]> git.proxmox.com Git - mirror_qemu.git/blob - include/exec/memory.h
memory: handle alias in memory_region_is_iommu()
[mirror_qemu.git] / include / exec / memory.h
1 /*
2 * Physical memory management API
3 *
4 * Copyright 2011 Red Hat, Inc. and/or its affiliates
5 *
6 * Authors:
7 * Avi Kivity <avi@redhat.com>
8 *
9 * This work is licensed under the terms of the GNU GPL, version 2. See
10 * the COPYING file in the top-level directory.
11 *
12 */
13
14 #ifndef MEMORY_H
15 #define MEMORY_H
16
17 #ifndef CONFIG_USER_ONLY
18
19 #define DIRTY_MEMORY_VGA 0
20 #define DIRTY_MEMORY_CODE 1
21 #define DIRTY_MEMORY_MIGRATION 2
22 #define DIRTY_MEMORY_NUM 3 /* num of dirty bits */
23
24 #include "exec/cpu-common.h"
25 #ifndef CONFIG_USER_ONLY
26 #include "exec/hwaddr.h"
27 #endif
28 #include "exec/memattrs.h"
29 #include "qemu/queue.h"
30 #include "qemu/int128.h"
31 #include "qemu/notify.h"
32 #include "qom/object.h"
33 #include "qemu/rcu.h"
34
35 #define RAM_ADDR_INVALID (~(ram_addr_t)0)
36
37 #define MAX_PHYS_ADDR_SPACE_BITS 62
38 #define MAX_PHYS_ADDR (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1)
39
40 #define TYPE_MEMORY_REGION "qemu:memory-region"
41 #define MEMORY_REGION(obj) \
42 OBJECT_CHECK(MemoryRegion, (obj), TYPE_MEMORY_REGION)
43
44 typedef struct MemoryRegionOps MemoryRegionOps;
45 typedef struct MemoryRegionMmio MemoryRegionMmio;
46
47 struct MemoryRegionMmio {
48 CPUReadMemoryFunc *read[3];
49 CPUWriteMemoryFunc *write[3];
50 };
51
52 typedef struct IOMMUTLBEntry IOMMUTLBEntry;
53
54 /* See address_space_translate: bit 0 is read, bit 1 is write. */
55 typedef enum {
56 IOMMU_NONE = 0,
57 IOMMU_RO = 1,
58 IOMMU_WO = 2,
59 IOMMU_RW = 3,
60 } IOMMUAccessFlags;
61
62 struct IOMMUTLBEntry {
63 AddressSpace *target_as;
64 hwaddr iova;
65 hwaddr translated_addr;
66 hwaddr addr_mask; /* 0xfff = 4k translation */
67 IOMMUAccessFlags perm;
68 };
69
70 /*
71 * Bitmap for different IOMMUNotifier capabilities. Each notifier can
72 * register with one or multiple IOMMU Notifier capability bit(s).
73 */
74 typedef enum {
75 IOMMU_NOTIFIER_NONE = 0,
76 /* Notify cache invalidations */
77 IOMMU_NOTIFIER_UNMAP = 0x1,
78 /* Notify entry changes (newly created entries) */
79 IOMMU_NOTIFIER_MAP = 0x2,
80 } IOMMUNotifierFlag;
81
82 #define IOMMU_NOTIFIER_ALL (IOMMU_NOTIFIER_MAP | IOMMU_NOTIFIER_UNMAP)
83
84 struct IOMMUNotifier {
85 void (*notify)(struct IOMMUNotifier *notifier, IOMMUTLBEntry *data);
86 IOMMUNotifierFlag notifier_flags;
87 QLIST_ENTRY(IOMMUNotifier) node;
88 };
89 typedef struct IOMMUNotifier IOMMUNotifier;
90
91 /* New-style MMIO accessors can indicate that the transaction failed.
92 * A zero (MEMTX_OK) response means success; anything else is a failure
93 * of some kind. The memory subsystem will bitwise-OR together results
94 * if it is synthesizing an operation from multiple smaller accesses.
95 */
96 #define MEMTX_OK 0
97 #define MEMTX_ERROR (1U << 0) /* device returned an error */
98 #define MEMTX_DECODE_ERROR (1U << 1) /* nothing at that address */
99 typedef uint32_t MemTxResult;
100
101 /*
102 * Memory region callbacks
103 */
104 struct MemoryRegionOps {
105 /* Read from the memory region. @addr is relative to @mr; @size is
106 * in bytes. */
107 uint64_t (*read)(void *opaque,
108 hwaddr addr,
109 unsigned size);
110 /* Write to the memory region. @addr is relative to @mr; @size is
111 * in bytes. */
112 void (*write)(void *opaque,
113 hwaddr addr,
114 uint64_t data,
115 unsigned size);
116
117 MemTxResult (*read_with_attrs)(void *opaque,
118 hwaddr addr,
119 uint64_t *data,
120 unsigned size,
121 MemTxAttrs attrs);
122 MemTxResult (*write_with_attrs)(void *opaque,
123 hwaddr addr,
124 uint64_t data,
125 unsigned size,
126 MemTxAttrs attrs);
127
128 enum device_endian endianness;
129 /* Guest-visible constraints: */
130 struct {
131 /* If nonzero, specify bounds on access sizes beyond which a machine
132 * check is thrown.
133 */
134 unsigned min_access_size;
135 unsigned max_access_size;
136 /* If true, unaligned accesses are supported. Otherwise unaligned
137 * accesses throw machine checks.
138 */
139 bool unaligned;
140 /*
141 * If present, and returns #false, the transaction is not accepted
142 * by the device (and results in machine dependent behaviour such
143 * as a machine check exception).
144 */
145 bool (*accepts)(void *opaque, hwaddr addr,
146 unsigned size, bool is_write);
147 } valid;
148 /* Internal implementation constraints: */
149 struct {
150 /* If nonzero, specifies the minimum size implemented. Smaller sizes
151 * will be rounded upwards and a partial result will be returned.
152 */
153 unsigned min_access_size;
154 /* If nonzero, specifies the maximum size implemented. Larger sizes
155 * will be done as a series of accesses with smaller sizes.
156 */
157 unsigned max_access_size;
158 /* If true, unaligned accesses are supported. Otherwise all accesses
159 * are converted to (possibly multiple) naturally aligned accesses.
160 */
161 bool unaligned;
162 } impl;
163
164 /* If .read and .write are not present, old_mmio may be used for
165 * backwards compatibility with old mmio registration
166 */
167 const MemoryRegionMmio old_mmio;
168 };
169
170 typedef struct MemoryRegionIOMMUOps MemoryRegionIOMMUOps;
171
172 struct MemoryRegionIOMMUOps {
173 /* Return a TLB entry that contains a given address. */
174 IOMMUTLBEntry (*translate)(MemoryRegion *iommu, hwaddr addr, bool is_write);
175 /* Returns minimum supported page size */
176 uint64_t (*get_min_page_size)(MemoryRegion *iommu);
177 /* Called when IOMMU Notifier flag changed */
178 void (*notify_flag_changed)(MemoryRegion *iommu,
179 IOMMUNotifierFlag old_flags,
180 IOMMUNotifierFlag new_flags);
181 };
182
183 typedef struct CoalescedMemoryRange CoalescedMemoryRange;
184 typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd;
185
186 struct MemoryRegion {
187 Object parent_obj;
188
189 /* All fields are private - violators will be prosecuted */
190
191 /* The following fields should fit in a cache line */
192 bool romd_mode;
193 bool ram;
194 bool subpage;
195 bool readonly; /* For RAM regions */
196 bool rom_device;
197 bool flush_coalesced_mmio;
198 bool global_locking;
199 uint8_t dirty_log_mask;
200 RAMBlock *ram_block;
201 Object *owner;
202 const MemoryRegionIOMMUOps *iommu_ops;
203
204 const MemoryRegionOps *ops;
205 void *opaque;
206 MemoryRegion *container;
207 Int128 size;
208 hwaddr addr;
209 void (*destructor)(MemoryRegion *mr);
210 uint64_t align;
211 bool terminates;
212 bool ram_device;
213 bool enabled;
214 bool warning_printed; /* For reservations */
215 uint8_t vga_logging_count;
216 MemoryRegion *alias;
217 hwaddr alias_offset;
218 int32_t priority;
219 QTAILQ_HEAD(subregions, MemoryRegion) subregions;
220 QTAILQ_ENTRY(MemoryRegion) subregions_link;
221 QTAILQ_HEAD(coalesced_ranges, CoalescedMemoryRange) coalesced;
222 const char *name;
223 unsigned ioeventfd_nb;
224 MemoryRegionIoeventfd *ioeventfds;
225 QLIST_HEAD(, IOMMUNotifier) iommu_notify;
226 IOMMUNotifierFlag iommu_notify_flags;
227 };
228
229 /**
230 * MemoryListener: callbacks structure for updates to the physical memory map
231 *
232 * Allows a component to adjust to changes in the guest-visible memory map.
233 * Use with memory_listener_register() and memory_listener_unregister().
234 */
235 struct MemoryListener {
236 void (*begin)(MemoryListener *listener);
237 void (*commit)(MemoryListener *listener);
238 void (*region_add)(MemoryListener *listener, MemoryRegionSection *section);
239 void (*region_del)(MemoryListener *listener, MemoryRegionSection *section);
240 void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section);
241 void (*log_start)(MemoryListener *listener, MemoryRegionSection *section,
242 int old, int new);
243 void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section,
244 int old, int new);
245 void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section);
246 void (*log_global_start)(MemoryListener *listener);
247 void (*log_global_stop)(MemoryListener *listener);
248 void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section,
249 bool match_data, uint64_t data, EventNotifier *e);
250 void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section,
251 bool match_data, uint64_t data, EventNotifier *e);
252 void (*coalesced_mmio_add)(MemoryListener *listener, MemoryRegionSection *section,
253 hwaddr addr, hwaddr len);
254 void (*coalesced_mmio_del)(MemoryListener *listener, MemoryRegionSection *section,
255 hwaddr addr, hwaddr len);
256 /* Lower = earlier (during add), later (during del) */
257 unsigned priority;
258 AddressSpace *address_space;
259 QTAILQ_ENTRY(MemoryListener) link;
260 QTAILQ_ENTRY(MemoryListener) link_as;
261 };
262
263 /**
264 * AddressSpace: describes a mapping of addresses to #MemoryRegion objects
265 */
266 struct AddressSpace {
267 /* All fields are private. */
268 struct rcu_head rcu;
269 char *name;
270 MemoryRegion *root;
271 int ref_count;
272 bool malloced;
273
274 /* Accessed via RCU. */
275 struct FlatView *current_map;
276
277 int ioeventfd_nb;
278 struct MemoryRegionIoeventfd *ioeventfds;
279 struct AddressSpaceDispatch *dispatch;
280 struct AddressSpaceDispatch *next_dispatch;
281 MemoryListener dispatch_listener;
282 QTAILQ_HEAD(memory_listeners_as, MemoryListener) listeners;
283 QTAILQ_ENTRY(AddressSpace) address_spaces_link;
284 };
285
286 /**
287 * MemoryRegionSection: describes a fragment of a #MemoryRegion
288 *
289 * @mr: the region, or %NULL if empty
290 * @address_space: the address space the region is mapped in
291 * @offset_within_region: the beginning of the section, relative to @mr's start
292 * @size: the size of the section; will not exceed @mr's boundaries
293 * @offset_within_address_space: the address of the first byte of the section
294 * relative to the region's address space
295 * @readonly: writes to this section are ignored
296 */
297 struct MemoryRegionSection {
298 MemoryRegion *mr;
299 AddressSpace *address_space;
300 hwaddr offset_within_region;
301 Int128 size;
302 hwaddr offset_within_address_space;
303 bool readonly;
304 };
305
306 /**
307 * memory_region_init: Initialize a memory region
308 *
309 * The region typically acts as a container for other memory regions. Use
310 * memory_region_add_subregion() to add subregions.
311 *
312 * @mr: the #MemoryRegion to be initialized
313 * @owner: the object that tracks the region's reference count
314 * @name: used for debugging; not visible to the user or ABI
315 * @size: size of the region; any subregions beyond this size will be clipped
316 */
317 void memory_region_init(MemoryRegion *mr,
318 struct Object *owner,
319 const char *name,
320 uint64_t size);
321
322 /**
323 * memory_region_ref: Add 1 to a memory region's reference count
324 *
325 * Whenever memory regions are accessed outside the BQL, they need to be
326 * preserved against hot-unplug. MemoryRegions actually do not have their
327 * own reference count; they piggyback on a QOM object, their "owner".
328 * This function adds a reference to the owner.
329 *
330 * All MemoryRegions must have an owner if they can disappear, even if the
331 * device they belong to operates exclusively under the BQL. This is because
332 * the region could be returned at any time by memory_region_find, and this
333 * is usually under guest control.
334 *
335 * @mr: the #MemoryRegion
336 */
337 void memory_region_ref(MemoryRegion *mr);
338
339 /**
340 * memory_region_unref: Remove 1 to a memory region's reference count
341 *
342 * Whenever memory regions are accessed outside the BQL, they need to be
343 * preserved against hot-unplug. MemoryRegions actually do not have their
344 * own reference count; they piggyback on a QOM object, their "owner".
345 * This function removes a reference to the owner and possibly destroys it.
346 *
347 * @mr: the #MemoryRegion
348 */
349 void memory_region_unref(MemoryRegion *mr);
350
351 /**
352 * memory_region_init_io: Initialize an I/O memory region.
353 *
354 * Accesses into the region will cause the callbacks in @ops to be called.
355 * if @size is nonzero, subregions will be clipped to @size.
356 *
357 * @mr: the #MemoryRegion to be initialized.
358 * @owner: the object that tracks the region's reference count
359 * @ops: a structure containing read and write callbacks to be used when
360 * I/O is performed on the region.
361 * @opaque: passed to the read and write callbacks of the @ops structure.
362 * @name: used for debugging; not visible to the user or ABI
363 * @size: size of the region.
364 */
365 void memory_region_init_io(MemoryRegion *mr,
366 struct Object *owner,
367 const MemoryRegionOps *ops,
368 void *opaque,
369 const char *name,
370 uint64_t size);
371
372 /**
373 * memory_region_init_ram: Initialize RAM memory region. Accesses into the
374 * region will modify memory directly.
375 *
376 * @mr: the #MemoryRegion to be initialized.
377 * @owner: the object that tracks the region's reference count
378 * @name: the name of the region.
379 * @size: size of the region.
380 * @errp: pointer to Error*, to store an error if it happens.
381 */
382 void memory_region_init_ram(MemoryRegion *mr,
383 struct Object *owner,
384 const char *name,
385 uint64_t size,
386 Error **errp);
387
388 /**
389 * memory_region_init_resizeable_ram: Initialize memory region with resizeable
390 * RAM. Accesses into the region will
391 * modify memory directly. Only an initial
392 * portion of this RAM is actually used.
393 * The used size can change across reboots.
394 *
395 * @mr: the #MemoryRegion to be initialized.
396 * @owner: the object that tracks the region's reference count
397 * @name: the name of the region.
398 * @size: used size of the region.
399 * @max_size: max size of the region.
400 * @resized: callback to notify owner about used size change.
401 * @errp: pointer to Error*, to store an error if it happens.
402 */
403 void memory_region_init_resizeable_ram(MemoryRegion *mr,
404 struct Object *owner,
405 const char *name,
406 uint64_t size,
407 uint64_t max_size,
408 void (*resized)(const char*,
409 uint64_t length,
410 void *host),
411 Error **errp);
412 #ifdef __linux__
413 /**
414 * memory_region_init_ram_from_file: Initialize RAM memory region with a
415 * mmap-ed backend.
416 *
417 * @mr: the #MemoryRegion to be initialized.
418 * @owner: the object that tracks the region's reference count
419 * @name: the name of the region.
420 * @size: size of the region.
421 * @share: %true if memory must be mmaped with the MAP_SHARED flag
422 * @path: the path in which to allocate the RAM.
423 * @errp: pointer to Error*, to store an error if it happens.
424 */
425 void memory_region_init_ram_from_file(MemoryRegion *mr,
426 struct Object *owner,
427 const char *name,
428 uint64_t size,
429 bool share,
430 const char *path,
431 Error **errp);
432 #endif
433
434 /**
435 * memory_region_init_ram_ptr: Initialize RAM memory region from a
436 * user-provided pointer. Accesses into the
437 * region will modify memory directly.
438 *
439 * @mr: the #MemoryRegion to be initialized.
440 * @owner: the object that tracks the region's reference count
441 * @name: the name of the region.
442 * @size: size of the region.
443 * @ptr: memory to be mapped; must contain at least @size bytes.
444 */
445 void memory_region_init_ram_ptr(MemoryRegion *mr,
446 struct Object *owner,
447 const char *name,
448 uint64_t size,
449 void *ptr);
450
451 /**
452 * memory_region_init_ram_device_ptr: Initialize RAM device memory region from
453 * a user-provided pointer.
454 *
455 * A RAM device represents a mapping to a physical device, such as to a PCI
456 * MMIO BAR of an vfio-pci assigned device. The memory region may be mapped
457 * into the VM address space and access to the region will modify memory
458 * directly. However, the memory region should not be included in a memory
459 * dump (device may not be enabled/mapped at the time of the dump), and
460 * operations incompatible with manipulating MMIO should be avoided. Replaces
461 * skip_dump flag.
462 *
463 * @mr: the #MemoryRegion to be initialized.
464 * @owner: the object that tracks the region's reference count
465 * @name: the name of the region.
466 * @size: size of the region.
467 * @ptr: memory to be mapped; must contain at least @size bytes.
468 */
469 void memory_region_init_ram_device_ptr(MemoryRegion *mr,
470 struct Object *owner,
471 const char *name,
472 uint64_t size,
473 void *ptr);
474
475 /**
476 * memory_region_init_alias: Initialize a memory region that aliases all or a
477 * part of another memory region.
478 *
479 * @mr: the #MemoryRegion to be initialized.
480 * @owner: the object that tracks the region's reference count
481 * @name: used for debugging; not visible to the user or ABI
482 * @orig: the region to be referenced; @mr will be equivalent to
483 * @orig between @offset and @offset + @size - 1.
484 * @offset: start of the section in @orig to be referenced.
485 * @size: size of the region.
486 */
487 void memory_region_init_alias(MemoryRegion *mr,
488 struct Object *owner,
489 const char *name,
490 MemoryRegion *orig,
491 hwaddr offset,
492 uint64_t size);
493
494 /**
495 * memory_region_init_rom: Initialize a ROM memory region.
496 *
497 * This has the same effect as calling memory_region_init_ram()
498 * and then marking the resulting region read-only with
499 * memory_region_set_readonly().
500 *
501 * @mr: the #MemoryRegion to be initialized.
502 * @owner: the object that tracks the region's reference count
503 * @name: the name of the region.
504 * @size: size of the region.
505 * @errp: pointer to Error*, to store an error if it happens.
506 */
507 void memory_region_init_rom(MemoryRegion *mr,
508 struct Object *owner,
509 const char *name,
510 uint64_t size,
511 Error **errp);
512
513 /**
514 * memory_region_init_rom_device: Initialize a ROM memory region. Writes are
515 * handled via callbacks.
516 *
517 * @mr: the #MemoryRegion to be initialized.
518 * @owner: the object that tracks the region's reference count
519 * @ops: callbacks for write access handling (must not be NULL).
520 * @name: the name of the region.
521 * @size: size of the region.
522 * @errp: pointer to Error*, to store an error if it happens.
523 */
524 void memory_region_init_rom_device(MemoryRegion *mr,
525 struct Object *owner,
526 const MemoryRegionOps *ops,
527 void *opaque,
528 const char *name,
529 uint64_t size,
530 Error **errp);
531
532 /**
533 * memory_region_init_reservation: Initialize a memory region that reserves
534 * I/O space.
535 *
536 * A reservation region primariy serves debugging purposes. It claims I/O
537 * space that is not supposed to be handled by QEMU itself. Any access via
538 * the memory API will cause an abort().
539 * This function is deprecated. Use memory_region_init_io() with NULL
540 * callbacks instead.
541 *
542 * @mr: the #MemoryRegion to be initialized
543 * @owner: the object that tracks the region's reference count
544 * @name: used for debugging; not visible to the user or ABI
545 * @size: size of the region.
546 */
547 static inline void memory_region_init_reservation(MemoryRegion *mr,
548 Object *owner,
549 const char *name,
550 uint64_t size)
551 {
552 memory_region_init_io(mr, owner, NULL, mr, name, size);
553 }
554
555 /**
556 * memory_region_init_iommu: Initialize a memory region that translates
557 * addresses
558 *
559 * An IOMMU region translates addresses and forwards accesses to a target
560 * memory region.
561 *
562 * @mr: the #MemoryRegion to be initialized
563 * @owner: the object that tracks the region's reference count
564 * @ops: a function that translates addresses into the @target region
565 * @name: used for debugging; not visible to the user or ABI
566 * @size: size of the region.
567 */
568 void memory_region_init_iommu(MemoryRegion *mr,
569 struct Object *owner,
570 const MemoryRegionIOMMUOps *ops,
571 const char *name,
572 uint64_t size);
573
574 /**
575 * memory_region_owner: get a memory region's owner.
576 *
577 * @mr: the memory region being queried.
578 */
579 struct Object *memory_region_owner(MemoryRegion *mr);
580
581 /**
582 * memory_region_size: get a memory region's size.
583 *
584 * @mr: the memory region being queried.
585 */
586 uint64_t memory_region_size(MemoryRegion *mr);
587
588 /**
589 * memory_region_is_ram: check whether a memory region is random access
590 *
591 * Returns %true is a memory region is random access.
592 *
593 * @mr: the memory region being queried
594 */
595 static inline bool memory_region_is_ram(MemoryRegion *mr)
596 {
597 return mr->ram;
598 }
599
600 /**
601 * memory_region_is_ram_device: check whether a memory region is a ram device
602 *
603 * Returns %true is a memory region is a device backed ram region
604 *
605 * @mr: the memory region being queried
606 */
607 bool memory_region_is_ram_device(MemoryRegion *mr);
608
609 /**
610 * memory_region_is_romd: check whether a memory region is in ROMD mode
611 *
612 * Returns %true if a memory region is a ROM device and currently set to allow
613 * direct reads.
614 *
615 * @mr: the memory region being queried
616 */
617 static inline bool memory_region_is_romd(MemoryRegion *mr)
618 {
619 return mr->rom_device && mr->romd_mode;
620 }
621
622 /**
623 * memory_region_is_iommu: check whether a memory region is an iommu
624 *
625 * Returns %true is a memory region is an iommu.
626 *
627 * @mr: the memory region being queried
628 */
629 static inline bool memory_region_is_iommu(MemoryRegion *mr)
630 {
631 if (mr->alias) {
632 return memory_region_is_iommu(mr->alias);
633 }
634 return mr->iommu_ops;
635 }
636
637
638 /**
639 * memory_region_iommu_get_min_page_size: get minimum supported page size
640 * for an iommu
641 *
642 * Returns minimum supported page size for an iommu.
643 *
644 * @mr: the memory region being queried
645 */
646 uint64_t memory_region_iommu_get_min_page_size(MemoryRegion *mr);
647
648 /**
649 * memory_region_notify_iommu: notify a change in an IOMMU translation entry.
650 *
651 * The notification type will be decided by entry.perm bits:
652 *
653 * - For UNMAP (cache invalidation) notifies: set entry.perm to IOMMU_NONE.
654 * - For MAP (newly added entry) notifies: set entry.perm to the
655 * permission of the page (which is definitely !IOMMU_NONE).
656 *
657 * Note: for any IOMMU implementation, an in-place mapping change
658 * should be notified with an UNMAP followed by a MAP.
659 *
660 * @mr: the memory region that was changed
661 * @entry: the new entry in the IOMMU translation table. The entry
662 * replaces all old entries for the same virtual I/O address range.
663 * Deleted entries have .@perm == 0.
664 */
665 void memory_region_notify_iommu(MemoryRegion *mr,
666 IOMMUTLBEntry entry);
667
668 /**
669 * memory_region_register_iommu_notifier: register a notifier for changes to
670 * IOMMU translation entries.
671 *
672 * @mr: the memory region to observe
673 * @n: the IOMMUNotifier to be added; the notify callback receives a
674 * pointer to an #IOMMUTLBEntry as the opaque value; the pointer
675 * ceases to be valid on exit from the notifier.
676 */
677 void memory_region_register_iommu_notifier(MemoryRegion *mr,
678 IOMMUNotifier *n);
679
680 /**
681 * memory_region_iommu_replay: replay existing IOMMU translations to
682 * a notifier with the minimum page granularity returned by
683 * mr->iommu_ops->get_page_size().
684 *
685 * @mr: the memory region to observe
686 * @n: the notifier to which to replay iommu mappings
687 * @is_write: Whether to treat the replay as a translate "write"
688 * through the iommu
689 */
690 void memory_region_iommu_replay(MemoryRegion *mr, IOMMUNotifier *n,
691 bool is_write);
692
693 /**
694 * memory_region_unregister_iommu_notifier: unregister a notifier for
695 * changes to IOMMU translation entries.
696 *
697 * @mr: the memory region which was observed and for which notity_stopped()
698 * needs to be called
699 * @n: the notifier to be removed.
700 */
701 void memory_region_unregister_iommu_notifier(MemoryRegion *mr,
702 IOMMUNotifier *n);
703
704 /**
705 * memory_region_name: get a memory region's name
706 *
707 * Returns the string that was used to initialize the memory region.
708 *
709 * @mr: the memory region being queried
710 */
711 const char *memory_region_name(const MemoryRegion *mr);
712
713 /**
714 * memory_region_is_logging: return whether a memory region is logging writes
715 *
716 * Returns %true if the memory region is logging writes for the given client
717 *
718 * @mr: the memory region being queried
719 * @client: the client being queried
720 */
721 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client);
722
723 /**
724 * memory_region_get_dirty_log_mask: return the clients for which a
725 * memory region is logging writes.
726 *
727 * Returns a bitmap of clients, in which the DIRTY_MEMORY_* constants
728 * are the bit indices.
729 *
730 * @mr: the memory region being queried
731 */
732 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr);
733
734 /**
735 * memory_region_is_rom: check whether a memory region is ROM
736 *
737 * Returns %true is a memory region is read-only memory.
738 *
739 * @mr: the memory region being queried
740 */
741 static inline bool memory_region_is_rom(MemoryRegion *mr)
742 {
743 return mr->ram && mr->readonly;
744 }
745
746
747 /**
748 * memory_region_get_fd: Get a file descriptor backing a RAM memory region.
749 *
750 * Returns a file descriptor backing a file-based RAM memory region,
751 * or -1 if the region is not a file-based RAM memory region.
752 *
753 * @mr: the RAM or alias memory region being queried.
754 */
755 int memory_region_get_fd(MemoryRegion *mr);
756
757 /**
758 * memory_region_set_fd: Mark a RAM memory region as backed by a
759 * file descriptor.
760 *
761 * This function is typically used after memory_region_init_ram_ptr().
762 *
763 * @mr: the memory region being queried.
764 * @fd: the file descriptor that backs @mr.
765 */
766 void memory_region_set_fd(MemoryRegion *mr, int fd);
767
768 /**
769 * memory_region_from_host: Convert a pointer into a RAM memory region
770 * and an offset within it.
771 *
772 * Given a host pointer inside a RAM memory region (created with
773 * memory_region_init_ram() or memory_region_init_ram_ptr()), return
774 * the MemoryRegion and the offset within it.
775 *
776 * Use with care; by the time this function returns, the returned pointer is
777 * not protected by RCU anymore. If the caller is not within an RCU critical
778 * section and does not hold the iothread lock, it must have other means of
779 * protecting the pointer, such as a reference to the region that includes
780 * the incoming ram_addr_t.
781 *
782 * @mr: the memory region being queried.
783 */
784 MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset);
785
786 /**
787 * memory_region_get_ram_ptr: Get a pointer into a RAM memory region.
788 *
789 * Returns a host pointer to a RAM memory region (created with
790 * memory_region_init_ram() or memory_region_init_ram_ptr()).
791 *
792 * Use with care; by the time this function returns, the returned pointer is
793 * not protected by RCU anymore. If the caller is not within an RCU critical
794 * section and does not hold the iothread lock, it must have other means of
795 * protecting the pointer, such as a reference to the region that includes
796 * the incoming ram_addr_t.
797 *
798 * @mr: the memory region being queried.
799 */
800 void *memory_region_get_ram_ptr(MemoryRegion *mr);
801
802 /* memory_region_ram_resize: Resize a RAM region.
803 *
804 * Only legal before guest might have detected the memory size: e.g. on
805 * incoming migration, or right after reset.
806 *
807 * @mr: a memory region created with @memory_region_init_resizeable_ram.
808 * @newsize: the new size the region
809 * @errp: pointer to Error*, to store an error if it happens.
810 */
811 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize,
812 Error **errp);
813
814 /**
815 * memory_region_set_log: Turn dirty logging on or off for a region.
816 *
817 * Turns dirty logging on or off for a specified client (display, migration).
818 * Only meaningful for RAM regions.
819 *
820 * @mr: the memory region being updated.
821 * @log: whether dirty logging is to be enabled or disabled.
822 * @client: the user of the logging information; %DIRTY_MEMORY_VGA only.
823 */
824 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client);
825
826 /**
827 * memory_region_get_dirty: Check whether a range of bytes is dirty
828 * for a specified client.
829 *
830 * Checks whether a range of bytes has been written to since the last
831 * call to memory_region_reset_dirty() with the same @client. Dirty logging
832 * must be enabled.
833 *
834 * @mr: the memory region being queried.
835 * @addr: the address (relative to the start of the region) being queried.
836 * @size: the size of the range being queried.
837 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
838 * %DIRTY_MEMORY_VGA.
839 */
840 bool memory_region_get_dirty(MemoryRegion *mr, hwaddr addr,
841 hwaddr size, unsigned client);
842
843 /**
844 * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region.
845 *
846 * Marks a range of bytes as dirty, after it has been dirtied outside
847 * guest code.
848 *
849 * @mr: the memory region being dirtied.
850 * @addr: the address (relative to the start of the region) being dirtied.
851 * @size: size of the range being dirtied.
852 */
853 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
854 hwaddr size);
855
856 /**
857 * memory_region_test_and_clear_dirty: Check whether a range of bytes is dirty
858 * for a specified client. It clears them.
859 *
860 * Checks whether a range of bytes has been written to since the last
861 * call to memory_region_reset_dirty() with the same @client. Dirty logging
862 * must be enabled.
863 *
864 * @mr: the memory region being queried.
865 * @addr: the address (relative to the start of the region) being queried.
866 * @size: the size of the range being queried.
867 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
868 * %DIRTY_MEMORY_VGA.
869 */
870 bool memory_region_test_and_clear_dirty(MemoryRegion *mr, hwaddr addr,
871 hwaddr size, unsigned client);
872 /**
873 * memory_region_sync_dirty_bitmap: Synchronize a region's dirty bitmap with
874 * any external TLBs (e.g. kvm)
875 *
876 * Flushes dirty information from accelerators such as kvm and vhost-net
877 * and makes it available to users of the memory API.
878 *
879 * @mr: the region being flushed.
880 */
881 void memory_region_sync_dirty_bitmap(MemoryRegion *mr);
882
883 /**
884 * memory_region_reset_dirty: Mark a range of pages as clean, for a specified
885 * client.
886 *
887 * Marks a range of pages as no longer dirty.
888 *
889 * @mr: the region being updated.
890 * @addr: the start of the subrange being cleaned.
891 * @size: the size of the subrange being cleaned.
892 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
893 * %DIRTY_MEMORY_VGA.
894 */
895 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
896 hwaddr size, unsigned client);
897
898 /**
899 * memory_region_set_readonly: Turn a memory region read-only (or read-write)
900 *
901 * Allows a memory region to be marked as read-only (turning it into a ROM).
902 * only useful on RAM regions.
903 *
904 * @mr: the region being updated.
905 * @readonly: whether rhe region is to be ROM or RAM.
906 */
907 void memory_region_set_readonly(MemoryRegion *mr, bool readonly);
908
909 /**
910 * memory_region_rom_device_set_romd: enable/disable ROMD mode
911 *
912 * Allows a ROM device (initialized with memory_region_init_rom_device() to
913 * set to ROMD mode (default) or MMIO mode. When it is in ROMD mode, the
914 * device is mapped to guest memory and satisfies read access directly.
915 * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function.
916 * Writes are always handled by the #MemoryRegion.write function.
917 *
918 * @mr: the memory region to be updated
919 * @romd_mode: %true to put the region into ROMD mode
920 */
921 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode);
922
923 /**
924 * memory_region_set_coalescing: Enable memory coalescing for the region.
925 *
926 * Enabled writes to a region to be queued for later processing. MMIO ->write
927 * callbacks may be delayed until a non-coalesced MMIO is issued.
928 * Only useful for IO regions. Roughly similar to write-combining hardware.
929 *
930 * @mr: the memory region to be write coalesced
931 */
932 void memory_region_set_coalescing(MemoryRegion *mr);
933
934 /**
935 * memory_region_add_coalescing: Enable memory coalescing for a sub-range of
936 * a region.
937 *
938 * Like memory_region_set_coalescing(), but works on a sub-range of a region.
939 * Multiple calls can be issued coalesced disjoint ranges.
940 *
941 * @mr: the memory region to be updated.
942 * @offset: the start of the range within the region to be coalesced.
943 * @size: the size of the subrange to be coalesced.
944 */
945 void memory_region_add_coalescing(MemoryRegion *mr,
946 hwaddr offset,
947 uint64_t size);
948
949 /**
950 * memory_region_clear_coalescing: Disable MMIO coalescing for the region.
951 *
952 * Disables any coalescing caused by memory_region_set_coalescing() or
953 * memory_region_add_coalescing(). Roughly equivalent to uncacheble memory
954 * hardware.
955 *
956 * @mr: the memory region to be updated.
957 */
958 void memory_region_clear_coalescing(MemoryRegion *mr);
959
960 /**
961 * memory_region_set_flush_coalesced: Enforce memory coalescing flush before
962 * accesses.
963 *
964 * Ensure that pending coalesced MMIO request are flushed before the memory
965 * region is accessed. This property is automatically enabled for all regions
966 * passed to memory_region_set_coalescing() and memory_region_add_coalescing().
967 *
968 * @mr: the memory region to be updated.
969 */
970 void memory_region_set_flush_coalesced(MemoryRegion *mr);
971
972 /**
973 * memory_region_clear_flush_coalesced: Disable memory coalescing flush before
974 * accesses.
975 *
976 * Clear the automatic coalesced MMIO flushing enabled via
977 * memory_region_set_flush_coalesced. Note that this service has no effect on
978 * memory regions that have MMIO coalescing enabled for themselves. For them,
979 * automatic flushing will stop once coalescing is disabled.
980 *
981 * @mr: the memory region to be updated.
982 */
983 void memory_region_clear_flush_coalesced(MemoryRegion *mr);
984
985 /**
986 * memory_region_set_global_locking: Declares the access processing requires
987 * QEMU's global lock.
988 *
989 * When this is invoked, accesses to the memory region will be processed while
990 * holding the global lock of QEMU. This is the default behavior of memory
991 * regions.
992 *
993 * @mr: the memory region to be updated.
994 */
995 void memory_region_set_global_locking(MemoryRegion *mr);
996
997 /**
998 * memory_region_clear_global_locking: Declares that access processing does
999 * not depend on the QEMU global lock.
1000 *
1001 * By clearing this property, accesses to the memory region will be processed
1002 * outside of QEMU's global lock (unless the lock is held on when issuing the
1003 * access request). In this case, the device model implementing the access
1004 * handlers is responsible for synchronization of concurrency.
1005 *
1006 * @mr: the memory region to be updated.
1007 */
1008 void memory_region_clear_global_locking(MemoryRegion *mr);
1009
1010 /**
1011 * memory_region_add_eventfd: Request an eventfd to be triggered when a word
1012 * is written to a location.
1013 *
1014 * Marks a word in an IO region (initialized with memory_region_init_io())
1015 * as a trigger for an eventfd event. The I/O callback will not be called.
1016 * The caller must be prepared to handle failure (that is, take the required
1017 * action if the callback _is_ called).
1018 *
1019 * @mr: the memory region being updated.
1020 * @addr: the address within @mr that is to be monitored
1021 * @size: the size of the access to trigger the eventfd
1022 * @match_data: whether to match against @data, instead of just @addr
1023 * @data: the data to match against the guest write
1024 * @fd: the eventfd to be triggered when @addr, @size, and @data all match.
1025 **/
1026 void memory_region_add_eventfd(MemoryRegion *mr,
1027 hwaddr addr,
1028 unsigned size,
1029 bool match_data,
1030 uint64_t data,
1031 EventNotifier *e);
1032
1033 /**
1034 * memory_region_del_eventfd: Cancel an eventfd.
1035 *
1036 * Cancels an eventfd trigger requested by a previous
1037 * memory_region_add_eventfd() call.
1038 *
1039 * @mr: the memory region being updated.
1040 * @addr: the address within @mr that is to be monitored
1041 * @size: the size of the access to trigger the eventfd
1042 * @match_data: whether to match against @data, instead of just @addr
1043 * @data: the data to match against the guest write
1044 * @fd: the eventfd to be triggered when @addr, @size, and @data all match.
1045 */
1046 void memory_region_del_eventfd(MemoryRegion *mr,
1047 hwaddr addr,
1048 unsigned size,
1049 bool match_data,
1050 uint64_t data,
1051 EventNotifier *e);
1052
1053 /**
1054 * memory_region_add_subregion: Add a subregion to a container.
1055 *
1056 * Adds a subregion at @offset. The subregion may not overlap with other
1057 * subregions (except for those explicitly marked as overlapping). A region
1058 * may only be added once as a subregion (unless removed with
1059 * memory_region_del_subregion()); use memory_region_init_alias() if you
1060 * want a region to be a subregion in multiple locations.
1061 *
1062 * @mr: the region to contain the new subregion; must be a container
1063 * initialized with memory_region_init().
1064 * @offset: the offset relative to @mr where @subregion is added.
1065 * @subregion: the subregion to be added.
1066 */
1067 void memory_region_add_subregion(MemoryRegion *mr,
1068 hwaddr offset,
1069 MemoryRegion *subregion);
1070 /**
1071 * memory_region_add_subregion_overlap: Add a subregion to a container
1072 * with overlap.
1073 *
1074 * Adds a subregion at @offset. The subregion may overlap with other
1075 * subregions. Conflicts are resolved by having a higher @priority hide a
1076 * lower @priority. Subregions without priority are taken as @priority 0.
1077 * A region may only be added once as a subregion (unless removed with
1078 * memory_region_del_subregion()); use memory_region_init_alias() if you
1079 * want a region to be a subregion in multiple locations.
1080 *
1081 * @mr: the region to contain the new subregion; must be a container
1082 * initialized with memory_region_init().
1083 * @offset: the offset relative to @mr where @subregion is added.
1084 * @subregion: the subregion to be added.
1085 * @priority: used for resolving overlaps; highest priority wins.
1086 */
1087 void memory_region_add_subregion_overlap(MemoryRegion *mr,
1088 hwaddr offset,
1089 MemoryRegion *subregion,
1090 int priority);
1091
1092 /**
1093 * memory_region_get_ram_addr: Get the ram address associated with a memory
1094 * region
1095 */
1096 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr);
1097
1098 uint64_t memory_region_get_alignment(const MemoryRegion *mr);
1099 /**
1100 * memory_region_del_subregion: Remove a subregion.
1101 *
1102 * Removes a subregion from its container.
1103 *
1104 * @mr: the container to be updated.
1105 * @subregion: the region being removed; must be a current subregion of @mr.
1106 */
1107 void memory_region_del_subregion(MemoryRegion *mr,
1108 MemoryRegion *subregion);
1109
1110 /*
1111 * memory_region_set_enabled: dynamically enable or disable a region
1112 *
1113 * Enables or disables a memory region. A disabled memory region
1114 * ignores all accesses to itself and its subregions. It does not
1115 * obscure sibling subregions with lower priority - it simply behaves as
1116 * if it was removed from the hierarchy.
1117 *
1118 * Regions default to being enabled.
1119 *
1120 * @mr: the region to be updated
1121 * @enabled: whether to enable or disable the region
1122 */
1123 void memory_region_set_enabled(MemoryRegion *mr, bool enabled);
1124
1125 /*
1126 * memory_region_set_address: dynamically update the address of a region
1127 *
1128 * Dynamically updates the address of a region, relative to its container.
1129 * May be used on regions are currently part of a memory hierarchy.
1130 *
1131 * @mr: the region to be updated
1132 * @addr: new address, relative to container region
1133 */
1134 void memory_region_set_address(MemoryRegion *mr, hwaddr addr);
1135
1136 /*
1137 * memory_region_set_size: dynamically update the size of a region.
1138 *
1139 * Dynamically updates the size of a region.
1140 *
1141 * @mr: the region to be updated
1142 * @size: used size of the region.
1143 */
1144 void memory_region_set_size(MemoryRegion *mr, uint64_t size);
1145
1146 /*
1147 * memory_region_set_alias_offset: dynamically update a memory alias's offset
1148 *
1149 * Dynamically updates the offset into the target region that an alias points
1150 * to, as if the fourth argument to memory_region_init_alias() has changed.
1151 *
1152 * @mr: the #MemoryRegion to be updated; should be an alias.
1153 * @offset: the new offset into the target memory region
1154 */
1155 void memory_region_set_alias_offset(MemoryRegion *mr,
1156 hwaddr offset);
1157
1158 /**
1159 * memory_region_present: checks if an address relative to a @container
1160 * translates into #MemoryRegion within @container
1161 *
1162 * Answer whether a #MemoryRegion within @container covers the address
1163 * @addr.
1164 *
1165 * @container: a #MemoryRegion within which @addr is a relative address
1166 * @addr: the area within @container to be searched
1167 */
1168 bool memory_region_present(MemoryRegion *container, hwaddr addr);
1169
1170 /**
1171 * memory_region_is_mapped: returns true if #MemoryRegion is mapped
1172 * into any address space.
1173 *
1174 * @mr: a #MemoryRegion which should be checked if it's mapped
1175 */
1176 bool memory_region_is_mapped(MemoryRegion *mr);
1177
1178 /**
1179 * memory_region_find: translate an address/size relative to a
1180 * MemoryRegion into a #MemoryRegionSection.
1181 *
1182 * Locates the first #MemoryRegion within @mr that overlaps the range
1183 * given by @addr and @size.
1184 *
1185 * Returns a #MemoryRegionSection that describes a contiguous overlap.
1186 * It will have the following characteristics:
1187 * .@size = 0 iff no overlap was found
1188 * .@mr is non-%NULL iff an overlap was found
1189 *
1190 * Remember that in the return value the @offset_within_region is
1191 * relative to the returned region (in the .@mr field), not to the
1192 * @mr argument.
1193 *
1194 * Similarly, the .@offset_within_address_space is relative to the
1195 * address space that contains both regions, the passed and the
1196 * returned one. However, in the special case where the @mr argument
1197 * has no container (and thus is the root of the address space), the
1198 * following will hold:
1199 * .@offset_within_address_space >= @addr
1200 * .@offset_within_address_space + .@size <= @addr + @size
1201 *
1202 * @mr: a MemoryRegion within which @addr is a relative address
1203 * @addr: start of the area within @as to be searched
1204 * @size: size of the area to be searched
1205 */
1206 MemoryRegionSection memory_region_find(MemoryRegion *mr,
1207 hwaddr addr, uint64_t size);
1208
1209 /**
1210 * memory_global_dirty_log_sync: synchronize the dirty log for all memory
1211 *
1212 * Synchronizes the dirty page log for all address spaces.
1213 */
1214 void memory_global_dirty_log_sync(void);
1215
1216 /**
1217 * memory_region_transaction_begin: Start a transaction.
1218 *
1219 * During a transaction, changes will be accumulated and made visible
1220 * only when the transaction ends (is committed).
1221 */
1222 void memory_region_transaction_begin(void);
1223
1224 /**
1225 * memory_region_transaction_commit: Commit a transaction and make changes
1226 * visible to the guest.
1227 */
1228 void memory_region_transaction_commit(void);
1229
1230 /**
1231 * memory_listener_register: register callbacks to be called when memory
1232 * sections are mapped or unmapped into an address
1233 * space
1234 *
1235 * @listener: an object containing the callbacks to be called
1236 * @filter: if non-%NULL, only regions in this address space will be observed
1237 */
1238 void memory_listener_register(MemoryListener *listener, AddressSpace *filter);
1239
1240 /**
1241 * memory_listener_unregister: undo the effect of memory_listener_register()
1242 *
1243 * @listener: an object containing the callbacks to be removed
1244 */
1245 void memory_listener_unregister(MemoryListener *listener);
1246
1247 /**
1248 * memory_global_dirty_log_start: begin dirty logging for all regions
1249 */
1250 void memory_global_dirty_log_start(void);
1251
1252 /**
1253 * memory_global_dirty_log_stop: end dirty logging for all regions
1254 */
1255 void memory_global_dirty_log_stop(void);
1256
1257 void mtree_info(fprintf_function mon_printf, void *f);
1258
1259 /**
1260 * memory_region_dispatch_read: perform a read directly to the specified
1261 * MemoryRegion.
1262 *
1263 * @mr: #MemoryRegion to access
1264 * @addr: address within that region
1265 * @pval: pointer to uint64_t which the data is written to
1266 * @size: size of the access in bytes
1267 * @attrs: memory transaction attributes to use for the access
1268 */
1269 MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
1270 hwaddr addr,
1271 uint64_t *pval,
1272 unsigned size,
1273 MemTxAttrs attrs);
1274 /**
1275 * memory_region_dispatch_write: perform a write directly to the specified
1276 * MemoryRegion.
1277 *
1278 * @mr: #MemoryRegion to access
1279 * @addr: address within that region
1280 * @data: data to write
1281 * @size: size of the access in bytes
1282 * @attrs: memory transaction attributes to use for the access
1283 */
1284 MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
1285 hwaddr addr,
1286 uint64_t data,
1287 unsigned size,
1288 MemTxAttrs attrs);
1289
1290 /**
1291 * address_space_init: initializes an address space
1292 *
1293 * @as: an uninitialized #AddressSpace
1294 * @root: a #MemoryRegion that routes addresses for the address space
1295 * @name: an address space name. The name is only used for debugging
1296 * output.
1297 */
1298 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name);
1299
1300 /**
1301 * address_space_init_shareable: return an address space for a memory region,
1302 * creating it if it does not already exist
1303 *
1304 * @root: a #MemoryRegion that routes addresses for the address space
1305 * @name: an address space name. The name is only used for debugging
1306 * output.
1307 *
1308 * This function will return a pointer to an existing AddressSpace
1309 * which was initialized with the specified MemoryRegion, or it will
1310 * create and initialize one if it does not already exist. The ASes
1311 * are reference-counted, so the memory will be freed automatically
1312 * when the AddressSpace is destroyed via address_space_destroy.
1313 */
1314 AddressSpace *address_space_init_shareable(MemoryRegion *root,
1315 const char *name);
1316
1317 /**
1318 * address_space_destroy: destroy an address space
1319 *
1320 * Releases all resources associated with an address space. After an address space
1321 * is destroyed, its root memory region (given by address_space_init()) may be destroyed
1322 * as well.
1323 *
1324 * @as: address space to be destroyed
1325 */
1326 void address_space_destroy(AddressSpace *as);
1327
1328 /**
1329 * address_space_rw: read from or write to an address space.
1330 *
1331 * Return a MemTxResult indicating whether the operation succeeded
1332 * or failed (eg unassigned memory, device rejected the transaction,
1333 * IOMMU fault).
1334 *
1335 * @as: #AddressSpace to be accessed
1336 * @addr: address within that address space
1337 * @attrs: memory transaction attributes
1338 * @buf: buffer with the data transferred
1339 * @is_write: indicates the transfer direction
1340 */
1341 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr,
1342 MemTxAttrs attrs, uint8_t *buf,
1343 int len, bool is_write);
1344
1345 /**
1346 * address_space_write: write to address space.
1347 *
1348 * Return a MemTxResult indicating whether the operation succeeded
1349 * or failed (eg unassigned memory, device rejected the transaction,
1350 * IOMMU fault).
1351 *
1352 * @as: #AddressSpace to be accessed
1353 * @addr: address within that address space
1354 * @attrs: memory transaction attributes
1355 * @buf: buffer with the data transferred
1356 */
1357 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
1358 MemTxAttrs attrs,
1359 const uint8_t *buf, int len);
1360
1361 /* address_space_ld*: load from an address space
1362 * address_space_st*: store to an address space
1363 *
1364 * These functions perform a load or store of the byte, word,
1365 * longword or quad to the specified address within the AddressSpace.
1366 * The _le suffixed functions treat the data as little endian;
1367 * _be indicates big endian; no suffix indicates "same endianness
1368 * as guest CPU".
1369 *
1370 * The "guest CPU endianness" accessors are deprecated for use outside
1371 * target-* code; devices should be CPU-agnostic and use either the LE
1372 * or the BE accessors.
1373 *
1374 * @as #AddressSpace to be accessed
1375 * @addr: address within that address space
1376 * @val: data value, for stores
1377 * @attrs: memory transaction attributes
1378 * @result: location to write the success/failure of the transaction;
1379 * if NULL, this information is discarded
1380 */
1381 uint32_t address_space_ldub(AddressSpace *as, hwaddr addr,
1382 MemTxAttrs attrs, MemTxResult *result);
1383 uint32_t address_space_lduw_le(AddressSpace *as, hwaddr addr,
1384 MemTxAttrs attrs, MemTxResult *result);
1385 uint32_t address_space_lduw_be(AddressSpace *as, hwaddr addr,
1386 MemTxAttrs attrs, MemTxResult *result);
1387 uint32_t address_space_ldl_le(AddressSpace *as, hwaddr addr,
1388 MemTxAttrs attrs, MemTxResult *result);
1389 uint32_t address_space_ldl_be(AddressSpace *as, hwaddr addr,
1390 MemTxAttrs attrs, MemTxResult *result);
1391 uint64_t address_space_ldq_le(AddressSpace *as, hwaddr addr,
1392 MemTxAttrs attrs, MemTxResult *result);
1393 uint64_t address_space_ldq_be(AddressSpace *as, hwaddr addr,
1394 MemTxAttrs attrs, MemTxResult *result);
1395 void address_space_stb(AddressSpace *as, hwaddr addr, uint32_t val,
1396 MemTxAttrs attrs, MemTxResult *result);
1397 void address_space_stw_le(AddressSpace *as, hwaddr addr, uint32_t val,
1398 MemTxAttrs attrs, MemTxResult *result);
1399 void address_space_stw_be(AddressSpace *as, hwaddr addr, uint32_t val,
1400 MemTxAttrs attrs, MemTxResult *result);
1401 void address_space_stl_le(AddressSpace *as, hwaddr addr, uint32_t val,
1402 MemTxAttrs attrs, MemTxResult *result);
1403 void address_space_stl_be(AddressSpace *as, hwaddr addr, uint32_t val,
1404 MemTxAttrs attrs, MemTxResult *result);
1405 void address_space_stq_le(AddressSpace *as, hwaddr addr, uint64_t val,
1406 MemTxAttrs attrs, MemTxResult *result);
1407 void address_space_stq_be(AddressSpace *as, hwaddr addr, uint64_t val,
1408 MemTxAttrs attrs, MemTxResult *result);
1409
1410 uint32_t ldub_phys(AddressSpace *as, hwaddr addr);
1411 uint32_t lduw_le_phys(AddressSpace *as, hwaddr addr);
1412 uint32_t lduw_be_phys(AddressSpace *as, hwaddr addr);
1413 uint32_t ldl_le_phys(AddressSpace *as, hwaddr addr);
1414 uint32_t ldl_be_phys(AddressSpace *as, hwaddr addr);
1415 uint64_t ldq_le_phys(AddressSpace *as, hwaddr addr);
1416 uint64_t ldq_be_phys(AddressSpace *as, hwaddr addr);
1417 void stb_phys(AddressSpace *as, hwaddr addr, uint32_t val);
1418 void stw_le_phys(AddressSpace *as, hwaddr addr, uint32_t val);
1419 void stw_be_phys(AddressSpace *as, hwaddr addr, uint32_t val);
1420 void stl_le_phys(AddressSpace *as, hwaddr addr, uint32_t val);
1421 void stl_be_phys(AddressSpace *as, hwaddr addr, uint32_t val);
1422 void stq_le_phys(AddressSpace *as, hwaddr addr, uint64_t val);
1423 void stq_be_phys(AddressSpace *as, hwaddr addr, uint64_t val);
1424
1425 struct MemoryRegionCache {
1426 hwaddr xlat;
1427 void *ptr;
1428 hwaddr len;
1429 MemoryRegion *mr;
1430 bool is_write;
1431 };
1432
1433 /* address_space_cache_init: prepare for repeated access to a physical
1434 * memory region
1435 *
1436 * @cache: #MemoryRegionCache to be filled
1437 * @as: #AddressSpace to be accessed
1438 * @addr: address within that address space
1439 * @len: length of buffer
1440 * @is_write: indicates the transfer direction
1441 *
1442 * Will only work with RAM, and may map a subset of the requested range by
1443 * returning a value that is less than @len. On failure, return a negative
1444 * errno value.
1445 *
1446 * Because it only works with RAM, this function can be used for
1447 * read-modify-write operations. In this case, is_write should be %true.
1448 *
1449 * Note that addresses passed to the address_space_*_cached functions
1450 * are relative to @addr.
1451 */
1452 int64_t address_space_cache_init(MemoryRegionCache *cache,
1453 AddressSpace *as,
1454 hwaddr addr,
1455 hwaddr len,
1456 bool is_write);
1457
1458 /**
1459 * address_space_cache_invalidate: complete a write to a #MemoryRegionCache
1460 *
1461 * @cache: The #MemoryRegionCache to operate on.
1462 * @addr: The first physical address that was written, relative to the
1463 * address that was passed to @address_space_cache_init.
1464 * @access_len: The number of bytes that were written starting at @addr.
1465 */
1466 void address_space_cache_invalidate(MemoryRegionCache *cache,
1467 hwaddr addr,
1468 hwaddr access_len);
1469
1470 /**
1471 * address_space_cache_destroy: free a #MemoryRegionCache
1472 *
1473 * @cache: The #MemoryRegionCache whose memory should be released.
1474 */
1475 void address_space_cache_destroy(MemoryRegionCache *cache);
1476
1477 /* address_space_ld*_cached: load from a cached #MemoryRegion
1478 * address_space_st*_cached: store into a cached #MemoryRegion
1479 *
1480 * These functions perform a load or store of the byte, word,
1481 * longword or quad to the specified address. The address is
1482 * a physical address in the AddressSpace, but it must lie within
1483 * a #MemoryRegion that was mapped with address_space_cache_init.
1484 *
1485 * The _le suffixed functions treat the data as little endian;
1486 * _be indicates big endian; no suffix indicates "same endianness
1487 * as guest CPU".
1488 *
1489 * The "guest CPU endianness" accessors are deprecated for use outside
1490 * target-* code; devices should be CPU-agnostic and use either the LE
1491 * or the BE accessors.
1492 *
1493 * @cache: previously initialized #MemoryRegionCache to be accessed
1494 * @addr: address within the address space
1495 * @val: data value, for stores
1496 * @attrs: memory transaction attributes
1497 * @result: location to write the success/failure of the transaction;
1498 * if NULL, this information is discarded
1499 */
1500 uint32_t address_space_ldub_cached(MemoryRegionCache *cache, hwaddr addr,
1501 MemTxAttrs attrs, MemTxResult *result);
1502 uint32_t address_space_lduw_le_cached(MemoryRegionCache *cache, hwaddr addr,
1503 MemTxAttrs attrs, MemTxResult *result);
1504 uint32_t address_space_lduw_be_cached(MemoryRegionCache *cache, hwaddr addr,
1505 MemTxAttrs attrs, MemTxResult *result);
1506 uint32_t address_space_ldl_le_cached(MemoryRegionCache *cache, hwaddr addr,
1507 MemTxAttrs attrs, MemTxResult *result);
1508 uint32_t address_space_ldl_be_cached(MemoryRegionCache *cache, hwaddr addr,
1509 MemTxAttrs attrs, MemTxResult *result);
1510 uint64_t address_space_ldq_le_cached(MemoryRegionCache *cache, hwaddr addr,
1511 MemTxAttrs attrs, MemTxResult *result);
1512 uint64_t address_space_ldq_be_cached(MemoryRegionCache *cache, hwaddr addr,
1513 MemTxAttrs attrs, MemTxResult *result);
1514 void address_space_stb_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val,
1515 MemTxAttrs attrs, MemTxResult *result);
1516 void address_space_stw_le_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val,
1517 MemTxAttrs attrs, MemTxResult *result);
1518 void address_space_stw_be_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val,
1519 MemTxAttrs attrs, MemTxResult *result);
1520 void address_space_stl_le_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val,
1521 MemTxAttrs attrs, MemTxResult *result);
1522 void address_space_stl_be_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val,
1523 MemTxAttrs attrs, MemTxResult *result);
1524 void address_space_stq_le_cached(MemoryRegionCache *cache, hwaddr addr, uint64_t val,
1525 MemTxAttrs attrs, MemTxResult *result);
1526 void address_space_stq_be_cached(MemoryRegionCache *cache, hwaddr addr, uint64_t val,
1527 MemTxAttrs attrs, MemTxResult *result);
1528
1529 uint32_t ldub_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1530 uint32_t lduw_le_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1531 uint32_t lduw_be_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1532 uint32_t ldl_le_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1533 uint32_t ldl_be_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1534 uint64_t ldq_le_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1535 uint64_t ldq_be_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1536 void stb_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val);
1537 void stw_le_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val);
1538 void stw_be_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val);
1539 void stl_le_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val);
1540 void stl_be_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val);
1541 void stq_le_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint64_t val);
1542 void stq_be_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint64_t val);
1543 /* address_space_get_iotlb_entry: translate an address into an IOTLB
1544 * entry. Should be called from an RCU critical section.
1545 */
1546 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
1547 bool is_write);
1548
1549 /* address_space_translate: translate an address range into an address space
1550 * into a MemoryRegion and an address range into that section. Should be
1551 * called from an RCU critical section, to avoid that the last reference
1552 * to the returned region disappears after address_space_translate returns.
1553 *
1554 * @as: #AddressSpace to be accessed
1555 * @addr: address within that address space
1556 * @xlat: pointer to address within the returned memory region section's
1557 * #MemoryRegion.
1558 * @len: pointer to length
1559 * @is_write: indicates the transfer direction
1560 */
1561 MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr,
1562 hwaddr *xlat, hwaddr *len,
1563 bool is_write);
1564
1565 /* address_space_access_valid: check for validity of accessing an address
1566 * space range
1567 *
1568 * Check whether memory is assigned to the given address space range, and
1569 * access is permitted by any IOMMU regions that are active for the address
1570 * space.
1571 *
1572 * For now, addr and len should be aligned to a page size. This limitation
1573 * will be lifted in the future.
1574 *
1575 * @as: #AddressSpace to be accessed
1576 * @addr: address within that address space
1577 * @len: length of the area to be checked
1578 * @is_write: indicates the transfer direction
1579 */
1580 bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write);
1581
1582 /* address_space_map: map a physical memory region into a host virtual address
1583 *
1584 * May map a subset of the requested range, given by and returned in @plen.
1585 * May return %NULL if resources needed to perform the mapping are exhausted.
1586 * Use only for reads OR writes - not for read-modify-write operations.
1587 * Use cpu_register_map_client() to know when retrying the map operation is
1588 * likely to succeed.
1589 *
1590 * @as: #AddressSpace to be accessed
1591 * @addr: address within that address space
1592 * @plen: pointer to length of buffer; updated on return
1593 * @is_write: indicates the transfer direction
1594 */
1595 void *address_space_map(AddressSpace *as, hwaddr addr,
1596 hwaddr *plen, bool is_write);
1597
1598 /* address_space_unmap: Unmaps a memory region previously mapped by address_space_map()
1599 *
1600 * Will also mark the memory as dirty if @is_write == %true. @access_len gives
1601 * the amount of memory that was actually read or written by the caller.
1602 *
1603 * @as: #AddressSpace used
1604 * @addr: address within that address space
1605 * @len: buffer length as returned by address_space_map()
1606 * @access_len: amount of data actually transferred
1607 * @is_write: indicates the transfer direction
1608 */
1609 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
1610 int is_write, hwaddr access_len);
1611
1612
1613 /* Internal functions, part of the implementation of address_space_read. */
1614 MemTxResult address_space_read_continue(AddressSpace *as, hwaddr addr,
1615 MemTxAttrs attrs, uint8_t *buf,
1616 int len, hwaddr addr1, hwaddr l,
1617 MemoryRegion *mr);
1618 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
1619 MemTxAttrs attrs, uint8_t *buf, int len);
1620 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr);
1621
1622 static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write)
1623 {
1624 if (is_write) {
1625 return memory_region_is_ram(mr) &&
1626 !mr->readonly && !memory_region_is_ram_device(mr);
1627 } else {
1628 return (memory_region_is_ram(mr) && !memory_region_is_ram_device(mr)) ||
1629 memory_region_is_romd(mr);
1630 }
1631 }
1632
1633 /**
1634 * address_space_read: read from an address space.
1635 *
1636 * Return a MemTxResult indicating whether the operation succeeded
1637 * or failed (eg unassigned memory, device rejected the transaction,
1638 * IOMMU fault).
1639 *
1640 * @as: #AddressSpace to be accessed
1641 * @addr: address within that address space
1642 * @attrs: memory transaction attributes
1643 * @buf: buffer with the data transferred
1644 */
1645 static inline __attribute__((__always_inline__))
1646 MemTxResult address_space_read(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
1647 uint8_t *buf, int len)
1648 {
1649 MemTxResult result = MEMTX_OK;
1650 hwaddr l, addr1;
1651 void *ptr;
1652 MemoryRegion *mr;
1653
1654 if (__builtin_constant_p(len)) {
1655 if (len) {
1656 rcu_read_lock();
1657 l = len;
1658 mr = address_space_translate(as, addr, &addr1, &l, false);
1659 if (len == l && memory_access_is_direct(mr, false)) {
1660 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
1661 memcpy(buf, ptr, len);
1662 } else {
1663 result = address_space_read_continue(as, addr, attrs, buf, len,
1664 addr1, l, mr);
1665 }
1666 rcu_read_unlock();
1667 }
1668 } else {
1669 result = address_space_read_full(as, addr, attrs, buf, len);
1670 }
1671 return result;
1672 }
1673
1674 /**
1675 * address_space_read_cached: read from a cached RAM region
1676 *
1677 * @cache: Cached region to be addressed
1678 * @addr: address relative to the base of the RAM region
1679 * @buf: buffer with the data transferred
1680 * @len: length of the data transferred
1681 */
1682 static inline void
1683 address_space_read_cached(MemoryRegionCache *cache, hwaddr addr,
1684 void *buf, int len)
1685 {
1686 assert(addr < cache->len && len <= cache->len - addr);
1687 memcpy(buf, cache->ptr + addr, len);
1688 }
1689
1690 /**
1691 * address_space_write_cached: write to a cached RAM region
1692 *
1693 * @cache: Cached region to be addressed
1694 * @addr: address relative to the base of the RAM region
1695 * @buf: buffer with the data transferred
1696 * @len: length of the data transferred
1697 */
1698 static inline void
1699 address_space_write_cached(MemoryRegionCache *cache, hwaddr addr,
1700 void *buf, int len)
1701 {
1702 assert(addr < cache->len && len <= cache->len - addr);
1703 memcpy(cache->ptr + addr, buf, len);
1704 }
1705
1706 #endif
1707
1708 #endif