]> git.proxmox.com Git - mirror_qemu.git/blob - include/exec/memory.h
Merge remote-tracking branch 'remotes/bonzini/tags/for-upstream' into staging
[mirror_qemu.git] / include / exec / memory.h
1 /*
2 * Physical memory management API
3 *
4 * Copyright 2011 Red Hat, Inc. and/or its affiliates
5 *
6 * Authors:
7 * Avi Kivity <avi@redhat.com>
8 *
9 * This work is licensed under the terms of the GNU GPL, version 2. See
10 * the COPYING file in the top-level directory.
11 *
12 */
13
14 #ifndef MEMORY_H
15 #define MEMORY_H
16
17 #ifndef CONFIG_USER_ONLY
18
19 #define DIRTY_MEMORY_VGA 0
20 #define DIRTY_MEMORY_CODE 1
21 #define DIRTY_MEMORY_MIGRATION 2
22 #define DIRTY_MEMORY_NUM 3 /* num of dirty bits */
23
24 #include <stdint.h>
25 #include <stdbool.h>
26 #include "qemu-common.h"
27 #include "exec/cpu-common.h"
28 #ifndef CONFIG_USER_ONLY
29 #include "exec/hwaddr.h"
30 #endif
31 #include "exec/memattrs.h"
32 #include "qemu/queue.h"
33 #include "qemu/int128.h"
34 #include "qemu/notify.h"
35 #include "qapi/error.h"
36 #include "qom/object.h"
37 #include "qemu/rcu.h"
38
39 #define MAX_PHYS_ADDR_SPACE_BITS 62
40 #define MAX_PHYS_ADDR (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1)
41
42 #define TYPE_MEMORY_REGION "qemu:memory-region"
43 #define MEMORY_REGION(obj) \
44 OBJECT_CHECK(MemoryRegion, (obj), TYPE_MEMORY_REGION)
45
46 typedef struct MemoryRegionOps MemoryRegionOps;
47 typedef struct MemoryRegionMmio MemoryRegionMmio;
48
49 struct MemoryRegionMmio {
50 CPUReadMemoryFunc *read[3];
51 CPUWriteMemoryFunc *write[3];
52 };
53
54 typedef struct IOMMUTLBEntry IOMMUTLBEntry;
55
56 /* See address_space_translate: bit 0 is read, bit 1 is write. */
57 typedef enum {
58 IOMMU_NONE = 0,
59 IOMMU_RO = 1,
60 IOMMU_WO = 2,
61 IOMMU_RW = 3,
62 } IOMMUAccessFlags;
63
64 struct IOMMUTLBEntry {
65 AddressSpace *target_as;
66 hwaddr iova;
67 hwaddr translated_addr;
68 hwaddr addr_mask; /* 0xfff = 4k translation */
69 IOMMUAccessFlags perm;
70 };
71
72 /* New-style MMIO accessors can indicate that the transaction failed.
73 * A zero (MEMTX_OK) response means success; anything else is a failure
74 * of some kind. The memory subsystem will bitwise-OR together results
75 * if it is synthesizing an operation from multiple smaller accesses.
76 */
77 #define MEMTX_OK 0
78 #define MEMTX_ERROR (1U << 0) /* device returned an error */
79 #define MEMTX_DECODE_ERROR (1U << 1) /* nothing at that address */
80 typedef uint32_t MemTxResult;
81
82 /*
83 * Memory region callbacks
84 */
85 struct MemoryRegionOps {
86 /* Read from the memory region. @addr is relative to @mr; @size is
87 * in bytes. */
88 uint64_t (*read)(void *opaque,
89 hwaddr addr,
90 unsigned size);
91 /* Write to the memory region. @addr is relative to @mr; @size is
92 * in bytes. */
93 void (*write)(void *opaque,
94 hwaddr addr,
95 uint64_t data,
96 unsigned size);
97
98 MemTxResult (*read_with_attrs)(void *opaque,
99 hwaddr addr,
100 uint64_t *data,
101 unsigned size,
102 MemTxAttrs attrs);
103 MemTxResult (*write_with_attrs)(void *opaque,
104 hwaddr addr,
105 uint64_t data,
106 unsigned size,
107 MemTxAttrs attrs);
108
109 enum device_endian endianness;
110 /* Guest-visible constraints: */
111 struct {
112 /* If nonzero, specify bounds on access sizes beyond which a machine
113 * check is thrown.
114 */
115 unsigned min_access_size;
116 unsigned max_access_size;
117 /* If true, unaligned accesses are supported. Otherwise unaligned
118 * accesses throw machine checks.
119 */
120 bool unaligned;
121 /*
122 * If present, and returns #false, the transaction is not accepted
123 * by the device (and results in machine dependent behaviour such
124 * as a machine check exception).
125 */
126 bool (*accepts)(void *opaque, hwaddr addr,
127 unsigned size, bool is_write);
128 } valid;
129 /* Internal implementation constraints: */
130 struct {
131 /* If nonzero, specifies the minimum size implemented. Smaller sizes
132 * will be rounded upwards and a partial result will be returned.
133 */
134 unsigned min_access_size;
135 /* If nonzero, specifies the maximum size implemented. Larger sizes
136 * will be done as a series of accesses with smaller sizes.
137 */
138 unsigned max_access_size;
139 /* If true, unaligned accesses are supported. Otherwise all accesses
140 * are converted to (possibly multiple) naturally aligned accesses.
141 */
142 bool unaligned;
143 } impl;
144
145 /* If .read and .write are not present, old_mmio may be used for
146 * backwards compatibility with old mmio registration
147 */
148 const MemoryRegionMmio old_mmio;
149 };
150
151 typedef struct MemoryRegionIOMMUOps MemoryRegionIOMMUOps;
152
153 struct MemoryRegionIOMMUOps {
154 /* Return a TLB entry that contains a given address. */
155 IOMMUTLBEntry (*translate)(MemoryRegion *iommu, hwaddr addr, bool is_write);
156 };
157
158 typedef struct CoalescedMemoryRange CoalescedMemoryRange;
159 typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd;
160
161 struct MemoryRegion {
162 Object parent_obj;
163 /* All fields are private - violators will be prosecuted */
164 const MemoryRegionOps *ops;
165 const MemoryRegionIOMMUOps *iommu_ops;
166 void *opaque;
167 MemoryRegion *container;
168 Int128 size;
169 hwaddr addr;
170 void (*destructor)(MemoryRegion *mr);
171 ram_addr_t ram_addr;
172 uint64_t align;
173 bool subpage;
174 bool terminates;
175 bool romd_mode;
176 bool ram;
177 bool skip_dump;
178 bool readonly; /* For RAM regions */
179 bool enabled;
180 bool rom_device;
181 bool warning_printed; /* For reservations */
182 bool flush_coalesced_mmio;
183 MemoryRegion *alias;
184 hwaddr alias_offset;
185 int32_t priority;
186 bool may_overlap;
187 QTAILQ_HEAD(subregions, MemoryRegion) subregions;
188 QTAILQ_ENTRY(MemoryRegion) subregions_link;
189 QTAILQ_HEAD(coalesced_ranges, CoalescedMemoryRange) coalesced;
190 const char *name;
191 uint8_t dirty_log_mask;
192 unsigned ioeventfd_nb;
193 MemoryRegionIoeventfd *ioeventfds;
194 NotifierList iommu_notify;
195 };
196
197 /**
198 * MemoryListener: callbacks structure for updates to the physical memory map
199 *
200 * Allows a component to adjust to changes in the guest-visible memory map.
201 * Use with memory_listener_register() and memory_listener_unregister().
202 */
203 struct MemoryListener {
204 void (*begin)(MemoryListener *listener);
205 void (*commit)(MemoryListener *listener);
206 void (*region_add)(MemoryListener *listener, MemoryRegionSection *section);
207 void (*region_del)(MemoryListener *listener, MemoryRegionSection *section);
208 void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section);
209 void (*log_start)(MemoryListener *listener, MemoryRegionSection *section);
210 void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section);
211 void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section);
212 void (*log_global_start)(MemoryListener *listener);
213 void (*log_global_stop)(MemoryListener *listener);
214 void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section,
215 bool match_data, uint64_t data, EventNotifier *e);
216 void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section,
217 bool match_data, uint64_t data, EventNotifier *e);
218 void (*coalesced_mmio_add)(MemoryListener *listener, MemoryRegionSection *section,
219 hwaddr addr, hwaddr len);
220 void (*coalesced_mmio_del)(MemoryListener *listener, MemoryRegionSection *section,
221 hwaddr addr, hwaddr len);
222 /* Lower = earlier (during add), later (during del) */
223 unsigned priority;
224 AddressSpace *address_space_filter;
225 QTAILQ_ENTRY(MemoryListener) link;
226 };
227
228 /**
229 * AddressSpace: describes a mapping of addresses to #MemoryRegion objects
230 */
231 struct AddressSpace {
232 /* All fields are private. */
233 struct rcu_head rcu;
234 char *name;
235 MemoryRegion *root;
236
237 /* Accessed via RCU. */
238 struct FlatView *current_map;
239
240 int ioeventfd_nb;
241 struct MemoryRegionIoeventfd *ioeventfds;
242 struct AddressSpaceDispatch *dispatch;
243 struct AddressSpaceDispatch *next_dispatch;
244 MemoryListener dispatch_listener;
245
246 QTAILQ_ENTRY(AddressSpace) address_spaces_link;
247 };
248
249 /**
250 * MemoryRegionSection: describes a fragment of a #MemoryRegion
251 *
252 * @mr: the region, or %NULL if empty
253 * @address_space: the address space the region is mapped in
254 * @offset_within_region: the beginning of the section, relative to @mr's start
255 * @size: the size of the section; will not exceed @mr's boundaries
256 * @offset_within_address_space: the address of the first byte of the section
257 * relative to the region's address space
258 * @readonly: writes to this section are ignored
259 */
260 struct MemoryRegionSection {
261 MemoryRegion *mr;
262 AddressSpace *address_space;
263 hwaddr offset_within_region;
264 Int128 size;
265 hwaddr offset_within_address_space;
266 bool readonly;
267 };
268
269 /**
270 * memory_region_init: Initialize a memory region
271 *
272 * The region typically acts as a container for other memory regions. Use
273 * memory_region_add_subregion() to add subregions.
274 *
275 * @mr: the #MemoryRegion to be initialized
276 * @owner: the object that tracks the region's reference count
277 * @name: used for debugging; not visible to the user or ABI
278 * @size: size of the region; any subregions beyond this size will be clipped
279 */
280 void memory_region_init(MemoryRegion *mr,
281 struct Object *owner,
282 const char *name,
283 uint64_t size);
284
285 /**
286 * memory_region_ref: Add 1 to a memory region's reference count
287 *
288 * Whenever memory regions are accessed outside the BQL, they need to be
289 * preserved against hot-unplug. MemoryRegions actually do not have their
290 * own reference count; they piggyback on a QOM object, their "owner".
291 * This function adds a reference to the owner.
292 *
293 * All MemoryRegions must have an owner if they can disappear, even if the
294 * device they belong to operates exclusively under the BQL. This is because
295 * the region could be returned at any time by memory_region_find, and this
296 * is usually under guest control.
297 *
298 * @mr: the #MemoryRegion
299 */
300 void memory_region_ref(MemoryRegion *mr);
301
302 /**
303 * memory_region_unref: Remove 1 to a memory region's reference count
304 *
305 * Whenever memory regions are accessed outside the BQL, they need to be
306 * preserved against hot-unplug. MemoryRegions actually do not have their
307 * own reference count; they piggyback on a QOM object, their "owner".
308 * This function removes a reference to the owner and possibly destroys it.
309 *
310 * @mr: the #MemoryRegion
311 */
312 void memory_region_unref(MemoryRegion *mr);
313
314 /**
315 * memory_region_init_io: Initialize an I/O memory region.
316 *
317 * Accesses into the region will cause the callbacks in @ops to be called.
318 * if @size is nonzero, subregions will be clipped to @size.
319 *
320 * @mr: the #MemoryRegion to be initialized.
321 * @owner: the object that tracks the region's reference count
322 * @ops: a structure containing read and write callbacks to be used when
323 * I/O is performed on the region.
324 * @opaque: passed to to the read and write callbacks of the @ops structure.
325 * @name: used for debugging; not visible to the user or ABI
326 * @size: size of the region.
327 */
328 void memory_region_init_io(MemoryRegion *mr,
329 struct Object *owner,
330 const MemoryRegionOps *ops,
331 void *opaque,
332 const char *name,
333 uint64_t size);
334
335 /**
336 * memory_region_init_ram: Initialize RAM memory region. Accesses into the
337 * region will modify memory directly.
338 *
339 * @mr: the #MemoryRegion to be initialized.
340 * @owner: the object that tracks the region's reference count
341 * @name: the name of the region.
342 * @size: size of the region.
343 * @errp: pointer to Error*, to store an error if it happens.
344 */
345 void memory_region_init_ram(MemoryRegion *mr,
346 struct Object *owner,
347 const char *name,
348 uint64_t size,
349 Error **errp);
350
351 /**
352 * memory_region_init_resizeable_ram: Initialize memory region with resizeable
353 * RAM. Accesses into the region will
354 * modify memory directly. Only an initial
355 * portion of this RAM is actually used.
356 * The used size can change across reboots.
357 *
358 * @mr: the #MemoryRegion to be initialized.
359 * @owner: the object that tracks the region's reference count
360 * @name: the name of the region.
361 * @size: used size of the region.
362 * @max_size: max size of the region.
363 * @resized: callback to notify owner about used size change.
364 * @errp: pointer to Error*, to store an error if it happens.
365 */
366 void memory_region_init_resizeable_ram(MemoryRegion *mr,
367 struct Object *owner,
368 const char *name,
369 uint64_t size,
370 uint64_t max_size,
371 void (*resized)(const char*,
372 uint64_t length,
373 void *host),
374 Error **errp);
375 #ifdef __linux__
376 /**
377 * memory_region_init_ram_from_file: Initialize RAM memory region with a
378 * mmap-ed backend.
379 *
380 * @mr: the #MemoryRegion to be initialized.
381 * @owner: the object that tracks the region's reference count
382 * @name: the name of the region.
383 * @size: size of the region.
384 * @share: %true if memory must be mmaped with the MAP_SHARED flag
385 * @path: the path in which to allocate the RAM.
386 * @errp: pointer to Error*, to store an error if it happens.
387 */
388 void memory_region_init_ram_from_file(MemoryRegion *mr,
389 struct Object *owner,
390 const char *name,
391 uint64_t size,
392 bool share,
393 const char *path,
394 Error **errp);
395 #endif
396
397 /**
398 * memory_region_init_ram_ptr: Initialize RAM memory region from a
399 * user-provided pointer. Accesses into the
400 * region will modify memory directly.
401 *
402 * @mr: the #MemoryRegion to be initialized.
403 * @owner: the object that tracks the region's reference count
404 * @name: the name of the region.
405 * @size: size of the region.
406 * @ptr: memory to be mapped; must contain at least @size bytes.
407 */
408 void memory_region_init_ram_ptr(MemoryRegion *mr,
409 struct Object *owner,
410 const char *name,
411 uint64_t size,
412 void *ptr);
413
414 /**
415 * memory_region_init_alias: Initialize a memory region that aliases all or a
416 * part of another memory region.
417 *
418 * @mr: the #MemoryRegion to be initialized.
419 * @owner: the object that tracks the region's reference count
420 * @name: used for debugging; not visible to the user or ABI
421 * @orig: the region to be referenced; @mr will be equivalent to
422 * @orig between @offset and @offset + @size - 1.
423 * @offset: start of the section in @orig to be referenced.
424 * @size: size of the region.
425 */
426 void memory_region_init_alias(MemoryRegion *mr,
427 struct Object *owner,
428 const char *name,
429 MemoryRegion *orig,
430 hwaddr offset,
431 uint64_t size);
432
433 /**
434 * memory_region_init_rom_device: Initialize a ROM memory region. Writes are
435 * handled via callbacks.
436 *
437 * @mr: the #MemoryRegion to be initialized.
438 * @owner: the object that tracks the region's reference count
439 * @ops: callbacks for write access handling.
440 * @name: the name of the region.
441 * @size: size of the region.
442 * @errp: pointer to Error*, to store an error if it happens.
443 */
444 void memory_region_init_rom_device(MemoryRegion *mr,
445 struct Object *owner,
446 const MemoryRegionOps *ops,
447 void *opaque,
448 const char *name,
449 uint64_t size,
450 Error **errp);
451
452 /**
453 * memory_region_init_reservation: Initialize a memory region that reserves
454 * I/O space.
455 *
456 * A reservation region primariy serves debugging purposes. It claims I/O
457 * space that is not supposed to be handled by QEMU itself. Any access via
458 * the memory API will cause an abort().
459 *
460 * @mr: the #MemoryRegion to be initialized
461 * @owner: the object that tracks the region's reference count
462 * @name: used for debugging; not visible to the user or ABI
463 * @size: size of the region.
464 */
465 void memory_region_init_reservation(MemoryRegion *mr,
466 struct Object *owner,
467 const char *name,
468 uint64_t size);
469
470 /**
471 * memory_region_init_iommu: Initialize a memory region that translates
472 * addresses
473 *
474 * An IOMMU region translates addresses and forwards accesses to a target
475 * memory region.
476 *
477 * @mr: the #MemoryRegion to be initialized
478 * @owner: the object that tracks the region's reference count
479 * @ops: a function that translates addresses into the @target region
480 * @name: used for debugging; not visible to the user or ABI
481 * @size: size of the region.
482 */
483 void memory_region_init_iommu(MemoryRegion *mr,
484 struct Object *owner,
485 const MemoryRegionIOMMUOps *ops,
486 const char *name,
487 uint64_t size);
488
489 /**
490 * memory_region_owner: get a memory region's owner.
491 *
492 * @mr: the memory region being queried.
493 */
494 struct Object *memory_region_owner(MemoryRegion *mr);
495
496 /**
497 * memory_region_size: get a memory region's size.
498 *
499 * @mr: the memory region being queried.
500 */
501 uint64_t memory_region_size(MemoryRegion *mr);
502
503 /**
504 * memory_region_is_ram: check whether a memory region is random access
505 *
506 * Returns %true is a memory region is random access.
507 *
508 * @mr: the memory region being queried
509 */
510 bool memory_region_is_ram(MemoryRegion *mr);
511
512 /**
513 * memory_region_is_skip_dump: check whether a memory region should not be
514 * dumped
515 *
516 * Returns %true is a memory region should not be dumped(e.g. VFIO BAR MMAP).
517 *
518 * @mr: the memory region being queried
519 */
520 bool memory_region_is_skip_dump(MemoryRegion *mr);
521
522 /**
523 * memory_region_set_skip_dump: Set skip_dump flag, dump will ignore this memory
524 * region
525 *
526 * @mr: the memory region being queried
527 */
528 void memory_region_set_skip_dump(MemoryRegion *mr);
529
530 /**
531 * memory_region_is_romd: check whether a memory region is in ROMD mode
532 *
533 * Returns %true if a memory region is a ROM device and currently set to allow
534 * direct reads.
535 *
536 * @mr: the memory region being queried
537 */
538 static inline bool memory_region_is_romd(MemoryRegion *mr)
539 {
540 return mr->rom_device && mr->romd_mode;
541 }
542
543 /**
544 * memory_region_is_iommu: check whether a memory region is an iommu
545 *
546 * Returns %true is a memory region is an iommu.
547 *
548 * @mr: the memory region being queried
549 */
550 bool memory_region_is_iommu(MemoryRegion *mr);
551
552 /**
553 * memory_region_notify_iommu: notify a change in an IOMMU translation entry.
554 *
555 * @mr: the memory region that was changed
556 * @entry: the new entry in the IOMMU translation table. The entry
557 * replaces all old entries for the same virtual I/O address range.
558 * Deleted entries have .@perm == 0.
559 */
560 void memory_region_notify_iommu(MemoryRegion *mr,
561 IOMMUTLBEntry entry);
562
563 /**
564 * memory_region_register_iommu_notifier: register a notifier for changes to
565 * IOMMU translation entries.
566 *
567 * @mr: the memory region to observe
568 * @n: the notifier to be added; the notifier receives a pointer to an
569 * #IOMMUTLBEntry as the opaque value; the pointer ceases to be
570 * valid on exit from the notifier.
571 */
572 void memory_region_register_iommu_notifier(MemoryRegion *mr, Notifier *n);
573
574 /**
575 * memory_region_unregister_iommu_notifier: unregister a notifier for
576 * changes to IOMMU translation entries.
577 *
578 * @n: the notifier to be removed.
579 */
580 void memory_region_unregister_iommu_notifier(Notifier *n);
581
582 /**
583 * memory_region_name: get a memory region's name
584 *
585 * Returns the string that was used to initialize the memory region.
586 *
587 * @mr: the memory region being queried
588 */
589 const char *memory_region_name(const MemoryRegion *mr);
590
591 /**
592 * memory_region_is_logging: return whether a memory region is logging writes
593 *
594 * Returns %true if the memory region is logging writes
595 *
596 * @mr: the memory region being queried
597 */
598 bool memory_region_is_logging(MemoryRegion *mr);
599
600 /**
601 * memory_region_is_rom: check whether a memory region is ROM
602 *
603 * Returns %true is a memory region is read-only memory.
604 *
605 * @mr: the memory region being queried
606 */
607 bool memory_region_is_rom(MemoryRegion *mr);
608
609 /**
610 * memory_region_get_fd: Get a file descriptor backing a RAM memory region.
611 *
612 * Returns a file descriptor backing a file-based RAM memory region,
613 * or -1 if the region is not a file-based RAM memory region.
614 *
615 * @mr: the RAM or alias memory region being queried.
616 */
617 int memory_region_get_fd(MemoryRegion *mr);
618
619 /**
620 * memory_region_get_ram_ptr: Get a pointer into a RAM memory region.
621 *
622 * Returns a host pointer to a RAM memory region (created with
623 * memory_region_init_ram() or memory_region_init_ram_ptr()). Use with
624 * care.
625 *
626 * @mr: the memory region being queried.
627 */
628 void *memory_region_get_ram_ptr(MemoryRegion *mr);
629
630 /* memory_region_ram_resize: Resize a RAM region.
631 *
632 * Only legal before guest might have detected the memory size: e.g. on
633 * incoming migration, or right after reset.
634 *
635 * @mr: a memory region created with @memory_region_init_resizeable_ram.
636 * @newsize: the new size the region
637 * @errp: pointer to Error*, to store an error if it happens.
638 */
639 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize,
640 Error **errp);
641
642 /**
643 * memory_region_set_log: Turn dirty logging on or off for a region.
644 *
645 * Turns dirty logging on or off for a specified client (display, migration).
646 * Only meaningful for RAM regions.
647 *
648 * @mr: the memory region being updated.
649 * @log: whether dirty logging is to be enabled or disabled.
650 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
651 * %DIRTY_MEMORY_VGA.
652 */
653 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client);
654
655 /**
656 * memory_region_get_dirty: Check whether a range of bytes is dirty
657 * for a specified client.
658 *
659 * Checks whether a range of bytes has been written to since the last
660 * call to memory_region_reset_dirty() with the same @client. Dirty logging
661 * must be enabled.
662 *
663 * @mr: the memory region being queried.
664 * @addr: the address (relative to the start of the region) being queried.
665 * @size: the size of the range being queried.
666 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
667 * %DIRTY_MEMORY_VGA.
668 */
669 bool memory_region_get_dirty(MemoryRegion *mr, hwaddr addr,
670 hwaddr size, unsigned client);
671
672 /**
673 * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region.
674 *
675 * Marks a range of bytes as dirty, after it has been dirtied outside
676 * guest code.
677 *
678 * @mr: the memory region being dirtied.
679 * @addr: the address (relative to the start of the region) being dirtied.
680 * @size: size of the range being dirtied.
681 */
682 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
683 hwaddr size);
684
685 /**
686 * memory_region_test_and_clear_dirty: Check whether a range of bytes is dirty
687 * for a specified client. It clears them.
688 *
689 * Checks whether a range of bytes has been written to since the last
690 * call to memory_region_reset_dirty() with the same @client. Dirty logging
691 * must be enabled.
692 *
693 * @mr: the memory region being queried.
694 * @addr: the address (relative to the start of the region) being queried.
695 * @size: the size of the range being queried.
696 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
697 * %DIRTY_MEMORY_VGA.
698 */
699 bool memory_region_test_and_clear_dirty(MemoryRegion *mr, hwaddr addr,
700 hwaddr size, unsigned client);
701 /**
702 * memory_region_sync_dirty_bitmap: Synchronize a region's dirty bitmap with
703 * any external TLBs (e.g. kvm)
704 *
705 * Flushes dirty information from accelerators such as kvm and vhost-net
706 * and makes it available to users of the memory API.
707 *
708 * @mr: the region being flushed.
709 */
710 void memory_region_sync_dirty_bitmap(MemoryRegion *mr);
711
712 /**
713 * memory_region_reset_dirty: Mark a range of pages as clean, for a specified
714 * client.
715 *
716 * Marks a range of pages as no longer dirty.
717 *
718 * @mr: the region being updated.
719 * @addr: the start of the subrange being cleaned.
720 * @size: the size of the subrange being cleaned.
721 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
722 * %DIRTY_MEMORY_VGA.
723 */
724 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
725 hwaddr size, unsigned client);
726
727 /**
728 * memory_region_set_readonly: Turn a memory region read-only (or read-write)
729 *
730 * Allows a memory region to be marked as read-only (turning it into a ROM).
731 * only useful on RAM regions.
732 *
733 * @mr: the region being updated.
734 * @readonly: whether rhe region is to be ROM or RAM.
735 */
736 void memory_region_set_readonly(MemoryRegion *mr, bool readonly);
737
738 /**
739 * memory_region_rom_device_set_romd: enable/disable ROMD mode
740 *
741 * Allows a ROM device (initialized with memory_region_init_rom_device() to
742 * set to ROMD mode (default) or MMIO mode. When it is in ROMD mode, the
743 * device is mapped to guest memory and satisfies read access directly.
744 * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function.
745 * Writes are always handled by the #MemoryRegion.write function.
746 *
747 * @mr: the memory region to be updated
748 * @romd_mode: %true to put the region into ROMD mode
749 */
750 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode);
751
752 /**
753 * memory_region_set_coalescing: Enable memory coalescing for the region.
754 *
755 * Enabled writes to a region to be queued for later processing. MMIO ->write
756 * callbacks may be delayed until a non-coalesced MMIO is issued.
757 * Only useful for IO regions. Roughly similar to write-combining hardware.
758 *
759 * @mr: the memory region to be write coalesced
760 */
761 void memory_region_set_coalescing(MemoryRegion *mr);
762
763 /**
764 * memory_region_add_coalescing: Enable memory coalescing for a sub-range of
765 * a region.
766 *
767 * Like memory_region_set_coalescing(), but works on a sub-range of a region.
768 * Multiple calls can be issued coalesced disjoint ranges.
769 *
770 * @mr: the memory region to be updated.
771 * @offset: the start of the range within the region to be coalesced.
772 * @size: the size of the subrange to be coalesced.
773 */
774 void memory_region_add_coalescing(MemoryRegion *mr,
775 hwaddr offset,
776 uint64_t size);
777
778 /**
779 * memory_region_clear_coalescing: Disable MMIO coalescing for the region.
780 *
781 * Disables any coalescing caused by memory_region_set_coalescing() or
782 * memory_region_add_coalescing(). Roughly equivalent to uncacheble memory
783 * hardware.
784 *
785 * @mr: the memory region to be updated.
786 */
787 void memory_region_clear_coalescing(MemoryRegion *mr);
788
789 /**
790 * memory_region_set_flush_coalesced: Enforce memory coalescing flush before
791 * accesses.
792 *
793 * Ensure that pending coalesced MMIO request are flushed before the memory
794 * region is accessed. This property is automatically enabled for all regions
795 * passed to memory_region_set_coalescing() and memory_region_add_coalescing().
796 *
797 * @mr: the memory region to be updated.
798 */
799 void memory_region_set_flush_coalesced(MemoryRegion *mr);
800
801 /**
802 * memory_region_clear_flush_coalesced: Disable memory coalescing flush before
803 * accesses.
804 *
805 * Clear the automatic coalesced MMIO flushing enabled via
806 * memory_region_set_flush_coalesced. Note that this service has no effect on
807 * memory regions that have MMIO coalescing enabled for themselves. For them,
808 * automatic flushing will stop once coalescing is disabled.
809 *
810 * @mr: the memory region to be updated.
811 */
812 void memory_region_clear_flush_coalesced(MemoryRegion *mr);
813
814 /**
815 * memory_region_add_eventfd: Request an eventfd to be triggered when a word
816 * is written to a location.
817 *
818 * Marks a word in an IO region (initialized with memory_region_init_io())
819 * as a trigger for an eventfd event. The I/O callback will not be called.
820 * The caller must be prepared to handle failure (that is, take the required
821 * action if the callback _is_ called).
822 *
823 * @mr: the memory region being updated.
824 * @addr: the address within @mr that is to be monitored
825 * @size: the size of the access to trigger the eventfd
826 * @match_data: whether to match against @data, instead of just @addr
827 * @data: the data to match against the guest write
828 * @fd: the eventfd to be triggered when @addr, @size, and @data all match.
829 **/
830 void memory_region_add_eventfd(MemoryRegion *mr,
831 hwaddr addr,
832 unsigned size,
833 bool match_data,
834 uint64_t data,
835 EventNotifier *e);
836
837 /**
838 * memory_region_del_eventfd: Cancel an eventfd.
839 *
840 * Cancels an eventfd trigger requested by a previous
841 * memory_region_add_eventfd() call.
842 *
843 * @mr: the memory region being updated.
844 * @addr: the address within @mr that is to be monitored
845 * @size: the size of the access to trigger the eventfd
846 * @match_data: whether to match against @data, instead of just @addr
847 * @data: the data to match against the guest write
848 * @fd: the eventfd to be triggered when @addr, @size, and @data all match.
849 */
850 void memory_region_del_eventfd(MemoryRegion *mr,
851 hwaddr addr,
852 unsigned size,
853 bool match_data,
854 uint64_t data,
855 EventNotifier *e);
856
857 /**
858 * memory_region_add_subregion: Add a subregion to a container.
859 *
860 * Adds a subregion at @offset. The subregion may not overlap with other
861 * subregions (except for those explicitly marked as overlapping). A region
862 * may only be added once as a subregion (unless removed with
863 * memory_region_del_subregion()); use memory_region_init_alias() if you
864 * want a region to be a subregion in multiple locations.
865 *
866 * @mr: the region to contain the new subregion; must be a container
867 * initialized with memory_region_init().
868 * @offset: the offset relative to @mr where @subregion is added.
869 * @subregion: the subregion to be added.
870 */
871 void memory_region_add_subregion(MemoryRegion *mr,
872 hwaddr offset,
873 MemoryRegion *subregion);
874 /**
875 * memory_region_add_subregion_overlap: Add a subregion to a container
876 * with overlap.
877 *
878 * Adds a subregion at @offset. The subregion may overlap with other
879 * subregions. Conflicts are resolved by having a higher @priority hide a
880 * lower @priority. Subregions without priority are taken as @priority 0.
881 * A region may only be added once as a subregion (unless removed with
882 * memory_region_del_subregion()); use memory_region_init_alias() if you
883 * want a region to be a subregion in multiple locations.
884 *
885 * @mr: the region to contain the new subregion; must be a container
886 * initialized with memory_region_init().
887 * @offset: the offset relative to @mr where @subregion is added.
888 * @subregion: the subregion to be added.
889 * @priority: used for resolving overlaps; highest priority wins.
890 */
891 void memory_region_add_subregion_overlap(MemoryRegion *mr,
892 hwaddr offset,
893 MemoryRegion *subregion,
894 int priority);
895
896 /**
897 * memory_region_get_ram_addr: Get the ram address associated with a memory
898 * region
899 *
900 * DO NOT USE THIS FUNCTION. This is a temporary workaround while the Xen
901 * code is being reworked.
902 */
903 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr);
904
905 uint64_t memory_region_get_alignment(const MemoryRegion *mr);
906 /**
907 * memory_region_del_subregion: Remove a subregion.
908 *
909 * Removes a subregion from its container.
910 *
911 * @mr: the container to be updated.
912 * @subregion: the region being removed; must be a current subregion of @mr.
913 */
914 void memory_region_del_subregion(MemoryRegion *mr,
915 MemoryRegion *subregion);
916
917 /*
918 * memory_region_set_enabled: dynamically enable or disable a region
919 *
920 * Enables or disables a memory region. A disabled memory region
921 * ignores all accesses to itself and its subregions. It does not
922 * obscure sibling subregions with lower priority - it simply behaves as
923 * if it was removed from the hierarchy.
924 *
925 * Regions default to being enabled.
926 *
927 * @mr: the region to be updated
928 * @enabled: whether to enable or disable the region
929 */
930 void memory_region_set_enabled(MemoryRegion *mr, bool enabled);
931
932 /*
933 * memory_region_set_address: dynamically update the address of a region
934 *
935 * Dynamically updates the address of a region, relative to its container.
936 * May be used on regions are currently part of a memory hierarchy.
937 *
938 * @mr: the region to be updated
939 * @addr: new address, relative to container region
940 */
941 void memory_region_set_address(MemoryRegion *mr, hwaddr addr);
942
943 /*
944 * memory_region_set_size: dynamically update the size of a region.
945 *
946 * Dynamically updates the size of a region.
947 *
948 * @mr: the region to be updated
949 * @size: used size of the region.
950 */
951 void memory_region_set_size(MemoryRegion *mr, uint64_t size);
952
953 /*
954 * memory_region_set_alias_offset: dynamically update a memory alias's offset
955 *
956 * Dynamically updates the offset into the target region that an alias points
957 * to, as if the fourth argument to memory_region_init_alias() has changed.
958 *
959 * @mr: the #MemoryRegion to be updated; should be an alias.
960 * @offset: the new offset into the target memory region
961 */
962 void memory_region_set_alias_offset(MemoryRegion *mr,
963 hwaddr offset);
964
965 /**
966 * memory_region_present: checks if an address relative to a @container
967 * translates into #MemoryRegion within @container
968 *
969 * Answer whether a #MemoryRegion within @container covers the address
970 * @addr.
971 *
972 * @container: a #MemoryRegion within which @addr is a relative address
973 * @addr: the area within @container to be searched
974 */
975 bool memory_region_present(MemoryRegion *container, hwaddr addr);
976
977 /**
978 * memory_region_is_mapped: returns true if #MemoryRegion is mapped
979 * into any address space.
980 *
981 * @mr: a #MemoryRegion which should be checked if it's mapped
982 */
983 bool memory_region_is_mapped(MemoryRegion *mr);
984
985 /**
986 * memory_region_find: translate an address/size relative to a
987 * MemoryRegion into a #MemoryRegionSection.
988 *
989 * Locates the first #MemoryRegion within @mr that overlaps the range
990 * given by @addr and @size.
991 *
992 * Returns a #MemoryRegionSection that describes a contiguous overlap.
993 * It will have the following characteristics:
994 * .@size = 0 iff no overlap was found
995 * .@mr is non-%NULL iff an overlap was found
996 *
997 * Remember that in the return value the @offset_within_region is
998 * relative to the returned region (in the .@mr field), not to the
999 * @mr argument.
1000 *
1001 * Similarly, the .@offset_within_address_space is relative to the
1002 * address space that contains both regions, the passed and the
1003 * returned one. However, in the special case where the @mr argument
1004 * has no container (and thus is the root of the address space), the
1005 * following will hold:
1006 * .@offset_within_address_space >= @addr
1007 * .@offset_within_address_space + .@size <= @addr + @size
1008 *
1009 * @mr: a MemoryRegion within which @addr is a relative address
1010 * @addr: start of the area within @as to be searched
1011 * @size: size of the area to be searched
1012 */
1013 MemoryRegionSection memory_region_find(MemoryRegion *mr,
1014 hwaddr addr, uint64_t size);
1015
1016 /**
1017 * address_space_sync_dirty_bitmap: synchronize the dirty log for all memory
1018 *
1019 * Synchronizes the dirty page log for an entire address space.
1020 * @as: the address space that contains the memory being synchronized
1021 */
1022 void address_space_sync_dirty_bitmap(AddressSpace *as);
1023
1024 /**
1025 * memory_region_transaction_begin: Start a transaction.
1026 *
1027 * During a transaction, changes will be accumulated and made visible
1028 * only when the transaction ends (is committed).
1029 */
1030 void memory_region_transaction_begin(void);
1031
1032 /**
1033 * memory_region_transaction_commit: Commit a transaction and make changes
1034 * visible to the guest.
1035 */
1036 void memory_region_transaction_commit(void);
1037
1038 /**
1039 * memory_listener_register: register callbacks to be called when memory
1040 * sections are mapped or unmapped into an address
1041 * space
1042 *
1043 * @listener: an object containing the callbacks to be called
1044 * @filter: if non-%NULL, only regions in this address space will be observed
1045 */
1046 void memory_listener_register(MemoryListener *listener, AddressSpace *filter);
1047
1048 /**
1049 * memory_listener_unregister: undo the effect of memory_listener_register()
1050 *
1051 * @listener: an object containing the callbacks to be removed
1052 */
1053 void memory_listener_unregister(MemoryListener *listener);
1054
1055 /**
1056 * memory_global_dirty_log_start: begin dirty logging for all regions
1057 */
1058 void memory_global_dirty_log_start(void);
1059
1060 /**
1061 * memory_global_dirty_log_stop: end dirty logging for all regions
1062 */
1063 void memory_global_dirty_log_stop(void);
1064
1065 void mtree_info(fprintf_function mon_printf, void *f);
1066
1067 /**
1068 * memory_region_dispatch_read: perform a read directly to the specified
1069 * MemoryRegion.
1070 *
1071 * @mr: #MemoryRegion to access
1072 * @addr: address within that region
1073 * @pval: pointer to uint64_t which the data is written to
1074 * @size: size of the access in bytes
1075 * @attrs: memory transaction attributes to use for the access
1076 */
1077 MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
1078 hwaddr addr,
1079 uint64_t *pval,
1080 unsigned size,
1081 MemTxAttrs attrs);
1082 /**
1083 * memory_region_dispatch_write: perform a write directly to the specified
1084 * MemoryRegion.
1085 *
1086 * @mr: #MemoryRegion to access
1087 * @addr: address within that region
1088 * @data: data to write
1089 * @size: size of the access in bytes
1090 * @attrs: memory transaction attributes to use for the access
1091 */
1092 MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
1093 hwaddr addr,
1094 uint64_t data,
1095 unsigned size,
1096 MemTxAttrs attrs);
1097
1098 /**
1099 * address_space_init: initializes an address space
1100 *
1101 * @as: an uninitialized #AddressSpace
1102 * @root: a #MemoryRegion that routes addesses for the address space
1103 * @name: an address space name. The name is only used for debugging
1104 * output.
1105 */
1106 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name);
1107
1108
1109 /**
1110 * address_space_destroy: destroy an address space
1111 *
1112 * Releases all resources associated with an address space. After an address space
1113 * is destroyed, its root memory region (given by address_space_init()) may be destroyed
1114 * as well.
1115 *
1116 * @as: address space to be destroyed
1117 */
1118 void address_space_destroy(AddressSpace *as);
1119
1120 /**
1121 * address_space_rw: read from or write to an address space.
1122 *
1123 * Return a MemTxResult indicating whether the operation succeeded
1124 * or failed (eg unassigned memory, device rejected the transaction,
1125 * IOMMU fault).
1126 *
1127 * @as: #AddressSpace to be accessed
1128 * @addr: address within that address space
1129 * @attrs: memory transaction attributes
1130 * @buf: buffer with the data transferred
1131 * @is_write: indicates the transfer direction
1132 */
1133 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr,
1134 MemTxAttrs attrs, uint8_t *buf,
1135 int len, bool is_write);
1136
1137 /**
1138 * address_space_write: write to address space.
1139 *
1140 * Return a MemTxResult indicating whether the operation succeeded
1141 * or failed (eg unassigned memory, device rejected the transaction,
1142 * IOMMU fault).
1143 *
1144 * @as: #AddressSpace to be accessed
1145 * @addr: address within that address space
1146 * @attrs: memory transaction attributes
1147 * @buf: buffer with the data transferred
1148 */
1149 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
1150 MemTxAttrs attrs,
1151 const uint8_t *buf, int len);
1152
1153 /**
1154 * address_space_read: read from an address space.
1155 *
1156 * Return a MemTxResult indicating whether the operation succeeded
1157 * or failed (eg unassigned memory, device rejected the transaction,
1158 * IOMMU fault).
1159 *
1160 * @as: #AddressSpace to be accessed
1161 * @addr: address within that address space
1162 * @attrs: memory transaction attributes
1163 * @buf: buffer with the data transferred
1164 */
1165 MemTxResult address_space_read(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
1166 uint8_t *buf, int len);
1167
1168 /**
1169 * address_space_ld*: load from an address space
1170 * address_space_st*: store to an address space
1171 *
1172 * These functions perform a load or store of the byte, word,
1173 * longword or quad to the specified address within the AddressSpace.
1174 * The _le suffixed functions treat the data as little endian;
1175 * _be indicates big endian; no suffix indicates "same endianness
1176 * as guest CPU".
1177 *
1178 * The "guest CPU endianness" accessors are deprecated for use outside
1179 * target-* code; devices should be CPU-agnostic and use either the LE
1180 * or the BE accessors.
1181 *
1182 * @as #AddressSpace to be accessed
1183 * @addr: address within that address space
1184 * @val: data value, for stores
1185 * @attrs: memory transaction attributes
1186 * @result: location to write the success/failure of the transaction;
1187 * if NULL, this information is discarded
1188 */
1189 uint32_t address_space_ldub(AddressSpace *as, hwaddr addr,
1190 MemTxAttrs attrs, MemTxResult *result);
1191 uint32_t address_space_lduw_le(AddressSpace *as, hwaddr addr,
1192 MemTxAttrs attrs, MemTxResult *result);
1193 uint32_t address_space_lduw_be(AddressSpace *as, hwaddr addr,
1194 MemTxAttrs attrs, MemTxResult *result);
1195 uint32_t address_space_ldl_le(AddressSpace *as, hwaddr addr,
1196 MemTxAttrs attrs, MemTxResult *result);
1197 uint32_t address_space_ldl_be(AddressSpace *as, hwaddr addr,
1198 MemTxAttrs attrs, MemTxResult *result);
1199 uint64_t address_space_ldq_le(AddressSpace *as, hwaddr addr,
1200 MemTxAttrs attrs, MemTxResult *result);
1201 uint64_t address_space_ldq_be(AddressSpace *as, hwaddr addr,
1202 MemTxAttrs attrs, MemTxResult *result);
1203 void address_space_stb(AddressSpace *as, hwaddr addr, uint32_t val,
1204 MemTxAttrs attrs, MemTxResult *result);
1205 void address_space_stw_le(AddressSpace *as, hwaddr addr, uint32_t val,
1206 MemTxAttrs attrs, MemTxResult *result);
1207 void address_space_stw_be(AddressSpace *as, hwaddr addr, uint32_t val,
1208 MemTxAttrs attrs, MemTxResult *result);
1209 void address_space_stl_le(AddressSpace *as, hwaddr addr, uint32_t val,
1210 MemTxAttrs attrs, MemTxResult *result);
1211 void address_space_stl_be(AddressSpace *as, hwaddr addr, uint32_t val,
1212 MemTxAttrs attrs, MemTxResult *result);
1213 void address_space_stq_le(AddressSpace *as, hwaddr addr, uint64_t val,
1214 MemTxAttrs attrs, MemTxResult *result);
1215 void address_space_stq_be(AddressSpace *as, hwaddr addr, uint64_t val,
1216 MemTxAttrs attrs, MemTxResult *result);
1217
1218 #ifdef NEED_CPU_H
1219 uint32_t address_space_lduw(AddressSpace *as, hwaddr addr,
1220 MemTxAttrs attrs, MemTxResult *result);
1221 uint32_t address_space_ldl(AddressSpace *as, hwaddr addr,
1222 MemTxAttrs attrs, MemTxResult *result);
1223 uint64_t address_space_ldq(AddressSpace *as, hwaddr addr,
1224 MemTxAttrs attrs, MemTxResult *result);
1225 void address_space_stl_notdirty(AddressSpace *as, hwaddr addr, uint32_t val,
1226 MemTxAttrs attrs, MemTxResult *result);
1227 void address_space_stw(AddressSpace *as, hwaddr addr, uint32_t val,
1228 MemTxAttrs attrs, MemTxResult *result);
1229 void address_space_stl(AddressSpace *as, hwaddr addr, uint32_t val,
1230 MemTxAttrs attrs, MemTxResult *result);
1231 void address_space_stq(AddressSpace *as, hwaddr addr, uint64_t val,
1232 MemTxAttrs attrs, MemTxResult *result);
1233 #endif
1234
1235 /* address_space_translate: translate an address range into an address space
1236 * into a MemoryRegion and an address range into that section
1237 *
1238 * @as: #AddressSpace to be accessed
1239 * @addr: address within that address space
1240 * @xlat: pointer to address within the returned memory region section's
1241 * #MemoryRegion.
1242 * @len: pointer to length
1243 * @is_write: indicates the transfer direction
1244 */
1245 MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr,
1246 hwaddr *xlat, hwaddr *len,
1247 bool is_write);
1248
1249 /* address_space_access_valid: check for validity of accessing an address
1250 * space range
1251 *
1252 * Check whether memory is assigned to the given address space range, and
1253 * access is permitted by any IOMMU regions that are active for the address
1254 * space.
1255 *
1256 * For now, addr and len should be aligned to a page size. This limitation
1257 * will be lifted in the future.
1258 *
1259 * @as: #AddressSpace to be accessed
1260 * @addr: address within that address space
1261 * @len: length of the area to be checked
1262 * @is_write: indicates the transfer direction
1263 */
1264 bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write);
1265
1266 /* address_space_map: map a physical memory region into a host virtual address
1267 *
1268 * May map a subset of the requested range, given by and returned in @plen.
1269 * May return %NULL if resources needed to perform the mapping are exhausted.
1270 * Use only for reads OR writes - not for read-modify-write operations.
1271 * Use cpu_register_map_client() to know when retrying the map operation is
1272 * likely to succeed.
1273 *
1274 * @as: #AddressSpace to be accessed
1275 * @addr: address within that address space
1276 * @plen: pointer to length of buffer; updated on return
1277 * @is_write: indicates the transfer direction
1278 */
1279 void *address_space_map(AddressSpace *as, hwaddr addr,
1280 hwaddr *plen, bool is_write);
1281
1282 /* address_space_unmap: Unmaps a memory region previously mapped by address_space_map()
1283 *
1284 * Will also mark the memory as dirty if @is_write == %true. @access_len gives
1285 * the amount of memory that was actually read or written by the caller.
1286 *
1287 * @as: #AddressSpace used
1288 * @addr: address within that address space
1289 * @len: buffer length as returned by address_space_map()
1290 * @access_len: amount of data actually transferred
1291 * @is_write: indicates the transfer direction
1292 */
1293 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
1294 int is_write, hwaddr access_len);
1295
1296
1297 #endif
1298
1299 #endif