]> git.proxmox.com Git - mirror_qemu.git/blob - include/exec/memory.h
Merge remote-tracking branch 'remotes/aurel/tags/pull-sh4-next-20150913' into staging
[mirror_qemu.git] / include / exec / memory.h
1 /*
2 * Physical memory management API
3 *
4 * Copyright 2011 Red Hat, Inc. and/or its affiliates
5 *
6 * Authors:
7 * Avi Kivity <avi@redhat.com>
8 *
9 * This work is licensed under the terms of the GNU GPL, version 2. See
10 * the COPYING file in the top-level directory.
11 *
12 */
13
14 #ifndef MEMORY_H
15 #define MEMORY_H
16
17 #ifndef CONFIG_USER_ONLY
18
19 #define DIRTY_MEMORY_VGA 0
20 #define DIRTY_MEMORY_CODE 1
21 #define DIRTY_MEMORY_MIGRATION 2
22 #define DIRTY_MEMORY_NUM 3 /* num of dirty bits */
23
24 #include <stdint.h>
25 #include <stdbool.h>
26 #include "exec/cpu-common.h"
27 #ifndef CONFIG_USER_ONLY
28 #include "exec/hwaddr.h"
29 #endif
30 #include "exec/memattrs.h"
31 #include "qemu/queue.h"
32 #include "qemu/int128.h"
33 #include "qemu/notify.h"
34 #include "qapi/error.h"
35 #include "qom/object.h"
36 #include "qemu/rcu.h"
37
38 #define MAX_PHYS_ADDR_SPACE_BITS 62
39 #define MAX_PHYS_ADDR (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1)
40
41 #define TYPE_MEMORY_REGION "qemu:memory-region"
42 #define MEMORY_REGION(obj) \
43 OBJECT_CHECK(MemoryRegion, (obj), TYPE_MEMORY_REGION)
44
45 typedef struct MemoryRegionOps MemoryRegionOps;
46 typedef struct MemoryRegionMmio MemoryRegionMmio;
47
48 struct MemoryRegionMmio {
49 CPUReadMemoryFunc *read[3];
50 CPUWriteMemoryFunc *write[3];
51 };
52
53 typedef struct IOMMUTLBEntry IOMMUTLBEntry;
54
55 /* See address_space_translate: bit 0 is read, bit 1 is write. */
56 typedef enum {
57 IOMMU_NONE = 0,
58 IOMMU_RO = 1,
59 IOMMU_WO = 2,
60 IOMMU_RW = 3,
61 } IOMMUAccessFlags;
62
63 struct IOMMUTLBEntry {
64 AddressSpace *target_as;
65 hwaddr iova;
66 hwaddr translated_addr;
67 hwaddr addr_mask; /* 0xfff = 4k translation */
68 IOMMUAccessFlags perm;
69 };
70
71 /* New-style MMIO accessors can indicate that the transaction failed.
72 * A zero (MEMTX_OK) response means success; anything else is a failure
73 * of some kind. The memory subsystem will bitwise-OR together results
74 * if it is synthesizing an operation from multiple smaller accesses.
75 */
76 #define MEMTX_OK 0
77 #define MEMTX_ERROR (1U << 0) /* device returned an error */
78 #define MEMTX_DECODE_ERROR (1U << 1) /* nothing at that address */
79 typedef uint32_t MemTxResult;
80
81 /*
82 * Memory region callbacks
83 */
84 struct MemoryRegionOps {
85 /* Read from the memory region. @addr is relative to @mr; @size is
86 * in bytes. */
87 uint64_t (*read)(void *opaque,
88 hwaddr addr,
89 unsigned size);
90 /* Write to the memory region. @addr is relative to @mr; @size is
91 * in bytes. */
92 void (*write)(void *opaque,
93 hwaddr addr,
94 uint64_t data,
95 unsigned size);
96
97 MemTxResult (*read_with_attrs)(void *opaque,
98 hwaddr addr,
99 uint64_t *data,
100 unsigned size,
101 MemTxAttrs attrs);
102 MemTxResult (*write_with_attrs)(void *opaque,
103 hwaddr addr,
104 uint64_t data,
105 unsigned size,
106 MemTxAttrs attrs);
107
108 enum device_endian endianness;
109 /* Guest-visible constraints: */
110 struct {
111 /* If nonzero, specify bounds on access sizes beyond which a machine
112 * check is thrown.
113 */
114 unsigned min_access_size;
115 unsigned max_access_size;
116 /* If true, unaligned accesses are supported. Otherwise unaligned
117 * accesses throw machine checks.
118 */
119 bool unaligned;
120 /*
121 * If present, and returns #false, the transaction is not accepted
122 * by the device (and results in machine dependent behaviour such
123 * as a machine check exception).
124 */
125 bool (*accepts)(void *opaque, hwaddr addr,
126 unsigned size, bool is_write);
127 } valid;
128 /* Internal implementation constraints: */
129 struct {
130 /* If nonzero, specifies the minimum size implemented. Smaller sizes
131 * will be rounded upwards and a partial result will be returned.
132 */
133 unsigned min_access_size;
134 /* If nonzero, specifies the maximum size implemented. Larger sizes
135 * will be done as a series of accesses with smaller sizes.
136 */
137 unsigned max_access_size;
138 /* If true, unaligned accesses are supported. Otherwise all accesses
139 * are converted to (possibly multiple) naturally aligned accesses.
140 */
141 bool unaligned;
142 } impl;
143
144 /* If .read and .write are not present, old_mmio may be used for
145 * backwards compatibility with old mmio registration
146 */
147 const MemoryRegionMmio old_mmio;
148 };
149
150 typedef struct MemoryRegionIOMMUOps MemoryRegionIOMMUOps;
151
152 struct MemoryRegionIOMMUOps {
153 /* Return a TLB entry that contains a given address. */
154 IOMMUTLBEntry (*translate)(MemoryRegion *iommu, hwaddr addr, bool is_write);
155 };
156
157 typedef struct CoalescedMemoryRange CoalescedMemoryRange;
158 typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd;
159
160 struct MemoryRegion {
161 Object parent_obj;
162 /* All fields are private - violators will be prosecuted */
163 const MemoryRegionOps *ops;
164 const MemoryRegionIOMMUOps *iommu_ops;
165 void *opaque;
166 MemoryRegion *container;
167 Int128 size;
168 hwaddr addr;
169 void (*destructor)(MemoryRegion *mr);
170 ram_addr_t ram_addr;
171 uint64_t align;
172 bool subpage;
173 bool terminates;
174 bool romd_mode;
175 bool ram;
176 bool skip_dump;
177 bool readonly; /* For RAM regions */
178 bool enabled;
179 bool rom_device;
180 bool warning_printed; /* For reservations */
181 bool flush_coalesced_mmio;
182 bool global_locking;
183 uint8_t vga_logging_count;
184 MemoryRegion *alias;
185 hwaddr alias_offset;
186 int32_t priority;
187 bool may_overlap;
188 QTAILQ_HEAD(subregions, MemoryRegion) subregions;
189 QTAILQ_ENTRY(MemoryRegion) subregions_link;
190 QTAILQ_HEAD(coalesced_ranges, CoalescedMemoryRange) coalesced;
191 const char *name;
192 uint8_t dirty_log_mask;
193 unsigned ioeventfd_nb;
194 MemoryRegionIoeventfd *ioeventfds;
195 NotifierList iommu_notify;
196 };
197
198 /**
199 * MemoryListener: callbacks structure for updates to the physical memory map
200 *
201 * Allows a component to adjust to changes in the guest-visible memory map.
202 * Use with memory_listener_register() and memory_listener_unregister().
203 */
204 struct MemoryListener {
205 void (*begin)(MemoryListener *listener);
206 void (*commit)(MemoryListener *listener);
207 void (*region_add)(MemoryListener *listener, MemoryRegionSection *section);
208 void (*region_del)(MemoryListener *listener, MemoryRegionSection *section);
209 void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section);
210 void (*log_start)(MemoryListener *listener, MemoryRegionSection *section,
211 int old, int new);
212 void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section,
213 int old, int new);
214 void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section);
215 void (*log_global_start)(MemoryListener *listener);
216 void (*log_global_stop)(MemoryListener *listener);
217 void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section,
218 bool match_data, uint64_t data, EventNotifier *e);
219 void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section,
220 bool match_data, uint64_t data, EventNotifier *e);
221 void (*coalesced_mmio_add)(MemoryListener *listener, MemoryRegionSection *section,
222 hwaddr addr, hwaddr len);
223 void (*coalesced_mmio_del)(MemoryListener *listener, MemoryRegionSection *section,
224 hwaddr addr, hwaddr len);
225 /* Lower = earlier (during add), later (during del) */
226 unsigned priority;
227 AddressSpace *address_space_filter;
228 QTAILQ_ENTRY(MemoryListener) link;
229 };
230
231 /**
232 * AddressSpace: describes a mapping of addresses to #MemoryRegion objects
233 */
234 struct AddressSpace {
235 /* All fields are private. */
236 struct rcu_head rcu;
237 char *name;
238 MemoryRegion *root;
239
240 /* Accessed via RCU. */
241 struct FlatView *current_map;
242
243 int ioeventfd_nb;
244 struct MemoryRegionIoeventfd *ioeventfds;
245 struct AddressSpaceDispatch *dispatch;
246 struct AddressSpaceDispatch *next_dispatch;
247 MemoryListener dispatch_listener;
248
249 QTAILQ_ENTRY(AddressSpace) address_spaces_link;
250 };
251
252 /**
253 * MemoryRegionSection: describes a fragment of a #MemoryRegion
254 *
255 * @mr: the region, or %NULL if empty
256 * @address_space: the address space the region is mapped in
257 * @offset_within_region: the beginning of the section, relative to @mr's start
258 * @size: the size of the section; will not exceed @mr's boundaries
259 * @offset_within_address_space: the address of the first byte of the section
260 * relative to the region's address space
261 * @readonly: writes to this section are ignored
262 */
263 struct MemoryRegionSection {
264 MemoryRegion *mr;
265 AddressSpace *address_space;
266 hwaddr offset_within_region;
267 Int128 size;
268 hwaddr offset_within_address_space;
269 bool readonly;
270 };
271
272 /**
273 * memory_region_init: Initialize a memory region
274 *
275 * The region typically acts as a container for other memory regions. Use
276 * memory_region_add_subregion() to add subregions.
277 *
278 * @mr: the #MemoryRegion to be initialized
279 * @owner: the object that tracks the region's reference count
280 * @name: used for debugging; not visible to the user or ABI
281 * @size: size of the region; any subregions beyond this size will be clipped
282 */
283 void memory_region_init(MemoryRegion *mr,
284 struct Object *owner,
285 const char *name,
286 uint64_t size);
287
288 /**
289 * memory_region_ref: Add 1 to a memory region's reference count
290 *
291 * Whenever memory regions are accessed outside the BQL, they need to be
292 * preserved against hot-unplug. MemoryRegions actually do not have their
293 * own reference count; they piggyback on a QOM object, their "owner".
294 * This function adds a reference to the owner.
295 *
296 * All MemoryRegions must have an owner if they can disappear, even if the
297 * device they belong to operates exclusively under the BQL. This is because
298 * the region could be returned at any time by memory_region_find, and this
299 * is usually under guest control.
300 *
301 * @mr: the #MemoryRegion
302 */
303 void memory_region_ref(MemoryRegion *mr);
304
305 /**
306 * memory_region_unref: Remove 1 to a memory region's reference count
307 *
308 * Whenever memory regions are accessed outside the BQL, they need to be
309 * preserved against hot-unplug. MemoryRegions actually do not have their
310 * own reference count; they piggyback on a QOM object, their "owner".
311 * This function removes a reference to the owner and possibly destroys it.
312 *
313 * @mr: the #MemoryRegion
314 */
315 void memory_region_unref(MemoryRegion *mr);
316
317 /**
318 * memory_region_init_io: Initialize an I/O memory region.
319 *
320 * Accesses into the region will cause the callbacks in @ops to be called.
321 * if @size is nonzero, subregions will be clipped to @size.
322 *
323 * @mr: the #MemoryRegion to be initialized.
324 * @owner: the object that tracks the region's reference count
325 * @ops: a structure containing read and write callbacks to be used when
326 * I/O is performed on the region.
327 * @opaque: passed to the read and write callbacks of the @ops structure.
328 * @name: used for debugging; not visible to the user or ABI
329 * @size: size of the region.
330 */
331 void memory_region_init_io(MemoryRegion *mr,
332 struct Object *owner,
333 const MemoryRegionOps *ops,
334 void *opaque,
335 const char *name,
336 uint64_t size);
337
338 /**
339 * memory_region_init_ram: Initialize RAM memory region. Accesses into the
340 * region will modify memory directly.
341 *
342 * @mr: the #MemoryRegion to be initialized.
343 * @owner: the object that tracks the region's reference count
344 * @name: the name of the region.
345 * @size: size of the region.
346 * @errp: pointer to Error*, to store an error if it happens.
347 */
348 void memory_region_init_ram(MemoryRegion *mr,
349 struct Object *owner,
350 const char *name,
351 uint64_t size,
352 Error **errp);
353
354 /**
355 * memory_region_init_resizeable_ram: Initialize memory region with resizeable
356 * RAM. Accesses into the region will
357 * modify memory directly. Only an initial
358 * portion of this RAM is actually used.
359 * The used size can change across reboots.
360 *
361 * @mr: the #MemoryRegion to be initialized.
362 * @owner: the object that tracks the region's reference count
363 * @name: the name of the region.
364 * @size: used size of the region.
365 * @max_size: max size of the region.
366 * @resized: callback to notify owner about used size change.
367 * @errp: pointer to Error*, to store an error if it happens.
368 */
369 void memory_region_init_resizeable_ram(MemoryRegion *mr,
370 struct Object *owner,
371 const char *name,
372 uint64_t size,
373 uint64_t max_size,
374 void (*resized)(const char*,
375 uint64_t length,
376 void *host),
377 Error **errp);
378 #ifdef __linux__
379 /**
380 * memory_region_init_ram_from_file: Initialize RAM memory region with a
381 * mmap-ed backend.
382 *
383 * @mr: the #MemoryRegion to be initialized.
384 * @owner: the object that tracks the region's reference count
385 * @name: the name of the region.
386 * @size: size of the region.
387 * @share: %true if memory must be mmaped with the MAP_SHARED flag
388 * @path: the path in which to allocate the RAM.
389 * @errp: pointer to Error*, to store an error if it happens.
390 */
391 void memory_region_init_ram_from_file(MemoryRegion *mr,
392 struct Object *owner,
393 const char *name,
394 uint64_t size,
395 bool share,
396 const char *path,
397 Error **errp);
398 #endif
399
400 /**
401 * memory_region_init_ram_ptr: Initialize RAM memory region from a
402 * user-provided pointer. Accesses into the
403 * region will modify memory directly.
404 *
405 * @mr: the #MemoryRegion to be initialized.
406 * @owner: the object that tracks the region's reference count
407 * @name: the name of the region.
408 * @size: size of the region.
409 * @ptr: memory to be mapped; must contain at least @size bytes.
410 */
411 void memory_region_init_ram_ptr(MemoryRegion *mr,
412 struct Object *owner,
413 const char *name,
414 uint64_t size,
415 void *ptr);
416
417 /**
418 * memory_region_init_alias: Initialize a memory region that aliases all or a
419 * part of another memory region.
420 *
421 * @mr: the #MemoryRegion to be initialized.
422 * @owner: the object that tracks the region's reference count
423 * @name: used for debugging; not visible to the user or ABI
424 * @orig: the region to be referenced; @mr will be equivalent to
425 * @orig between @offset and @offset + @size - 1.
426 * @offset: start of the section in @orig to be referenced.
427 * @size: size of the region.
428 */
429 void memory_region_init_alias(MemoryRegion *mr,
430 struct Object *owner,
431 const char *name,
432 MemoryRegion *orig,
433 hwaddr offset,
434 uint64_t size);
435
436 /**
437 * memory_region_init_rom_device: Initialize a ROM memory region. Writes are
438 * handled via callbacks.
439 *
440 * If NULL callbacks pointer is given, then I/O space is not supposed to be
441 * handled by QEMU itself. Any access via the memory API will cause an abort().
442 *
443 * @mr: the #MemoryRegion to be initialized.
444 * @owner: the object that tracks the region's reference count
445 * @ops: callbacks for write access handling.
446 * @name: the name of the region.
447 * @size: size of the region.
448 * @errp: pointer to Error*, to store an error if it happens.
449 */
450 void memory_region_init_rom_device(MemoryRegion *mr,
451 struct Object *owner,
452 const MemoryRegionOps *ops,
453 void *opaque,
454 const char *name,
455 uint64_t size,
456 Error **errp);
457
458 /**
459 * memory_region_init_reservation: Initialize a memory region that reserves
460 * I/O space.
461 *
462 * A reservation region primariy serves debugging purposes. It claims I/O
463 * space that is not supposed to be handled by QEMU itself. Any access via
464 * the memory API will cause an abort().
465 * This function is deprecated. Use memory_region_init_io() with NULL
466 * callbacks instead.
467 *
468 * @mr: the #MemoryRegion to be initialized
469 * @owner: the object that tracks the region's reference count
470 * @name: used for debugging; not visible to the user or ABI
471 * @size: size of the region.
472 */
473 static inline void memory_region_init_reservation(MemoryRegion *mr,
474 Object *owner,
475 const char *name,
476 uint64_t size)
477 {
478 memory_region_init_io(mr, owner, NULL, mr, name, size);
479 }
480
481 /**
482 * memory_region_init_iommu: Initialize a memory region that translates
483 * addresses
484 *
485 * An IOMMU region translates addresses and forwards accesses to a target
486 * memory region.
487 *
488 * @mr: the #MemoryRegion to be initialized
489 * @owner: the object that tracks the region's reference count
490 * @ops: a function that translates addresses into the @target region
491 * @name: used for debugging; not visible to the user or ABI
492 * @size: size of the region.
493 */
494 void memory_region_init_iommu(MemoryRegion *mr,
495 struct Object *owner,
496 const MemoryRegionIOMMUOps *ops,
497 const char *name,
498 uint64_t size);
499
500 /**
501 * memory_region_owner: get a memory region's owner.
502 *
503 * @mr: the memory region being queried.
504 */
505 struct Object *memory_region_owner(MemoryRegion *mr);
506
507 /**
508 * memory_region_size: get a memory region's size.
509 *
510 * @mr: the memory region being queried.
511 */
512 uint64_t memory_region_size(MemoryRegion *mr);
513
514 /**
515 * memory_region_is_ram: check whether a memory region is random access
516 *
517 * Returns %true is a memory region is random access.
518 *
519 * @mr: the memory region being queried
520 */
521 bool memory_region_is_ram(MemoryRegion *mr);
522
523 /**
524 * memory_region_is_skip_dump: check whether a memory region should not be
525 * dumped
526 *
527 * Returns %true is a memory region should not be dumped(e.g. VFIO BAR MMAP).
528 *
529 * @mr: the memory region being queried
530 */
531 bool memory_region_is_skip_dump(MemoryRegion *mr);
532
533 /**
534 * memory_region_set_skip_dump: Set skip_dump flag, dump will ignore this memory
535 * region
536 *
537 * @mr: the memory region being queried
538 */
539 void memory_region_set_skip_dump(MemoryRegion *mr);
540
541 /**
542 * memory_region_is_romd: check whether a memory region is in ROMD mode
543 *
544 * Returns %true if a memory region is a ROM device and currently set to allow
545 * direct reads.
546 *
547 * @mr: the memory region being queried
548 */
549 static inline bool memory_region_is_romd(MemoryRegion *mr)
550 {
551 return mr->rom_device && mr->romd_mode;
552 }
553
554 /**
555 * memory_region_is_iommu: check whether a memory region is an iommu
556 *
557 * Returns %true is a memory region is an iommu.
558 *
559 * @mr: the memory region being queried
560 */
561 bool memory_region_is_iommu(MemoryRegion *mr);
562
563 /**
564 * memory_region_notify_iommu: notify a change in an IOMMU translation entry.
565 *
566 * @mr: the memory region that was changed
567 * @entry: the new entry in the IOMMU translation table. The entry
568 * replaces all old entries for the same virtual I/O address range.
569 * Deleted entries have .@perm == 0.
570 */
571 void memory_region_notify_iommu(MemoryRegion *mr,
572 IOMMUTLBEntry entry);
573
574 /**
575 * memory_region_register_iommu_notifier: register a notifier for changes to
576 * IOMMU translation entries.
577 *
578 * @mr: the memory region to observe
579 * @n: the notifier to be added; the notifier receives a pointer to an
580 * #IOMMUTLBEntry as the opaque value; the pointer ceases to be
581 * valid on exit from the notifier.
582 */
583 void memory_region_register_iommu_notifier(MemoryRegion *mr, Notifier *n);
584
585 /**
586 * memory_region_unregister_iommu_notifier: unregister a notifier for
587 * changes to IOMMU translation entries.
588 *
589 * @n: the notifier to be removed.
590 */
591 void memory_region_unregister_iommu_notifier(Notifier *n);
592
593 /**
594 * memory_region_name: get a memory region's name
595 *
596 * Returns the string that was used to initialize the memory region.
597 *
598 * @mr: the memory region being queried
599 */
600 const char *memory_region_name(const MemoryRegion *mr);
601
602 /**
603 * memory_region_is_logging: return whether a memory region is logging writes
604 *
605 * Returns %true if the memory region is logging writes for the given client
606 *
607 * @mr: the memory region being queried
608 * @client: the client being queried
609 */
610 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client);
611
612 /**
613 * memory_region_get_dirty_log_mask: return the clients for which a
614 * memory region is logging writes.
615 *
616 * Returns a bitmap of clients, in which the DIRTY_MEMORY_* constants
617 * are the bit indices.
618 *
619 * @mr: the memory region being queried
620 */
621 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr);
622
623 /**
624 * memory_region_is_rom: check whether a memory region is ROM
625 *
626 * Returns %true is a memory region is read-only memory.
627 *
628 * @mr: the memory region being queried
629 */
630 bool memory_region_is_rom(MemoryRegion *mr);
631
632 /**
633 * memory_region_get_fd: Get a file descriptor backing a RAM memory region.
634 *
635 * Returns a file descriptor backing a file-based RAM memory region,
636 * or -1 if the region is not a file-based RAM memory region.
637 *
638 * @mr: the RAM or alias memory region being queried.
639 */
640 int memory_region_get_fd(MemoryRegion *mr);
641
642 /**
643 * memory_region_get_ram_ptr: Get a pointer into a RAM memory region.
644 *
645 * Returns a host pointer to a RAM memory region (created with
646 * memory_region_init_ram() or memory_region_init_ram_ptr()). Use with
647 * care.
648 *
649 * @mr: the memory region being queried.
650 */
651 void *memory_region_get_ram_ptr(MemoryRegion *mr);
652
653 /* memory_region_ram_resize: Resize a RAM region.
654 *
655 * Only legal before guest might have detected the memory size: e.g. on
656 * incoming migration, or right after reset.
657 *
658 * @mr: a memory region created with @memory_region_init_resizeable_ram.
659 * @newsize: the new size the region
660 * @errp: pointer to Error*, to store an error if it happens.
661 */
662 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize,
663 Error **errp);
664
665 /**
666 * memory_region_set_log: Turn dirty logging on or off for a region.
667 *
668 * Turns dirty logging on or off for a specified client (display, migration).
669 * Only meaningful for RAM regions.
670 *
671 * @mr: the memory region being updated.
672 * @log: whether dirty logging is to be enabled or disabled.
673 * @client: the user of the logging information; %DIRTY_MEMORY_VGA only.
674 */
675 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client);
676
677 /**
678 * memory_region_get_dirty: Check whether a range of bytes is dirty
679 * for a specified client.
680 *
681 * Checks whether a range of bytes has been written to since the last
682 * call to memory_region_reset_dirty() with the same @client. Dirty logging
683 * must be enabled.
684 *
685 * @mr: the memory region being queried.
686 * @addr: the address (relative to the start of the region) being queried.
687 * @size: the size of the range being queried.
688 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
689 * %DIRTY_MEMORY_VGA.
690 */
691 bool memory_region_get_dirty(MemoryRegion *mr, hwaddr addr,
692 hwaddr size, unsigned client);
693
694 /**
695 * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region.
696 *
697 * Marks a range of bytes as dirty, after it has been dirtied outside
698 * guest code.
699 *
700 * @mr: the memory region being dirtied.
701 * @addr: the address (relative to the start of the region) being dirtied.
702 * @size: size of the range being dirtied.
703 */
704 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
705 hwaddr size);
706
707 /**
708 * memory_region_test_and_clear_dirty: Check whether a range of bytes is dirty
709 * for a specified client. It clears them.
710 *
711 * Checks whether a range of bytes has been written to since the last
712 * call to memory_region_reset_dirty() with the same @client. Dirty logging
713 * must be enabled.
714 *
715 * @mr: the memory region being queried.
716 * @addr: the address (relative to the start of the region) being queried.
717 * @size: the size of the range being queried.
718 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
719 * %DIRTY_MEMORY_VGA.
720 */
721 bool memory_region_test_and_clear_dirty(MemoryRegion *mr, hwaddr addr,
722 hwaddr size, unsigned client);
723 /**
724 * memory_region_sync_dirty_bitmap: Synchronize a region's dirty bitmap with
725 * any external TLBs (e.g. kvm)
726 *
727 * Flushes dirty information from accelerators such as kvm and vhost-net
728 * and makes it available to users of the memory API.
729 *
730 * @mr: the region being flushed.
731 */
732 void memory_region_sync_dirty_bitmap(MemoryRegion *mr);
733
734 /**
735 * memory_region_reset_dirty: Mark a range of pages as clean, for a specified
736 * client.
737 *
738 * Marks a range of pages as no longer dirty.
739 *
740 * @mr: the region being updated.
741 * @addr: the start of the subrange being cleaned.
742 * @size: the size of the subrange being cleaned.
743 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
744 * %DIRTY_MEMORY_VGA.
745 */
746 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
747 hwaddr size, unsigned client);
748
749 /**
750 * memory_region_set_readonly: Turn a memory region read-only (or read-write)
751 *
752 * Allows a memory region to be marked as read-only (turning it into a ROM).
753 * only useful on RAM regions.
754 *
755 * @mr: the region being updated.
756 * @readonly: whether rhe region is to be ROM or RAM.
757 */
758 void memory_region_set_readonly(MemoryRegion *mr, bool readonly);
759
760 /**
761 * memory_region_rom_device_set_romd: enable/disable ROMD mode
762 *
763 * Allows a ROM device (initialized with memory_region_init_rom_device() to
764 * set to ROMD mode (default) or MMIO mode. When it is in ROMD mode, the
765 * device is mapped to guest memory and satisfies read access directly.
766 * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function.
767 * Writes are always handled by the #MemoryRegion.write function.
768 *
769 * @mr: the memory region to be updated
770 * @romd_mode: %true to put the region into ROMD mode
771 */
772 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode);
773
774 /**
775 * memory_region_set_coalescing: Enable memory coalescing for the region.
776 *
777 * Enabled writes to a region to be queued for later processing. MMIO ->write
778 * callbacks may be delayed until a non-coalesced MMIO is issued.
779 * Only useful for IO regions. Roughly similar to write-combining hardware.
780 *
781 * @mr: the memory region to be write coalesced
782 */
783 void memory_region_set_coalescing(MemoryRegion *mr);
784
785 /**
786 * memory_region_add_coalescing: Enable memory coalescing for a sub-range of
787 * a region.
788 *
789 * Like memory_region_set_coalescing(), but works on a sub-range of a region.
790 * Multiple calls can be issued coalesced disjoint ranges.
791 *
792 * @mr: the memory region to be updated.
793 * @offset: the start of the range within the region to be coalesced.
794 * @size: the size of the subrange to be coalesced.
795 */
796 void memory_region_add_coalescing(MemoryRegion *mr,
797 hwaddr offset,
798 uint64_t size);
799
800 /**
801 * memory_region_clear_coalescing: Disable MMIO coalescing for the region.
802 *
803 * Disables any coalescing caused by memory_region_set_coalescing() or
804 * memory_region_add_coalescing(). Roughly equivalent to uncacheble memory
805 * hardware.
806 *
807 * @mr: the memory region to be updated.
808 */
809 void memory_region_clear_coalescing(MemoryRegion *mr);
810
811 /**
812 * memory_region_set_flush_coalesced: Enforce memory coalescing flush before
813 * accesses.
814 *
815 * Ensure that pending coalesced MMIO request are flushed before the memory
816 * region is accessed. This property is automatically enabled for all regions
817 * passed to memory_region_set_coalescing() and memory_region_add_coalescing().
818 *
819 * @mr: the memory region to be updated.
820 */
821 void memory_region_set_flush_coalesced(MemoryRegion *mr);
822
823 /**
824 * memory_region_clear_flush_coalesced: Disable memory coalescing flush before
825 * accesses.
826 *
827 * Clear the automatic coalesced MMIO flushing enabled via
828 * memory_region_set_flush_coalesced. Note that this service has no effect on
829 * memory regions that have MMIO coalescing enabled for themselves. For them,
830 * automatic flushing will stop once coalescing is disabled.
831 *
832 * @mr: the memory region to be updated.
833 */
834 void memory_region_clear_flush_coalesced(MemoryRegion *mr);
835
836 /**
837 * memory_region_set_global_locking: Declares the access processing requires
838 * QEMU's global lock.
839 *
840 * When this is invoked, accesses to the memory region will be processed while
841 * holding the global lock of QEMU. This is the default behavior of memory
842 * regions.
843 *
844 * @mr: the memory region to be updated.
845 */
846 void memory_region_set_global_locking(MemoryRegion *mr);
847
848 /**
849 * memory_region_clear_global_locking: Declares that access processing does
850 * not depend on the QEMU global lock.
851 *
852 * By clearing this property, accesses to the memory region will be processed
853 * outside of QEMU's global lock (unless the lock is held on when issuing the
854 * access request). In this case, the device model implementing the access
855 * handlers is responsible for synchronization of concurrency.
856 *
857 * @mr: the memory region to be updated.
858 */
859 void memory_region_clear_global_locking(MemoryRegion *mr);
860
861 /**
862 * memory_region_add_eventfd: Request an eventfd to be triggered when a word
863 * is written to a location.
864 *
865 * Marks a word in an IO region (initialized with memory_region_init_io())
866 * as a trigger for an eventfd event. The I/O callback will not be called.
867 * The caller must be prepared to handle failure (that is, take the required
868 * action if the callback _is_ called).
869 *
870 * @mr: the memory region being updated.
871 * @addr: the address within @mr that is to be monitored
872 * @size: the size of the access to trigger the eventfd
873 * @match_data: whether to match against @data, instead of just @addr
874 * @data: the data to match against the guest write
875 * @fd: the eventfd to be triggered when @addr, @size, and @data all match.
876 **/
877 void memory_region_add_eventfd(MemoryRegion *mr,
878 hwaddr addr,
879 unsigned size,
880 bool match_data,
881 uint64_t data,
882 EventNotifier *e);
883
884 /**
885 * memory_region_del_eventfd: Cancel an eventfd.
886 *
887 * Cancels an eventfd trigger requested by a previous
888 * memory_region_add_eventfd() call.
889 *
890 * @mr: the memory region being updated.
891 * @addr: the address within @mr that is to be monitored
892 * @size: the size of the access to trigger the eventfd
893 * @match_data: whether to match against @data, instead of just @addr
894 * @data: the data to match against the guest write
895 * @fd: the eventfd to be triggered when @addr, @size, and @data all match.
896 */
897 void memory_region_del_eventfd(MemoryRegion *mr,
898 hwaddr addr,
899 unsigned size,
900 bool match_data,
901 uint64_t data,
902 EventNotifier *e);
903
904 /**
905 * memory_region_add_subregion: Add a subregion to a container.
906 *
907 * Adds a subregion at @offset. The subregion may not overlap with other
908 * subregions (except for those explicitly marked as overlapping). A region
909 * may only be added once as a subregion (unless removed with
910 * memory_region_del_subregion()); use memory_region_init_alias() if you
911 * want a region to be a subregion in multiple locations.
912 *
913 * @mr: the region to contain the new subregion; must be a container
914 * initialized with memory_region_init().
915 * @offset: the offset relative to @mr where @subregion is added.
916 * @subregion: the subregion to be added.
917 */
918 void memory_region_add_subregion(MemoryRegion *mr,
919 hwaddr offset,
920 MemoryRegion *subregion);
921 /**
922 * memory_region_add_subregion_overlap: Add a subregion to a container
923 * with overlap.
924 *
925 * Adds a subregion at @offset. The subregion may overlap with other
926 * subregions. Conflicts are resolved by having a higher @priority hide a
927 * lower @priority. Subregions without priority are taken as @priority 0.
928 * A region may only be added once as a subregion (unless removed with
929 * memory_region_del_subregion()); use memory_region_init_alias() if you
930 * want a region to be a subregion in multiple locations.
931 *
932 * @mr: the region to contain the new subregion; must be a container
933 * initialized with memory_region_init().
934 * @offset: the offset relative to @mr where @subregion is added.
935 * @subregion: the subregion to be added.
936 * @priority: used for resolving overlaps; highest priority wins.
937 */
938 void memory_region_add_subregion_overlap(MemoryRegion *mr,
939 hwaddr offset,
940 MemoryRegion *subregion,
941 int priority);
942
943 /**
944 * memory_region_get_ram_addr: Get the ram address associated with a memory
945 * region
946 *
947 * DO NOT USE THIS FUNCTION. This is a temporary workaround while the Xen
948 * code is being reworked.
949 */
950 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr);
951
952 uint64_t memory_region_get_alignment(const MemoryRegion *mr);
953 /**
954 * memory_region_del_subregion: Remove a subregion.
955 *
956 * Removes a subregion from its container.
957 *
958 * @mr: the container to be updated.
959 * @subregion: the region being removed; must be a current subregion of @mr.
960 */
961 void memory_region_del_subregion(MemoryRegion *mr,
962 MemoryRegion *subregion);
963
964 /*
965 * memory_region_set_enabled: dynamically enable or disable a region
966 *
967 * Enables or disables a memory region. A disabled memory region
968 * ignores all accesses to itself and its subregions. It does not
969 * obscure sibling subregions with lower priority - it simply behaves as
970 * if it was removed from the hierarchy.
971 *
972 * Regions default to being enabled.
973 *
974 * @mr: the region to be updated
975 * @enabled: whether to enable or disable the region
976 */
977 void memory_region_set_enabled(MemoryRegion *mr, bool enabled);
978
979 /*
980 * memory_region_set_address: dynamically update the address of a region
981 *
982 * Dynamically updates the address of a region, relative to its container.
983 * May be used on regions are currently part of a memory hierarchy.
984 *
985 * @mr: the region to be updated
986 * @addr: new address, relative to container region
987 */
988 void memory_region_set_address(MemoryRegion *mr, hwaddr addr);
989
990 /*
991 * memory_region_set_size: dynamically update the size of a region.
992 *
993 * Dynamically updates the size of a region.
994 *
995 * @mr: the region to be updated
996 * @size: used size of the region.
997 */
998 void memory_region_set_size(MemoryRegion *mr, uint64_t size);
999
1000 /*
1001 * memory_region_set_alias_offset: dynamically update a memory alias's offset
1002 *
1003 * Dynamically updates the offset into the target region that an alias points
1004 * to, as if the fourth argument to memory_region_init_alias() has changed.
1005 *
1006 * @mr: the #MemoryRegion to be updated; should be an alias.
1007 * @offset: the new offset into the target memory region
1008 */
1009 void memory_region_set_alias_offset(MemoryRegion *mr,
1010 hwaddr offset);
1011
1012 /**
1013 * memory_region_present: checks if an address relative to a @container
1014 * translates into #MemoryRegion within @container
1015 *
1016 * Answer whether a #MemoryRegion within @container covers the address
1017 * @addr.
1018 *
1019 * @container: a #MemoryRegion within which @addr is a relative address
1020 * @addr: the area within @container to be searched
1021 */
1022 bool memory_region_present(MemoryRegion *container, hwaddr addr);
1023
1024 /**
1025 * memory_region_is_mapped: returns true if #MemoryRegion is mapped
1026 * into any address space.
1027 *
1028 * @mr: a #MemoryRegion which should be checked if it's mapped
1029 */
1030 bool memory_region_is_mapped(MemoryRegion *mr);
1031
1032 /**
1033 * memory_region_find: translate an address/size relative to a
1034 * MemoryRegion into a #MemoryRegionSection.
1035 *
1036 * Locates the first #MemoryRegion within @mr that overlaps the range
1037 * given by @addr and @size.
1038 *
1039 * Returns a #MemoryRegionSection that describes a contiguous overlap.
1040 * It will have the following characteristics:
1041 * .@size = 0 iff no overlap was found
1042 * .@mr is non-%NULL iff an overlap was found
1043 *
1044 * Remember that in the return value the @offset_within_region is
1045 * relative to the returned region (in the .@mr field), not to the
1046 * @mr argument.
1047 *
1048 * Similarly, the .@offset_within_address_space is relative to the
1049 * address space that contains both regions, the passed and the
1050 * returned one. However, in the special case where the @mr argument
1051 * has no container (and thus is the root of the address space), the
1052 * following will hold:
1053 * .@offset_within_address_space >= @addr
1054 * .@offset_within_address_space + .@size <= @addr + @size
1055 *
1056 * @mr: a MemoryRegion within which @addr is a relative address
1057 * @addr: start of the area within @as to be searched
1058 * @size: size of the area to be searched
1059 */
1060 MemoryRegionSection memory_region_find(MemoryRegion *mr,
1061 hwaddr addr, uint64_t size);
1062
1063 /**
1064 * address_space_sync_dirty_bitmap: synchronize the dirty log for all memory
1065 *
1066 * Synchronizes the dirty page log for an entire address space.
1067 * @as: the address space that contains the memory being synchronized
1068 */
1069 void address_space_sync_dirty_bitmap(AddressSpace *as);
1070
1071 /**
1072 * memory_region_transaction_begin: Start a transaction.
1073 *
1074 * During a transaction, changes will be accumulated and made visible
1075 * only when the transaction ends (is committed).
1076 */
1077 void memory_region_transaction_begin(void);
1078
1079 /**
1080 * memory_region_transaction_commit: Commit a transaction and make changes
1081 * visible to the guest.
1082 */
1083 void memory_region_transaction_commit(void);
1084
1085 /**
1086 * memory_listener_register: register callbacks to be called when memory
1087 * sections are mapped or unmapped into an address
1088 * space
1089 *
1090 * @listener: an object containing the callbacks to be called
1091 * @filter: if non-%NULL, only regions in this address space will be observed
1092 */
1093 void memory_listener_register(MemoryListener *listener, AddressSpace *filter);
1094
1095 /**
1096 * memory_listener_unregister: undo the effect of memory_listener_register()
1097 *
1098 * @listener: an object containing the callbacks to be removed
1099 */
1100 void memory_listener_unregister(MemoryListener *listener);
1101
1102 /**
1103 * memory_global_dirty_log_start: begin dirty logging for all regions
1104 */
1105 void memory_global_dirty_log_start(void);
1106
1107 /**
1108 * memory_global_dirty_log_stop: end dirty logging for all regions
1109 */
1110 void memory_global_dirty_log_stop(void);
1111
1112 void mtree_info(fprintf_function mon_printf, void *f);
1113
1114 /**
1115 * memory_region_dispatch_read: perform a read directly to the specified
1116 * MemoryRegion.
1117 *
1118 * @mr: #MemoryRegion to access
1119 * @addr: address within that region
1120 * @pval: pointer to uint64_t which the data is written to
1121 * @size: size of the access in bytes
1122 * @attrs: memory transaction attributes to use for the access
1123 */
1124 MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
1125 hwaddr addr,
1126 uint64_t *pval,
1127 unsigned size,
1128 MemTxAttrs attrs);
1129 /**
1130 * memory_region_dispatch_write: perform a write directly to the specified
1131 * MemoryRegion.
1132 *
1133 * @mr: #MemoryRegion to access
1134 * @addr: address within that region
1135 * @data: data to write
1136 * @size: size of the access in bytes
1137 * @attrs: memory transaction attributes to use for the access
1138 */
1139 MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
1140 hwaddr addr,
1141 uint64_t data,
1142 unsigned size,
1143 MemTxAttrs attrs);
1144
1145 /**
1146 * address_space_init: initializes an address space
1147 *
1148 * @as: an uninitialized #AddressSpace
1149 * @root: a #MemoryRegion that routes addresses for the address space
1150 * @name: an address space name. The name is only used for debugging
1151 * output.
1152 */
1153 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name);
1154
1155
1156 /**
1157 * address_space_destroy: destroy an address space
1158 *
1159 * Releases all resources associated with an address space. After an address space
1160 * is destroyed, its root memory region (given by address_space_init()) may be destroyed
1161 * as well.
1162 *
1163 * @as: address space to be destroyed
1164 */
1165 void address_space_destroy(AddressSpace *as);
1166
1167 /**
1168 * address_space_rw: read from or write to an address space.
1169 *
1170 * Return a MemTxResult indicating whether the operation succeeded
1171 * or failed (eg unassigned memory, device rejected the transaction,
1172 * IOMMU fault).
1173 *
1174 * @as: #AddressSpace to be accessed
1175 * @addr: address within that address space
1176 * @attrs: memory transaction attributes
1177 * @buf: buffer with the data transferred
1178 * @is_write: indicates the transfer direction
1179 */
1180 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr,
1181 MemTxAttrs attrs, uint8_t *buf,
1182 int len, bool is_write);
1183
1184 /**
1185 * address_space_write: write to address space.
1186 *
1187 * Return a MemTxResult indicating whether the operation succeeded
1188 * or failed (eg unassigned memory, device rejected the transaction,
1189 * IOMMU fault).
1190 *
1191 * @as: #AddressSpace to be accessed
1192 * @addr: address within that address space
1193 * @attrs: memory transaction attributes
1194 * @buf: buffer with the data transferred
1195 */
1196 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
1197 MemTxAttrs attrs,
1198 const uint8_t *buf, int len);
1199
1200 /**
1201 * address_space_read: read from an address space.
1202 *
1203 * Return a MemTxResult indicating whether the operation succeeded
1204 * or failed (eg unassigned memory, device rejected the transaction,
1205 * IOMMU fault).
1206 *
1207 * @as: #AddressSpace to be accessed
1208 * @addr: address within that address space
1209 * @attrs: memory transaction attributes
1210 * @buf: buffer with the data transferred
1211 */
1212 MemTxResult address_space_read(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
1213 uint8_t *buf, int len);
1214
1215 /**
1216 * address_space_ld*: load from an address space
1217 * address_space_st*: store to an address space
1218 *
1219 * These functions perform a load or store of the byte, word,
1220 * longword or quad to the specified address within the AddressSpace.
1221 * The _le suffixed functions treat the data as little endian;
1222 * _be indicates big endian; no suffix indicates "same endianness
1223 * as guest CPU".
1224 *
1225 * The "guest CPU endianness" accessors are deprecated for use outside
1226 * target-* code; devices should be CPU-agnostic and use either the LE
1227 * or the BE accessors.
1228 *
1229 * @as #AddressSpace to be accessed
1230 * @addr: address within that address space
1231 * @val: data value, for stores
1232 * @attrs: memory transaction attributes
1233 * @result: location to write the success/failure of the transaction;
1234 * if NULL, this information is discarded
1235 */
1236 uint32_t address_space_ldub(AddressSpace *as, hwaddr addr,
1237 MemTxAttrs attrs, MemTxResult *result);
1238 uint32_t address_space_lduw_le(AddressSpace *as, hwaddr addr,
1239 MemTxAttrs attrs, MemTxResult *result);
1240 uint32_t address_space_lduw_be(AddressSpace *as, hwaddr addr,
1241 MemTxAttrs attrs, MemTxResult *result);
1242 uint32_t address_space_ldl_le(AddressSpace *as, hwaddr addr,
1243 MemTxAttrs attrs, MemTxResult *result);
1244 uint32_t address_space_ldl_be(AddressSpace *as, hwaddr addr,
1245 MemTxAttrs attrs, MemTxResult *result);
1246 uint64_t address_space_ldq_le(AddressSpace *as, hwaddr addr,
1247 MemTxAttrs attrs, MemTxResult *result);
1248 uint64_t address_space_ldq_be(AddressSpace *as, hwaddr addr,
1249 MemTxAttrs attrs, MemTxResult *result);
1250 void address_space_stb(AddressSpace *as, hwaddr addr, uint32_t val,
1251 MemTxAttrs attrs, MemTxResult *result);
1252 void address_space_stw_le(AddressSpace *as, hwaddr addr, uint32_t val,
1253 MemTxAttrs attrs, MemTxResult *result);
1254 void address_space_stw_be(AddressSpace *as, hwaddr addr, uint32_t val,
1255 MemTxAttrs attrs, MemTxResult *result);
1256 void address_space_stl_le(AddressSpace *as, hwaddr addr, uint32_t val,
1257 MemTxAttrs attrs, MemTxResult *result);
1258 void address_space_stl_be(AddressSpace *as, hwaddr addr, uint32_t val,
1259 MemTxAttrs attrs, MemTxResult *result);
1260 void address_space_stq_le(AddressSpace *as, hwaddr addr, uint64_t val,
1261 MemTxAttrs attrs, MemTxResult *result);
1262 void address_space_stq_be(AddressSpace *as, hwaddr addr, uint64_t val,
1263 MemTxAttrs attrs, MemTxResult *result);
1264
1265 #ifdef NEED_CPU_H
1266 uint32_t address_space_lduw(AddressSpace *as, hwaddr addr,
1267 MemTxAttrs attrs, MemTxResult *result);
1268 uint32_t address_space_ldl(AddressSpace *as, hwaddr addr,
1269 MemTxAttrs attrs, MemTxResult *result);
1270 uint64_t address_space_ldq(AddressSpace *as, hwaddr addr,
1271 MemTxAttrs attrs, MemTxResult *result);
1272 void address_space_stl_notdirty(AddressSpace *as, hwaddr addr, uint32_t val,
1273 MemTxAttrs attrs, MemTxResult *result);
1274 void address_space_stw(AddressSpace *as, hwaddr addr, uint32_t val,
1275 MemTxAttrs attrs, MemTxResult *result);
1276 void address_space_stl(AddressSpace *as, hwaddr addr, uint32_t val,
1277 MemTxAttrs attrs, MemTxResult *result);
1278 void address_space_stq(AddressSpace *as, hwaddr addr, uint64_t val,
1279 MemTxAttrs attrs, MemTxResult *result);
1280 #endif
1281
1282 /* address_space_translate: translate an address range into an address space
1283 * into a MemoryRegion and an address range into that section. Should be
1284 * called from an RCU critical section, to avoid that the last reference
1285 * to the returned region disappears after address_space_translate returns.
1286 *
1287 * @as: #AddressSpace to be accessed
1288 * @addr: address within that address space
1289 * @xlat: pointer to address within the returned memory region section's
1290 * #MemoryRegion.
1291 * @len: pointer to length
1292 * @is_write: indicates the transfer direction
1293 */
1294 MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr,
1295 hwaddr *xlat, hwaddr *len,
1296 bool is_write);
1297
1298 /* address_space_access_valid: check for validity of accessing an address
1299 * space range
1300 *
1301 * Check whether memory is assigned to the given address space range, and
1302 * access is permitted by any IOMMU regions that are active for the address
1303 * space.
1304 *
1305 * For now, addr and len should be aligned to a page size. This limitation
1306 * will be lifted in the future.
1307 *
1308 * @as: #AddressSpace to be accessed
1309 * @addr: address within that address space
1310 * @len: length of the area to be checked
1311 * @is_write: indicates the transfer direction
1312 */
1313 bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write);
1314
1315 /* address_space_map: map a physical memory region into a host virtual address
1316 *
1317 * May map a subset of the requested range, given by and returned in @plen.
1318 * May return %NULL if resources needed to perform the mapping are exhausted.
1319 * Use only for reads OR writes - not for read-modify-write operations.
1320 * Use cpu_register_map_client() to know when retrying the map operation is
1321 * likely to succeed.
1322 *
1323 * @as: #AddressSpace to be accessed
1324 * @addr: address within that address space
1325 * @plen: pointer to length of buffer; updated on return
1326 * @is_write: indicates the transfer direction
1327 */
1328 void *address_space_map(AddressSpace *as, hwaddr addr,
1329 hwaddr *plen, bool is_write);
1330
1331 /* address_space_unmap: Unmaps a memory region previously mapped by address_space_map()
1332 *
1333 * Will also mark the memory as dirty if @is_write == %true. @access_len gives
1334 * the amount of memory that was actually read or written by the caller.
1335 *
1336 * @as: #AddressSpace used
1337 * @addr: address within that address space
1338 * @len: buffer length as returned by address_space_map()
1339 * @access_len: amount of data actually transferred
1340 * @is_write: indicates the transfer direction
1341 */
1342 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
1343 int is_write, hwaddr access_len);
1344
1345
1346 #endif
1347
1348 #endif