]> git.proxmox.com Git - mirror_qemu.git/blob - include/exec/memory.h
memory: add parameter errp to memory_region_init_ram
[mirror_qemu.git] / include / exec / memory.h
1 /*
2 * Physical memory management API
3 *
4 * Copyright 2011 Red Hat, Inc. and/or its affiliates
5 *
6 * Authors:
7 * Avi Kivity <avi@redhat.com>
8 *
9 * This work is licensed under the terms of the GNU GPL, version 2. See
10 * the COPYING file in the top-level directory.
11 *
12 */
13
14 #ifndef MEMORY_H
15 #define MEMORY_H
16
17 #ifndef CONFIG_USER_ONLY
18
19 #define DIRTY_MEMORY_VGA 0
20 #define DIRTY_MEMORY_CODE 1
21 #define DIRTY_MEMORY_MIGRATION 2
22 #define DIRTY_MEMORY_NUM 3 /* num of dirty bits */
23
24 #include <stdint.h>
25 #include <stdbool.h>
26 #include "qemu-common.h"
27 #include "exec/cpu-common.h"
28 #ifndef CONFIG_USER_ONLY
29 #include "exec/hwaddr.h"
30 #endif
31 #include "qemu/queue.h"
32 #include "qemu/int128.h"
33 #include "qemu/notify.h"
34 #include "qapi/error.h"
35 #include "qom/object.h"
36
37 #define MAX_PHYS_ADDR_SPACE_BITS 62
38 #define MAX_PHYS_ADDR (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1)
39
40 #define TYPE_MEMORY_REGION "qemu:memory-region"
41 #define MEMORY_REGION(obj) \
42 OBJECT_CHECK(MemoryRegion, (obj), TYPE_MEMORY_REGION)
43
44 typedef struct MemoryRegionOps MemoryRegionOps;
45 typedef struct MemoryRegionMmio MemoryRegionMmio;
46
47 struct MemoryRegionMmio {
48 CPUReadMemoryFunc *read[3];
49 CPUWriteMemoryFunc *write[3];
50 };
51
52 typedef struct IOMMUTLBEntry IOMMUTLBEntry;
53
54 /* See address_space_translate: bit 0 is read, bit 1 is write. */
55 typedef enum {
56 IOMMU_NONE = 0,
57 IOMMU_RO = 1,
58 IOMMU_WO = 2,
59 IOMMU_RW = 3,
60 } IOMMUAccessFlags;
61
62 struct IOMMUTLBEntry {
63 AddressSpace *target_as;
64 hwaddr iova;
65 hwaddr translated_addr;
66 hwaddr addr_mask; /* 0xfff = 4k translation */
67 IOMMUAccessFlags perm;
68 };
69
70 /*
71 * Memory region callbacks
72 */
73 struct MemoryRegionOps {
74 /* Read from the memory region. @addr is relative to @mr; @size is
75 * in bytes. */
76 uint64_t (*read)(void *opaque,
77 hwaddr addr,
78 unsigned size);
79 /* Write to the memory region. @addr is relative to @mr; @size is
80 * in bytes. */
81 void (*write)(void *opaque,
82 hwaddr addr,
83 uint64_t data,
84 unsigned size);
85
86 enum device_endian endianness;
87 /* Guest-visible constraints: */
88 struct {
89 /* If nonzero, specify bounds on access sizes beyond which a machine
90 * check is thrown.
91 */
92 unsigned min_access_size;
93 unsigned max_access_size;
94 /* If true, unaligned accesses are supported. Otherwise unaligned
95 * accesses throw machine checks.
96 */
97 bool unaligned;
98 /*
99 * If present, and returns #false, the transaction is not accepted
100 * by the device (and results in machine dependent behaviour such
101 * as a machine check exception).
102 */
103 bool (*accepts)(void *opaque, hwaddr addr,
104 unsigned size, bool is_write);
105 } valid;
106 /* Internal implementation constraints: */
107 struct {
108 /* If nonzero, specifies the minimum size implemented. Smaller sizes
109 * will be rounded upwards and a partial result will be returned.
110 */
111 unsigned min_access_size;
112 /* If nonzero, specifies the maximum size implemented. Larger sizes
113 * will be done as a series of accesses with smaller sizes.
114 */
115 unsigned max_access_size;
116 /* If true, unaligned accesses are supported. Otherwise all accesses
117 * are converted to (possibly multiple) naturally aligned accesses.
118 */
119 bool unaligned;
120 } impl;
121
122 /* If .read and .write are not present, old_mmio may be used for
123 * backwards compatibility with old mmio registration
124 */
125 const MemoryRegionMmio old_mmio;
126 };
127
128 typedef struct MemoryRegionIOMMUOps MemoryRegionIOMMUOps;
129
130 struct MemoryRegionIOMMUOps {
131 /* Return a TLB entry that contains a given address. */
132 IOMMUTLBEntry (*translate)(MemoryRegion *iommu, hwaddr addr, bool is_write);
133 };
134
135 typedef struct CoalescedMemoryRange CoalescedMemoryRange;
136 typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd;
137
138 struct MemoryRegion {
139 Object parent_obj;
140 /* All fields are private - violators will be prosecuted */
141 const MemoryRegionOps *ops;
142 const MemoryRegionIOMMUOps *iommu_ops;
143 void *opaque;
144 MemoryRegion *container;
145 Int128 size;
146 hwaddr addr;
147 void (*destructor)(MemoryRegion *mr);
148 ram_addr_t ram_addr;
149 bool subpage;
150 bool terminates;
151 bool romd_mode;
152 bool ram;
153 bool readonly; /* For RAM regions */
154 bool enabled;
155 bool rom_device;
156 bool warning_printed; /* For reservations */
157 bool flush_coalesced_mmio;
158 MemoryRegion *alias;
159 hwaddr alias_offset;
160 int32_t priority;
161 bool may_overlap;
162 QTAILQ_HEAD(subregions, MemoryRegion) subregions;
163 QTAILQ_ENTRY(MemoryRegion) subregions_link;
164 QTAILQ_HEAD(coalesced_ranges, CoalescedMemoryRange) coalesced;
165 const char *name;
166 uint8_t dirty_log_mask;
167 unsigned ioeventfd_nb;
168 MemoryRegionIoeventfd *ioeventfds;
169 NotifierList iommu_notify;
170 };
171
172 /**
173 * MemoryListener: callbacks structure for updates to the physical memory map
174 *
175 * Allows a component to adjust to changes in the guest-visible memory map.
176 * Use with memory_listener_register() and memory_listener_unregister().
177 */
178 struct MemoryListener {
179 void (*begin)(MemoryListener *listener);
180 void (*commit)(MemoryListener *listener);
181 void (*region_add)(MemoryListener *listener, MemoryRegionSection *section);
182 void (*region_del)(MemoryListener *listener, MemoryRegionSection *section);
183 void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section);
184 void (*log_start)(MemoryListener *listener, MemoryRegionSection *section);
185 void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section);
186 void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section);
187 void (*log_global_start)(MemoryListener *listener);
188 void (*log_global_stop)(MemoryListener *listener);
189 void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section,
190 bool match_data, uint64_t data, EventNotifier *e);
191 void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section,
192 bool match_data, uint64_t data, EventNotifier *e);
193 void (*coalesced_mmio_add)(MemoryListener *listener, MemoryRegionSection *section,
194 hwaddr addr, hwaddr len);
195 void (*coalesced_mmio_del)(MemoryListener *listener, MemoryRegionSection *section,
196 hwaddr addr, hwaddr len);
197 /* Lower = earlier (during add), later (during del) */
198 unsigned priority;
199 AddressSpace *address_space_filter;
200 QTAILQ_ENTRY(MemoryListener) link;
201 };
202
203 /**
204 * AddressSpace: describes a mapping of addresses to #MemoryRegion objects
205 */
206 struct AddressSpace {
207 /* All fields are private. */
208 char *name;
209 MemoryRegion *root;
210 struct FlatView *current_map;
211 int ioeventfd_nb;
212 struct MemoryRegionIoeventfd *ioeventfds;
213 struct AddressSpaceDispatch *dispatch;
214 struct AddressSpaceDispatch *next_dispatch;
215 MemoryListener dispatch_listener;
216
217 QTAILQ_ENTRY(AddressSpace) address_spaces_link;
218 };
219
220 /**
221 * MemoryRegionSection: describes a fragment of a #MemoryRegion
222 *
223 * @mr: the region, or %NULL if empty
224 * @address_space: the address space the region is mapped in
225 * @offset_within_region: the beginning of the section, relative to @mr's start
226 * @size: the size of the section; will not exceed @mr's boundaries
227 * @offset_within_address_space: the address of the first byte of the section
228 * relative to the region's address space
229 * @readonly: writes to this section are ignored
230 */
231 struct MemoryRegionSection {
232 MemoryRegion *mr;
233 AddressSpace *address_space;
234 hwaddr offset_within_region;
235 Int128 size;
236 hwaddr offset_within_address_space;
237 bool readonly;
238 };
239
240 /**
241 * memory_region_init: Initialize a memory region
242 *
243 * The region typically acts as a container for other memory regions. Use
244 * memory_region_add_subregion() to add subregions.
245 *
246 * @mr: the #MemoryRegion to be initialized
247 * @owner: the object that tracks the region's reference count
248 * @name: used for debugging; not visible to the user or ABI
249 * @size: size of the region; any subregions beyond this size will be clipped
250 */
251 void memory_region_init(MemoryRegion *mr,
252 struct Object *owner,
253 const char *name,
254 uint64_t size);
255
256 /**
257 * memory_region_ref: Add 1 to a memory region's reference count
258 *
259 * Whenever memory regions are accessed outside the BQL, they need to be
260 * preserved against hot-unplug. MemoryRegions actually do not have their
261 * own reference count; they piggyback on a QOM object, their "owner".
262 * This function adds a reference to the owner.
263 *
264 * All MemoryRegions must have an owner if they can disappear, even if the
265 * device they belong to operates exclusively under the BQL. This is because
266 * the region could be returned at any time by memory_region_find, and this
267 * is usually under guest control.
268 *
269 * @mr: the #MemoryRegion
270 */
271 void memory_region_ref(MemoryRegion *mr);
272
273 /**
274 * memory_region_unref: Remove 1 to a memory region's reference count
275 *
276 * Whenever memory regions are accessed outside the BQL, they need to be
277 * preserved against hot-unplug. MemoryRegions actually do not have their
278 * own reference count; they piggyback on a QOM object, their "owner".
279 * This function removes a reference to the owner and possibly destroys it.
280 *
281 * @mr: the #MemoryRegion
282 */
283 void memory_region_unref(MemoryRegion *mr);
284
285 /**
286 * memory_region_init_io: Initialize an I/O memory region.
287 *
288 * Accesses into the region will cause the callbacks in @ops to be called.
289 * if @size is nonzero, subregions will be clipped to @size.
290 *
291 * @mr: the #MemoryRegion to be initialized.
292 * @owner: the object that tracks the region's reference count
293 * @ops: a structure containing read and write callbacks to be used when
294 * I/O is performed on the region.
295 * @opaque: passed to to the read and write callbacks of the @ops structure.
296 * @name: used for debugging; not visible to the user or ABI
297 * @size: size of the region.
298 */
299 void memory_region_init_io(MemoryRegion *mr,
300 struct Object *owner,
301 const MemoryRegionOps *ops,
302 void *opaque,
303 const char *name,
304 uint64_t size);
305
306 /**
307 * memory_region_init_ram: Initialize RAM memory region. Accesses into the
308 * region will modify memory directly.
309 *
310 * @mr: the #MemoryRegion to be initialized.
311 * @owner: the object that tracks the region's reference count
312 * @name: the name of the region.
313 * @size: size of the region.
314 * @errp: pointer to Error*, to store an error if it happens.
315 */
316 void memory_region_init_ram(MemoryRegion *mr,
317 struct Object *owner,
318 const char *name,
319 uint64_t size,
320 Error **errp);
321
322 #ifdef __linux__
323 /**
324 * memory_region_init_ram_from_file: Initialize RAM memory region with a
325 * mmap-ed backend.
326 *
327 * @mr: the #MemoryRegion to be initialized.
328 * @owner: the object that tracks the region's reference count
329 * @name: the name of the region.
330 * @size: size of the region.
331 * @share: %true if memory must be mmaped with the MAP_SHARED flag
332 * @path: the path in which to allocate the RAM.
333 * @errp: pointer to Error*, to store an error if it happens.
334 */
335 void memory_region_init_ram_from_file(MemoryRegion *mr,
336 struct Object *owner,
337 const char *name,
338 uint64_t size,
339 bool share,
340 const char *path,
341 Error **errp);
342 #endif
343
344 /**
345 * memory_region_init_ram_ptr: Initialize RAM memory region from a
346 * user-provided pointer. Accesses into the
347 * region will modify memory directly.
348 *
349 * @mr: the #MemoryRegion to be initialized.
350 * @owner: the object that tracks the region's reference count
351 * @name: the name of the region.
352 * @size: size of the region.
353 * @ptr: memory to be mapped; must contain at least @size bytes.
354 */
355 void memory_region_init_ram_ptr(MemoryRegion *mr,
356 struct Object *owner,
357 const char *name,
358 uint64_t size,
359 void *ptr);
360
361 /**
362 * memory_region_init_alias: Initialize a memory region that aliases all or a
363 * part of another memory region.
364 *
365 * @mr: the #MemoryRegion to be initialized.
366 * @owner: the object that tracks the region's reference count
367 * @name: used for debugging; not visible to the user or ABI
368 * @orig: the region to be referenced; @mr will be equivalent to
369 * @orig between @offset and @offset + @size - 1.
370 * @offset: start of the section in @orig to be referenced.
371 * @size: size of the region.
372 */
373 void memory_region_init_alias(MemoryRegion *mr,
374 struct Object *owner,
375 const char *name,
376 MemoryRegion *orig,
377 hwaddr offset,
378 uint64_t size);
379
380 /**
381 * memory_region_init_rom_device: Initialize a ROM memory region. Writes are
382 * handled via callbacks.
383 *
384 * @mr: the #MemoryRegion to be initialized.
385 * @owner: the object that tracks the region's reference count
386 * @ops: callbacks for write access handling.
387 * @name: the name of the region.
388 * @size: size of the region.
389 */
390 void memory_region_init_rom_device(MemoryRegion *mr,
391 struct Object *owner,
392 const MemoryRegionOps *ops,
393 void *opaque,
394 const char *name,
395 uint64_t size);
396
397 /**
398 * memory_region_init_reservation: Initialize a memory region that reserves
399 * I/O space.
400 *
401 * A reservation region primariy serves debugging purposes. It claims I/O
402 * space that is not supposed to be handled by QEMU itself. Any access via
403 * the memory API will cause an abort().
404 *
405 * @mr: the #MemoryRegion to be initialized
406 * @owner: the object that tracks the region's reference count
407 * @name: used for debugging; not visible to the user or ABI
408 * @size: size of the region.
409 */
410 void memory_region_init_reservation(MemoryRegion *mr,
411 struct Object *owner,
412 const char *name,
413 uint64_t size);
414
415 /**
416 * memory_region_init_iommu: Initialize a memory region that translates
417 * addresses
418 *
419 * An IOMMU region translates addresses and forwards accesses to a target
420 * memory region.
421 *
422 * @mr: the #MemoryRegion to be initialized
423 * @owner: the object that tracks the region's reference count
424 * @ops: a function that translates addresses into the @target region
425 * @name: used for debugging; not visible to the user or ABI
426 * @size: size of the region.
427 */
428 void memory_region_init_iommu(MemoryRegion *mr,
429 struct Object *owner,
430 const MemoryRegionIOMMUOps *ops,
431 const char *name,
432 uint64_t size);
433
434 /**
435 * memory_region_owner: get a memory region's owner.
436 *
437 * @mr: the memory region being queried.
438 */
439 struct Object *memory_region_owner(MemoryRegion *mr);
440
441 /**
442 * memory_region_size: get a memory region's size.
443 *
444 * @mr: the memory region being queried.
445 */
446 uint64_t memory_region_size(MemoryRegion *mr);
447
448 /**
449 * memory_region_is_ram: check whether a memory region is random access
450 *
451 * Returns %true is a memory region is random access.
452 *
453 * @mr: the memory region being queried
454 */
455 bool memory_region_is_ram(MemoryRegion *mr);
456
457 /**
458 * memory_region_is_romd: check whether a memory region is in ROMD mode
459 *
460 * Returns %true if a memory region is a ROM device and currently set to allow
461 * direct reads.
462 *
463 * @mr: the memory region being queried
464 */
465 static inline bool memory_region_is_romd(MemoryRegion *mr)
466 {
467 return mr->rom_device && mr->romd_mode;
468 }
469
470 /**
471 * memory_region_is_iommu: check whether a memory region is an iommu
472 *
473 * Returns %true is a memory region is an iommu.
474 *
475 * @mr: the memory region being queried
476 */
477 bool memory_region_is_iommu(MemoryRegion *mr);
478
479 /**
480 * memory_region_notify_iommu: notify a change in an IOMMU translation entry.
481 *
482 * @mr: the memory region that was changed
483 * @entry: the new entry in the IOMMU translation table. The entry
484 * replaces all old entries for the same virtual I/O address range.
485 * Deleted entries have .@perm == 0.
486 */
487 void memory_region_notify_iommu(MemoryRegion *mr,
488 IOMMUTLBEntry entry);
489
490 /**
491 * memory_region_register_iommu_notifier: register a notifier for changes to
492 * IOMMU translation entries.
493 *
494 * @mr: the memory region to observe
495 * @n: the notifier to be added; the notifier receives a pointer to an
496 * #IOMMUTLBEntry as the opaque value; the pointer ceases to be
497 * valid on exit from the notifier.
498 */
499 void memory_region_register_iommu_notifier(MemoryRegion *mr, Notifier *n);
500
501 /**
502 * memory_region_unregister_iommu_notifier: unregister a notifier for
503 * changes to IOMMU translation entries.
504 *
505 * @n: the notifier to be removed.
506 */
507 void memory_region_unregister_iommu_notifier(Notifier *n);
508
509 /**
510 * memory_region_name: get a memory region's name
511 *
512 * Returns the string that was used to initialize the memory region.
513 *
514 * @mr: the memory region being queried
515 */
516 const char *memory_region_name(const MemoryRegion *mr);
517
518 /**
519 * memory_region_is_logging: return whether a memory region is logging writes
520 *
521 * Returns %true if the memory region is logging writes
522 *
523 * @mr: the memory region being queried
524 */
525 bool memory_region_is_logging(MemoryRegion *mr);
526
527 /**
528 * memory_region_is_rom: check whether a memory region is ROM
529 *
530 * Returns %true is a memory region is read-only memory.
531 *
532 * @mr: the memory region being queried
533 */
534 bool memory_region_is_rom(MemoryRegion *mr);
535
536 /**
537 * memory_region_get_fd: Get a file descriptor backing a RAM memory region.
538 *
539 * Returns a file descriptor backing a file-based RAM memory region,
540 * or -1 if the region is not a file-based RAM memory region.
541 *
542 * @mr: the RAM or alias memory region being queried.
543 */
544 int memory_region_get_fd(MemoryRegion *mr);
545
546 /**
547 * memory_region_get_ram_ptr: Get a pointer into a RAM memory region.
548 *
549 * Returns a host pointer to a RAM memory region (created with
550 * memory_region_init_ram() or memory_region_init_ram_ptr()). Use with
551 * care.
552 *
553 * @mr: the memory region being queried.
554 */
555 void *memory_region_get_ram_ptr(MemoryRegion *mr);
556
557 /**
558 * memory_region_set_log: Turn dirty logging on or off for a region.
559 *
560 * Turns dirty logging on or off for a specified client (display, migration).
561 * Only meaningful for RAM regions.
562 *
563 * @mr: the memory region being updated.
564 * @log: whether dirty logging is to be enabled or disabled.
565 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
566 * %DIRTY_MEMORY_VGA.
567 */
568 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client);
569
570 /**
571 * memory_region_get_dirty: Check whether a range of bytes is dirty
572 * for a specified client.
573 *
574 * Checks whether a range of bytes has been written to since the last
575 * call to memory_region_reset_dirty() with the same @client. Dirty logging
576 * must be enabled.
577 *
578 * @mr: the memory region being queried.
579 * @addr: the address (relative to the start of the region) being queried.
580 * @size: the size of the range being queried.
581 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
582 * %DIRTY_MEMORY_VGA.
583 */
584 bool memory_region_get_dirty(MemoryRegion *mr, hwaddr addr,
585 hwaddr size, unsigned client);
586
587 /**
588 * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region.
589 *
590 * Marks a range of bytes as dirty, after it has been dirtied outside
591 * guest code.
592 *
593 * @mr: the memory region being dirtied.
594 * @addr: the address (relative to the start of the region) being dirtied.
595 * @size: size of the range being dirtied.
596 */
597 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
598 hwaddr size);
599
600 /**
601 * memory_region_test_and_clear_dirty: Check whether a range of bytes is dirty
602 * for a specified client. It clears them.
603 *
604 * Checks whether a range of bytes has been written to since the last
605 * call to memory_region_reset_dirty() with the same @client. Dirty logging
606 * must be enabled.
607 *
608 * @mr: the memory region being queried.
609 * @addr: the address (relative to the start of the region) being queried.
610 * @size: the size of the range being queried.
611 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
612 * %DIRTY_MEMORY_VGA.
613 */
614 bool memory_region_test_and_clear_dirty(MemoryRegion *mr, hwaddr addr,
615 hwaddr size, unsigned client);
616 /**
617 * memory_region_sync_dirty_bitmap: Synchronize a region's dirty bitmap with
618 * any external TLBs (e.g. kvm)
619 *
620 * Flushes dirty information from accelerators such as kvm and vhost-net
621 * and makes it available to users of the memory API.
622 *
623 * @mr: the region being flushed.
624 */
625 void memory_region_sync_dirty_bitmap(MemoryRegion *mr);
626
627 /**
628 * memory_region_reset_dirty: Mark a range of pages as clean, for a specified
629 * client.
630 *
631 * Marks a range of pages as no longer dirty.
632 *
633 * @mr: the region being updated.
634 * @addr: the start of the subrange being cleaned.
635 * @size: the size of the subrange being cleaned.
636 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
637 * %DIRTY_MEMORY_VGA.
638 */
639 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
640 hwaddr size, unsigned client);
641
642 /**
643 * memory_region_set_readonly: Turn a memory region read-only (or read-write)
644 *
645 * Allows a memory region to be marked as read-only (turning it into a ROM).
646 * only useful on RAM regions.
647 *
648 * @mr: the region being updated.
649 * @readonly: whether rhe region is to be ROM or RAM.
650 */
651 void memory_region_set_readonly(MemoryRegion *mr, bool readonly);
652
653 /**
654 * memory_region_rom_device_set_romd: enable/disable ROMD mode
655 *
656 * Allows a ROM device (initialized with memory_region_init_rom_device() to
657 * set to ROMD mode (default) or MMIO mode. When it is in ROMD mode, the
658 * device is mapped to guest memory and satisfies read access directly.
659 * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function.
660 * Writes are always handled by the #MemoryRegion.write function.
661 *
662 * @mr: the memory region to be updated
663 * @romd_mode: %true to put the region into ROMD mode
664 */
665 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode);
666
667 /**
668 * memory_region_set_coalescing: Enable memory coalescing for the region.
669 *
670 * Enabled writes to a region to be queued for later processing. MMIO ->write
671 * callbacks may be delayed until a non-coalesced MMIO is issued.
672 * Only useful for IO regions. Roughly similar to write-combining hardware.
673 *
674 * @mr: the memory region to be write coalesced
675 */
676 void memory_region_set_coalescing(MemoryRegion *mr);
677
678 /**
679 * memory_region_add_coalescing: Enable memory coalescing for a sub-range of
680 * a region.
681 *
682 * Like memory_region_set_coalescing(), but works on a sub-range of a region.
683 * Multiple calls can be issued coalesced disjoint ranges.
684 *
685 * @mr: the memory region to be updated.
686 * @offset: the start of the range within the region to be coalesced.
687 * @size: the size of the subrange to be coalesced.
688 */
689 void memory_region_add_coalescing(MemoryRegion *mr,
690 hwaddr offset,
691 uint64_t size);
692
693 /**
694 * memory_region_clear_coalescing: Disable MMIO coalescing for the region.
695 *
696 * Disables any coalescing caused by memory_region_set_coalescing() or
697 * memory_region_add_coalescing(). Roughly equivalent to uncacheble memory
698 * hardware.
699 *
700 * @mr: the memory region to be updated.
701 */
702 void memory_region_clear_coalescing(MemoryRegion *mr);
703
704 /**
705 * memory_region_set_flush_coalesced: Enforce memory coalescing flush before
706 * accesses.
707 *
708 * Ensure that pending coalesced MMIO request are flushed before the memory
709 * region is accessed. This property is automatically enabled for all regions
710 * passed to memory_region_set_coalescing() and memory_region_add_coalescing().
711 *
712 * @mr: the memory region to be updated.
713 */
714 void memory_region_set_flush_coalesced(MemoryRegion *mr);
715
716 /**
717 * memory_region_clear_flush_coalesced: Disable memory coalescing flush before
718 * accesses.
719 *
720 * Clear the automatic coalesced MMIO flushing enabled via
721 * memory_region_set_flush_coalesced. Note that this service has no effect on
722 * memory regions that have MMIO coalescing enabled for themselves. For them,
723 * automatic flushing will stop once coalescing is disabled.
724 *
725 * @mr: the memory region to be updated.
726 */
727 void memory_region_clear_flush_coalesced(MemoryRegion *mr);
728
729 /**
730 * memory_region_add_eventfd: Request an eventfd to be triggered when a word
731 * is written to a location.
732 *
733 * Marks a word in an IO region (initialized with memory_region_init_io())
734 * as a trigger for an eventfd event. The I/O callback will not be called.
735 * The caller must be prepared to handle failure (that is, take the required
736 * action if the callback _is_ called).
737 *
738 * @mr: the memory region being updated.
739 * @addr: the address within @mr that is to be monitored
740 * @size: the size of the access to trigger the eventfd
741 * @match_data: whether to match against @data, instead of just @addr
742 * @data: the data to match against the guest write
743 * @fd: the eventfd to be triggered when @addr, @size, and @data all match.
744 **/
745 void memory_region_add_eventfd(MemoryRegion *mr,
746 hwaddr addr,
747 unsigned size,
748 bool match_data,
749 uint64_t data,
750 EventNotifier *e);
751
752 /**
753 * memory_region_del_eventfd: Cancel an eventfd.
754 *
755 * Cancels an eventfd trigger requested by a previous
756 * memory_region_add_eventfd() call.
757 *
758 * @mr: the memory region being updated.
759 * @addr: the address within @mr that is to be monitored
760 * @size: the size of the access to trigger the eventfd
761 * @match_data: whether to match against @data, instead of just @addr
762 * @data: the data to match against the guest write
763 * @fd: the eventfd to be triggered when @addr, @size, and @data all match.
764 */
765 void memory_region_del_eventfd(MemoryRegion *mr,
766 hwaddr addr,
767 unsigned size,
768 bool match_data,
769 uint64_t data,
770 EventNotifier *e);
771
772 /**
773 * memory_region_add_subregion: Add a subregion to a container.
774 *
775 * Adds a subregion at @offset. The subregion may not overlap with other
776 * subregions (except for those explicitly marked as overlapping). A region
777 * may only be added once as a subregion (unless removed with
778 * memory_region_del_subregion()); use memory_region_init_alias() if you
779 * want a region to be a subregion in multiple locations.
780 *
781 * @mr: the region to contain the new subregion; must be a container
782 * initialized with memory_region_init().
783 * @offset: the offset relative to @mr where @subregion is added.
784 * @subregion: the subregion to be added.
785 */
786 void memory_region_add_subregion(MemoryRegion *mr,
787 hwaddr offset,
788 MemoryRegion *subregion);
789 /**
790 * memory_region_add_subregion_overlap: Add a subregion to a container
791 * with overlap.
792 *
793 * Adds a subregion at @offset. The subregion may overlap with other
794 * subregions. Conflicts are resolved by having a higher @priority hide a
795 * lower @priority. Subregions without priority are taken as @priority 0.
796 * A region may only be added once as a subregion (unless removed with
797 * memory_region_del_subregion()); use memory_region_init_alias() if you
798 * want a region to be a subregion in multiple locations.
799 *
800 * @mr: the region to contain the new subregion; must be a container
801 * initialized with memory_region_init().
802 * @offset: the offset relative to @mr where @subregion is added.
803 * @subregion: the subregion to be added.
804 * @priority: used for resolving overlaps; highest priority wins.
805 */
806 void memory_region_add_subregion_overlap(MemoryRegion *mr,
807 hwaddr offset,
808 MemoryRegion *subregion,
809 int priority);
810
811 /**
812 * memory_region_get_ram_addr: Get the ram address associated with a memory
813 * region
814 *
815 * DO NOT USE THIS FUNCTION. This is a temporary workaround while the Xen
816 * code is being reworked.
817 */
818 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr);
819
820 /**
821 * memory_region_del_subregion: Remove a subregion.
822 *
823 * Removes a subregion from its container.
824 *
825 * @mr: the container to be updated.
826 * @subregion: the region being removed; must be a current subregion of @mr.
827 */
828 void memory_region_del_subregion(MemoryRegion *mr,
829 MemoryRegion *subregion);
830
831 /*
832 * memory_region_set_enabled: dynamically enable or disable a region
833 *
834 * Enables or disables a memory region. A disabled memory region
835 * ignores all accesses to itself and its subregions. It does not
836 * obscure sibling subregions with lower priority - it simply behaves as
837 * if it was removed from the hierarchy.
838 *
839 * Regions default to being enabled.
840 *
841 * @mr: the region to be updated
842 * @enabled: whether to enable or disable the region
843 */
844 void memory_region_set_enabled(MemoryRegion *mr, bool enabled);
845
846 /*
847 * memory_region_set_address: dynamically update the address of a region
848 *
849 * Dynamically updates the address of a region, relative to its container.
850 * May be used on regions are currently part of a memory hierarchy.
851 *
852 * @mr: the region to be updated
853 * @addr: new address, relative to container region
854 */
855 void memory_region_set_address(MemoryRegion *mr, hwaddr addr);
856
857 /*
858 * memory_region_set_alias_offset: dynamically update a memory alias's offset
859 *
860 * Dynamically updates the offset into the target region that an alias points
861 * to, as if the fourth argument to memory_region_init_alias() has changed.
862 *
863 * @mr: the #MemoryRegion to be updated; should be an alias.
864 * @offset: the new offset into the target memory region
865 */
866 void memory_region_set_alias_offset(MemoryRegion *mr,
867 hwaddr offset);
868
869 /**
870 * memory_region_present: checks if an address relative to a @container
871 * translates into #MemoryRegion within @container
872 *
873 * Answer whether a #MemoryRegion within @container covers the address
874 * @addr.
875 *
876 * @container: a #MemoryRegion within which @addr is a relative address
877 * @addr: the area within @container to be searched
878 */
879 bool memory_region_present(MemoryRegion *container, hwaddr addr);
880
881 /**
882 * memory_region_is_mapped: returns true if #MemoryRegion is mapped
883 * into any address space.
884 *
885 * @mr: a #MemoryRegion which should be checked if it's mapped
886 */
887 bool memory_region_is_mapped(MemoryRegion *mr);
888
889 /**
890 * memory_region_find: translate an address/size relative to a
891 * MemoryRegion into a #MemoryRegionSection.
892 *
893 * Locates the first #MemoryRegion within @mr that overlaps the range
894 * given by @addr and @size.
895 *
896 * Returns a #MemoryRegionSection that describes a contiguous overlap.
897 * It will have the following characteristics:
898 * .@size = 0 iff no overlap was found
899 * .@mr is non-%NULL iff an overlap was found
900 *
901 * Remember that in the return value the @offset_within_region is
902 * relative to the returned region (in the .@mr field), not to the
903 * @mr argument.
904 *
905 * Similarly, the .@offset_within_address_space is relative to the
906 * address space that contains both regions, the passed and the
907 * returned one. However, in the special case where the @mr argument
908 * has no container (and thus is the root of the address space), the
909 * following will hold:
910 * .@offset_within_address_space >= @addr
911 * .@offset_within_address_space + .@size <= @addr + @size
912 *
913 * @mr: a MemoryRegion within which @addr is a relative address
914 * @addr: start of the area within @as to be searched
915 * @size: size of the area to be searched
916 */
917 MemoryRegionSection memory_region_find(MemoryRegion *mr,
918 hwaddr addr, uint64_t size);
919
920 /**
921 * address_space_sync_dirty_bitmap: synchronize the dirty log for all memory
922 *
923 * Synchronizes the dirty page log for an entire address space.
924 * @as: the address space that contains the memory being synchronized
925 */
926 void address_space_sync_dirty_bitmap(AddressSpace *as);
927
928 /**
929 * memory_region_transaction_begin: Start a transaction.
930 *
931 * During a transaction, changes will be accumulated and made visible
932 * only when the transaction ends (is committed).
933 */
934 void memory_region_transaction_begin(void);
935
936 /**
937 * memory_region_transaction_commit: Commit a transaction and make changes
938 * visible to the guest.
939 */
940 void memory_region_transaction_commit(void);
941
942 /**
943 * memory_listener_register: register callbacks to be called when memory
944 * sections are mapped or unmapped into an address
945 * space
946 *
947 * @listener: an object containing the callbacks to be called
948 * @filter: if non-%NULL, only regions in this address space will be observed
949 */
950 void memory_listener_register(MemoryListener *listener, AddressSpace *filter);
951
952 /**
953 * memory_listener_unregister: undo the effect of memory_listener_register()
954 *
955 * @listener: an object containing the callbacks to be removed
956 */
957 void memory_listener_unregister(MemoryListener *listener);
958
959 /**
960 * memory_global_dirty_log_start: begin dirty logging for all regions
961 */
962 void memory_global_dirty_log_start(void);
963
964 /**
965 * memory_global_dirty_log_stop: end dirty logging for all regions
966 */
967 void memory_global_dirty_log_stop(void);
968
969 void mtree_info(fprintf_function mon_printf, void *f);
970
971 /**
972 * address_space_init: initializes an address space
973 *
974 * @as: an uninitialized #AddressSpace
975 * @root: a #MemoryRegion that routes addesses for the address space
976 * @name: an address space name. The name is only used for debugging
977 * output.
978 */
979 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name);
980
981
982 /**
983 * address_space_destroy: destroy an address space
984 *
985 * Releases all resources associated with an address space. After an address space
986 * is destroyed, its root memory region (given by address_space_init()) may be destroyed
987 * as well.
988 *
989 * @as: address space to be destroyed
990 */
991 void address_space_destroy(AddressSpace *as);
992
993 /**
994 * address_space_rw: read from or write to an address space.
995 *
996 * Return true if the operation hit any unassigned memory or encountered an
997 * IOMMU fault.
998 *
999 * @as: #AddressSpace to be accessed
1000 * @addr: address within that address space
1001 * @buf: buffer with the data transferred
1002 * @is_write: indicates the transfer direction
1003 */
1004 bool address_space_rw(AddressSpace *as, hwaddr addr, uint8_t *buf,
1005 int len, bool is_write);
1006
1007 /**
1008 * address_space_write: write to address space.
1009 *
1010 * Return true if the operation hit any unassigned memory or encountered an
1011 * IOMMU fault.
1012 *
1013 * @as: #AddressSpace to be accessed
1014 * @addr: address within that address space
1015 * @buf: buffer with the data transferred
1016 */
1017 bool address_space_write(AddressSpace *as, hwaddr addr,
1018 const uint8_t *buf, int len);
1019
1020 /**
1021 * address_space_read: read from an address space.
1022 *
1023 * Return true if the operation hit any unassigned memory or encountered an
1024 * IOMMU fault.
1025 *
1026 * @as: #AddressSpace to be accessed
1027 * @addr: address within that address space
1028 * @buf: buffer with the data transferred
1029 */
1030 bool address_space_read(AddressSpace *as, hwaddr addr, uint8_t *buf, int len);
1031
1032 /* address_space_translate: translate an address range into an address space
1033 * into a MemoryRegion and an address range into that section
1034 *
1035 * @as: #AddressSpace to be accessed
1036 * @addr: address within that address space
1037 * @xlat: pointer to address within the returned memory region section's
1038 * #MemoryRegion.
1039 * @len: pointer to length
1040 * @is_write: indicates the transfer direction
1041 */
1042 MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr,
1043 hwaddr *xlat, hwaddr *len,
1044 bool is_write);
1045
1046 /* address_space_access_valid: check for validity of accessing an address
1047 * space range
1048 *
1049 * Check whether memory is assigned to the given address space range, and
1050 * access is permitted by any IOMMU regions that are active for the address
1051 * space.
1052 *
1053 * For now, addr and len should be aligned to a page size. This limitation
1054 * will be lifted in the future.
1055 *
1056 * @as: #AddressSpace to be accessed
1057 * @addr: address within that address space
1058 * @len: length of the area to be checked
1059 * @is_write: indicates the transfer direction
1060 */
1061 bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write);
1062
1063 /* address_space_map: map a physical memory region into a host virtual address
1064 *
1065 * May map a subset of the requested range, given by and returned in @plen.
1066 * May return %NULL if resources needed to perform the mapping are exhausted.
1067 * Use only for reads OR writes - not for read-modify-write operations.
1068 * Use cpu_register_map_client() to know when retrying the map operation is
1069 * likely to succeed.
1070 *
1071 * @as: #AddressSpace to be accessed
1072 * @addr: address within that address space
1073 * @plen: pointer to length of buffer; updated on return
1074 * @is_write: indicates the transfer direction
1075 */
1076 void *address_space_map(AddressSpace *as, hwaddr addr,
1077 hwaddr *plen, bool is_write);
1078
1079 /* address_space_unmap: Unmaps a memory region previously mapped by address_space_map()
1080 *
1081 * Will also mark the memory as dirty if @is_write == %true. @access_len gives
1082 * the amount of memory that was actually read or written by the caller.
1083 *
1084 * @as: #AddressSpace used
1085 * @addr: address within that address space
1086 * @len: buffer length as returned by address_space_map()
1087 * @access_len: amount of data actually transferred
1088 * @is_write: indicates the transfer direction
1089 */
1090 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
1091 int is_write, hwaddr access_len);
1092
1093
1094 #endif
1095
1096 #endif