * @owner: the object that tracks the region's reference count
555 * @name: used for debugging; not visible to the user or ABI
556 * @orig: the region to be referenced; @mr will be equivalent to
557 * @orig between @offset and @offset + @size - 1.
558 * @offset: start of the section in @orig to be referenced.
559 * @size: size of the region.
560 */
561 void memory_region_init_alias(MemoryRegion *mr,
562 struct Object *owner,
563 const char *name,
564 MemoryRegion *orig,
565 hwaddr offset,
566 uint64_t size);
567
568 /**
569 * memory_region_init_rom: Initialize a ROM memory region.
570 *
571 * This has the same effect as calling memory_region_init_ram()
572 * and then marking the resulting region read-only with
573 * memory_region_set_readonly().
574 *
575 * @mr: the #MemoryRegion to be initialized.
576 * @owner: the object that tracks the region's reference count
577 * @name: Region name, becomes part of RAMBlock name used in migration stream
578 * must be unique within any device
579 * @size: size of the region.
580 * @errp: pointer to Error*, to store an error if it happens.
581 */
582 void memory_region_init_rom(MemoryRegion *mr,
583 struct Object *owner,
584 const char *name,
585 uint64_t size,
586 Error **errp);
587
588 /**
589 * memory_region_init_rom_device: Initialize a ROM memory region. Writes are
590 * handled via callbacks.
591 *
592 * @mr: the #MemoryRegion to be initialized.
593 * @owner: the object that tracks the region's reference count
594 * @ops: callbacks for write access handling (must not be NULL).
595 * @name: Region name, becomes part of RAMBlock name used in migration stream
596 * must be unique within any device
597 * @size: size of the region.
598 * @errp: pointer to Error*, to store an error if it happens.
599 */
600 void memory_region_init_rom_device(MemoryRegion *mr,
601 struct Object *owner,
602 const MemoryRegionOps *ops,
603 void *opaque,
604 const char *name,
605 uint64_t size,
606 Error **errp);
607
608 /**
609 * memory_region_init_reservation: Initialize a memory region that reserves
610 * I/O space.
611 *
612 * A reservation region primariy serves debugging purposes. It claims I/O
613 * space that is not supposed to be handled by QEMU itself. Any access via
614 * the memory API will cause an abort().
615 * This function is deprecated. Use memory_region_init_io() with NULL
616 * callbacks instead.
617 *
618 * @mr: the #MemoryRegion to be initialized
619 * @owner: the object that tracks the region's reference count
620 * @name: used for debugging; not visible to the user or ABI
621 * @size: size of the region.
622 */
623 static inline void memory_region_init_reservation(MemoryRegion *mr,
624 Object *owner,
625 const char *name,
626 uint64_t size)
627 {
628 memory_region_init_io(mr, owner, NULL, mr, name, size);
629 }
630
631 /**
632 * memory_region_init_iommu: Initialize a memory region of a custom type
633 * that translates addresses
634 *
635 * An IOMMU region translates addresses and forwards accesses to a target
636 * memory region.
637 *
638 * @typename: QOM class name
639 * @_iommu_mr: the #IOMMUMemoryRegion to be initialized
640 * @instance_size: the IOMMUMemoryRegion subclass instance size
641 * @owner: the object that tracks the region's reference count
642 * @ops: a function that translates addresses into the @target region
643 * @name: used for debugging; not visible to the user or ABI
644 * @size: size of the region.
645 */
646 void memory_region_init_iommu(void *_iommu_mr,
647 size_t instance_size,
648 const char *mrtypename,
649 Object *owner,
650 const char *name,
651 uint64_t size);
652
653 /**
654 * memory_region_owner: get a memory region's owner.
655 *
656 * @mr: the memory region being queried.
657 */
658 struct Object *memory_region_owner(MemoryRegion *mr);
659
660 /**
661 * memory_region_size: get a memory region's size.
662 *
663 * @mr: the memory region being queried.
664 */
665 uint64_t memory_region_size(MemoryRegion *mr);
666
667 /**
668 * memory_region_is_ram: check whether a memory region is random access
669 *
670 * Returns %true is a memory region is random access.
671 *
672 * @mr: the memory region being queried
673 */
674 static inline bool memory_region_is_ram(MemoryRegion *mr)
675 {
676 return mr->ram;
677 }
678
679 /**
680 * memory_region_is_ram_device: check whether a memory region is a ram device
681 *
682 * Returns %true is a memory region is a device backed ram region
683 *
684 * @mr: the memory region being queried
685 */
686 bool memory_region_is_ram_device(MemoryRegion *mr);
687
688 /**
689 * memory_region_is_romd: check whether a memory region is in ROMD mode
690 *
691 * Returns %true if a memory region is a ROM device and currently set to allow
692 * direct reads.
693 *
694 * @mr: the memory region being queried
695 */
696 static inline bool memory_region_is_romd(MemoryRegion *mr)
697 {
698 return mr->rom_device && mr->romd_mode;
699 }
700
701 /**
702 * memory_region_get_iommu: check whether a memory region is an iommu
703 *
704 * Returns pointer to IOMMUMemoryRegion if a memory region is an iommu,
705 * otherwise NULL.
706 *
707 * @mr: the memory region being queried
708 */
709 static inline IOMMUMemoryRegion *memory_region_get_iommu(MemoryRegion *mr)
710 {
711 if (mr->alias) {
712 return memory_region_get_iommu(mr->alias);
713 }
714 if (mr->is_iommu) {
715 return (IOMMUMemoryRegion *) mr;
716 }
717 return NULL;
718 }
719
720 /**
721 * memory_region_get_iommu_class_nocheck: returns iommu memory region class
722 * if an iommu or NULL if not
723 *
724 * Returns pointer to IOMMUMemoryRegioniClass if a memory region is an iommu,
725 * otherwise NULL. This is fast path avoinding QOM checking, use with caution.
726 *
727 * @mr: the memory region being queried
728 */
729 static inline IOMMUMemoryRegionClass *memory_region_get_iommu_class_nocheck(
730 IOMMUMemoryRegion *iommu_mr)
731 {
732 return (IOMMUMemoryRegionClass *) (((Object *)iommu_mr)->class);
733 }
734
735 #define memory_region_is_iommu(mr) (memory_region_get_iommu(mr) != NULL)
736
737 /**
738 * memory_region_iommu_get_min_page_size: get minimum supported page size
739 * for an iommu
740 *
741 * Returns minimum supported page size for an iommu.
742 *
743 * @iommu_mr: the memory region being queried
744 */
745 uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion *iommu_mr);
746
747 /**
748 * memory_region_notify_iommu: notify a change in an IOMMU translation entry.
749 *
750 * The notification type will be decided by entry.perm bits:
751 *
752 * - For UNMAP (cache invalidation) notifies: set entry.perm to IOMMU_NONE.
753 * - For MAP (newly added entry) notifies: set entry.perm to the
754 * permission of the page (which is definitely !IOMMU_NONE).
755 *
756 * Note: for any IOMMU implementation, an in-place mapping change
757 * should be notified with an UNMAP followed by a MAP.
758 *
759 * @iommu_mr: the memory region that was changed
760 * @entry: the new entry in the IOMMU translation table. The entry
761 * replaces all old entries for the same virtual I/O address range.
762 * Deleted entries have .@perm == 0.
763 */
764 void memory_region_notify_iommu(IOMMUMemoryRegion *iommu_mr,
765 IOMMUTLBEntry entry);
766
767 /**
768 * memory_region_notify_one: notify a change in an IOMMU translation
769 * entry to a single notifier
770 *
771 * This works just like memory_region_notify_iommu(), but it only
772 * notifies a specific notifier, not all of them.
773 *
774 * @notifier: the notifier to be notified
775 * @entry: the new entry in the IOMMU translation table. The entry
776 * replaces all old entries for the same virtual I/O address range.
777 * Deleted entries have .@perm == 0.
778 */
779 void memory_region_notify_one(IOMMUNotifier *notifier,
780 IOMMUTLBEntry *entry);
781
782 /**
783 * memory_region_register_iommu_notifier: register a notifier for changes to
784 * IOMMU translation entries.
785 *
786 * @mr: the memory region to observe
787 * @n: the IOMMUNotifier to be added; the notify callback receives a
788 * pointer to an #IOMMUTLBEntry as the opaque value; the pointer
789 * ceases to be valid on exit from the notifier.
790 */
791 void memory_region_register_iommu_notifier(MemoryRegion *mr,
792 IOMMUNotifier *n);
793
794 /**
795 * memory_region_iommu_replay: replay existing IOMMU translations to
796 * a notifier with the minimum page granularity returned by
797 * mr->iommu_ops->get_page_size().
798 *
799 * @iommu_mr: the memory region to observe
800 * @n: the notifier to which to replay iommu mappings
801 */
802 void memory_region_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n);
803
804 /**
805 * memory_region_iommu_replay_all: replay existing IOMMU translations
806 * to all the notifiers registered.
807 *
808 * @iommu_mr: the memory region to observe
809 */
810 void memory_region_iommu_replay_all(IOMMUMemoryRegion *iommu_mr);
811
812 /**
813 * memory_region_unregister_iommu_notifier: unregister a notifier for
814 * changes to IOMMU translation entries.
815 *
816 * @mr: the memory region which was observed and for which notity_stopped()
817 * needs to be called
818 * @n: the notifier to be removed.
819 */
820 void memory_region_unregister_iommu_notifier(MemoryRegion *mr,
821 IOMMUNotifier *n);
822
823 /**
824 * memory_region_name: get a memory region's name
825 *
826 * Returns the string that was used to initialize the memory region.
827 *
828 * @mr: the memory region being queried
829 */
830 const char *memory_region_name(const MemoryRegion *mr);
831
832 /**
833 * memory_region_is_logging: return whether a memory region is logging writes
834 *
835 * Returns %true if the memory region is logging writes for the given client
836 *
837 * @mr: the memory region being queried
838 * @client: the client being queried
839 */
840 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client);
841
842 /**
843 * memory_region_get_dirty_log_mask: return the clients for which a
844 * memory region is logging writes.
845 *
846 * Returns a bitmap of clients, in which the DIRTY_MEMORY_* constants
847 * are the bit indices.
848 *
849 * @mr: the memory region being queried
850 */
851 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr);
852
853 /**
854 * memory_region_is_rom: check whether a memory region is ROM
855 *
856 * Returns %true is a memory region is read-only memory.
857 *
858 * @mr: the memory region being queried
859 */
860 static inline bool memory_region_is_rom(MemoryRegion *mr)
861 {
862 return mr->ram && mr->readonly;
863 }
864
865
866 /**
867 * memory_region_get_fd: Get a file descriptor backing a RAM memory region.
868 *
869 * Returns a file descriptor backing a file-based RAM memory region,
870 * or -1 if the region is not a file-based RAM memory region.
871 *
872 * @mr: the RAM or alias memory region being queried.
873 */
874 int memory_region_get_fd(MemoryRegion *mr);
875
876 /**
877 * memory_region_from_host: Convert a pointer into a RAM memory region
878 * and an offset within it.
879 *
880 * Given a host pointer inside a RAM memory region (created with
881 * memory_region_init_ram() or memory_region_init_ram_ptr()), return
882 * the MemoryRegion and the offset within it.
883 *
884 * Use with care; by the time this function returns, the returned pointer is
885 * not protected by RCU anymore. If the caller is not within an RCU critical
886 * section and does not hold the iothread lock, it must have other means of
887 * protecting the pointer, such as a reference to the region that includes
888 * the incoming ram_addr_t.
889 *
890 * @mr: the memory region being queried.
891 */
892 MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset);
893
894 /**
895 * memory_region_get_ram_ptr: Get a pointer into a RAM memory region.
896 *
897 * Returns a host pointer to a RAM memory region (created with
898 * memory_region_init_ram() or memory_region_init_ram_ptr()).
899 *
900 * Use with care; by the time this function returns, the returned pointer is
901 * not protected by RCU anymore. If the caller is not within an RCU critical
902 * section and does not hold the iothread lock, it must have other means of
903 * protecting the pointer, such as a reference to the region that includes
904 * the incoming ram_addr_t.
905 *
906 * @mr: the memory region being queried.
907 */
908 void *memory_region_get_ram_ptr(MemoryRegion *mr);
909
910 /* memory_region_ram_resize: Resize a RAM region.
911 *
912 * Only legal before guest might have detected the memory size: e.g. on
913 * incoming migration, or right after reset.
914 *
915 * @mr: a memory region created with @memory_region_init_resizeable_ram.
916 * @newsize: the new size the region
917 * @errp: pointer to Error*, to store an error if it happens.
918 */
919 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize,
920 Error **errp);
921
922 /**
923 * memory_region_set_log: Turn dirty logging on or off for a region.
924 *
925 * Turns dirty logging on or off for a specified client (display, migration).
926 * Only meaningful for RAM regions.
927 *
928 * @mr: the memory region being updated.
929 * @log: whether dirty logging is to be enabled or disabled.
930 * @client: the user of the logging information; %DIRTY_MEMORY_VGA only.
931 */
932 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client);
933
934 /**
935 * memory_region_get_dirty: Check whether a range of bytes is dirty
936 * for a specified client.
937 *
938 * Checks whether a range of bytes has been written to since the last
939 * call to memory_region_reset_dirty() with the same @client. Dirty logging
940 * must be enabled.
941 *
942 * @mr: the memory region being queried.
943 * @addr: the address (relative to the start of the region) being queried.
944 * @size: the size of the range being queried.
945 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
946 * %DIRTY_MEMORY_VGA.
947 */
948 bool memory_region_get_dirty(MemoryRegion *mr, hwaddr addr,
949 hwaddr size, unsigned client);
950
951 /**
952 * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region.
953 *
954 * Marks a range of bytes as dirty, after it has been dirtied outside
955 * guest code.
956 *
957 * @mr: the memory region being dirtied.
958 * @addr: the address (relative to the start of the region) being dirtied.
959 * @size: size of the range being dirtied.
960 */
961 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
962 hwaddr size);
963
964 /**
965 * memory_region_test_and_clear_dirty: Check whether a range of bytes is dirty
966 * for a specified client. It clears them.
967 *
968 * Checks whether a range of bytes has been written to since the last
969 * call to memory_region_reset_dirty() with the same @client. Dirty logging
970 * must be enabled.
971 *
972 * @mr: the memory region being queried.
973 * @addr: the address (relative to the start of the region) being queried.
974 * @size: the size of the range being queried.
975 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
976 * %DIRTY_MEMORY_VGA.
977 */
978 bool memory_region_test_and_clear_dirty(MemoryRegion *mr, hwaddr addr,
979 hwaddr size, unsigned client);
980
981 /**
982 * memory_region_snapshot_and_clear_dirty: Get a snapshot of the dirty
983 * bitmap and clear it.
984 *
985 * Creates a snapshot of the dirty bitmap, clears the dirty bitmap and
986 * returns the snapshot. The snapshot can then be used to query dirty
987 * status, using memory_region_snapshot_get_dirty. Unlike
988 * memory_region_test_and_clear_dirty this allows to query the same
989 * page multiple times, which is especially useful for display updates
990 * where the scanlines often are not page aligned.
991 *
992 * The dirty bitmap region which gets copyed into the snapshot (and
993 * cleared afterwards) can be larger than requested. The boundaries
994 * are rounded up/down so complete bitmap longs (covering 64 pages on
995 * 64bit hosts) can be copied over into the bitmap snapshot. Which
996 * isn't a problem for display updates as the extra pages are outside
997 * the visible area, and in case the visible area changes a full
998 * display redraw is due anyway. Should other use cases for this
999 * function emerge we might have to revisit this implementation
1000 * detail.
1001 *
1002 * Use g_free to release DirtyBitmapSnapshot.
1003 *
1004 * @mr: the memory region being queried.
1005 * @addr: the address (relative to the start of the region) being queried.
1006 * @size: the size of the range being queried.
1007 * @client: the user of the logging information; typically %DIRTY_MEMORY_VGA.
1008 */
1009 DirtyBitmapSnapshot *memory_region_snapshot_and_clear_dirty(MemoryRegion *mr,
1010 hwaddr addr,
1011 hwaddr size,
1012 unsigned client);
1013
1014 /**
1015 * memory_region_snapshot_get_dirty: Check whether a range of bytes is dirty
1016 * in the specified dirty bitmap snapshot.
1017 *
1018 * @mr: the memory region being queried.
1019 * @snap: the dirty bitmap snapshot
1020 * @addr: the address (relative to the start of the region) being queried.
1021 * @size: the size of the range being queried.
1022 */
1023 bool memory_region_snapshot_get_dirty(MemoryRegion *mr,
1024 DirtyBitmapSnapshot *snap,
1025 hwaddr addr, hwaddr size);
1026
1027 /**
1028 * memory_region_sync_dirty_bitmap: Synchronize a region's dirty bitmap with
1029 * any external TLBs (e.g. kvm)
1030 *
1031 * Flushes dirty information from accelerators such as kvm and vhost-net
1032 * and makes it available to users of the memory API.
1033 *
1034 * @mr: the region being flushed.
1035 */
1036 void memory_region_sync_dirty_bitmap(MemoryRegion *mr);
1037
1038 /**
1039 * memory_region_reset_dirty: Mark a range of pages as clean, for a specified
1040 * client.
1041 *
1042 * Marks a range of pages as no longer dirty.
1043 *
1044 * @mr: the region being updated.
1045 * @addr: the start of the subrange being cleaned.
1046 * @size: the size of the subrange being cleaned.
1047 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
1048 * %DIRTY_MEMORY_VGA.
1049 */
1050 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
1051 hwaddr size, unsigned client);
1052
1053 /**
1054 * memory_region_set_readonly: Turn a memory region read-only (or read-write)
1055 *
1056 * Allows a memory region to be marked as read-only (turning it into a ROM).
1057 * only useful on RAM regions.
1058 *
1059 * @mr: the region being updated.
1060 * @readonly: whether rhe region is to be ROM or RAM.
1061 */
1062 void memory_region_set_readonly(MemoryRegion *mr, bool readonly);
1063
1064 /**
1065 * memory_region_rom_device_set_romd: enable/disable ROMD mode
1066 *
1067 * Allows a ROM device (initialized with memory_region_init_rom_device() to
1068 * set to ROMD mode (default) or MMIO mode. When it is in ROMD mode, the
1069 * device is mapped to guest memory and satisfies read access directly.
1070 * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function.
1071 * Writes are always handled by the #MemoryRegion.write function.
1072 *
1073 * @mr: the memory region to be updated
1074 * @romd_mode: %true to put the region into ROMD mode
1075 */
1076 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode);
1077
1078 /**
1079 * memory_region_set_coalescing: Enable memory coalescing for the region.
1080 *
1081 * Enabled writes to a region to be queued for later processing. MMIO ->write
1082 * callbacks may be delayed until a non-coalesced MMIO is issued.
1083 * Only useful for IO regions. Roughly similar to write-combining hardware.
1084 *
1085 * @mr: the memory region to be write coalesced
1086 */
1087 void memory_region_set_coalescing(MemoryRegion *mr);
1088
1089 /**
1090 * memory_region_add_coalescing: Enable memory coalescing for a sub-range of
1091 * a region.
1092 *
1093 * Like memory_region_set_coalescing(), but works on a sub-range of a region.
1094 * Multiple calls can be issued coalesced disjoint ranges.
1095 *
1096 * @mr: the memory region to be updated.
1097 * @offset: the start of the range within the region to be coalesced.
1098 * @size: the size of the subrange to be coalesced.
1099 */
1100 void memory_region_add_coalescing(MemoryRegion *mr,
1101 hwaddr offset,
1102 uint64_t size);
1103
1104 /**
1105 * memory_region_clear_coalescing: Disable MMIO coalescing for the region.
1106 *
1107 * Disables any coalescing caused by memory_region_set_coalescing() or
1108 * memory_region_add_coalescing(). Roughly equivalent to uncacheble memory
1109 * hardware.
1110 *
1111 * @mr: the memory region to be updated.
1112 */
1113 void memory_region_clear_coalescing(MemoryRegion *mr);
1114
1115 /**
1116 * memory_region_set_flush_coalesced: Enforce memory coalescing flush before
1117 * accesses.
1118 *
1119 * Ensure that pending coalesced MMIO request are flushed before the memory
1120 * region is accessed. This property is automatically enabled for all regions
1121 * passed to memory_region_set_coalescing() and memory_region_add_coalescing().
1122 *
1123 * @mr: the memory region to be updated.
1124 */
1125 void memory_region_set_flush_coalesced(MemoryRegion *mr);
1126
1127 /**
1128 * memory_region_clear_flush_coalesced: Disable memory coalescing flush before
1129 * accesses.
1130 *
1131 * Clear the automatic coalesced MMIO flushing enabled via
1132 * memory_region_set_flush_coalesced. Note that this service has no effect on
1133 * memory regions that have MMIO coalescing enabled for themselves. For them,
1134 * automatic flushing will stop once coalescing is disabled.
1135 *
1136 * @mr: the memory region to be updated.
1137 */
1138 void memory_region_clear_flush_coalesced(MemoryRegion *mr);
1139
1140 /**
1141 * memory_region_set_global_locking: Declares the access processing requires
1142 * QEMU's global lock.
1143 *
1144 * When this is invoked, accesses to the memory region will be processed while
1145 * holding the global lock of QEMU. This is the default behavior of memory
1146 * regions.
1147 *
1148 * @mr: the memory region to be updated.
1149 */
1150 void memory_region_set_global_locking(MemoryRegion *mr);
1151
1152 /**
1153 * memory_region_clear_global_locking: Declares that access processing does
1154 * not depend on the QEMU global lock.
1155 *
1156 * By clearing this property, accesses to the memory region will be processed
1157 * outside of QEMU's global lock (unless the lock is held on when issuing the
1158 * access request). In this case, the device model implementing the access
1159 * handlers is responsible for synchronization of concurrency.
1160 *
1161 * @mr: the memory region to be updated.
1162 */
1163 void memory_region_clear_global_locking(MemoryRegion *mr);
1164
1165 /**
1166 * memory_region_add_eventfd: Request an eventfd to be triggered when a word
1167 * is written to a location.
1168 *
1169 * Marks a word in an IO region (initialized with memory_region_init_io())
1170 * as a trigger for an eventfd event. The I/O callback will not be called.
1171 * The caller must be prepared to handle failure (that is, take the required
1172 * action if the callback _is_ called).
1173 *
1174 * @mr: the memory region being updated.
1175 * @addr: the address within @mr that is to be monitored
1176 * @size: the size of the access to trigger the eventfd
1177 * @match_data: whether to match against @data, instead of just @addr
1178 * @data: the data to match against the guest write
1179 * @fd: the eventfd to be triggered when @addr, @size, and @data all match.
1180 **/
1181 void memory_region_add_eventfd(MemoryRegion *mr,
1182 hwaddr addr,
1183 unsigned size,
1184 bool match_data,
1185 uint64_t data,
1186 EventNotifier *e);
1187
1188 /**
1189 * memory_region_del_eventfd: Cancel an eventfd.
1190 *
1191 * Cancels an eventfd trigger requested by a previous
1192 * memory_region_add_eventfd() call.
1193 *
1194 * @mr: the memory region being updated.
1195 * @addr: the address within @mr that is to be monitored
1196 * @size: the size of the access to trigger the eventfd
1197 * @match_data: whether to match against @data, instead of just @addr
1198 * @data: the data to match against the guest write
1199 * @fd: the eventfd to be triggered when @addr, @size, and @data all match.
1200 */
1201 void memory_region_del_eventfd(MemoryRegion *mr,
1202 hwaddr addr,
1203 unsigned size,
1204 bool match_data,
1205 uint64_t data,
1206 EventNotifier *e);
1207
1208 /**
1209 * memory_region_add_subregion: Add a subregion to a container.
1210 *
1211 * Adds a subregion at @offset. The subregion may not overlap with other
1212 * subregions (except for those explicitly marked as overlapping). A region
1213 * may only be added once as a subregion (unless removed with
1214 * memory_region_del_subregion()); use memory_region_init_alias() if you
1215 * want a region to be a subregion in multiple locations.
1216 *
1217 * @mr: the region to contain the new subregion; must be a container
1218 * initialized with memory_region_init().
1219 * @offset: the offset relative to @mr where @subregion is added.
1220 * @subregion: the subregion to be added.
1221 */
1222 void memory_region_add_subregion(MemoryRegion *mr,
1223 hwaddr offset,
1224 MemoryRegion *subregion);
1225 /**
1226 * memory_region_add_subregion_overlap: Add a subregion to a container
1227 * with overlap.
1228 *
1229 * Adds a subregion at @offset. The subregion may overlap with other
1230 * subregions. Conflicts are resolved by having a higher @priority hide a
1231 * lower @priority. Subregions without priority are taken as @priority 0.
1232 * A region may only be added once as a subregion (unless removed with
1233 * memory_region_del_subregion()); use memory_region_init_alias() if you
1234 * want a region to be a subregion in multiple locations.
1235 *
1236 * @mr: the region to contain the new subregion; must be a container
1237 * initialized with memory_region_init().
1238 * @offset: the offset relative to @mr where @subregion is added.
1239 * @subregion: the subregion to be added.
1240 * @priority: used for resolving overlaps; highest priority wins.
1241 */
1242 void memory_region_add_subregion_overlap(MemoryRegion *mr,
1243 hwaddr offset,
1244 MemoryRegion *subregion,
1245 int priority);
1246
1247 /**
1248 * memory_region_get_ram_addr: Get the ram address associated with a memory
1249 * region
1250 */
1251 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr);
1252
1253 uint64_t memory_region_get_alignment(const MemoryRegion *mr);
1254 /**
1255 * memory_region_del_subregion: Remove a subregion.
1256 *
1257 * Removes a subregion from its container.
1258 *
1259 * @mr: the container to be updated.
1260 * @subregion: the region being removed; must be a current subregion of @mr.
1261 */
1262 void memory_region_del_subregion(MemoryRegion *mr,
1263 MemoryRegion *subregion);
1264
1265 /*
1266 * memory_region_set_enabled: dynamically enable or disable a region
1267 *
1268 * Enables or disables a memory region. A disabled memory region
1269 * ignores all accesses to itself and its subregions. It does not
1270 * obscure sibling subregions with lower priority - it simply behaves as
1271 * if it was removed from the hierarchy.
1272 *
1273 * Regions default to being enabled.
1274 *
1275 * @mr: the region to be updated
1276 * @enabled: whether to enable or disable the region
1277 */
1278 void memory_region_set_enabled(MemoryRegion *mr, bool enabled);
1279
1280 /*
1281 * memory_region_set_address: dynamically update the address of a region
1282 *
1283 * Dynamically updates the address of a region, relative to its container.
1284 * May be used on regions are currently part of a memory hierarchy.
1285 *
1286 * @mr: the region to be updated
1287 * @addr: new address, relative to container region
1288 */
1289 void memory_region_set_address(MemoryRegion *mr, hwaddr addr);
1290
1291 /*
1292 * memory_region_set_size: dynamically update the size of a region.
1293 *
1294 * Dynamically updates the size of a region.
1295 *
1296 * @mr: the region to be updated
1297 * @size: used size of the region.
1298 */
1299 void memory_region_set_size(MemoryRegion *mr, uint64_t size);
1300
1301 /*
1302 * memory_region_set_alias_offset: dynamically update a memory alias's offset
1303 *
1304 * Dynamically updates the offset into the target region that an alias points
1305 * to, as if the fourth argument to memory_region_init_alias() has changed.
1306 *
1307 * @mr: the #MemoryRegion to be updated; should be an alias.
1308 * @offset: the new offset into the target memory region
1309 */
1310 void memory_region_set_alias_offset(MemoryRegion *mr,
1311 hwaddr offset);
1312
1313 /**
1314 * memory_region_present: checks if an address relative to a @container
1315 * translates into #MemoryRegion within @container
1316 *
1317 * Answer whether a #MemoryRegion within @container covers the address
1318 * @addr.
1319 *
1320 * @container: a #MemoryRegion within which @addr is a relative address
1321 * @addr: the area within @container to be searched
1322 */
1323 bool memory_region_present(MemoryRegion *container, hwaddr addr);
1324
1325 /**
1326 * memory_region_is_mapped: returns true if #MemoryRegion is mapped
1327 * into any address space.
1328 *
1329 * @mr: a #MemoryRegion which should be checked if it's mapped
1330 */
1331 bool memory_region_is_mapped(MemoryRegion *mr);
1332
1333 /**
1334 * memory_region_find: translate an address/size relative to a
1335 * MemoryRegion into a #MemoryRegionSection.
1336 *
1337 * Locates the first #MemoryRegion within @mr that overlaps the range
1338 * given by @addr and @size.
1339 *
1340 * Returns a #MemoryRegionSection that describes a contiguous overlap.
1341 * It will have the following characteristics:
1342 * .@size = 0 iff no overlap was found
1343 * .@mr is non-%NULL iff an overlap was found
1344 *
1345 * Remember that in the return value the @offset_within_region is
1346 * relative to the returned region (in the .@mr field), not to the
1347 * @mr argument.
1348 *
1349 * Similarly, the .@offset_within_address_space is relative to the
1350 * address space that contains both regions, the passed and the
1351 * returned one. However, in the special case where the @mr argument
1352 * has no container (and thus is the root of the address space), the
1353 * following will hold:
1354 * .@offset_within_address_space >= @addr
1355 * .@offset_within_address_space + .@size <= @addr + @size
1356 *
1357 * @mr: a MemoryRegion within which @addr is a relative address
1358 * @addr: start of the area within @as to be searched
1359 * @size: size of the area to be searched
1360 */
1361 MemoryRegionSection memory_region_find(MemoryRegion *mr,
1362 hwaddr addr, uint64_t size);
1363
1364 /**
1365 * memory_global_dirty_log_sync: synchronize the dirty log for all memory
1366 *
1367 * Synchronizes the dirty page log for all address spaces.
1368 */
1369 void memory_global_dirty_log_sync(void);
1370
1371 /**
1372 * memory_region_transaction_begin: Start a transaction.
1373 *
1374 * During a transaction, changes will be accumulated and made visible
1375 * only when the transaction ends (is committed).
1376 */
1377 void memory_region_transaction_begin(void);
1378
1379 /**
1380 * memory_region_transaction_commit: Commit a transaction and make changes
1381 * visible to the guest.
1382 */
1383 void memory_region_transaction_commit(void);
1384
1385 /**
1386 * memory_listener_register: register callbacks to be called when memory
1387 * sections are mapped or unmapped into an address
1388 * space
1389 *
1390 * @listener: an object containing the callbacks to be called
1391 * @filter: if non-%NULL, only regions in this address space will be observed
1392 */
1393 void memory_listener_register(MemoryListener *listener, AddressSpace *filter);
1394
1395 /**
1396 * memory_listener_unregister: undo the effect of memory_listener_register()
1397 *
1398 * @listener: an object containing the callbacks to be removed
1399 */
1400 void memory_listener_unregister(MemoryListener *listener);
1401
1402 /**
1403 * memory_global_dirty_log_start: begin dirty logging for all regions
1404 */
1405 void memory_global_dirty_log_start(void);
1406
1407 /**
1408 * memory_global_dirty_log_stop: end dirty logging for all regions
1409 */
1410 void memory_global_dirty_log_stop(void);
1411
1412 void mtree_info(fprintf_function mon_printf, void *f, bool flatview);
1413
1414 /**
1415 * memory_region_request_mmio_ptr: request a pointer to an mmio
1416 * MemoryRegion. If it is possible map a RAM MemoryRegion with this pointer.
1417 * When the device wants to invalidate the pointer it will call
1418 * memory_region_invalidate_mmio_ptr.
1419 *
1420 * @mr: #MemoryRegion to check
1421 * @addr: address within that region
1422 *
1423 * Returns true on success, false otherwise.
1424 */
1425 bool memory_region_request_mmio_ptr(MemoryRegion *mr, hwaddr addr);
1426
1427 /**
1428 * memory_region_invalidate_mmio_ptr: invalidate the pointer to an mmio
1429 * previously requested.
1430 * In the end that means that if something wants to execute from this area it
1431 * will need to request the pointer again.
1432 *
1433 * @mr: #MemoryRegion associated to the pointer.
1434 * @addr: address within that region
1435 * @size: size of that area.
1436 */
1437 void memory_region_invalidate_mmio_ptr(MemoryRegion *mr, hwaddr offset,
1438 unsigned size);
1439
1440 /**
1441 * memory_region_dispatch_read: perform a read directly to the specified
1442 * MemoryRegion.
1443 *
1444 * @mr: #MemoryRegion to access
1445 * @addr: address within that region
1446 * @pval: pointer to uint64_t which the data is written to
1447 * @size: size of the access in bytes
1448 * @attrs: memory transaction attributes to use for the access
1449 */
1450 MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
1451 hwaddr addr,
1452 uint64_t *pval,
1453 unsigned size,
1454 MemTxAttrs attrs);
1455 /**
1456 * memory_region_dispatch_write: perform a write directly to the specified
1457 * MemoryRegion.
1458 *
1459 * @mr: #MemoryRegion to access
1460 * @addr: address within that region
1461 * @data: data to write
1462 * @size: size of the access in bytes
1463 * @attrs: memory transaction attributes to use for the access
1464 */
1465 MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
1466 hwaddr addr,
1467 uint64_t data,
1468 unsigned size,
1469 MemTxAttrs attrs);
1470
1471 /**
1472 * address_space_init: initializes an address space
1473 *
1474 * @as: an uninitialized #AddressSpace
1475 * @root: a #MemoryRegion that routes addresses for the address space
1476 * @name: an address space name. The name is only used for debugging
1477 * output.
1478 */
1479 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name);
1480
1481 /**
1482 * address_space_init_shareable: return an address space for a memory region,
1483 * creating it if it does not already exist
1484 *
1485 * @root: a #MemoryRegion that routes addresses for the address space
1486 * @name: an address space name. The name is only used for debugging
1487 * output.
1488 *
1489 * This function will return a pointer to an existing AddressSpace
1490 * which was initialized with the specified MemoryRegion, or it will
1491 * create and initialize one if it does not already exist. The ASes
1492 * are reference-counted, so the memory will be freed automatically
1493 * when the AddressSpace is destroyed via address_space_destroy.
1494 */
1495 AddressSpace *address_space_init_shareable(MemoryRegion *root,
1496 const char *name);
1497
1498 /**
1499 * address_space_destroy: destroy an address space
1500 *
1501 * Releases all resources associated with an address space. After an address space
1502 * is destroyed, its root memory region (given by address_space_init()) may be destroyed
1503 * as well.
1504 *
1505 * @as: address space to be destroyed
1506 */
1507 void address_space_destroy(AddressSpace *as);
1508
1509 /**
1510 * address_space_rw: read from or write to an address space.
1511 *
1512 * Return a MemTxResult indicating whether the operation succeeded
1513 * or failed (eg unassigned memory, device rejected the transaction,
1514 * IOMMU fault).
1515 *
1516 * @as: #AddressSpace to be accessed
1517 * @addr: address within that address space
1518 * @attrs: memory transaction attributes
1519 * @buf: buffer with the data transferred
1520 * @is_write: indicates the transfer direction
1521 */
1522 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr,
1523 MemTxAttrs attrs, uint8_t *buf,
1524 int len, bool is_write);
1525
1526 /**
1527 * address_space_write: write to address space.
1528 *
1529 * Return a MemTxResult indicating whether the operation succeeded
1530 * or failed (eg unassigned memory, device rejected the transaction,
1531 * IOMMU fault).
1532 *
1533 * @as: #AddressSpace to be accessed
1534 * @addr: address within that address space
1535 * @attrs: memory transaction attributes
1536 * @buf: buffer with the data transferred
1537 */
1538 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
1539 MemTxAttrs attrs,
1540 const uint8_t *buf, int len);
1541
1542 /* address_space_ld*: load from an address space
1543 * address_space_st*: store to an address space
1544 *
1545 * These functions perform a load or store of the byte, word,
1546 * longword or quad to the specified address within the AddressSpace.
1547 * The _le suffixed functions treat the data as little endian;
1548 * _be indicates big endian; no suffix indicates "same endianness
1549 * as guest CPU".
1550 *
1551 * The "guest CPU endianness" accessors are deprecated for use outside
1552 * target-* code; devices should be CPU-agnostic and use either the LE
1553 * or the BE accessors.
1554 *
1555 * @as #AddressSpace to be accessed
1556 * @addr: address within that address space
1557 * @val: data value, for stores
1558 * @attrs: memory transaction attributes
1559 * @result: location to write the success/failure of the transaction;
1560 * if NULL, this information is discarded
1561 */
1562 uint32_t address_space_ldub(AddressSpace *as, hwaddr addr,
1563 MemTxAttrs attrs, MemTxResult *result);
1564 uint32_t address_space_lduw_le(AddressSpace *as, hwaddr addr,
1565 MemTxAttrs attrs, MemTxResult *result);
1566 uint32_t address_space_lduw_be(AddressSpace *as, hwaddr addr,
1567 MemTxAttrs attrs, MemTxResult *result);
1568 uint32_t address_space_ldl_le(AddressSpace *as, hwaddr addr,
1569 MemTxAttrs attrs, MemTxResult *result);
1570 uint32_t address_space_ldl_be(AddressSpace *as, hwaddr addr,
1571 MemTxAttrs attrs, MemTxResult *result);
1572 uint64_t address_space_ldq_le(AddressSpace *as, hwaddr addr,
1573 MemTxAttrs attrs, MemTxResult *result);
1574 uint64_t address_space_ldq_be(AddressSpace *as, hwaddr addr,
1575 MemTxAttrs attrs, MemTxResult *result);
1576 void address_space_stb(AddressSpace *as, hwaddr addr, uint32_t val,
1577 MemTxAttrs attrs, MemTxResult *result);
1578 void address_space_stw_le(AddressSpace *as, hwaddr addr, uint32_t val,
1579 MemTxAttrs attrs, MemTxResult *result);
1580 void address_space_stw_be(AddressSpace *as, hwaddr addr, uint32_t val,
1581 MemTxAttrs attrs, MemTxResult *result);
1582 void address_space_stl_le(AddressSpace *as, hwaddr addr, uint32_t val,
1583 MemTxAttrs attrs, MemTxResult *result);
1584 void address_space_stl_be(AddressSpace *as, hwaddr addr, uint32_t val,
1585 MemTxAttrs attrs, MemTxResult *result);
1586 void address_space_stq_le(AddressSpace *as, hwaddr addr, uint64_t val,
1587 MemTxAttrs attrs, MemTxResult *result);
1588 void address_space_stq_be(AddressSpace *as, hwaddr addr, uint64_t val,
1589 MemTxAttrs attrs, MemTxResult *result);
1590
1591 uint32_t ldub_phys(AddressSpace *as, hwaddr addr);
1592 uint32_t lduw_le_phys(AddressSpace *as, hwaddr addr);
1593 uint32_t lduw_be_phys(AddressSpace *as, hwaddr addr);
1594 uint32_t ldl_le_phys(AddressSpace *as, hwaddr addr);
1595 uint32_t ldl_be_phys(AddressSpace *as, hwaddr addr);
1596 uint64_t ldq_le_phys(AddressSpace *as, hwaddr addr);
1597 uint64_t ldq_be_phys(AddressSpace *as, hwaddr addr);
1598 void stb_phys(AddressSpace *as, hwaddr addr, uint32_t val);
1599 void stw_le_phys(AddressSpace *as, hwaddr addr, uint32_t val);
1600 void stw_be_phys(AddressSpace *as, hwaddr addr, uint32_t val);
1601 void stl_le_phys(AddressSpace *as, hwaddr addr, uint32_t val);
1602 void stl_be_phys(AddressSpace *as, hwaddr addr, uint32_t val);
1603 void stq_le_phys(AddressSpace *as, hwaddr addr, uint64_t val);
1604 void stq_be_phys(AddressSpace *as, hwaddr addr, uint64_t val);
1605
1606 struct MemoryRegionCache {
1607 hwaddr xlat;
1608 hwaddr len;
1609 AddressSpace *as;
1610 };
1611
1612 #define MEMORY_REGION_CACHE_INVALID ((MemoryRegionCache) { .as = NULL })
1613
1614 /* address_space_cache_init: prepare for repeated access to a physical
1615 * memory region
1616 *
1617 * @cache: #MemoryRegionCache to be filled
1618 * @as: #AddressSpace to be accessed
1619 * @addr: address within that address space
1620 * @len: length of buffer
1621 * @is_write: indicates the transfer direction
1622 *
1623 * Will only work with RAM, and may map a subset of the requested range by
1624 * returning a value that is less than @len. On failure, return a negative
1625 * errno value.
1626 *
1627 * Because it only works with RAM, this function can be used for
1628 * read-modify-write operations. In this case, is_write should be %true.
1629 *
1630 * Note that addresses passed to the address_space_*_cached functions
1631 * are relative to @addr.
1632 */
1633 int64_t address_space_cache_init(MemoryRegionCache *cache,
1634 AddressSpace *as,
1635 hwaddr addr,
1636 hwaddr len,
1637 bool is_write);
1638
1639 /**
1640 * address_space_cache_invalidate: complete a write to a #MemoryRegionCache
1641 *
1642 * @cache: The #MemoryRegionCache to operate on.
1643 * @addr: The first physical address that was written, relative to the
1644 * address that was passed to @address_space_cache_init.
1645 * @access_len: The number of bytes that were written starting at @addr.
1646 */
1647 void address_space_cache_invalidate(MemoryRegionCache *cache,
1648 hwaddr addr,
1649 hwaddr access_len);
1650
1651 /**
1652 * address_space_cache_destroy: free a #MemoryRegionCache
1653 *
1654 * @cache: The #MemoryRegionCache whose memory should be released.
1655 */
1656 void address_space_cache_destroy(MemoryRegionCache *cache);
1657
1658 /* address_space_ld*_cached: load from a cached #MemoryRegion
1659 * address_space_st*_cached: store into a cached #MemoryRegion
1660 *
1661 * These functions perform a load or store of the byte, word,
1662 * longword or quad to the specified address. The address is
1663 * a physical address in the AddressSpace, but it must lie within
1664 * a #MemoryRegion that was mapped with address_space_cache_init.
1665 *
1666 * The _le suffixed functions treat the data as little endian;
1667 * _be indicates big endian; no suffix indicates "same endianness
1668 * as guest CPU".
1669 *
1670 * The "guest CPU endianness" accessors are deprecated for use outside
1671 * target-* code; devices should be CPU-agnostic and use either the LE
1672 * or the BE accessors.
1673 *
1674 * @cache: previously initialized #MemoryRegionCache to be accessed
1675 * @addr: address within the address space
1676 * @val: data value, for stores
1677 * @attrs: memory transaction attributes
1678 * @result: location to write the success/failure of the transaction;
1679 * if NULL, this information is discarded
1680 */
1681 uint32_t address_space_ldub_cached(MemoryRegionCache *cache, hwaddr addr,
1682 MemTxAttrs attrs, MemTxResult *result);
1683 uint32_t address_space_lduw_le_cached(MemoryRegionCache *cache, hwaddr addr,
1684 MemTxAttrs attrs, MemTxResult *result);
1685 uint32_t address_space_lduw_be_cached(MemoryRegionCache *cache, hwaddr addr,
1686 MemTxAttrs attrs, MemTxResult *result);
1687 uint32_t address_space_ldl_le_cached(MemoryRegionCache *cache, hwaddr addr,
1688 MemTxAttrs attrs, MemTxResult *result);
1689 uint32_t address_space_ldl_be_cached(MemoryRegionCache *cache, hwaddr addr,
1690 MemTxAttrs attrs, MemTxResult *result);
1691 uint64_t address_space_ldq_le_cached(MemoryRegionCache *cache, hwaddr addr,
1692 MemTxAttrs attrs, MemTxResult *result);
1693 uint64_t address_space_ldq_be_cached(MemoryRegionCache *cache, hwaddr addr,
1694 MemTxAttrs attrs, MemTxResult *result);
1695 void address_space_stb_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val,
1696 MemTxAttrs attrs, MemTxResult *result);
1697 void address_space_stw_le_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val,
1698 MemTxAttrs attrs, MemTxResult *result);
1699 void address_space_stw_be_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val,
1700 MemTxAttrs attrs, MemTxResult *result);
1701 void address_space_stl_le_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val,
1702 MemTxAttrs attrs, MemTxResult *result);
1703 void address_space_stl_be_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val,
1704 MemTxAttrs attrs, MemTxResult *result);
1705 void address_space_stq_le_cached(MemoryRegionCache *cache, hwaddr addr, uint64_t val,
1706 MemTxAttrs attrs, MemTxResult *result);
1707 void address_space_stq_be_cached(MemoryRegionCache *cache, hwaddr addr, uint64_t val,
1708 MemTxAttrs attrs, MemTxResult *result);
1709
1710 uint32_t ldub_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1711 uint32_t lduw_le_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1712 uint32_t lduw_be_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1713 uint32_t ldl_le_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1714 uint32_t ldl_be_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1715 uint64_t ldq_le_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1716 uint64_t ldq_be_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1717 void stb_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val);
1718 void stw_le_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val);
1719 void stw_be_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val);
1720 void stl_le_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val);
1721 void stl_be_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val);
1722 void stq_le_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint64_t val);
1723 void stq_be_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint64_t val);
1724 /* address_space_get_iotlb_entry: translate an address into an IOTLB
1725 * entry. Should be called from an RCU critical section.
1726 */
1727 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
1728 bool is_write);
1729
1730 /* address_space_translate: translate an address range into an address space
1731 * into a MemoryRegion and an address range into that section. Should be
1732 * called from an RCU critical section, to avoid that the last reference
1733 * to the returned region disappears after address_space_translate returns.
1734 *
1735 * @as: #AddressSpace to be accessed
1736 * @addr: address within that address space
1737 * @xlat: pointer to address within the returned memory region section's
1738 * #MemoryRegion.
1739 * @len: pointer to length
1740 * @is_write: indicates the transfer direction
1741 */
1742 MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr,
1743 hwaddr *xlat, hwaddr *len,
1744 bool is_write);
1745
1746 /* address_space_access_valid: check for validity of accessing an address
1747 * space range
1748 *
1749 * Check whether memory is assigned to the given address space range, and
1750 * access is permitted by any IOMMU regions that are active for the address
1751 * space.
1752 *
1753 * For now, addr and len should be aligned to a page size. This limitation
1754 * will be lifted in the future.
1755 *
1756 * @as: #AddressSpace to be accessed
1757 * @addr: address within that address space
1758 * @len: length of the area to be checked
1759 * @is_write: indicates the transfer direction
1760 */
1761 bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write);
1762
1763 /* address_space_map: map a physical memory region into a host virtual address
1764 *
1765 * May map a subset of the requested range, given by and returned in @plen.
1766 * May return %NULL if resources needed to perform the mapping are exhausted.
1767 * Use only for reads OR writes - not for read-modify-write operations.
1768 * Use cpu_register_map_client() to know when retrying the map operation is
1769 * likely to succeed.
1770 *
1771 * @as: #AddressSpace to be accessed
1772 * @addr: address within that address space
1773 * @plen: pointer to length of buffer; updated on return
1774 * @is_write: indicates the transfer direction
1775 */
1776 void *address_space_map(AddressSpace *as, hwaddr addr,
1777 hwaddr *plen, bool is_write);
1778
1779 /* address_space_unmap: Unmaps a memory region previously mapped by address_space_map()
1780 *
1781 * Will also mark the memory as dirty if @is_write == %true. @access_len gives
1782 * the amount of memory that was actually read or written by the caller.
1783 *
1784 * @as: #AddressSpace used
1785 * @addr: address within that address space
1786 * @len: buffer length as returned by address_space_map()
1787 * @access_len: amount of data actually transferred
1788 * @is_write: indicates the transfer direction
1789 */
1790 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
1791 int is_write, hwaddr access_len);
1792
1793
1794 /* Internal functions, part of the implementation of address_space_read. */
1795 MemTxResult address_space_read_continue(AddressSpace *as, hwaddr addr,
1796 MemTxAttrs attrs, uint8_t *buf,
1797 int len, hwaddr addr1, hwaddr l,
1798 MemoryRegion *mr);
1799 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
1800 MemTxAttrs attrs, uint8_t *buf, int len);
1801 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr);
1802
1803 static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write)
1804 {
1805 if (is_write) {
1806 return memory_region_is_ram(mr) &&
1807 !mr->readonly && !memory_region_is_ram_device(mr);
1808 } else {
1809 return (memory_region_is_ram(mr) && !memory_region_is_ram_device(mr)) ||
1810 memory_region_is_romd(mr);
1811 }
1812 }
1813
1814 /**
1815 * address_space_read: read from an address space.
1816 *
1817 * Return a MemTxResult indicating whether the operation succeeded
1818 * or failed (eg unassigned memory, device rejected the transaction,
1819 * IOMMU fault).
1820 *
1821 * @as: #AddressSpace to be accessed
1822 * @addr: address within that address space
1823 * @attrs: memory transaction attributes
1824 * @buf: buffer with the data transferred
1825 */
1826 static inline __attribute__((__always_inline__))
1827 MemTxResult address_space_read(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
1828 uint8_t *buf, int len)
1829 {
1830 MemTxResult result = MEMTX_OK;
1831 hwaddr l, addr1;
1832 void *ptr;
1833 MemoryRegion *mr;
1834
1835 if (__builtin_constant_p(len)) {
1836 if (len) {
1837 rcu_read_lock();
1838 l = len;
1839 mr = address_space_translate(as, addr, &addr1, &l, false);
1840 if (len == l && memory_access_is_direct(mr, false)) {
1841 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
1842 memcpy(buf, ptr, len);
1843 } else {
1844 result = address_space_read_continue(as, addr, attrs, buf, len,
1845 addr1, l, mr);
1846 }
1847 rcu_read_unlock();
1848 }
1849 } else {
1850 result = address_space_read_full(as, addr, attrs, buf, len);
1851 }
1852 return result;
1853 }
1854
1855 /**
1856 * address_space_read_cached: read from a cached RAM region
1857 *
1858 * @cache: Cached region to be addressed
1859 * @addr: address relative to the base of the RAM region
1860 * @buf: buffer with the data transferred
1861 * @len: length of the data transferred
1862 */
1863 static inline void
1864 address_space_read_cached(MemoryRegionCache *cache, hwaddr addr,
1865 void *buf, int len)
1866 {
1867 assert(addr < cache->len && len <= cache->len - addr);
1868 address_space_read(cache->as, cache->xlat + addr, MEMTXATTRS_UNSPECIFIED, buf, len);
1869 }
1870
1871 /**
1872 * address_space_write_cached: write to a cached RAM region
1873 *
1874 * @cache: Cached region to be addressed
1875 * @addr: address relative to the base of the RAM region
1876 * @buf: buffer with the data transferred
1877 * @len: length of the data transferred
1878 */
1879 static inline void
1880 address_space_write_cached(MemoryRegionCache *cache, hwaddr addr,
1881 void *buf, int len)
1882 {
1883 assert(addr < cache->len && len <= cache->len - addr);
1884 address_space_write(cache->as, cache->xlat + addr, MEMTXATTRS_UNSPECIFIED, buf, len);
1885 }
1886
1887 #endif
1888
1889 #endif