]> git.proxmox.com Git - mirror_qemu.git/blob - include/exec/memory.h
Merge remote-tracking branch 'remotes/mst/tags/for_upstream' into staging
[mirror_qemu.git] / include / exec / memory.h
1 /*
2 * Physical memory management API
3 *
4 * Copyright 2011 Red Hat, Inc. and/or its affiliates
5 *
6 * Authors:
7 * Avi Kivity <avi@redhat.com>
8 *
9 * This work is licensed under the terms of the GNU GPL, version 2. See
10 * the COPYING file in the top-level directory.
11 *
12 */
13
14 #ifndef MEMORY_H
15 #define MEMORY_H
16
17 #ifndef CONFIG_USER_ONLY
18
19 #define DIRTY_MEMORY_VGA 0
20 #define DIRTY_MEMORY_CODE 1
21 #define DIRTY_MEMORY_MIGRATION 2
22 #define DIRTY_MEMORY_NUM 3 /* num of dirty bits */
23
24 #include <stdint.h>
25 #include <stdbool.h>
26 #include "qemu-common.h"
27 #include "exec/cpu-common.h"
28 #ifndef CONFIG_USER_ONLY
29 #include "exec/hwaddr.h"
30 #endif
31 #include "qemu/queue.h"
32 #include "qemu/int128.h"
33 #include "qemu/notify.h"
34 #include "qapi/error.h"
35 #include "qom/object.h"
36
37 #define MAX_PHYS_ADDR_SPACE_BITS 62
38 #define MAX_PHYS_ADDR (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1)
39
40 #define TYPE_MEMORY_REGION "qemu:memory-region"
41 #define MEMORY_REGION(obj) \
42 OBJECT_CHECK(MemoryRegion, (obj), TYPE_MEMORY_REGION)
43
44 typedef struct MemoryRegionOps MemoryRegionOps;
45 typedef struct MemoryRegionMmio MemoryRegionMmio;
46
47 struct MemoryRegionMmio {
48 CPUReadMemoryFunc *read[3];
49 CPUWriteMemoryFunc *write[3];
50 };
51
52 typedef struct IOMMUTLBEntry IOMMUTLBEntry;
53
54 /* See address_space_translate: bit 0 is read, bit 1 is write. */
55 typedef enum {
56 IOMMU_NONE = 0,
57 IOMMU_RO = 1,
58 IOMMU_WO = 2,
59 IOMMU_RW = 3,
60 } IOMMUAccessFlags;
61
62 struct IOMMUTLBEntry {
63 AddressSpace *target_as;
64 hwaddr iova;
65 hwaddr translated_addr;
66 hwaddr addr_mask; /* 0xfff = 4k translation */
67 IOMMUAccessFlags perm;
68 };
69
70 /*
71 * Memory region callbacks
72 */
73 struct MemoryRegionOps {
74 /* Read from the memory region. @addr is relative to @mr; @size is
75 * in bytes. */
76 uint64_t (*read)(void *opaque,
77 hwaddr addr,
78 unsigned size);
79 /* Write to the memory region. @addr is relative to @mr; @size is
80 * in bytes. */
81 void (*write)(void *opaque,
82 hwaddr addr,
83 uint64_t data,
84 unsigned size);
85
86 enum device_endian endianness;
87 /* Guest-visible constraints: */
88 struct {
89 /* If nonzero, specify bounds on access sizes beyond which a machine
90 * check is thrown.
91 */
92 unsigned min_access_size;
93 unsigned max_access_size;
94 /* If true, unaligned accesses are supported. Otherwise unaligned
95 * accesses throw machine checks.
96 */
97 bool unaligned;
98 /*
99 * If present, and returns #false, the transaction is not accepted
100 * by the device (and results in machine dependent behaviour such
101 * as a machine check exception).
102 */
103 bool (*accepts)(void *opaque, hwaddr addr,
104 unsigned size, bool is_write);
105 } valid;
106 /* Internal implementation constraints: */
107 struct {
108 /* If nonzero, specifies the minimum size implemented. Smaller sizes
109 * will be rounded upwards and a partial result will be returned.
110 */
111 unsigned min_access_size;
112 /* If nonzero, specifies the maximum size implemented. Larger sizes
113 * will be done as a series of accesses with smaller sizes.
114 */
115 unsigned max_access_size;
116 /* If true, unaligned accesses are supported. Otherwise all accesses
117 * are converted to (possibly multiple) naturally aligned accesses.
118 */
119 bool unaligned;
120 } impl;
121
122 /* If .read and .write are not present, old_mmio may be used for
123 * backwards compatibility with old mmio registration
124 */
125 const MemoryRegionMmio old_mmio;
126 };
127
128 typedef struct MemoryRegionIOMMUOps MemoryRegionIOMMUOps;
129
130 struct MemoryRegionIOMMUOps {
131 /* Return a TLB entry that contains a given address. */
132 IOMMUTLBEntry (*translate)(MemoryRegion *iommu, hwaddr addr, bool is_write);
133 };
134
135 typedef struct CoalescedMemoryRange CoalescedMemoryRange;
136 typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd;
137
138 struct MemoryRegion {
139 Object parent_obj;
140 /* All fields are private - violators will be prosecuted */
141 const MemoryRegionOps *ops;
142 const MemoryRegionIOMMUOps *iommu_ops;
143 void *opaque;
144 MemoryRegion *container;
145 Int128 size;
146 hwaddr addr;
147 void (*destructor)(MemoryRegion *mr);
148 ram_addr_t ram_addr;
149 bool subpage;
150 bool terminates;
151 bool romd_mode;
152 bool ram;
153 bool readonly; /* For RAM regions */
154 bool enabled;
155 bool rom_device;
156 bool warning_printed; /* For reservations */
157 bool flush_coalesced_mmio;
158 MemoryRegion *alias;
159 hwaddr alias_offset;
160 int32_t priority;
161 bool may_overlap;
162 QTAILQ_HEAD(subregions, MemoryRegion) subregions;
163 QTAILQ_ENTRY(MemoryRegion) subregions_link;
164 QTAILQ_HEAD(coalesced_ranges, CoalescedMemoryRange) coalesced;
165 const char *name;
166 uint8_t dirty_log_mask;
167 unsigned ioeventfd_nb;
168 MemoryRegionIoeventfd *ioeventfds;
169 NotifierList iommu_notify;
170 };
171
172 /**
173 * MemoryListener: callbacks structure for updates to the physical memory map
174 *
175 * Allows a component to adjust to changes in the guest-visible memory map.
176 * Use with memory_listener_register() and memory_listener_unregister().
177 */
178 struct MemoryListener {
179 void (*begin)(MemoryListener *listener);
180 void (*commit)(MemoryListener *listener);
181 void (*region_add)(MemoryListener *listener, MemoryRegionSection *section);
182 void (*region_del)(MemoryListener *listener, MemoryRegionSection *section);
183 void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section);
184 void (*log_start)(MemoryListener *listener, MemoryRegionSection *section);
185 void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section);
186 void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section);
187 void (*log_global_start)(MemoryListener *listener);
188 void (*log_global_stop)(MemoryListener *listener);
189 void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section,
190 bool match_data, uint64_t data, EventNotifier *e);
191 void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section,
192 bool match_data, uint64_t data, EventNotifier *e);
193 void (*coalesced_mmio_add)(MemoryListener *listener, MemoryRegionSection *section,
194 hwaddr addr, hwaddr len);
195 void (*coalesced_mmio_del)(MemoryListener *listener, MemoryRegionSection *section,
196 hwaddr addr, hwaddr len);
197 /* Lower = earlier (during add), later (during del) */
198 unsigned priority;
199 AddressSpace *address_space_filter;
200 QTAILQ_ENTRY(MemoryListener) link;
201 };
202
203 /**
204 * AddressSpace: describes a mapping of addresses to #MemoryRegion objects
205 */
206 struct AddressSpace {
207 /* All fields are private. */
208 char *name;
209 MemoryRegion *root;
210 struct FlatView *current_map;
211 int ioeventfd_nb;
212 struct MemoryRegionIoeventfd *ioeventfds;
213 struct AddressSpaceDispatch *dispatch;
214 struct AddressSpaceDispatch *next_dispatch;
215 MemoryListener dispatch_listener;
216
217 QTAILQ_ENTRY(AddressSpace) address_spaces_link;
218 };
219
220 /**
221 * MemoryRegionSection: describes a fragment of a #MemoryRegion
222 *
223 * @mr: the region, or %NULL if empty
224 * @address_space: the address space the region is mapped in
225 * @offset_within_region: the beginning of the section, relative to @mr's start
226 * @size: the size of the section; will not exceed @mr's boundaries
227 * @offset_within_address_space: the address of the first byte of the section
228 * relative to the region's address space
229 * @readonly: writes to this section are ignored
230 */
231 struct MemoryRegionSection {
232 MemoryRegion *mr;
233 AddressSpace *address_space;
234 hwaddr offset_within_region;
235 Int128 size;
236 hwaddr offset_within_address_space;
237 bool readonly;
238 };
239
240 /**
241 * memory_region_init: Initialize a memory region
242 *
243 * The region typically acts as a container for other memory regions. Use
244 * memory_region_add_subregion() to add subregions.
245 *
246 * @mr: the #MemoryRegion to be initialized
247 * @owner: the object that tracks the region's reference count
248 * @name: used for debugging; not visible to the user or ABI
249 * @size: size of the region; any subregions beyond this size will be clipped
250 */
251 void memory_region_init(MemoryRegion *mr,
252 struct Object *owner,
253 const char *name,
254 uint64_t size);
255
256 /**
257 * memory_region_ref: Add 1 to a memory region's reference count
258 *
259 * Whenever memory regions are accessed outside the BQL, they need to be
260 * preserved against hot-unplug. MemoryRegions actually do not have their
261 * own reference count; they piggyback on a QOM object, their "owner".
262 * This function adds a reference to the owner.
263 *
264 * All MemoryRegions must have an owner if they can disappear, even if the
265 * device they belong to operates exclusively under the BQL. This is because
266 * the region could be returned at any time by memory_region_find, and this
267 * is usually under guest control.
268 *
269 * @mr: the #MemoryRegion
270 */
271 void memory_region_ref(MemoryRegion *mr);
272
273 /**
274 * memory_region_unref: Remove 1 to a memory region's reference count
275 *
276 * Whenever memory regions are accessed outside the BQL, they need to be
277 * preserved against hot-unplug. MemoryRegions actually do not have their
278 * own reference count; they piggyback on a QOM object, their "owner".
279 * This function removes a reference to the owner and possibly destroys it.
280 *
281 * @mr: the #MemoryRegion
282 */
283 void memory_region_unref(MemoryRegion *mr);
284
285 /**
286 * memory_region_init_io: Initialize an I/O memory region.
287 *
288 * Accesses into the region will cause the callbacks in @ops to be called.
289 * if @size is nonzero, subregions will be clipped to @size.
290 *
291 * @mr: the #MemoryRegion to be initialized.
292 * @owner: the object that tracks the region's reference count
293 * @ops: a structure containing read and write callbacks to be used when
294 * I/O is performed on the region.
295 * @opaque: passed to to the read and write callbacks of the @ops structure.
296 * @name: used for debugging; not visible to the user or ABI
297 * @size: size of the region.
298 */
299 void memory_region_init_io(MemoryRegion *mr,
300 struct Object *owner,
301 const MemoryRegionOps *ops,
302 void *opaque,
303 const char *name,
304 uint64_t size);
305
306 /**
307 * memory_region_init_ram: Initialize RAM memory region. Accesses into the
308 * region will modify memory directly.
309 *
310 * @mr: the #MemoryRegion to be initialized.
311 * @owner: the object that tracks the region's reference count
312 * @name: the name of the region.
313 * @size: size of the region.
314 * @errp: pointer to Error*, to store an error if it happens.
315 */
316 void memory_region_init_ram(MemoryRegion *mr,
317 struct Object *owner,
318 const char *name,
319 uint64_t size,
320 Error **errp);
321
322 #ifdef __linux__
323 /**
324 * memory_region_init_ram_from_file: Initialize RAM memory region with a
325 * mmap-ed backend.
326 *
327 * @mr: the #MemoryRegion to be initialized.
328 * @owner: the object that tracks the region's reference count
329 * @name: the name of the region.
330 * @size: size of the region.
331 * @share: %true if memory must be mmaped with the MAP_SHARED flag
332 * @path: the path in which to allocate the RAM.
333 * @errp: pointer to Error*, to store an error if it happens.
334 */
335 void memory_region_init_ram_from_file(MemoryRegion *mr,
336 struct Object *owner,
337 const char *name,
338 uint64_t size,
339 bool share,
340 const char *path,
341 Error **errp);
342 #endif
343
344 /**
345 * memory_region_init_ram_ptr: Initialize RAM memory region from a
346 * user-provided pointer. Accesses into the
347 * region will modify memory directly.
348 *
349 * @mr: the #MemoryRegion to be initialized.
350 * @owner: the object that tracks the region's reference count
351 * @name: the name of the region.
352 * @size: size of the region.
353 * @ptr: memory to be mapped; must contain at least @size bytes.
354 */
355 void memory_region_init_ram_ptr(MemoryRegion *mr,
356 struct Object *owner,
357 const char *name,
358 uint64_t size,
359 void *ptr);
360
361 /**
362 * memory_region_init_alias: Initialize a memory region that aliases all or a
363 * part of another memory region.
364 *
365 * @mr: the #MemoryRegion to be initialized.
366 * @owner: the object that tracks the region's reference count
367 * @name: used for debugging; not visible to the user or ABI
368 * @orig: the region to be referenced; @mr will be equivalent to
369 * @orig between @offset and @offset + @size - 1.
370 * @offset: start of the section in @orig to be referenced.
371 * @size: size of the region.
372 */
373 void memory_region_init_alias(MemoryRegion *mr,
374 struct Object *owner,
375 const char *name,
376 MemoryRegion *orig,
377 hwaddr offset,
378 uint64_t size);
379
380 /**
381 * memory_region_init_rom_device: Initialize a ROM memory region. Writes are
382 * handled via callbacks.
383 *
384 * @mr: the #MemoryRegion to be initialized.
385 * @owner: the object that tracks the region's reference count
386 * @ops: callbacks for write access handling.
387 * @name: the name of the region.
388 * @size: size of the region.
389 * @errp: pointer to Error*, to store an error if it happens.
390 */
391 void memory_region_init_rom_device(MemoryRegion *mr,
392 struct Object *owner,
393 const MemoryRegionOps *ops,
394 void *opaque,
395 const char *name,
396 uint64_t size,
397 Error **errp);
398
399 /**
400 * memory_region_init_reservation: Initialize a memory region that reserves
401 * I/O space.
402 *
403 * A reservation region primariy serves debugging purposes. It claims I/O
404 * space that is not supposed to be handled by QEMU itself. Any access via
405 * the memory API will cause an abort().
406 *
407 * @mr: the #MemoryRegion to be initialized
408 * @owner: the object that tracks the region's reference count
409 * @name: used for debugging; not visible to the user or ABI
410 * @size: size of the region.
411 */
412 void memory_region_init_reservation(MemoryRegion *mr,
413 struct Object *owner,
414 const char *name,
415 uint64_t size);
416
417 /**
418 * memory_region_init_iommu: Initialize a memory region that translates
419 * addresses
420 *
421 * An IOMMU region translates addresses and forwards accesses to a target
422 * memory region.
423 *
424 * @mr: the #MemoryRegion to be initialized
425 * @owner: the object that tracks the region's reference count
426 * @ops: a function that translates addresses into the @target region
427 * @name: used for debugging; not visible to the user or ABI
428 * @size: size of the region.
429 */
430 void memory_region_init_iommu(MemoryRegion *mr,
431 struct Object *owner,
432 const MemoryRegionIOMMUOps *ops,
433 const char *name,
434 uint64_t size);
435
436 /**
437 * memory_region_owner: get a memory region's owner.
438 *
439 * @mr: the memory region being queried.
440 */
441 struct Object *memory_region_owner(MemoryRegion *mr);
442
443 /**
444 * memory_region_size: get a memory region's size.
445 *
446 * @mr: the memory region being queried.
447 */
448 uint64_t memory_region_size(MemoryRegion *mr);
449
450 /**
451 * memory_region_is_ram: check whether a memory region is random access
452 *
453 * Returns %true is a memory region is random access.
454 *
455 * @mr: the memory region being queried
456 */
457 bool memory_region_is_ram(MemoryRegion *mr);
458
459 /**
460 * memory_region_is_romd: check whether a memory region is in ROMD mode
461 *
462 * Returns %true if a memory region is a ROM device and currently set to allow
463 * direct reads.
464 *
465 * @mr: the memory region being queried
466 */
467 static inline bool memory_region_is_romd(MemoryRegion *mr)
468 {
469 return mr->rom_device && mr->romd_mode;
470 }
471
472 /**
473 * memory_region_is_iommu: check whether a memory region is an iommu
474 *
475 * Returns %true is a memory region is an iommu.
476 *
477 * @mr: the memory region being queried
478 */
479 bool memory_region_is_iommu(MemoryRegion *mr);
480
481 /**
482 * memory_region_notify_iommu: notify a change in an IOMMU translation entry.
483 *
484 * @mr: the memory region that was changed
485 * @entry: the new entry in the IOMMU translation table. The entry
486 * replaces all old entries for the same virtual I/O address range.
487 * Deleted entries have .@perm == 0.
488 */
489 void memory_region_notify_iommu(MemoryRegion *mr,
490 IOMMUTLBEntry entry);
491
492 /**
493 * memory_region_register_iommu_notifier: register a notifier for changes to
494 * IOMMU translation entries.
495 *
496 * @mr: the memory region to observe
497 * @n: the notifier to be added; the notifier receives a pointer to an
498 * #IOMMUTLBEntry as the opaque value; the pointer ceases to be
499 * valid on exit from the notifier.
500 */
501 void memory_region_register_iommu_notifier(MemoryRegion *mr, Notifier *n);
502
503 /**
504 * memory_region_unregister_iommu_notifier: unregister a notifier for
505 * changes to IOMMU translation entries.
506 *
507 * @n: the notifier to be removed.
508 */
509 void memory_region_unregister_iommu_notifier(Notifier *n);
510
511 /**
512 * memory_region_name: get a memory region's name
513 *
514 * Returns the string that was used to initialize the memory region.
515 *
516 * @mr: the memory region being queried
517 */
518 const char *memory_region_name(const MemoryRegion *mr);
519
520 /**
521 * memory_region_is_logging: return whether a memory region is logging writes
522 *
523 * Returns %true if the memory region is logging writes
524 *
525 * @mr: the memory region being queried
526 */
527 bool memory_region_is_logging(MemoryRegion *mr);
528
529 /**
530 * memory_region_is_rom: check whether a memory region is ROM
531 *
532 * Returns %true is a memory region is read-only memory.
533 *
534 * @mr: the memory region being queried
535 */
536 bool memory_region_is_rom(MemoryRegion *mr);
537
538 /**
539 * memory_region_get_fd: Get a file descriptor backing a RAM memory region.
540 *
541 * Returns a file descriptor backing a file-based RAM memory region,
542 * or -1 if the region is not a file-based RAM memory region.
543 *
544 * @mr: the RAM or alias memory region being queried.
545 */
546 int memory_region_get_fd(MemoryRegion *mr);
547
548 /**
549 * memory_region_get_ram_ptr: Get a pointer into a RAM memory region.
550 *
551 * Returns a host pointer to a RAM memory region (created with
552 * memory_region_init_ram() or memory_region_init_ram_ptr()). Use with
553 * care.
554 *
555 * @mr: the memory region being queried.
556 */
557 void *memory_region_get_ram_ptr(MemoryRegion *mr);
558
559 /**
560 * memory_region_set_log: Turn dirty logging on or off for a region.
561 *
562 * Turns dirty logging on or off for a specified client (display, migration).
563 * Only meaningful for RAM regions.
564 *
565 * @mr: the memory region being updated.
566 * @log: whether dirty logging is to be enabled or disabled.
567 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
568 * %DIRTY_MEMORY_VGA.
569 */
570 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client);
571
572 /**
573 * memory_region_get_dirty: Check whether a range of bytes is dirty
574 * for a specified client.
575 *
576 * Checks whether a range of bytes has been written to since the last
577 * call to memory_region_reset_dirty() with the same @client. Dirty logging
578 * must be enabled.
579 *
580 * @mr: the memory region being queried.
581 * @addr: the address (relative to the start of the region) being queried.
582 * @size: the size of the range being queried.
583 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
584 * %DIRTY_MEMORY_VGA.
585 */
586 bool memory_region_get_dirty(MemoryRegion *mr, hwaddr addr,
587 hwaddr size, unsigned client);
588
589 /**
590 * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region.
591 *
592 * Marks a range of bytes as dirty, after it has been dirtied outside
593 * guest code.
594 *
595 * @mr: the memory region being dirtied.
596 * @addr: the address (relative to the start of the region) being dirtied.
597 * @size: size of the range being dirtied.
598 */
599 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
600 hwaddr size);
601
602 /**
603 * memory_region_test_and_clear_dirty: Check whether a range of bytes is dirty
604 * for a specified client. It clears them.
605 *
606 * Checks whether a range of bytes has been written to since the last
607 * call to memory_region_reset_dirty() with the same @client. Dirty logging
608 * must be enabled.
609 *
610 * @mr: the memory region being queried.
611 * @addr: the address (relative to the start of the region) being queried.
612 * @size: the size of the range being queried.
613 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
614 * %DIRTY_MEMORY_VGA.
615 */
616 bool memory_region_test_and_clear_dirty(MemoryRegion *mr, hwaddr addr,
617 hwaddr size, unsigned client);
618 /**
619 * memory_region_sync_dirty_bitmap: Synchronize a region's dirty bitmap with
620 * any external TLBs (e.g. kvm)
621 *
622 * Flushes dirty information from accelerators such as kvm and vhost-net
623 * and makes it available to users of the memory API.
624 *
625 * @mr: the region being flushed.
626 */
627 void memory_region_sync_dirty_bitmap(MemoryRegion *mr);
628
629 /**
630 * memory_region_reset_dirty: Mark a range of pages as clean, for a specified
631 * client.
632 *
633 * Marks a range of pages as no longer dirty.
634 *
635 * @mr: the region being updated.
636 * @addr: the start of the subrange being cleaned.
637 * @size: the size of the subrange being cleaned.
638 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
639 * %DIRTY_MEMORY_VGA.
640 */
641 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
642 hwaddr size, unsigned client);
643
644 /**
645 * memory_region_set_readonly: Turn a memory region read-only (or read-write)
646 *
647 * Allows a memory region to be marked as read-only (turning it into a ROM).
648 * only useful on RAM regions.
649 *
650 * @mr: the region being updated.
651 * @readonly: whether rhe region is to be ROM or RAM.
652 */
653 void memory_region_set_readonly(MemoryRegion *mr, bool readonly);
654
655 /**
656 * memory_region_rom_device_set_romd: enable/disable ROMD mode
657 *
658 * Allows a ROM device (initialized with memory_region_init_rom_device() to
659 * set to ROMD mode (default) or MMIO mode. When it is in ROMD mode, the
660 * device is mapped to guest memory and satisfies read access directly.
661 * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function.
662 * Writes are always handled by the #MemoryRegion.write function.
663 *
664 * @mr: the memory region to be updated
665 * @romd_mode: %true to put the region into ROMD mode
666 */
667 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode);
668
669 /**
670 * memory_region_set_coalescing: Enable memory coalescing for the region.
671 *
672 * Enabled writes to a region to be queued for later processing. MMIO ->write
673 * callbacks may be delayed until a non-coalesced MMIO is issued.
674 * Only useful for IO regions. Roughly similar to write-combining hardware.
675 *
676 * @mr: the memory region to be write coalesced
677 */
678 void memory_region_set_coalescing(MemoryRegion *mr);
679
680 /**
681 * memory_region_add_coalescing: Enable memory coalescing for a sub-range of
682 * a region.
683 *
684 * Like memory_region_set_coalescing(), but works on a sub-range of a region.
685 * Multiple calls can be issued coalesced disjoint ranges.
686 *
687 * @mr: the memory region to be updated.
688 * @offset: the start of the range within the region to be coalesced.
689 * @size: the size of the subrange to be coalesced.
690 */
691 void memory_region_add_coalescing(MemoryRegion *mr,
692 hwaddr offset,
693 uint64_t size);
694
695 /**
696 * memory_region_clear_coalescing: Disable MMIO coalescing for the region.
697 *
698 * Disables any coalescing caused by memory_region_set_coalescing() or
699 * memory_region_add_coalescing(). Roughly equivalent to uncacheble memory
700 * hardware.
701 *
702 * @mr: the memory region to be updated.
703 */
704 void memory_region_clear_coalescing(MemoryRegion *mr);
705
706 /**
707 * memory_region_set_flush_coalesced: Enforce memory coalescing flush before
708 * accesses.
709 *
710 * Ensure that pending coalesced MMIO request are flushed before the memory
711 * region is accessed. This property is automatically enabled for all regions
712 * passed to memory_region_set_coalescing() and memory_region_add_coalescing().
713 *
714 * @mr: the memory region to be updated.
715 */
716 void memory_region_set_flush_coalesced(MemoryRegion *mr);
717
718 /**
719 * memory_region_clear_flush_coalesced: Disable memory coalescing flush before
720 * accesses.
721 *
722 * Clear the automatic coalesced MMIO flushing enabled via
723 * memory_region_set_flush_coalesced. Note that this service has no effect on
724 * memory regions that have MMIO coalescing enabled for themselves. For them,
725 * automatic flushing will stop once coalescing is disabled.
726 *
727 * @mr: the memory region to be updated.
728 */
729 void memory_region_clear_flush_coalesced(MemoryRegion *mr);
730
731 /**
732 * memory_region_add_eventfd: Request an eventfd to be triggered when a word
733 * is written to a location.
734 *
735 * Marks a word in an IO region (initialized with memory_region_init_io())
736 * as a trigger for an eventfd event. The I/O callback will not be called.
737 * The caller must be prepared to handle failure (that is, take the required
738 * action if the callback _is_ called).
739 *
740 * @mr: the memory region being updated.
741 * @addr: the address within @mr that is to be monitored
742 * @size: the size of the access to trigger the eventfd
743 * @match_data: whether to match against @data, instead of just @addr
744 * @data: the data to match against the guest write
745 * @fd: the eventfd to be triggered when @addr, @size, and @data all match.
746 **/
747 void memory_region_add_eventfd(MemoryRegion *mr,
748 hwaddr addr,
749 unsigned size,
750 bool match_data,
751 uint64_t data,
752 EventNotifier *e);
753
754 /**
755 * memory_region_del_eventfd: Cancel an eventfd.
756 *
757 * Cancels an eventfd trigger requested by a previous
758 * memory_region_add_eventfd() call.
759 *
760 * @mr: the memory region being updated.
761 * @addr: the address within @mr that is to be monitored
762 * @size: the size of the access to trigger the eventfd
763 * @match_data: whether to match against @data, instead of just @addr
764 * @data: the data to match against the guest write
765 * @fd: the eventfd to be triggered when @addr, @size, and @data all match.
766 */
767 void memory_region_del_eventfd(MemoryRegion *mr,
768 hwaddr addr,
769 unsigned size,
770 bool match_data,
771 uint64_t data,
772 EventNotifier *e);
773
774 /**
775 * memory_region_add_subregion: Add a subregion to a container.
776 *
777 * Adds a subregion at @offset. The subregion may not overlap with other
778 * subregions (except for those explicitly marked as overlapping). A region
779 * may only be added once as a subregion (unless removed with
780 * memory_region_del_subregion()); use memory_region_init_alias() if you
781 * want a region to be a subregion in multiple locations.
782 *
783 * @mr: the region to contain the new subregion; must be a container
784 * initialized with memory_region_init().
785 * @offset: the offset relative to @mr where @subregion is added.
786 * @subregion: the subregion to be added.
787 */
788 void memory_region_add_subregion(MemoryRegion *mr,
789 hwaddr offset,
790 MemoryRegion *subregion);
791 /**
792 * memory_region_add_subregion_overlap: Add a subregion to a container
793 * with overlap.
794 *
795 * Adds a subregion at @offset. The subregion may overlap with other
796 * subregions. Conflicts are resolved by having a higher @priority hide a
797 * lower @priority. Subregions without priority are taken as @priority 0.
798 * A region may only be added once as a subregion (unless removed with
799 * memory_region_del_subregion()); use memory_region_init_alias() if you
800 * want a region to be a subregion in multiple locations.
801 *
802 * @mr: the region to contain the new subregion; must be a container
803 * initialized with memory_region_init().
804 * @offset: the offset relative to @mr where @subregion is added.
805 * @subregion: the subregion to be added.
806 * @priority: used for resolving overlaps; highest priority wins.
807 */
808 void memory_region_add_subregion_overlap(MemoryRegion *mr,
809 hwaddr offset,
810 MemoryRegion *subregion,
811 int priority);
812
813 /**
814 * memory_region_get_ram_addr: Get the ram address associated with a memory
815 * region
816 *
817 * DO NOT USE THIS FUNCTION. This is a temporary workaround while the Xen
818 * code is being reworked.
819 */
820 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr);
821
822 /**
823 * memory_region_del_subregion: Remove a subregion.
824 *
825 * Removes a subregion from its container.
826 *
827 * @mr: the container to be updated.
828 * @subregion: the region being removed; must be a current subregion of @mr.
829 */
830 void memory_region_del_subregion(MemoryRegion *mr,
831 MemoryRegion *subregion);
832
833 /*
834 * memory_region_set_enabled: dynamically enable or disable a region
835 *
836 * Enables or disables a memory region. A disabled memory region
837 * ignores all accesses to itself and its subregions. It does not
838 * obscure sibling subregions with lower priority - it simply behaves as
839 * if it was removed from the hierarchy.
840 *
841 * Regions default to being enabled.
842 *
843 * @mr: the region to be updated
844 * @enabled: whether to enable or disable the region
845 */
846 void memory_region_set_enabled(MemoryRegion *mr, bool enabled);
847
848 /*
849 * memory_region_set_address: dynamically update the address of a region
850 *
851 * Dynamically updates the address of a region, relative to its container.
852 * May be used on regions are currently part of a memory hierarchy.
853 *
854 * @mr: the region to be updated
855 * @addr: new address, relative to container region
856 */
857 void memory_region_set_address(MemoryRegion *mr, hwaddr addr);
858
859 /*
860 * memory_region_set_alias_offset: dynamically update a memory alias's offset
861 *
862 * Dynamically updates the offset into the target region that an alias points
863 * to, as if the fourth argument to memory_region_init_alias() has changed.
864 *
865 * @mr: the #MemoryRegion to be updated; should be an alias.
866 * @offset: the new offset into the target memory region
867 */
868 void memory_region_set_alias_offset(MemoryRegion *mr,
869 hwaddr offset);
870
871 /**
872 * memory_region_present: checks if an address relative to a @container
873 * translates into #MemoryRegion within @container
874 *
875 * Answer whether a #MemoryRegion within @container covers the address
876 * @addr.
877 *
878 * @container: a #MemoryRegion within which @addr is a relative address
879 * @addr: the area within @container to be searched
880 */
881 bool memory_region_present(MemoryRegion *container, hwaddr addr);
882
883 /**
884 * memory_region_is_mapped: returns true if #MemoryRegion is mapped
885 * into any address space.
886 *
887 * @mr: a #MemoryRegion which should be checked if it's mapped
888 */
889 bool memory_region_is_mapped(MemoryRegion *mr);
890
891 /**
892 * memory_region_find: translate an address/size relative to a
893 * MemoryRegion into a #MemoryRegionSection.
894 *
895 * Locates the first #MemoryRegion within @mr that overlaps the range
896 * given by @addr and @size.
897 *
898 * Returns a #MemoryRegionSection that describes a contiguous overlap.
899 * It will have the following characteristics:
900 * .@size = 0 iff no overlap was found
901 * .@mr is non-%NULL iff an overlap was found
902 *
903 * Remember that in the return value the @offset_within_region is
904 * relative to the returned region (in the .@mr field), not to the
905 * @mr argument.
906 *
907 * Similarly, the .@offset_within_address_space is relative to the
908 * address space that contains both regions, the passed and the
909 * returned one. However, in the special case where the @mr argument
910 * has no container (and thus is the root of the address space), the
911 * following will hold:
912 * .@offset_within_address_space >= @addr
913 * .@offset_within_address_space + .@size <= @addr + @size
914 *
915 * @mr: a MemoryRegion within which @addr is a relative address
916 * @addr: start of the area within @as to be searched
917 * @size: size of the area to be searched
918 */
919 MemoryRegionSection memory_region_find(MemoryRegion *mr,
920 hwaddr addr, uint64_t size);
921
922 /**
923 * address_space_sync_dirty_bitmap: synchronize the dirty log for all memory
924 *
925 * Synchronizes the dirty page log for an entire address space.
926 * @as: the address space that contains the memory being synchronized
927 */
928 void address_space_sync_dirty_bitmap(AddressSpace *as);
929
930 /**
931 * memory_region_transaction_begin: Start a transaction.
932 *
933 * During a transaction, changes will be accumulated and made visible
934 * only when the transaction ends (is committed).
935 */
936 void memory_region_transaction_begin(void);
937
938 /**
939 * memory_region_transaction_commit: Commit a transaction and make changes
940 * visible to the guest.
941 */
942 void memory_region_transaction_commit(void);
943
944 /**
945 * memory_listener_register: register callbacks to be called when memory
946 * sections are mapped or unmapped into an address
947 * space
948 *
949 * @listener: an object containing the callbacks to be called
950 * @filter: if non-%NULL, only regions in this address space will be observed
951 */
952 void memory_listener_register(MemoryListener *listener, AddressSpace *filter);
953
954 /**
955 * memory_listener_unregister: undo the effect of memory_listener_register()
956 *
957 * @listener: an object containing the callbacks to be removed
958 */
959 void memory_listener_unregister(MemoryListener *listener);
960
961 /**
962 * memory_global_dirty_log_start: begin dirty logging for all regions
963 */
964 void memory_global_dirty_log_start(void);
965
966 /**
967 * memory_global_dirty_log_stop: end dirty logging for all regions
968 */
969 void memory_global_dirty_log_stop(void);
970
971 void mtree_info(fprintf_function mon_printf, void *f);
972
973 /**
974 * address_space_init: initializes an address space
975 *
976 * @as: an uninitialized #AddressSpace
977 * @root: a #MemoryRegion that routes addesses for the address space
978 * @name: an address space name. The name is only used for debugging
979 * output.
980 */
981 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name);
982
983
984 /**
985 * address_space_destroy: destroy an address space
986 *
987 * Releases all resources associated with an address space. After an address space
988 * is destroyed, its root memory region (given by address_space_init()) may be destroyed
989 * as well.
990 *
991 * @as: address space to be destroyed
992 */
993 void address_space_destroy(AddressSpace *as);
994
995 /**
996 * address_space_rw: read from or write to an address space.
997 *
998 * Return true if the operation hit any unassigned memory or encountered an
999 * IOMMU fault.
1000 *
1001 * @as: #AddressSpace to be accessed
1002 * @addr: address within that address space
1003 * @buf: buffer with the data transferred
1004 * @is_write: indicates the transfer direction
1005 */
1006 bool address_space_rw(AddressSpace *as, hwaddr addr, uint8_t *buf,
1007 int len, bool is_write);
1008
1009 /**
1010 * address_space_write: write to address space.
1011 *
1012 * Return true if the operation hit any unassigned memory or encountered an
1013 * IOMMU fault.
1014 *
1015 * @as: #AddressSpace to be accessed
1016 * @addr: address within that address space
1017 * @buf: buffer with the data transferred
1018 */
1019 bool address_space_write(AddressSpace *as, hwaddr addr,
1020 const uint8_t *buf, int len);
1021
1022 /**
1023 * address_space_read: read from an address space.
1024 *
1025 * Return true if the operation hit any unassigned memory or encountered an
1026 * IOMMU fault.
1027 *
1028 * @as: #AddressSpace to be accessed
1029 * @addr: address within that address space
1030 * @buf: buffer with the data transferred
1031 */
1032 bool address_space_read(AddressSpace *as, hwaddr addr, uint8_t *buf, int len);
1033
1034 /* address_space_translate: translate an address range into an address space
1035 * into a MemoryRegion and an address range into that section
1036 *
1037 * @as: #AddressSpace to be accessed
1038 * @addr: address within that address space
1039 * @xlat: pointer to address within the returned memory region section's
1040 * #MemoryRegion.
1041 * @len: pointer to length
1042 * @is_write: indicates the transfer direction
1043 */
1044 MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr,
1045 hwaddr *xlat, hwaddr *len,
1046 bool is_write);
1047
1048 /* address_space_access_valid: check for validity of accessing an address
1049 * space range
1050 *
1051 * Check whether memory is assigned to the given address space range, and
1052 * access is permitted by any IOMMU regions that are active for the address
1053 * space.
1054 *
1055 * For now, addr and len should be aligned to a page size. This limitation
1056 * will be lifted in the future.
1057 *
1058 * @as: #AddressSpace to be accessed
1059 * @addr: address within that address space
1060 * @len: length of the area to be checked
1061 * @is_write: indicates the transfer direction
1062 */
1063 bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write);
1064
1065 /* address_space_map: map a physical memory region into a host virtual address
1066 *
1067 * May map a subset of the requested range, given by and returned in @plen.
1068 * May return %NULL if resources needed to perform the mapping are exhausted.
1069 * Use only for reads OR writes - not for read-modify-write operations.
1070 * Use cpu_register_map_client() to know when retrying the map operation is
1071 * likely to succeed.
1072 *
1073 * @as: #AddressSpace to be accessed
1074 * @addr: address within that address space
1075 * @plen: pointer to length of buffer; updated on return
1076 * @is_write: indicates the transfer direction
1077 */
1078 void *address_space_map(AddressSpace *as, hwaddr addr,
1079 hwaddr *plen, bool is_write);
1080
1081 /* address_space_unmap: Unmaps a memory region previously mapped by address_space_map()
1082 *
1083 * Will also mark the memory as dirty if @is_write == %true. @access_len gives
1084 * the amount of memory that was actually read or written by the caller.
1085 *
1086 * @as: #AddressSpace used
1087 * @addr: address within that address space
1088 * @len: buffer length as returned by address_space_map()
1089 * @access_len: amount of data actually transferred
1090 * @is_write: indicates the transfer direction
1091 */
1092 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
1093 int is_write, hwaddr access_len);
1094
1095
1096 #endif
1097
1098 #endif