]> git.proxmox.com Git - mirror_qemu.git/blob - include/exec/memory.h
memory: Update description of memory_region_is_mapped()
[mirror_qemu.git] / include / exec / memory.h
1 /*
2 * Physical memory management API
3 *
4 * Copyright 2011 Red Hat, Inc. and/or its affiliates
5 *
6 * Authors:
7 * Avi Kivity <avi@redhat.com>
8 *
9 * This work is licensed under the terms of the GNU GPL, version 2. See
10 * the COPYING file in the top-level directory.
11 *
12 */
13
14 #ifndef MEMORY_H
15 #define MEMORY_H
16
17 #ifndef CONFIG_USER_ONLY
18
19 #include "exec/cpu-common.h"
20 #include "exec/hwaddr.h"
21 #include "exec/memattrs.h"
22 #include "exec/memop.h"
23 #include "exec/ramlist.h"
24 #include "qemu/bswap.h"
25 #include "qemu/queue.h"
26 #include "qemu/int128.h"
27 #include "qemu/notify.h"
28 #include "qom/object.h"
29 #include "qemu/rcu.h"
30
31 #define RAM_ADDR_INVALID (~(ram_addr_t)0)
32
33 #define MAX_PHYS_ADDR_SPACE_BITS 62
34 #define MAX_PHYS_ADDR (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1)
35
36 #define TYPE_MEMORY_REGION "memory-region"
37 DECLARE_INSTANCE_CHECKER(MemoryRegion, MEMORY_REGION,
38 TYPE_MEMORY_REGION)
39
40 #define TYPE_IOMMU_MEMORY_REGION "iommu-memory-region"
41 typedef struct IOMMUMemoryRegionClass IOMMUMemoryRegionClass;
42 DECLARE_OBJ_CHECKERS(IOMMUMemoryRegion, IOMMUMemoryRegionClass,
43 IOMMU_MEMORY_REGION, TYPE_IOMMU_MEMORY_REGION)
44
45 #define TYPE_RAM_DISCARD_MANAGER "qemu:ram-discard-manager"
46 typedef struct RamDiscardManagerClass RamDiscardManagerClass;
47 typedef struct RamDiscardManager RamDiscardManager;
48 DECLARE_OBJ_CHECKERS(RamDiscardManager, RamDiscardManagerClass,
49 RAM_DISCARD_MANAGER, TYPE_RAM_DISCARD_MANAGER);
50
51 #ifdef CONFIG_FUZZ
52 void fuzz_dma_read_cb(size_t addr,
53 size_t len,
54 MemoryRegion *mr);
55 #else
56 static inline void fuzz_dma_read_cb(size_t addr,
57 size_t len,
58 MemoryRegion *mr)
59 {
60 /* Do Nothing */
61 }
62 #endif
63
64 /* Possible bits for global_dirty_log_{start|stop} */
65
66 /* Dirty tracking enabled because migration is running */
67 #define GLOBAL_DIRTY_MIGRATION (1U << 0)
68
69 /* Dirty tracking enabled because measuring dirty rate */
70 #define GLOBAL_DIRTY_DIRTY_RATE (1U << 1)
71
72 #define GLOBAL_DIRTY_MASK (0x3)
73
74 extern unsigned int global_dirty_tracking;
75
76 typedef struct MemoryRegionOps MemoryRegionOps;
77
78 struct ReservedRegion {
79 hwaddr low;
80 hwaddr high;
81 unsigned type;
82 };
83
84 /**
85 * struct MemoryRegionSection: describes a fragment of a #MemoryRegion
86 *
87 * @mr: the region, or %NULL if empty
88 * @fv: the flat view of the address space the region is mapped in
89 * @offset_within_region: the beginning of the section, relative to @mr's start
90 * @size: the size of the section; will not exceed @mr's boundaries
91 * @offset_within_address_space: the address of the first byte of the section
92 * relative to the region's address space
93 * @readonly: writes to this section are ignored
94 * @nonvolatile: this section is non-volatile
95 */
96 struct MemoryRegionSection {
97 Int128 size;
98 MemoryRegion *mr;
99 FlatView *fv;
100 hwaddr offset_within_region;
101 hwaddr offset_within_address_space;
102 bool readonly;
103 bool nonvolatile;
104 };
105
106 typedef struct IOMMUTLBEntry IOMMUTLBEntry;
107
108 /* See address_space_translate: bit 0 is read, bit 1 is write. */
109 typedef enum {
110 IOMMU_NONE = 0,
111 IOMMU_RO = 1,
112 IOMMU_WO = 2,
113 IOMMU_RW = 3,
114 } IOMMUAccessFlags;
115
116 #define IOMMU_ACCESS_FLAG(r, w) (((r) ? IOMMU_RO : 0) | ((w) ? IOMMU_WO : 0))
117
118 struct IOMMUTLBEntry {
119 AddressSpace *target_as;
120 hwaddr iova;
121 hwaddr translated_addr;
122 hwaddr addr_mask; /* 0xfff = 4k translation */
123 IOMMUAccessFlags perm;
124 };
125
126 /*
127 * Bitmap for different IOMMUNotifier capabilities. Each notifier can
128 * register with one or multiple IOMMU Notifier capability bit(s).
129 */
130 typedef enum {
131 IOMMU_NOTIFIER_NONE = 0,
132 /* Notify cache invalidations */
133 IOMMU_NOTIFIER_UNMAP = 0x1,
134 /* Notify entry changes (newly created entries) */
135 IOMMU_NOTIFIER_MAP = 0x2,
136 /* Notify changes on device IOTLB entries */
137 IOMMU_NOTIFIER_DEVIOTLB_UNMAP = 0x04,
138 } IOMMUNotifierFlag;
139
140 #define IOMMU_NOTIFIER_IOTLB_EVENTS (IOMMU_NOTIFIER_MAP | IOMMU_NOTIFIER_UNMAP)
141 #define IOMMU_NOTIFIER_DEVIOTLB_EVENTS IOMMU_NOTIFIER_DEVIOTLB_UNMAP
142 #define IOMMU_NOTIFIER_ALL (IOMMU_NOTIFIER_IOTLB_EVENTS | \
143 IOMMU_NOTIFIER_DEVIOTLB_EVENTS)
144
145 struct IOMMUNotifier;
146 typedef void (*IOMMUNotify)(struct IOMMUNotifier *notifier,
147 IOMMUTLBEntry *data);
148
149 struct IOMMUNotifier {
150 IOMMUNotify notify;
151 IOMMUNotifierFlag notifier_flags;
152 /* Notify for address space range start <= addr <= end */
153 hwaddr start;
154 hwaddr end;
155 int iommu_idx;
156 QLIST_ENTRY(IOMMUNotifier) node;
157 };
158 typedef struct IOMMUNotifier IOMMUNotifier;
159
160 typedef struct IOMMUTLBEvent {
161 IOMMUNotifierFlag type;
162 IOMMUTLBEntry entry;
163 } IOMMUTLBEvent;
164
165 /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
166 #define RAM_PREALLOC (1 << 0)
167
168 /* RAM is mmap-ed with MAP_SHARED */
169 #define RAM_SHARED (1 << 1)
170
171 /* Only a portion of RAM (used_length) is actually used, and migrated.
172 * Resizing RAM while migrating can result in the migration being canceled.
173 */
174 #define RAM_RESIZEABLE (1 << 2)
175
176 /* UFFDIO_ZEROPAGE is available on this RAMBlock to atomically
177 * zero the page and wake waiting processes.
178 * (Set during postcopy)
179 */
180 #define RAM_UF_ZEROPAGE (1 << 3)
181
182 /* RAM can be migrated */
183 #define RAM_MIGRATABLE (1 << 4)
184
185 /* RAM is a persistent kind memory */
186 #define RAM_PMEM (1 << 5)
187
188
189 /*
190 * UFFDIO_WRITEPROTECT is used on this RAMBlock to
191 * support 'write-tracking' migration type.
192 * Implies ram_state->ram_wt_enabled.
193 */
194 #define RAM_UF_WRITEPROTECT (1 << 6)
195
196 /*
197 * RAM is mmap-ed with MAP_NORESERVE. When set, reserving swap space (or huge
198 * pages if applicable) is skipped: will bail out if not supported. When not
199 * set, the OS will do the reservation, if supported for the memory type.
200 */
201 #define RAM_NORESERVE (1 << 7)
202
203 /* RAM that isn't accessible through normal means. */
204 #define RAM_PROTECTED (1 << 8)
205
206 static inline void iommu_notifier_init(IOMMUNotifier *n, IOMMUNotify fn,
207 IOMMUNotifierFlag flags,
208 hwaddr start, hwaddr end,
209 int iommu_idx)
210 {
211 n->notify = fn;
212 n->notifier_flags = flags;
213 n->start = start;
214 n->end = end;
215 n->iommu_idx = iommu_idx;
216 }
217
218 /*
219 * Memory region callbacks
220 */
221 struct MemoryRegionOps {
222 /* Read from the memory region. @addr is relative to @mr; @size is
223 * in bytes. */
224 uint64_t (*read)(void *opaque,
225 hwaddr addr,
226 unsigned size);
227 /* Write to the memory region. @addr is relative to @mr; @size is
228 * in bytes. */
229 void (*write)(void *opaque,
230 hwaddr addr,
231 uint64_t data,
232 unsigned size);
233
234 MemTxResult (*read_with_attrs)(void *opaque,
235 hwaddr addr,
236 uint64_t *data,
237 unsigned size,
238 MemTxAttrs attrs);
239 MemTxResult (*write_with_attrs)(void *opaque,
240 hwaddr addr,
241 uint64_t data,
242 unsigned size,
243 MemTxAttrs attrs);
244
245 enum device_endian endianness;
246 /* Guest-visible constraints: */
247 struct {
248 /* If nonzero, specify bounds on access sizes beyond which a machine
249 * check is thrown.
250 */
251 unsigned min_access_size;
252 unsigned max_access_size;
253 /* If true, unaligned accesses are supported. Otherwise unaligned
254 * accesses throw machine checks.
255 */
256 bool unaligned;
257 /*
258 * If present, and returns #false, the transaction is not accepted
259 * by the device (and results in machine dependent behaviour such
260 * as a machine check exception).
261 */
262 bool (*accepts)(void *opaque, hwaddr addr,
263 unsigned size, bool is_write,
264 MemTxAttrs attrs);
265 } valid;
266 /* Internal implementation constraints: */
267 struct {
268 /* If nonzero, specifies the minimum size implemented. Smaller sizes
269 * will be rounded upwards and a partial result will be returned.
270 */
271 unsigned min_access_size;
272 /* If nonzero, specifies the maximum size implemented. Larger sizes
273 * will be done as a series of accesses with smaller sizes.
274 */
275 unsigned max_access_size;
276 /* If true, unaligned accesses are supported. Otherwise all accesses
277 * are converted to (possibly multiple) naturally aligned accesses.
278 */
279 bool unaligned;
280 } impl;
281 };
282
283 typedef struct MemoryRegionClass {
284 /* private */
285 ObjectClass parent_class;
286 } MemoryRegionClass;
287
288
289 enum IOMMUMemoryRegionAttr {
290 IOMMU_ATTR_SPAPR_TCE_FD
291 };
292
293 /*
294 * IOMMUMemoryRegionClass:
295 *
296 * All IOMMU implementations need to subclass TYPE_IOMMU_MEMORY_REGION
297 * and provide an implementation of at least the @translate method here
298 * to handle requests to the memory region. Other methods are optional.
299 *
300 * The IOMMU implementation must use the IOMMU notifier infrastructure
301 * to report whenever mappings are changed, by calling
302 * memory_region_notify_iommu() (or, if necessary, by calling
303 * memory_region_notify_iommu_one() for each registered notifier).
304 *
305 * Conceptually an IOMMU provides a mapping from input address
306 * to an output TLB entry. If the IOMMU is aware of memory transaction
307 * attributes and the output TLB entry depends on the transaction
308 * attributes, we represent this using IOMMU indexes. Each index
309 * selects a particular translation table that the IOMMU has:
310 *
311 * @attrs_to_index returns the IOMMU index for a set of transaction attributes
312 *
313 * @translate takes an input address and an IOMMU index
314 *
315 * and the mapping returned can only depend on the input address and the
316 * IOMMU index.
317 *
318 * Most IOMMUs don't care about the transaction attributes and support
319 * only a single IOMMU index. A more complex IOMMU might have one index
320 * for secure transactions and one for non-secure transactions.
321 */
322 struct IOMMUMemoryRegionClass {
323 /* private: */
324 MemoryRegionClass parent_class;
325
326 /* public: */
327 /**
328 * @translate:
329 *
330 * Return a TLB entry that contains a given address.
331 *
332 * The IOMMUAccessFlags indicated via @flag are optional and may
333 * be specified as IOMMU_NONE to indicate that the caller needs
334 * the full translation information for both reads and writes. If
335 * the access flags are specified then the IOMMU implementation
336 * may use this as an optimization, to stop doing a page table
337 * walk as soon as it knows that the requested permissions are not
338 * allowed. If IOMMU_NONE is passed then the IOMMU must do the
339 * full page table walk and report the permissions in the returned
340 * IOMMUTLBEntry. (Note that this implies that an IOMMU may not
341 * return different mappings for reads and writes.)
342 *
343 * The returned information remains valid while the caller is
344 * holding the big QEMU lock or is inside an RCU critical section;
345 * if the caller wishes to cache the mapping beyond that it must
346 * register an IOMMU notifier so it can invalidate its cached
347 * information when the IOMMU mapping changes.
348 *
349 * @iommu: the IOMMUMemoryRegion
350 *
351 * @hwaddr: address to be translated within the memory region
352 *
353 * @flag: requested access permission
354 *
355 * @iommu_idx: IOMMU index for the translation
356 */
357 IOMMUTLBEntry (*translate)(IOMMUMemoryRegion *iommu, hwaddr addr,
358 IOMMUAccessFlags flag, int iommu_idx);
359 /**
360 * @get_min_page_size:
361 *
362 * Returns minimum supported page size in bytes.
363 *
364 * If this method is not provided then the minimum is assumed to
365 * be TARGET_PAGE_SIZE.
366 *
367 * @iommu: the IOMMUMemoryRegion
368 */
369 uint64_t (*get_min_page_size)(IOMMUMemoryRegion *iommu);
370 /**
371 * @notify_flag_changed:
372 *
373 * Called when IOMMU Notifier flag changes (ie when the set of
374 * events which IOMMU users are requesting notification for changes).
375 * Optional method -- need not be provided if the IOMMU does not
376 * need to know exactly which events must be notified.
377 *
378 * @iommu: the IOMMUMemoryRegion
379 *
380 * @old_flags: events which previously needed to be notified
381 *
382 * @new_flags: events which now need to be notified
383 *
384 * Returns 0 on success, or a negative errno; in particular
385 * returns -EINVAL if the new flag bitmap is not supported by the
386 * IOMMU memory region. In case of failure, the error object
387 * must be created
388 */
389 int (*notify_flag_changed)(IOMMUMemoryRegion *iommu,
390 IOMMUNotifierFlag old_flags,
391 IOMMUNotifierFlag new_flags,
392 Error **errp);
393 /**
394 * @replay:
395 *
396 * Called to handle memory_region_iommu_replay().
397 *
398 * The default implementation of memory_region_iommu_replay() is to
399 * call the IOMMU translate method for every page in the address space
400 * with flag == IOMMU_NONE and then call the notifier if translate
401 * returns a valid mapping. If this method is implemented then it
402 * overrides the default behaviour, and must provide the full semantics
403 * of memory_region_iommu_replay(), by calling @notifier for every
404 * translation present in the IOMMU.
405 *
406 * Optional method -- an IOMMU only needs to provide this method
407 * if the default is inefficient or produces undesirable side effects.
408 *
409 * Note: this is not related to record-and-replay functionality.
410 */
411 void (*replay)(IOMMUMemoryRegion *iommu, IOMMUNotifier *notifier);
412
413 /**
414 * @get_attr:
415 *
416 * Get IOMMU misc attributes. This is an optional method that
417 * can be used to allow users of the IOMMU to get implementation-specific
418 * information. The IOMMU implements this method to handle calls
419 * by IOMMU users to memory_region_iommu_get_attr() by filling in
420 * the arbitrary data pointer for any IOMMUMemoryRegionAttr values that
421 * the IOMMU supports. If the method is unimplemented then
422 * memory_region_iommu_get_attr() will always return -EINVAL.
423 *
424 * @iommu: the IOMMUMemoryRegion
425 *
426 * @attr: attribute being queried
427 *
428 * @data: memory to fill in with the attribute data
429 *
430 * Returns 0 on success, or a negative errno; in particular
431 * returns -EINVAL for unrecognized or unimplemented attribute types.
432 */
433 int (*get_attr)(IOMMUMemoryRegion *iommu, enum IOMMUMemoryRegionAttr attr,
434 void *data);
435
436 /**
437 * @attrs_to_index:
438 *
439 * Return the IOMMU index to use for a given set of transaction attributes.
440 *
441 * Optional method: if an IOMMU only supports a single IOMMU index then
442 * the default implementation of memory_region_iommu_attrs_to_index()
443 * will return 0.
444 *
445 * The indexes supported by an IOMMU must be contiguous, starting at 0.
446 *
447 * @iommu: the IOMMUMemoryRegion
448 * @attrs: memory transaction attributes
449 */
450 int (*attrs_to_index)(IOMMUMemoryRegion *iommu, MemTxAttrs attrs);
451
452 /**
453 * @num_indexes:
454 *
455 * Return the number of IOMMU indexes this IOMMU supports.
456 *
457 * Optional method: if this method is not provided, then
458 * memory_region_iommu_num_indexes() will return 1, indicating that
459 * only a single IOMMU index is supported.
460 *
461 * @iommu: the IOMMUMemoryRegion
462 */
463 int (*num_indexes)(IOMMUMemoryRegion *iommu);
464
465 /**
466 * @iommu_set_page_size_mask:
467 *
468 * Restrict the page size mask that can be supported with a given IOMMU
469 * memory region. Used for example to propagate host physical IOMMU page
470 * size mask limitations to the virtual IOMMU.
471 *
472 * Optional method: if this method is not provided, then the default global
473 * page mask is used.
474 *
475 * @iommu: the IOMMUMemoryRegion
476 *
477 * @page_size_mask: a bitmask of supported page sizes. At least one bit,
478 * representing the smallest page size, must be set. Additional set bits
479 * represent supported block sizes. For example a host physical IOMMU that
480 * uses page tables with a page size of 4kB, and supports 2MB and 4GB
481 * blocks, will set mask 0x40201000. A granule of 4kB with indiscriminate
482 * block sizes is specified with mask 0xfffffffffffff000.
483 *
484 * Returns 0 on success, or a negative error. In case of failure, the error
485 * object must be created.
486 */
487 int (*iommu_set_page_size_mask)(IOMMUMemoryRegion *iommu,
488 uint64_t page_size_mask,
489 Error **errp);
490 };
491
492 typedef struct RamDiscardListener RamDiscardListener;
493 typedef int (*NotifyRamPopulate)(RamDiscardListener *rdl,
494 MemoryRegionSection *section);
495 typedef void (*NotifyRamDiscard)(RamDiscardListener *rdl,
496 MemoryRegionSection *section);
497
498 struct RamDiscardListener {
499 /*
500 * @notify_populate:
501 *
502 * Notification that previously discarded memory is about to get populated.
503 * Listeners are able to object. If any listener objects, already
504 * successfully notified listeners are notified about a discard again.
505 *
506 * @rdl: the #RamDiscardListener getting notified
507 * @section: the #MemoryRegionSection to get populated. The section
508 * is aligned within the memory region to the minimum granularity
509 * unless it would exceed the registered section.
510 *
511 * Returns 0 on success. If the notification is rejected by the listener,
512 * an error is returned.
513 */
514 NotifyRamPopulate notify_populate;
515
516 /*
517 * @notify_discard:
518 *
519 * Notification that previously populated memory was discarded successfully
520 * and listeners should drop all references to such memory and prevent
521 * new population (e.g., unmap).
522 *
523 * @rdl: the #RamDiscardListener getting notified
524 * @section: the #MemoryRegionSection to get populated. The section
525 * is aligned within the memory region to the minimum granularity
526 * unless it would exceed the registered section.
527 */
528 NotifyRamDiscard notify_discard;
529
530 /*
531 * @double_discard_supported:
532 *
533 * The listener suppors getting @notify_discard notifications that span
534 * already discarded parts.
535 */
536 bool double_discard_supported;
537
538 MemoryRegionSection *section;
539 QLIST_ENTRY(RamDiscardListener) next;
540 };
541
542 static inline void ram_discard_listener_init(RamDiscardListener *rdl,
543 NotifyRamPopulate populate_fn,
544 NotifyRamDiscard discard_fn,
545 bool double_discard_supported)
546 {
547 rdl->notify_populate = populate_fn;
548 rdl->notify_discard = discard_fn;
549 rdl->double_discard_supported = double_discard_supported;
550 }
551
552 typedef int (*ReplayRamPopulate)(MemoryRegionSection *section, void *opaque);
553 typedef void (*ReplayRamDiscard)(MemoryRegionSection *section, void *opaque);
554
555 /*
556 * RamDiscardManagerClass:
557 *
558 * A #RamDiscardManager coordinates which parts of specific RAM #MemoryRegion
559 * regions are currently populated to be used/accessed by the VM, notifying
560 * after parts were discarded (freeing up memory) and before parts will be
561 * populated (consuming memory), to be used/acessed by the VM.
562 *
563 * A #RamDiscardManager can only be set for a RAM #MemoryRegion while the
564 * #MemoryRegion isn't mapped yet; it cannot change while the #MemoryRegion is
565 * mapped.
566 *
567 * The #RamDiscardManager is intended to be used by technologies that are
568 * incompatible with discarding of RAM (e.g., VFIO, which may pin all
569 * memory inside a #MemoryRegion), and require proper coordination to only
570 * map the currently populated parts, to hinder parts that are expected to
571 * remain discarded from silently getting populated and consuming memory.
572 * Technologies that support discarding of RAM don't have to bother and can
573 * simply map the whole #MemoryRegion.
574 *
575 * An example #RamDiscardManager is virtio-mem, which logically (un)plugs
576 * memory within an assigned RAM #MemoryRegion, coordinated with the VM.
577 * Logically unplugging memory consists of discarding RAM. The VM agreed to not
578 * access unplugged (discarded) memory - especially via DMA. virtio-mem will
579 * properly coordinate with listeners before memory is plugged (populated),
580 * and after memory is unplugged (discarded).
581 *
582 * Listeners are called in multiples of the minimum granularity (unless it
583 * would exceed the registered range) and changes are aligned to the minimum
584 * granularity within the #MemoryRegion. Listeners have to prepare for memory
585 * becomming discarded in a different granularity than it was populated and the
586 * other way around.
587 */
588 struct RamDiscardManagerClass {
589 /* private */
590 InterfaceClass parent_class;
591
592 /* public */
593
594 /**
595 * @get_min_granularity:
596 *
597 * Get the minimum granularity in which listeners will get notified
598 * about changes within the #MemoryRegion via the #RamDiscardManager.
599 *
600 * @rdm: the #RamDiscardManager
601 * @mr: the #MemoryRegion
602 *
603 * Returns the minimum granularity.
604 */
605 uint64_t (*get_min_granularity)(const RamDiscardManager *rdm,
606 const MemoryRegion *mr);
607
608 /**
609 * @is_populated:
610 *
611 * Check whether the given #MemoryRegionSection is completely populated
612 * (i.e., no parts are currently discarded) via the #RamDiscardManager.
613 * There are no alignment requirements.
614 *
615 * @rdm: the #RamDiscardManager
616 * @section: the #MemoryRegionSection
617 *
618 * Returns whether the given range is completely populated.
619 */
620 bool (*is_populated)(const RamDiscardManager *rdm,
621 const MemoryRegionSection *section);
622
623 /**
624 * @replay_populated:
625 *
626 * Call the #ReplayRamPopulate callback for all populated parts within the
627 * #MemoryRegionSection via the #RamDiscardManager.
628 *
629 * In case any call fails, no further calls are made.
630 *
631 * @rdm: the #RamDiscardManager
632 * @section: the #MemoryRegionSection
633 * @replay_fn: the #ReplayRamPopulate callback
634 * @opaque: pointer to forward to the callback
635 *
636 * Returns 0 on success, or a negative error if any notification failed.
637 */
638 int (*replay_populated)(const RamDiscardManager *rdm,
639 MemoryRegionSection *section,
640 ReplayRamPopulate replay_fn, void *opaque);
641
642 /**
643 * @replay_discarded:
644 *
645 * Call the #ReplayRamDiscard callback for all discarded parts within the
646 * #MemoryRegionSection via the #RamDiscardManager.
647 *
648 * @rdm: the #RamDiscardManager
649 * @section: the #MemoryRegionSection
650 * @replay_fn: the #ReplayRamDiscard callback
651 * @opaque: pointer to forward to the callback
652 */
653 void (*replay_discarded)(const RamDiscardManager *rdm,
654 MemoryRegionSection *section,
655 ReplayRamDiscard replay_fn, void *opaque);
656
657 /**
658 * @register_listener:
659 *
660 * Register a #RamDiscardListener for the given #MemoryRegionSection and
661 * immediately notify the #RamDiscardListener about all populated parts
662 * within the #MemoryRegionSection via the #RamDiscardManager.
663 *
664 * In case any notification fails, no further notifications are triggered
665 * and an error is logged.
666 *
667 * @rdm: the #RamDiscardManager
668 * @rdl: the #RamDiscardListener
669 * @section: the #MemoryRegionSection
670 */
671 void (*register_listener)(RamDiscardManager *rdm,
672 RamDiscardListener *rdl,
673 MemoryRegionSection *section);
674
675 /**
676 * @unregister_listener:
677 *
678 * Unregister a previously registered #RamDiscardListener via the
679 * #RamDiscardManager after notifying the #RamDiscardListener about all
680 * populated parts becoming unpopulated within the registered
681 * #MemoryRegionSection.
682 *
683 * @rdm: the #RamDiscardManager
684 * @rdl: the #RamDiscardListener
685 */
686 void (*unregister_listener)(RamDiscardManager *rdm,
687 RamDiscardListener *rdl);
688 };
689
690 uint64_t ram_discard_manager_get_min_granularity(const RamDiscardManager *rdm,
691 const MemoryRegion *mr);
692
693 bool ram_discard_manager_is_populated(const RamDiscardManager *rdm,
694 const MemoryRegionSection *section);
695
696 int ram_discard_manager_replay_populated(const RamDiscardManager *rdm,
697 MemoryRegionSection *section,
698 ReplayRamPopulate replay_fn,
699 void *opaque);
700
701 void ram_discard_manager_replay_discarded(const RamDiscardManager *rdm,
702 MemoryRegionSection *section,
703 ReplayRamDiscard replay_fn,
704 void *opaque);
705
706 void ram_discard_manager_register_listener(RamDiscardManager *rdm,
707 RamDiscardListener *rdl,
708 MemoryRegionSection *section);
709
710 void ram_discard_manager_unregister_listener(RamDiscardManager *rdm,
711 RamDiscardListener *rdl);
712
713 typedef struct CoalescedMemoryRange CoalescedMemoryRange;
714 typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd;
715
716 /** MemoryRegion:
717 *
718 * A struct representing a memory region.
719 */
720 struct MemoryRegion {
721 Object parent_obj;
722
723 /* private: */
724
725 /* The following fields should fit in a cache line */
726 bool romd_mode;
727 bool ram;
728 bool subpage;
729 bool readonly; /* For RAM regions */
730 bool nonvolatile;
731 bool rom_device;
732 bool flush_coalesced_mmio;
733 uint8_t dirty_log_mask;
734 bool is_iommu;
735 RAMBlock *ram_block;
736 Object *owner;
737
738 const MemoryRegionOps *ops;
739 void *opaque;
740 MemoryRegion *container;
741 int mapped_via_alias; /* Mapped via an alias, container might be NULL */
742 Int128 size;
743 hwaddr addr;
744 void (*destructor)(MemoryRegion *mr);
745 uint64_t align;
746 bool terminates;
747 bool ram_device;
748 bool enabled;
749 bool warning_printed; /* For reservations */
750 uint8_t vga_logging_count;
751 MemoryRegion *alias;
752 hwaddr alias_offset;
753 int32_t priority;
754 QTAILQ_HEAD(, MemoryRegion) subregions;
755 QTAILQ_ENTRY(MemoryRegion) subregions_link;
756 QTAILQ_HEAD(, CoalescedMemoryRange) coalesced;
757 const char *name;
758 unsigned ioeventfd_nb;
759 MemoryRegionIoeventfd *ioeventfds;
760 RamDiscardManager *rdm; /* Only for RAM */
761 };
762
763 struct IOMMUMemoryRegion {
764 MemoryRegion parent_obj;
765
766 QLIST_HEAD(, IOMMUNotifier) iommu_notify;
767 IOMMUNotifierFlag iommu_notify_flags;
768 };
769
770 #define IOMMU_NOTIFIER_FOREACH(n, mr) \
771 QLIST_FOREACH((n), &(mr)->iommu_notify, node)
772
773 /**
774 * struct MemoryListener: callbacks structure for updates to the physical memory map
775 *
776 * Allows a component to adjust to changes in the guest-visible memory map.
777 * Use with memory_listener_register() and memory_listener_unregister().
778 */
779 struct MemoryListener {
780 /**
781 * @begin:
782 *
783 * Called at the beginning of an address space update transaction.
784 * Followed by calls to #MemoryListener.region_add(),
785 * #MemoryListener.region_del(), #MemoryListener.region_nop(),
786 * #MemoryListener.log_start() and #MemoryListener.log_stop() in
787 * increasing address order.
788 *
789 * @listener: The #MemoryListener.
790 */
791 void (*begin)(MemoryListener *listener);
792
793 /**
794 * @commit:
795 *
796 * Called at the end of an address space update transaction,
797 * after the last call to #MemoryListener.region_add(),
798 * #MemoryListener.region_del() or #MemoryListener.region_nop(),
799 * #MemoryListener.log_start() and #MemoryListener.log_stop().
800 *
801 * @listener: The #MemoryListener.
802 */
803 void (*commit)(MemoryListener *listener);
804
805 /**
806 * @region_add:
807 *
808 * Called during an address space update transaction,
809 * for a section of the address space that is new in this address space
810 * space since the last transaction.
811 *
812 * @listener: The #MemoryListener.
813 * @section: The new #MemoryRegionSection.
814 */
815 void (*region_add)(MemoryListener *listener, MemoryRegionSection *section);
816
817 /**
818 * @region_del:
819 *
820 * Called during an address space update transaction,
821 * for a section of the address space that has disappeared in the address
822 * space since the last transaction.
823 *
824 * @listener: The #MemoryListener.
825 * @section: The old #MemoryRegionSection.
826 */
827 void (*region_del)(MemoryListener *listener, MemoryRegionSection *section);
828
829 /**
830 * @region_nop:
831 *
832 * Called during an address space update transaction,
833 * for a section of the address space that is in the same place in the address
834 * space as in the last transaction.
835 *
836 * @listener: The #MemoryListener.
837 * @section: The #MemoryRegionSection.
838 */
839 void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section);
840
841 /**
842 * @log_start:
843 *
844 * Called during an address space update transaction, after
845 * one of #MemoryListener.region_add(), #MemoryListener.region_del() or
846 * #MemoryListener.region_nop(), if dirty memory logging clients have
847 * become active since the last transaction.
848 *
849 * @listener: The #MemoryListener.
850 * @section: The #MemoryRegionSection.
851 * @old: A bitmap of dirty memory logging clients that were active in
852 * the previous transaction.
853 * @new: A bitmap of dirty memory logging clients that are active in
854 * the current transaction.
855 */
856 void (*log_start)(MemoryListener *listener, MemoryRegionSection *section,
857 int old, int new);
858
859 /**
860 * @log_stop:
861 *
862 * Called during an address space update transaction, after
863 * one of #MemoryListener.region_add(), #MemoryListener.region_del() or
864 * #MemoryListener.region_nop() and possibly after
865 * #MemoryListener.log_start(), if dirty memory logging clients have
866 * become inactive since the last transaction.
867 *
868 * @listener: The #MemoryListener.
869 * @section: The #MemoryRegionSection.
870 * @old: A bitmap of dirty memory logging clients that were active in
871 * the previous transaction.
872 * @new: A bitmap of dirty memory logging clients that are active in
873 * the current transaction.
874 */
875 void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section,
876 int old, int new);
877
878 /**
879 * @log_sync:
880 *
881 * Called by memory_region_snapshot_and_clear_dirty() and
882 * memory_global_dirty_log_sync(), before accessing QEMU's "official"
883 * copy of the dirty memory bitmap for a #MemoryRegionSection.
884 *
885 * @listener: The #MemoryListener.
886 * @section: The #MemoryRegionSection.
887 */
888 void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section);
889
890 /**
891 * @log_sync_global:
892 *
893 * This is the global version of @log_sync when the listener does
894 * not have a way to synchronize the log with finer granularity.
895 * When the listener registers with @log_sync_global defined, then
896 * its @log_sync must be NULL. Vice versa.
897 *
898 * @listener: The #MemoryListener.
899 */
900 void (*log_sync_global)(MemoryListener *listener);
901
902 /**
903 * @log_clear:
904 *
905 * Called before reading the dirty memory bitmap for a
906 * #MemoryRegionSection.
907 *
908 * @listener: The #MemoryListener.
909 * @section: The #MemoryRegionSection.
910 */
911 void (*log_clear)(MemoryListener *listener, MemoryRegionSection *section);
912
913 /**
914 * @log_global_start:
915 *
916 * Called by memory_global_dirty_log_start(), which
917 * enables the %DIRTY_LOG_MIGRATION client on all memory regions in
918 * the address space. #MemoryListener.log_global_start() is also
919 * called when a #MemoryListener is added, if global dirty logging is
920 * active at that time.
921 *
922 * @listener: The #MemoryListener.
923 */
924 void (*log_global_start)(MemoryListener *listener);
925
926 /**
927 * @log_global_stop:
928 *
929 * Called by memory_global_dirty_log_stop(), which
930 * disables the %DIRTY_LOG_MIGRATION client on all memory regions in
931 * the address space.
932 *
933 * @listener: The #MemoryListener.
934 */
935 void (*log_global_stop)(MemoryListener *listener);
936
937 /**
938 * @log_global_after_sync:
939 *
940 * Called after reading the dirty memory bitmap
941 * for any #MemoryRegionSection.
942 *
943 * @listener: The #MemoryListener.
944 */
945 void (*log_global_after_sync)(MemoryListener *listener);
946
947 /**
948 * @eventfd_add:
949 *
950 * Called during an address space update transaction,
951 * for a section of the address space that has had a new ioeventfd
952 * registration since the last transaction.
953 *
954 * @listener: The #MemoryListener.
955 * @section: The new #MemoryRegionSection.
956 * @match_data: The @match_data parameter for the new ioeventfd.
957 * @data: The @data parameter for the new ioeventfd.
958 * @e: The #EventNotifier parameter for the new ioeventfd.
959 */
960 void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section,
961 bool match_data, uint64_t data, EventNotifier *e);
962
963 /**
964 * @eventfd_del:
965 *
966 * Called during an address space update transaction,
967 * for a section of the address space that has dropped an ioeventfd
968 * registration since the last transaction.
969 *
970 * @listener: The #MemoryListener.
971 * @section: The new #MemoryRegionSection.
972 * @match_data: The @match_data parameter for the dropped ioeventfd.
973 * @data: The @data parameter for the dropped ioeventfd.
974 * @e: The #EventNotifier parameter for the dropped ioeventfd.
975 */
976 void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section,
977 bool match_data, uint64_t data, EventNotifier *e);
978
979 /**
980 * @coalesced_io_add:
981 *
982 * Called during an address space update transaction,
983 * for a section of the address space that has had a new coalesced
984 * MMIO range registration since the last transaction.
985 *
986 * @listener: The #MemoryListener.
987 * @section: The new #MemoryRegionSection.
988 * @addr: The starting address for the coalesced MMIO range.
989 * @len: The length of the coalesced MMIO range.
990 */
991 void (*coalesced_io_add)(MemoryListener *listener, MemoryRegionSection *section,
992 hwaddr addr, hwaddr len);
993
994 /**
995 * @coalesced_io_del:
996 *
997 * Called during an address space update transaction,
998 * for a section of the address space that has dropped a coalesced
999 * MMIO range since the last transaction.
1000 *
1001 * @listener: The #MemoryListener.
1002 * @section: The new #MemoryRegionSection.
1003 * @addr: The starting address for the coalesced MMIO range.
1004 * @len: The length of the coalesced MMIO range.
1005 */
1006 void (*coalesced_io_del)(MemoryListener *listener, MemoryRegionSection *section,
1007 hwaddr addr, hwaddr len);
1008 /**
1009 * @priority:
1010 *
1011 * Govern the order in which memory listeners are invoked. Lower priorities
1012 * are invoked earlier for "add" or "start" callbacks, and later for "delete"
1013 * or "stop" callbacks.
1014 */
1015 unsigned priority;
1016
1017 /**
1018 * @name:
1019 *
1020 * Name of the listener. It can be used in contexts where we'd like to
1021 * identify one memory listener with the rest.
1022 */
1023 const char *name;
1024
1025 /* private: */
1026 AddressSpace *address_space;
1027 QTAILQ_ENTRY(MemoryListener) link;
1028 QTAILQ_ENTRY(MemoryListener) link_as;
1029 };
1030
1031 /**
1032 * struct AddressSpace: describes a mapping of addresses to #MemoryRegion objects
1033 */
1034 struct AddressSpace {
1035 /* private: */
1036 struct rcu_head rcu;
1037 char *name;
1038 MemoryRegion *root;
1039
1040 /* Accessed via RCU. */
1041 struct FlatView *current_map;
1042
1043 int ioeventfd_nb;
1044 struct MemoryRegionIoeventfd *ioeventfds;
1045 QTAILQ_HEAD(, MemoryListener) listeners;
1046 QTAILQ_ENTRY(AddressSpace) address_spaces_link;
1047 };
1048
1049 typedef struct AddressSpaceDispatch AddressSpaceDispatch;
1050 typedef struct FlatRange FlatRange;
1051
1052 /* Flattened global view of current active memory hierarchy. Kept in sorted
1053 * order.
1054 */
1055 struct FlatView {
1056 struct rcu_head rcu;
1057 unsigned ref;
1058 FlatRange *ranges;
1059 unsigned nr;
1060 unsigned nr_allocated;
1061 struct AddressSpaceDispatch *dispatch;
1062 MemoryRegion *root;
1063 };
1064
1065 static inline FlatView *address_space_to_flatview(AddressSpace *as)
1066 {
1067 return qatomic_rcu_read(&as->current_map);
1068 }
1069
1070 /**
1071 * typedef flatview_cb: callback for flatview_for_each_range()
1072 *
1073 * @start: start address of the range within the FlatView
1074 * @len: length of the range in bytes
1075 * @mr: MemoryRegion covering this range
1076 * @offset_in_region: offset of the first byte of the range within @mr
1077 * @opaque: data pointer passed to flatview_for_each_range()
1078 *
1079 * Returns: true to stop the iteration, false to keep going.
1080 */
1081 typedef bool (*flatview_cb)(Int128 start,
1082 Int128 len,
1083 const MemoryRegion *mr,
1084 hwaddr offset_in_region,
1085 void *opaque);
1086
1087 /**
1088 * flatview_for_each_range: Iterate through a FlatView
1089 * @fv: the FlatView to iterate through
1090 * @cb: function to call for each range
1091 * @opaque: opaque data pointer to pass to @cb
1092 *
1093 * A FlatView is made up of a list of non-overlapping ranges, each of
1094 * which is a slice of a MemoryRegion. This function iterates through
1095 * each range in @fv, calling @cb. The callback function can terminate
1096 * iteration early by returning 'true'.
1097 */
1098 void flatview_for_each_range(FlatView *fv, flatview_cb cb, void *opaque);
1099
1100 static inline bool MemoryRegionSection_eq(MemoryRegionSection *a,
1101 MemoryRegionSection *b)
1102 {
1103 return a->mr == b->mr &&
1104 a->fv == b->fv &&
1105 a->offset_within_region == b->offset_within_region &&
1106 a->offset_within_address_space == b->offset_within_address_space &&
1107 int128_eq(a->size, b->size) &&
1108 a->readonly == b->readonly &&
1109 a->nonvolatile == b->nonvolatile;
1110 }
1111
1112 /**
1113 * memory_region_section_new_copy: Copy a memory region section
1114 *
1115 * Allocate memory for a new copy, copy the memory region section, and
1116 * properly take a reference on all relevant members.
1117 *
1118 * @s: the #MemoryRegionSection to copy
1119 */
1120 MemoryRegionSection *memory_region_section_new_copy(MemoryRegionSection *s);
1121
1122 /**
1123 * memory_region_section_new_copy: Free a copied memory region section
1124 *
1125 * Free a copy of a memory section created via memory_region_section_new_copy().
1126 * properly dropping references on all relevant members.
1127 *
1128 * @s: the #MemoryRegionSection to copy
1129 */
1130 void memory_region_section_free_copy(MemoryRegionSection *s);
1131
1132 /**
1133 * memory_region_init: Initialize a memory region
1134 *
1135 * The region typically acts as a container for other memory regions. Use
1136 * memory_region_add_subregion() to add subregions.
1137 *
1138 * @mr: the #MemoryRegion to be initialized
1139 * @owner: the object that tracks the region's reference count
1140 * @name: used for debugging; not visible to the user or ABI
1141 * @size: size of the region; any subregions beyond this size will be clipped
1142 */
1143 void memory_region_init(MemoryRegion *mr,
1144 Object *owner,
1145 const char *name,
1146 uint64_t size);
1147
1148 /**
1149 * memory_region_ref: Add 1 to a memory region's reference count
1150 *
1151 * Whenever memory regions are accessed outside the BQL, they need to be
1152 * preserved against hot-unplug. MemoryRegions actually do not have their
1153 * own reference count; they piggyback on a QOM object, their "owner".
1154 * This function adds a reference to the owner.
1155 *
1156 * All MemoryRegions must have an owner if they can disappear, even if the
1157 * device they belong to operates exclusively under the BQL. This is because
1158 * the region could be returned at any time by memory_region_find, and this
1159 * is usually under guest control.
1160 *
1161 * @mr: the #MemoryRegion
1162 */
1163 void memory_region_ref(MemoryRegion *mr);
1164
1165 /**
1166 * memory_region_unref: Remove 1 to a memory region's reference count
1167 *
1168 * Whenever memory regions are accessed outside the BQL, they need to be
1169 * preserved against hot-unplug. MemoryRegions actually do not have their
1170 * own reference count; they piggyback on a QOM object, their "owner".
1171 * This function removes a reference to the owner and possibly destroys it.
1172 *
1173 * @mr: the #MemoryRegion
1174 */
1175 void memory_region_unref(MemoryRegion *mr);
1176
1177 /**
1178 * memory_region_init_io: Initialize an I/O memory region.
1179 *
1180 * Accesses into the region will cause the callbacks in @ops to be called.
1181 * if @size is nonzero, subregions will be clipped to @size.
1182 *
1183 * @mr: the #MemoryRegion to be initialized.
1184 * @owner: the object that tracks the region's reference count
1185 * @ops: a structure containing read and write callbacks to be used when
1186 * I/O is performed on the region.
1187 * @opaque: passed to the read and write callbacks of the @ops structure.
1188 * @name: used for debugging; not visible to the user or ABI
1189 * @size: size of the region.
1190 */
1191 void memory_region_init_io(MemoryRegion *mr,
1192 Object *owner,
1193 const MemoryRegionOps *ops,
1194 void *opaque,
1195 const char *name,
1196 uint64_t size);
1197
1198 /**
1199 * memory_region_init_ram_nomigrate: Initialize RAM memory region. Accesses
1200 * into the region will modify memory
1201 * directly.
1202 *
1203 * @mr: the #MemoryRegion to be initialized.
1204 * @owner: the object that tracks the region's reference count
1205 * @name: Region name, becomes part of RAMBlock name used in migration stream
1206 * must be unique within any device
1207 * @size: size of the region.
1208 * @errp: pointer to Error*, to store an error if it happens.
1209 *
1210 * Note that this function does not do anything to cause the data in the
1211 * RAM memory region to be migrated; that is the responsibility of the caller.
1212 */
1213 void memory_region_init_ram_nomigrate(MemoryRegion *mr,
1214 Object *owner,
1215 const char *name,
1216 uint64_t size,
1217 Error **errp);
1218
1219 /**
1220 * memory_region_init_ram_flags_nomigrate: Initialize RAM memory region.
1221 * Accesses into the region will
1222 * modify memory directly.
1223 *
1224 * @mr: the #MemoryRegion to be initialized.
1225 * @owner: the object that tracks the region's reference count
1226 * @name: Region name, becomes part of RAMBlock name used in migration stream
1227 * must be unique within any device
1228 * @size: size of the region.
1229 * @ram_flags: RamBlock flags. Supported flags: RAM_SHARED, RAM_NORESERVE.
1230 * @errp: pointer to Error*, to store an error if it happens.
1231 *
1232 * Note that this function does not do anything to cause the data in the
1233 * RAM memory region to be migrated; that is the responsibility of the caller.
1234 */
1235 void memory_region_init_ram_flags_nomigrate(MemoryRegion *mr,
1236 Object *owner,
1237 const char *name,
1238 uint64_t size,
1239 uint32_t ram_flags,
1240 Error **errp);
1241
1242 /**
1243 * memory_region_init_resizeable_ram: Initialize memory region with resizeable
1244 * RAM. Accesses into the region will
1245 * modify memory directly. Only an initial
1246 * portion of this RAM is actually used.
1247 * Changing the size while migrating
1248 * can result in the migration being
1249 * canceled.
1250 *
1251 * @mr: the #MemoryRegion to be initialized.
1252 * @owner: the object that tracks the region's reference count
1253 * @name: Region name, becomes part of RAMBlock name used in migration stream
1254 * must be unique within any device
1255 * @size: used size of the region.
1256 * @max_size: max size of the region.
1257 * @resized: callback to notify owner about used size change.
1258 * @errp: pointer to Error*, to store an error if it happens.
1259 *
1260 * Note that this function does not do anything to cause the data in the
1261 * RAM memory region to be migrated; that is the responsibility of the caller.
1262 */
1263 void memory_region_init_resizeable_ram(MemoryRegion *mr,
1264 Object *owner,
1265 const char *name,
1266 uint64_t size,
1267 uint64_t max_size,
1268 void (*resized)(const char*,
1269 uint64_t length,
1270 void *host),
1271 Error **errp);
1272 #ifdef CONFIG_POSIX
1273
1274 /**
1275 * memory_region_init_ram_from_file: Initialize RAM memory region with a
1276 * mmap-ed backend.
1277 *
1278 * @mr: the #MemoryRegion to be initialized.
1279 * @owner: the object that tracks the region's reference count
1280 * @name: Region name, becomes part of RAMBlock name used in migration stream
1281 * must be unique within any device
1282 * @size: size of the region.
1283 * @align: alignment of the region base address; if 0, the default alignment
1284 * (getpagesize()) will be used.
1285 * @ram_flags: RamBlock flags. Supported flags: RAM_SHARED, RAM_PMEM,
1286 * RAM_NORESERVE,
1287 * @path: the path in which to allocate the RAM.
1288 * @readonly: true to open @path for reading, false for read/write.
1289 * @errp: pointer to Error*, to store an error if it happens.
1290 *
1291 * Note that this function does not do anything to cause the data in the
1292 * RAM memory region to be migrated; that is the responsibility of the caller.
1293 */
1294 void memory_region_init_ram_from_file(MemoryRegion *mr,
1295 Object *owner,
1296 const char *name,
1297 uint64_t size,
1298 uint64_t align,
1299 uint32_t ram_flags,
1300 const char *path,
1301 bool readonly,
1302 Error **errp);
1303
1304 /**
1305 * memory_region_init_ram_from_fd: Initialize RAM memory region with a
1306 * mmap-ed backend.
1307 *
1308 * @mr: the #MemoryRegion to be initialized.
1309 * @owner: the object that tracks the region's reference count
1310 * @name: the name of the region.
1311 * @size: size of the region.
1312 * @ram_flags: RamBlock flags. Supported flags: RAM_SHARED, RAM_PMEM,
1313 * RAM_NORESERVE, RAM_PROTECTED.
1314 * @fd: the fd to mmap.
1315 * @offset: offset within the file referenced by fd
1316 * @errp: pointer to Error*, to store an error if it happens.
1317 *
1318 * Note that this function does not do anything to cause the data in the
1319 * RAM memory region to be migrated; that is the responsibility of the caller.
1320 */
1321 void memory_region_init_ram_from_fd(MemoryRegion *mr,
1322 Object *owner,
1323 const char *name,
1324 uint64_t size,
1325 uint32_t ram_flags,
1326 int fd,
1327 ram_addr_t offset,
1328 Error **errp);
1329 #endif
1330
1331 /**
1332 * memory_region_init_ram_ptr: Initialize RAM memory region from a
1333 * user-provided pointer. Accesses into the
1334 * region will modify memory directly.
1335 *
1336 * @mr: the #MemoryRegion to be initialized.
1337 * @owner: the object that tracks the region's reference count
1338 * @name: Region name, becomes part of RAMBlock name used in migration stream
1339 * must be unique within any device
1340 * @size: size of the region.
1341 * @ptr: memory to be mapped; must contain at least @size bytes.
1342 *
1343 * Note that this function does not do anything to cause the data in the
1344 * RAM memory region to be migrated; that is the responsibility of the caller.
1345 */
1346 void memory_region_init_ram_ptr(MemoryRegion *mr,
1347 Object *owner,
1348 const char *name,
1349 uint64_t size,
1350 void *ptr);
1351
1352 /**
1353 * memory_region_init_ram_device_ptr: Initialize RAM device memory region from
1354 * a user-provided pointer.
1355 *
1356 * A RAM device represents a mapping to a physical device, such as to a PCI
1357 * MMIO BAR of an vfio-pci assigned device. The memory region may be mapped
1358 * into the VM address space and access to the region will modify memory
1359 * directly. However, the memory region should not be included in a memory
1360 * dump (device may not be enabled/mapped at the time of the dump), and
1361 * operations incompatible with manipulating MMIO should be avoided. Replaces
1362 * skip_dump flag.
1363 *
1364 * @mr: the #MemoryRegion to be initialized.
1365 * @owner: the object that tracks the region's reference count
1366 * @name: the name of the region.
1367 * @size: size of the region.
1368 * @ptr: memory to be mapped; must contain at least @size bytes.
1369 *
1370 * Note that this function does not do anything to cause the data in the
1371 * RAM memory region to be migrated; that is the responsibility of the caller.
1372 * (For RAM device memory regions, migrating the contents rarely makes sense.)
1373 */
1374 void memory_region_init_ram_device_ptr(MemoryRegion *mr,
1375 Object *owner,
1376 const char *name,
1377 uint64_t size,
1378 void *ptr);
1379
1380 /**
1381 * memory_region_init_alias: Initialize a memory region that aliases all or a
1382 * part of another memory region.
1383 *
1384 * @mr: the #MemoryRegion to be initialized.
1385 * @owner: the object that tracks the region's reference count
1386 * @name: used for debugging; not visible to the user or ABI
1387 * @orig: the region to be referenced; @mr will be equivalent to
1388 * @orig between @offset and @offset + @size - 1.
1389 * @offset: start of the section in @orig to be referenced.
1390 * @size: size of the region.
1391 */
1392 void memory_region_init_alias(MemoryRegion *mr,
1393 Object *owner,
1394 const char *name,
1395 MemoryRegion *orig,
1396 hwaddr offset,
1397 uint64_t size);
1398
1399 /**
1400 * memory_region_init_rom_nomigrate: Initialize a ROM memory region.
1401 *
1402 * This has the same effect as calling memory_region_init_ram_nomigrate()
1403 * and then marking the resulting region read-only with
1404 * memory_region_set_readonly().
1405 *
1406 * Note that this function does not do anything to cause the data in the
1407 * RAM side of the memory region to be migrated; that is the responsibility
1408 * of the caller.
1409 *
1410 * @mr: the #MemoryRegion to be initialized.
1411 * @owner: the object that tracks the region's reference count
1412 * @name: Region name, becomes part of RAMBlock name used in migration stream
1413 * must be unique within any device
1414 * @size: size of the region.
1415 * @errp: pointer to Error*, to store an error if it happens.
1416 */
1417 void memory_region_init_rom_nomigrate(MemoryRegion *mr,
1418 Object *owner,
1419 const char *name,
1420 uint64_t size,
1421 Error **errp);
1422
1423 /**
1424 * memory_region_init_rom_device_nomigrate: Initialize a ROM memory region.
1425 * Writes are handled via callbacks.
1426 *
1427 * Note that this function does not do anything to cause the data in the
1428 * RAM side of the memory region to be migrated; that is the responsibility
1429 * of the caller.
1430 *
1431 * @mr: the #MemoryRegion to be initialized.
1432 * @owner: the object that tracks the region's reference count
1433 * @ops: callbacks for write access handling (must not be NULL).
1434 * @opaque: passed to the read and write callbacks of the @ops structure.
1435 * @name: Region name, becomes part of RAMBlock name used in migration stream
1436 * must be unique within any device
1437 * @size: size of the region.
1438 * @errp: pointer to Error*, to store an error if it happens.
1439 */
1440 void memory_region_init_rom_device_nomigrate(MemoryRegion *mr,
1441 Object *owner,
1442 const MemoryRegionOps *ops,
1443 void *opaque,
1444 const char *name,
1445 uint64_t size,
1446 Error **errp);
1447
1448 /**
1449 * memory_region_init_iommu: Initialize a memory region of a custom type
1450 * that translates addresses
1451 *
1452 * An IOMMU region translates addresses and forwards accesses to a target
1453 * memory region.
1454 *
1455 * The IOMMU implementation must define a subclass of TYPE_IOMMU_MEMORY_REGION.
1456 * @_iommu_mr should be a pointer to enough memory for an instance of
1457 * that subclass, @instance_size is the size of that subclass, and
1458 * @mrtypename is its name. This function will initialize @_iommu_mr as an
1459 * instance of the subclass, and its methods will then be called to handle
1460 * accesses to the memory region. See the documentation of
1461 * #IOMMUMemoryRegionClass for further details.
1462 *
1463 * @_iommu_mr: the #IOMMUMemoryRegion to be initialized
1464 * @instance_size: the IOMMUMemoryRegion subclass instance size
1465 * @mrtypename: the type name of the #IOMMUMemoryRegion
1466 * @owner: the object that tracks the region's reference count
1467 * @name: used for debugging; not visible to the user or ABI
1468 * @size: size of the region.
1469 */
1470 void memory_region_init_iommu(void *_iommu_mr,
1471 size_t instance_size,
1472 const char *mrtypename,
1473 Object *owner,
1474 const char *name,
1475 uint64_t size);
1476
1477 /**
1478 * memory_region_init_ram - Initialize RAM memory region. Accesses into the
1479 * region will modify memory directly.
1480 *
1481 * @mr: the #MemoryRegion to be initialized
1482 * @owner: the object that tracks the region's reference count (must be
1483 * TYPE_DEVICE or a subclass of TYPE_DEVICE, or NULL)
1484 * @name: name of the memory region
1485 * @size: size of the region in bytes
1486 * @errp: pointer to Error*, to store an error if it happens.
1487 *
1488 * This function allocates RAM for a board model or device, and
1489 * arranges for it to be migrated (by calling vmstate_register_ram()
1490 * if @owner is a DeviceState, or vmstate_register_ram_global() if
1491 * @owner is NULL).
1492 *
1493 * TODO: Currently we restrict @owner to being either NULL (for
1494 * global RAM regions with no owner) or devices, so that we can
1495 * give the RAM block a unique name for migration purposes.
1496 * We should lift this restriction and allow arbitrary Objects.
1497 * If you pass a non-NULL non-device @owner then we will assert.
1498 */
1499 void memory_region_init_ram(MemoryRegion *mr,
1500 Object *owner,
1501 const char *name,
1502 uint64_t size,
1503 Error **errp);
1504
1505 /**
1506 * memory_region_init_rom: Initialize a ROM memory region.
1507 *
1508 * This has the same effect as calling memory_region_init_ram()
1509 * and then marking the resulting region read-only with
1510 * memory_region_set_readonly(). This includes arranging for the
1511 * contents to be migrated.
1512 *
1513 * TODO: Currently we restrict @owner to being either NULL (for
1514 * global RAM regions with no owner) or devices, so that we can
1515 * give the RAM block a unique name for migration purposes.
1516 * We should lift this restriction and allow arbitrary Objects.
1517 * If you pass a non-NULL non-device @owner then we will assert.
1518 *
1519 * @mr: the #MemoryRegion to be initialized.
1520 * @owner: the object that tracks the region's reference count
1521 * @name: Region name, becomes part of RAMBlock name used in migration stream
1522 * must be unique within any device
1523 * @size: size of the region.
1524 * @errp: pointer to Error*, to store an error if it happens.
1525 */
1526 void memory_region_init_rom(MemoryRegion *mr,
1527 Object *owner,
1528 const char *name,
1529 uint64_t size,
1530 Error **errp);
1531
1532 /**
1533 * memory_region_init_rom_device: Initialize a ROM memory region.
1534 * Writes are handled via callbacks.
1535 *
1536 * This function initializes a memory region backed by RAM for reads
1537 * and callbacks for writes, and arranges for the RAM backing to
1538 * be migrated (by calling vmstate_register_ram()
1539 * if @owner is a DeviceState, or vmstate_register_ram_global() if
1540 * @owner is NULL).
1541 *
1542 * TODO: Currently we restrict @owner to being either NULL (for
1543 * global RAM regions with no owner) or devices, so that we can
1544 * give the RAM block a unique name for migration purposes.
1545 * We should lift this restriction and allow arbitrary Objects.
1546 * If you pass a non-NULL non-device @owner then we will assert.
1547 *
1548 * @mr: the #MemoryRegion to be initialized.
1549 * @owner: the object that tracks the region's reference count
1550 * @ops: callbacks for write access handling (must not be NULL).
1551 * @opaque: passed to the read and write callbacks of the @ops structure.
1552 * @name: Region name, becomes part of RAMBlock name used in migration stream
1553 * must be unique within any device
1554 * @size: size of the region.
1555 * @errp: pointer to Error*, to store an error if it happens.
1556 */
1557 void memory_region_init_rom_device(MemoryRegion *mr,
1558 Object *owner,
1559 const MemoryRegionOps *ops,
1560 void *opaque,
1561 const char *name,
1562 uint64_t size,
1563 Error **errp);
1564
1565
1566 /**
1567 * memory_region_owner: get a memory region's owner.
1568 *
1569 * @mr: the memory region being queried.
1570 */
1571 Object *memory_region_owner(MemoryRegion *mr);
1572
1573 /**
1574 * memory_region_size: get a memory region's size.
1575 *
1576 * @mr: the memory region being queried.
1577 */
1578 uint64_t memory_region_size(MemoryRegion *mr);
1579
1580 /**
1581 * memory_region_is_ram: check whether a memory region is random access
1582 *
1583 * Returns %true if a memory region is random access.
1584 *
1585 * @mr: the memory region being queried
1586 */
1587 static inline bool memory_region_is_ram(MemoryRegion *mr)
1588 {
1589 return mr->ram;
1590 }
1591
1592 /**
1593 * memory_region_is_ram_device: check whether a memory region is a ram device
1594 *
1595 * Returns %true if a memory region is a device backed ram region
1596 *
1597 * @mr: the memory region being queried
1598 */
1599 bool memory_region_is_ram_device(MemoryRegion *mr);
1600
1601 /**
1602 * memory_region_is_romd: check whether a memory region is in ROMD mode
1603 *
1604 * Returns %true if a memory region is a ROM device and currently set to allow
1605 * direct reads.
1606 *
1607 * @mr: the memory region being queried
1608 */
1609 static inline bool memory_region_is_romd(MemoryRegion *mr)
1610 {
1611 return mr->rom_device && mr->romd_mode;
1612 }
1613
1614 /**
1615 * memory_region_is_protected: check whether a memory region is protected
1616 *
1617 * Returns %true if a memory region is protected RAM and cannot be accessed
1618 * via standard mechanisms, e.g. DMA.
1619 *
1620 * @mr: the memory region being queried
1621 */
1622 bool memory_region_is_protected(MemoryRegion *mr);
1623
1624 /**
1625 * memory_region_get_iommu: check whether a memory region is an iommu
1626 *
1627 * Returns pointer to IOMMUMemoryRegion if a memory region is an iommu,
1628 * otherwise NULL.
1629 *
1630 * @mr: the memory region being queried
1631 */
1632 static inline IOMMUMemoryRegion *memory_region_get_iommu(MemoryRegion *mr)
1633 {
1634 if (mr->alias) {
1635 return memory_region_get_iommu(mr->alias);
1636 }
1637 if (mr->is_iommu) {
1638 return (IOMMUMemoryRegion *) mr;
1639 }
1640 return NULL;
1641 }
1642
1643 /**
1644 * memory_region_get_iommu_class_nocheck: returns iommu memory region class
1645 * if an iommu or NULL if not
1646 *
1647 * Returns pointer to IOMMUMemoryRegionClass if a memory region is an iommu,
1648 * otherwise NULL. This is fast path avoiding QOM checking, use with caution.
1649 *
1650 * @iommu_mr: the memory region being queried
1651 */
1652 static inline IOMMUMemoryRegionClass *memory_region_get_iommu_class_nocheck(
1653 IOMMUMemoryRegion *iommu_mr)
1654 {
1655 return (IOMMUMemoryRegionClass *) (((Object *)iommu_mr)->class);
1656 }
1657
1658 #define memory_region_is_iommu(mr) (memory_region_get_iommu(mr) != NULL)
1659
1660 /**
1661 * memory_region_iommu_get_min_page_size: get minimum supported page size
1662 * for an iommu
1663 *
1664 * Returns minimum supported page size for an iommu.
1665 *
1666 * @iommu_mr: the memory region being queried
1667 */
1668 uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion *iommu_mr);
1669
1670 /**
1671 * memory_region_notify_iommu: notify a change in an IOMMU translation entry.
1672 *
1673 * Note: for any IOMMU implementation, an in-place mapping change
1674 * should be notified with an UNMAP followed by a MAP.
1675 *
1676 * @iommu_mr: the memory region that was changed
1677 * @iommu_idx: the IOMMU index for the translation table which has changed
1678 * @event: TLB event with the new entry in the IOMMU translation table.
1679 * The entry replaces all old entries for the same virtual I/O address
1680 * range.
1681 */
1682 void memory_region_notify_iommu(IOMMUMemoryRegion *iommu_mr,
1683 int iommu_idx,
1684 IOMMUTLBEvent event);
1685
1686 /**
1687 * memory_region_notify_iommu_one: notify a change in an IOMMU translation
1688 * entry to a single notifier
1689 *
1690 * This works just like memory_region_notify_iommu(), but it only
1691 * notifies a specific notifier, not all of them.
1692 *
1693 * @notifier: the notifier to be notified
1694 * @event: TLB event with the new entry in the IOMMU translation table.
1695 * The entry replaces all old entries for the same virtual I/O address
1696 * range.
1697 */
1698 void memory_region_notify_iommu_one(IOMMUNotifier *notifier,
1699 IOMMUTLBEvent *event);
1700
1701 /**
1702 * memory_region_register_iommu_notifier: register a notifier for changes to
1703 * IOMMU translation entries.
1704 *
1705 * Returns 0 on success, or a negative errno otherwise. In particular,
1706 * -EINVAL indicates that at least one of the attributes of the notifier
1707 * is not supported (flag/range) by the IOMMU memory region. In case of error
1708 * the error object must be created.
1709 *
1710 * @mr: the memory region to observe
1711 * @n: the IOMMUNotifier to be added; the notify callback receives a
1712 * pointer to an #IOMMUTLBEntry as the opaque value; the pointer
1713 * ceases to be valid on exit from the notifier.
1714 * @errp: pointer to Error*, to store an error if it happens.
1715 */
1716 int memory_region_register_iommu_notifier(MemoryRegion *mr,
1717 IOMMUNotifier *n, Error **errp);
1718
1719 /**
1720 * memory_region_iommu_replay: replay existing IOMMU translations to
1721 * a notifier with the minimum page granularity returned by
1722 * mr->iommu_ops->get_page_size().
1723 *
1724 * Note: this is not related to record-and-replay functionality.
1725 *
1726 * @iommu_mr: the memory region to observe
1727 * @n: the notifier to which to replay iommu mappings
1728 */
1729 void memory_region_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n);
1730
1731 /**
1732 * memory_region_unregister_iommu_notifier: unregister a notifier for
1733 * changes to IOMMU translation entries.
1734 *
1735 * @mr: the memory region which was observed and for which notity_stopped()
1736 * needs to be called
1737 * @n: the notifier to be removed.
1738 */
1739 void memory_region_unregister_iommu_notifier(MemoryRegion *mr,
1740 IOMMUNotifier *n);
1741
1742 /**
1743 * memory_region_iommu_get_attr: return an IOMMU attr if get_attr() is
1744 * defined on the IOMMU.
1745 *
1746 * Returns 0 on success, or a negative errno otherwise. In particular,
1747 * -EINVAL indicates that the IOMMU does not support the requested
1748 * attribute.
1749 *
1750 * @iommu_mr: the memory region
1751 * @attr: the requested attribute
1752 * @data: a pointer to the requested attribute data
1753 */
1754 int memory_region_iommu_get_attr(IOMMUMemoryRegion *iommu_mr,
1755 enum IOMMUMemoryRegionAttr attr,
1756 void *data);
1757
1758 /**
1759 * memory_region_iommu_attrs_to_index: return the IOMMU index to
1760 * use for translations with the given memory transaction attributes.
1761 *
1762 * @iommu_mr: the memory region
1763 * @attrs: the memory transaction attributes
1764 */
1765 int memory_region_iommu_attrs_to_index(IOMMUMemoryRegion *iommu_mr,
1766 MemTxAttrs attrs);
1767
1768 /**
1769 * memory_region_iommu_num_indexes: return the total number of IOMMU
1770 * indexes that this IOMMU supports.
1771 *
1772 * @iommu_mr: the memory region
1773 */
1774 int memory_region_iommu_num_indexes(IOMMUMemoryRegion *iommu_mr);
1775
1776 /**
1777 * memory_region_iommu_set_page_size_mask: set the supported page
1778 * sizes for a given IOMMU memory region
1779 *
1780 * @iommu_mr: IOMMU memory region
1781 * @page_size_mask: supported page size mask
1782 * @errp: pointer to Error*, to store an error if it happens.
1783 */
1784 int memory_region_iommu_set_page_size_mask(IOMMUMemoryRegion *iommu_mr,
1785 uint64_t page_size_mask,
1786 Error **errp);
1787
1788 /**
1789 * memory_region_name: get a memory region's name
1790 *
1791 * Returns the string that was used to initialize the memory region.
1792 *
1793 * @mr: the memory region being queried
1794 */
1795 const char *memory_region_name(const MemoryRegion *mr);
1796
1797 /**
1798 * memory_region_is_logging: return whether a memory region is logging writes
1799 *
1800 * Returns %true if the memory region is logging writes for the given client
1801 *
1802 * @mr: the memory region being queried
1803 * @client: the client being queried
1804 */
1805 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client);
1806
1807 /**
1808 * memory_region_get_dirty_log_mask: return the clients for which a
1809 * memory region is logging writes.
1810 *
1811 * Returns a bitmap of clients, in which the DIRTY_MEMORY_* constants
1812 * are the bit indices.
1813 *
1814 * @mr: the memory region being queried
1815 */
1816 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr);
1817
1818 /**
1819 * memory_region_is_rom: check whether a memory region is ROM
1820 *
1821 * Returns %true if a memory region is read-only memory.
1822 *
1823 * @mr: the memory region being queried
1824 */
1825 static inline bool memory_region_is_rom(MemoryRegion *mr)
1826 {
1827 return mr->ram && mr->readonly;
1828 }
1829
1830 /**
1831 * memory_region_is_nonvolatile: check whether a memory region is non-volatile
1832 *
1833 * Returns %true is a memory region is non-volatile memory.
1834 *
1835 * @mr: the memory region being queried
1836 */
1837 static inline bool memory_region_is_nonvolatile(MemoryRegion *mr)
1838 {
1839 return mr->nonvolatile;
1840 }
1841
1842 /**
1843 * memory_region_get_fd: Get a file descriptor backing a RAM memory region.
1844 *
1845 * Returns a file descriptor backing a file-based RAM memory region,
1846 * or -1 if the region is not a file-based RAM memory region.
1847 *
1848 * @mr: the RAM or alias memory region being queried.
1849 */
1850 int memory_region_get_fd(MemoryRegion *mr);
1851
1852 /**
1853 * memory_region_from_host: Convert a pointer into a RAM memory region
1854 * and an offset within it.
1855 *
1856 * Given a host pointer inside a RAM memory region (created with
1857 * memory_region_init_ram() or memory_region_init_ram_ptr()), return
1858 * the MemoryRegion and the offset within it.
1859 *
1860 * Use with care; by the time this function returns, the returned pointer is
1861 * not protected by RCU anymore. If the caller is not within an RCU critical
1862 * section and does not hold the iothread lock, it must have other means of
1863 * protecting the pointer, such as a reference to the region that includes
1864 * the incoming ram_addr_t.
1865 *
1866 * @ptr: the host pointer to be converted
1867 * @offset: the offset within memory region
1868 */
1869 MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset);
1870
1871 /**
1872 * memory_region_get_ram_ptr: Get a pointer into a RAM memory region.
1873 *
1874 * Returns a host pointer to a RAM memory region (created with
1875 * memory_region_init_ram() or memory_region_init_ram_ptr()).
1876 *
1877 * Use with care; by the time this function returns, the returned pointer is
1878 * not protected by RCU anymore. If the caller is not within an RCU critical
1879 * section and does not hold the iothread lock, it must have other means of
1880 * protecting the pointer, such as a reference to the region that includes
1881 * the incoming ram_addr_t.
1882 *
1883 * @mr: the memory region being queried.
1884 */
1885 void *memory_region_get_ram_ptr(MemoryRegion *mr);
1886
1887 /* memory_region_ram_resize: Resize a RAM region.
1888 *
1889 * Resizing RAM while migrating can result in the migration being canceled.
1890 * Care has to be taken if the guest might have already detected the memory.
1891 *
1892 * @mr: a memory region created with @memory_region_init_resizeable_ram.
1893 * @newsize: the new size the region
1894 * @errp: pointer to Error*, to store an error if it happens.
1895 */
1896 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize,
1897 Error **errp);
1898
1899 /**
1900 * memory_region_msync: Synchronize selected address range of
1901 * a memory mapped region
1902 *
1903 * @mr: the memory region to be msync
1904 * @addr: the initial address of the range to be sync
1905 * @size: the size of the range to be sync
1906 */
1907 void memory_region_msync(MemoryRegion *mr, hwaddr addr, hwaddr size);
1908
1909 /**
1910 * memory_region_writeback: Trigger cache writeback for
1911 * selected address range
1912 *
1913 * @mr: the memory region to be updated
1914 * @addr: the initial address of the range to be written back
1915 * @size: the size of the range to be written back
1916 */
1917 void memory_region_writeback(MemoryRegion *mr, hwaddr addr, hwaddr size);
1918
1919 /**
1920 * memory_region_set_log: Turn dirty logging on or off for a region.
1921 *
1922 * Turns dirty logging on or off for a specified client (display, migration).
1923 * Only meaningful for RAM regions.
1924 *
1925 * @mr: the memory region being updated.
1926 * @log: whether dirty logging is to be enabled or disabled.
1927 * @client: the user of the logging information; %DIRTY_MEMORY_VGA only.
1928 */
1929 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client);
1930
1931 /**
1932 * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region.
1933 *
1934 * Marks a range of bytes as dirty, after it has been dirtied outside
1935 * guest code.
1936 *
1937 * @mr: the memory region being dirtied.
1938 * @addr: the address (relative to the start of the region) being dirtied.
1939 * @size: size of the range being dirtied.
1940 */
1941 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
1942 hwaddr size);
1943
1944 /**
1945 * memory_region_clear_dirty_bitmap - clear dirty bitmap for memory range
1946 *
1947 * This function is called when the caller wants to clear the remote
1948 * dirty bitmap of a memory range within the memory region. This can
1949 * be used by e.g. KVM to manually clear dirty log when
1950 * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT is declared support by the host
1951 * kernel.
1952 *
1953 * @mr: the memory region to clear the dirty log upon
1954 * @start: start address offset within the memory region
1955 * @len: length of the memory region to clear dirty bitmap
1956 */
1957 void memory_region_clear_dirty_bitmap(MemoryRegion *mr, hwaddr start,
1958 hwaddr len);
1959
1960 /**
1961 * memory_region_snapshot_and_clear_dirty: Get a snapshot of the dirty
1962 * bitmap and clear it.
1963 *
1964 * Creates a snapshot of the dirty bitmap, clears the dirty bitmap and
1965 * returns the snapshot. The snapshot can then be used to query dirty
1966 * status, using memory_region_snapshot_get_dirty. Snapshotting allows
1967 * querying the same page multiple times, which is especially useful for
1968 * display updates where the scanlines often are not page aligned.
1969 *
1970 * The dirty bitmap region which gets copyed into the snapshot (and
1971 * cleared afterwards) can be larger than requested. The boundaries
1972 * are rounded up/down so complete bitmap longs (covering 64 pages on
1973 * 64bit hosts) can be copied over into the bitmap snapshot. Which
1974 * isn't a problem for display updates as the extra pages are outside
1975 * the visible area, and in case the visible area changes a full
1976 * display redraw is due anyway. Should other use cases for this
1977 * function emerge we might have to revisit this implementation
1978 * detail.
1979 *
1980 * Use g_free to release DirtyBitmapSnapshot.
1981 *
1982 * @mr: the memory region being queried.
1983 * @addr: the address (relative to the start of the region) being queried.
1984 * @size: the size of the range being queried.
1985 * @client: the user of the logging information; typically %DIRTY_MEMORY_VGA.
1986 */
1987 DirtyBitmapSnapshot *memory_region_snapshot_and_clear_dirty(MemoryRegion *mr,
1988 hwaddr addr,
1989 hwaddr size,
1990 unsigned client);
1991
1992 /**
1993 * memory_region_snapshot_get_dirty: Check whether a range of bytes is dirty
1994 * in the specified dirty bitmap snapshot.
1995 *
1996 * @mr: the memory region being queried.
1997 * @snap: the dirty bitmap snapshot
1998 * @addr: the address (relative to the start of the region) being queried.
1999 * @size: the size of the range being queried.
2000 */
2001 bool memory_region_snapshot_get_dirty(MemoryRegion *mr,
2002 DirtyBitmapSnapshot *snap,
2003 hwaddr addr, hwaddr size);
2004
2005 /**
2006 * memory_region_reset_dirty: Mark a range of pages as clean, for a specified
2007 * client.
2008 *
2009 * Marks a range of pages as no longer dirty.
2010 *
2011 * @mr: the region being updated.
2012 * @addr: the start of the subrange being cleaned.
2013 * @size: the size of the subrange being cleaned.
2014 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
2015 * %DIRTY_MEMORY_VGA.
2016 */
2017 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
2018 hwaddr size, unsigned client);
2019
2020 /**
2021 * memory_region_flush_rom_device: Mark a range of pages dirty and invalidate
2022 * TBs (for self-modifying code).
2023 *
2024 * The MemoryRegionOps->write() callback of a ROM device must use this function
2025 * to mark byte ranges that have been modified internally, such as by directly
2026 * accessing the memory returned by memory_region_get_ram_ptr().
2027 *
2028 * This function marks the range dirty and invalidates TBs so that TCG can
2029 * detect self-modifying code.
2030 *
2031 * @mr: the region being flushed.
2032 * @addr: the start, relative to the start of the region, of the range being
2033 * flushed.
2034 * @size: the size, in bytes, of the range being flushed.
2035 */
2036 void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size);
2037
2038 /**
2039 * memory_region_set_readonly: Turn a memory region read-only (or read-write)
2040 *
2041 * Allows a memory region to be marked as read-only (turning it into a ROM).
2042 * only useful on RAM regions.
2043 *
2044 * @mr: the region being updated.
2045 * @readonly: whether rhe region is to be ROM or RAM.
2046 */
2047 void memory_region_set_readonly(MemoryRegion *mr, bool readonly);
2048
2049 /**
2050 * memory_region_set_nonvolatile: Turn a memory region non-volatile
2051 *
2052 * Allows a memory region to be marked as non-volatile.
2053 * only useful on RAM regions.
2054 *
2055 * @mr: the region being updated.
2056 * @nonvolatile: whether rhe region is to be non-volatile.
2057 */
2058 void memory_region_set_nonvolatile(MemoryRegion *mr, bool nonvolatile);
2059
2060 /**
2061 * memory_region_rom_device_set_romd: enable/disable ROMD mode
2062 *
2063 * Allows a ROM device (initialized with memory_region_init_rom_device() to
2064 * set to ROMD mode (default) or MMIO mode. When it is in ROMD mode, the
2065 * device is mapped to guest memory and satisfies read access directly.
2066 * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function.
2067 * Writes are always handled by the #MemoryRegion.write function.
2068 *
2069 * @mr: the memory region to be updated
2070 * @romd_mode: %true to put the region into ROMD mode
2071 */
2072 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode);
2073
2074 /**
2075 * memory_region_set_coalescing: Enable memory coalescing for the region.
2076 *
2077 * Enabled writes to a region to be queued for later processing. MMIO ->write
2078 * callbacks may be delayed until a non-coalesced MMIO is issued.
2079 * Only useful for IO regions. Roughly similar to write-combining hardware.
2080 *
2081 * @mr: the memory region to be write coalesced
2082 */
2083 void memory_region_set_coalescing(MemoryRegion *mr);
2084
2085 /**
2086 * memory_region_add_coalescing: Enable memory coalescing for a sub-range of
2087 * a region.
2088 *
2089 * Like memory_region_set_coalescing(), but works on a sub-range of a region.
2090 * Multiple calls can be issued coalesced disjoint ranges.
2091 *
2092 * @mr: the memory region to be updated.
2093 * @offset: the start of the range within the region to be coalesced.
2094 * @size: the size of the subrange to be coalesced.
2095 */
2096 void memory_region_add_coalescing(MemoryRegion *mr,
2097 hwaddr offset,
2098 uint64_t size);
2099
2100 /**
2101 * memory_region_clear_coalescing: Disable MMIO coalescing for the region.
2102 *
2103 * Disables any coalescing caused by memory_region_set_coalescing() or
2104 * memory_region_add_coalescing(). Roughly equivalent to uncacheble memory
2105 * hardware.
2106 *
2107 * @mr: the memory region to be updated.
2108 */
2109 void memory_region_clear_coalescing(MemoryRegion *mr);
2110
2111 /**
2112 * memory_region_set_flush_coalesced: Enforce memory coalescing flush before
2113 * accesses.
2114 *
2115 * Ensure that pending coalesced MMIO request are flushed before the memory
2116 * region is accessed. This property is automatically enabled for all regions
2117 * passed to memory_region_set_coalescing() and memory_region_add_coalescing().
2118 *
2119 * @mr: the memory region to be updated.
2120 */
2121 void memory_region_set_flush_coalesced(MemoryRegion *mr);
2122
2123 /**
2124 * memory_region_clear_flush_coalesced: Disable memory coalescing flush before
2125 * accesses.
2126 *
2127 * Clear the automatic coalesced MMIO flushing enabled via
2128 * memory_region_set_flush_coalesced. Note that this service has no effect on
2129 * memory regions that have MMIO coalescing enabled for themselves. For them,
2130 * automatic flushing will stop once coalescing is disabled.
2131 *
2132 * @mr: the memory region to be updated.
2133 */
2134 void memory_region_clear_flush_coalesced(MemoryRegion *mr);
2135
2136 /**
2137 * memory_region_add_eventfd: Request an eventfd to be triggered when a word
2138 * is written to a location.
2139 *
2140 * Marks a word in an IO region (initialized with memory_region_init_io())
2141 * as a trigger for an eventfd event. The I/O callback will not be called.
2142 * The caller must be prepared to handle failure (that is, take the required
2143 * action if the callback _is_ called).
2144 *
2145 * @mr: the memory region being updated.
2146 * @addr: the address within @mr that is to be monitored
2147 * @size: the size of the access to trigger the eventfd
2148 * @match_data: whether to match against @data, instead of just @addr
2149 * @data: the data to match against the guest write
2150 * @e: event notifier to be triggered when @addr, @size, and @data all match.
2151 **/
2152 void memory_region_add_eventfd(MemoryRegion *mr,
2153 hwaddr addr,
2154 unsigned size,
2155 bool match_data,
2156 uint64_t data,
2157 EventNotifier *e);
2158
2159 /**
2160 * memory_region_del_eventfd: Cancel an eventfd.
2161 *
2162 * Cancels an eventfd trigger requested by a previous
2163 * memory_region_add_eventfd() call.
2164 *
2165 * @mr: the memory region being updated.
2166 * @addr: the address within @mr that is to be monitored
2167 * @size: the size of the access to trigger the eventfd
2168 * @match_data: whether to match against @data, instead of just @addr
2169 * @data: the data to match against the guest write
2170 * @e: event notifier to be triggered when @addr, @size, and @data all match.
2171 */
2172 void memory_region_del_eventfd(MemoryRegion *mr,
2173 hwaddr addr,
2174 unsigned size,
2175 bool match_data,
2176 uint64_t data,
2177 EventNotifier *e);
2178
2179 /**
2180 * memory_region_add_subregion: Add a subregion to a container.
2181 *
2182 * Adds a subregion at @offset. The subregion may not overlap with other
2183 * subregions (except for those explicitly marked as overlapping). A region
2184 * may only be added once as a subregion (unless removed with
2185 * memory_region_del_subregion()); use memory_region_init_alias() if you
2186 * want a region to be a subregion in multiple locations.
2187 *
2188 * @mr: the region to contain the new subregion; must be a container
2189 * initialized with memory_region_init().
2190 * @offset: the offset relative to @mr where @subregion is added.
2191 * @subregion: the subregion to be added.
2192 */
2193 void memory_region_add_subregion(MemoryRegion *mr,
2194 hwaddr offset,
2195 MemoryRegion *subregion);
2196 /**
2197 * memory_region_add_subregion_overlap: Add a subregion to a container
2198 * with overlap.
2199 *
2200 * Adds a subregion at @offset. The subregion may overlap with other
2201 * subregions. Conflicts are resolved by having a higher @priority hide a
2202 * lower @priority. Subregions without priority are taken as @priority 0.
2203 * A region may only be added once as a subregion (unless removed with
2204 * memory_region_del_subregion()); use memory_region_init_alias() if you
2205 * want a region to be a subregion in multiple locations.
2206 *
2207 * @mr: the region to contain the new subregion; must be a container
2208 * initialized with memory_region_init().
2209 * @offset: the offset relative to @mr where @subregion is added.
2210 * @subregion: the subregion to be added.
2211 * @priority: used for resolving overlaps; highest priority wins.
2212 */
2213 void memory_region_add_subregion_overlap(MemoryRegion *mr,
2214 hwaddr offset,
2215 MemoryRegion *subregion,
2216 int priority);
2217
2218 /**
2219 * memory_region_get_ram_addr: Get the ram address associated with a memory
2220 * region
2221 *
2222 * @mr: the region to be queried
2223 */
2224 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr);
2225
2226 uint64_t memory_region_get_alignment(const MemoryRegion *mr);
2227 /**
2228 * memory_region_del_subregion: Remove a subregion.
2229 *
2230 * Removes a subregion from its container.
2231 *
2232 * @mr: the container to be updated.
2233 * @subregion: the region being removed; must be a current subregion of @mr.
2234 */
2235 void memory_region_del_subregion(MemoryRegion *mr,
2236 MemoryRegion *subregion);
2237
2238 /*
2239 * memory_region_set_enabled: dynamically enable or disable a region
2240 *
2241 * Enables or disables a memory region. A disabled memory region
2242 * ignores all accesses to itself and its subregions. It does not
2243 * obscure sibling subregions with lower priority - it simply behaves as
2244 * if it was removed from the hierarchy.
2245 *
2246 * Regions default to being enabled.
2247 *
2248 * @mr: the region to be updated
2249 * @enabled: whether to enable or disable the region
2250 */
2251 void memory_region_set_enabled(MemoryRegion *mr, bool enabled);
2252
2253 /*
2254 * memory_region_set_address: dynamically update the address of a region
2255 *
2256 * Dynamically updates the address of a region, relative to its container.
2257 * May be used on regions are currently part of a memory hierarchy.
2258 *
2259 * @mr: the region to be updated
2260 * @addr: new address, relative to container region
2261 */
2262 void memory_region_set_address(MemoryRegion *mr, hwaddr addr);
2263
2264 /*
2265 * memory_region_set_size: dynamically update the size of a region.
2266 *
2267 * Dynamically updates the size of a region.
2268 *
2269 * @mr: the region to be updated
2270 * @size: used size of the region.
2271 */
2272 void memory_region_set_size(MemoryRegion *mr, uint64_t size);
2273
2274 /*
2275 * memory_region_set_alias_offset: dynamically update a memory alias's offset
2276 *
2277 * Dynamically updates the offset into the target region that an alias points
2278 * to, as if the fourth argument to memory_region_init_alias() has changed.
2279 *
2280 * @mr: the #MemoryRegion to be updated; should be an alias.
2281 * @offset: the new offset into the target memory region
2282 */
2283 void memory_region_set_alias_offset(MemoryRegion *mr,
2284 hwaddr offset);
2285
2286 /**
2287 * memory_region_present: checks if an address relative to a @container
2288 * translates into #MemoryRegion within @container
2289 *
2290 * Answer whether a #MemoryRegion within @container covers the address
2291 * @addr.
2292 *
2293 * @container: a #MemoryRegion within which @addr is a relative address
2294 * @addr: the area within @container to be searched
2295 */
2296 bool memory_region_present(MemoryRegion *container, hwaddr addr);
2297
2298 /**
2299 * memory_region_is_mapped: returns true if #MemoryRegion is mapped
2300 * into another memory region, which does not necessarily imply that it is
2301 * mapped into an address space.
2302 *
2303 * @mr: a #MemoryRegion which should be checked if it's mapped
2304 */
2305 bool memory_region_is_mapped(MemoryRegion *mr);
2306
2307 /**
2308 * memory_region_get_ram_discard_manager: get the #RamDiscardManager for a
2309 * #MemoryRegion
2310 *
2311 * The #RamDiscardManager cannot change while a memory region is mapped.
2312 *
2313 * @mr: the #MemoryRegion
2314 */
2315 RamDiscardManager *memory_region_get_ram_discard_manager(MemoryRegion *mr);
2316
2317 /**
2318 * memory_region_has_ram_discard_manager: check whether a #MemoryRegion has a
2319 * #RamDiscardManager assigned
2320 *
2321 * @mr: the #MemoryRegion
2322 */
2323 static inline bool memory_region_has_ram_discard_manager(MemoryRegion *mr)
2324 {
2325 return !!memory_region_get_ram_discard_manager(mr);
2326 }
2327
2328 /**
2329 * memory_region_set_ram_discard_manager: set the #RamDiscardManager for a
2330 * #MemoryRegion
2331 *
2332 * This function must not be called for a mapped #MemoryRegion, a #MemoryRegion
2333 * that does not cover RAM, or a #MemoryRegion that already has a
2334 * #RamDiscardManager assigned.
2335 *
2336 * @mr: the #MemoryRegion
2337 * @rdm: #RamDiscardManager to set
2338 */
2339 void memory_region_set_ram_discard_manager(MemoryRegion *mr,
2340 RamDiscardManager *rdm);
2341
2342 /**
2343 * memory_region_find: translate an address/size relative to a
2344 * MemoryRegion into a #MemoryRegionSection.
2345 *
2346 * Locates the first #MemoryRegion within @mr that overlaps the range
2347 * given by @addr and @size.
2348 *
2349 * Returns a #MemoryRegionSection that describes a contiguous overlap.
2350 * It will have the following characteristics:
2351 * - @size = 0 iff no overlap was found
2352 * - @mr is non-%NULL iff an overlap was found
2353 *
2354 * Remember that in the return value the @offset_within_region is
2355 * relative to the returned region (in the .@mr field), not to the
2356 * @mr argument.
2357 *
2358 * Similarly, the .@offset_within_address_space is relative to the
2359 * address space that contains both regions, the passed and the
2360 * returned one. However, in the special case where the @mr argument
2361 * has no container (and thus is the root of the address space), the
2362 * following will hold:
2363 * - @offset_within_address_space >= @addr
2364 * - @offset_within_address_space + .@size <= @addr + @size
2365 *
2366 * @mr: a MemoryRegion within which @addr is a relative address
2367 * @addr: start of the area within @as to be searched
2368 * @size: size of the area to be searched
2369 */
2370 MemoryRegionSection memory_region_find(MemoryRegion *mr,
2371 hwaddr addr, uint64_t size);
2372
2373 /**
2374 * memory_global_dirty_log_sync: synchronize the dirty log for all memory
2375 *
2376 * Synchronizes the dirty page log for all address spaces.
2377 */
2378 void memory_global_dirty_log_sync(void);
2379
2380 /**
2381 * memory_global_dirty_log_sync: synchronize the dirty log for all memory
2382 *
2383 * Synchronizes the vCPUs with a thread that is reading the dirty bitmap.
2384 * This function must be called after the dirty log bitmap is cleared, and
2385 * before dirty guest memory pages are read. If you are using
2386 * #DirtyBitmapSnapshot, memory_region_snapshot_and_clear_dirty() takes
2387 * care of doing this.
2388 */
2389 void memory_global_after_dirty_log_sync(void);
2390
2391 /**
2392 * memory_region_transaction_begin: Start a transaction.
2393 *
2394 * During a transaction, changes will be accumulated and made visible
2395 * only when the transaction ends (is committed).
2396 */
2397 void memory_region_transaction_begin(void);
2398
2399 /**
2400 * memory_region_transaction_commit: Commit a transaction and make changes
2401 * visible to the guest.
2402 */
2403 void memory_region_transaction_commit(void);
2404
2405 /**
2406 * memory_listener_register: register callbacks to be called when memory
2407 * sections are mapped or unmapped into an address
2408 * space
2409 *
2410 * @listener: an object containing the callbacks to be called
2411 * @filter: if non-%NULL, only regions in this address space will be observed
2412 */
2413 void memory_listener_register(MemoryListener *listener, AddressSpace *filter);
2414
2415 /**
2416 * memory_listener_unregister: undo the effect of memory_listener_register()
2417 *
2418 * @listener: an object containing the callbacks to be removed
2419 */
2420 void memory_listener_unregister(MemoryListener *listener);
2421
2422 /**
2423 * memory_global_dirty_log_start: begin dirty logging for all regions
2424 *
2425 * @flags: purpose of starting dirty log, migration or dirty rate
2426 */
2427 void memory_global_dirty_log_start(unsigned int flags);
2428
2429 /**
2430 * memory_global_dirty_log_stop: end dirty logging for all regions
2431 *
2432 * @flags: purpose of stopping dirty log, migration or dirty rate
2433 */
2434 void memory_global_dirty_log_stop(unsigned int flags);
2435
2436 void mtree_info(bool flatview, bool dispatch_tree, bool owner, bool disabled);
2437
2438 /**
2439 * memory_region_dispatch_read: perform a read directly to the specified
2440 * MemoryRegion.
2441 *
2442 * @mr: #MemoryRegion to access
2443 * @addr: address within that region
2444 * @pval: pointer to uint64_t which the data is written to
2445 * @op: size, sign, and endianness of the memory operation
2446 * @attrs: memory transaction attributes to use for the access
2447 */
2448 MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
2449 hwaddr addr,
2450 uint64_t *pval,
2451 MemOp op,
2452 MemTxAttrs attrs);
2453 /**
2454 * memory_region_dispatch_write: perform a write directly to the specified
2455 * MemoryRegion.
2456 *
2457 * @mr: #MemoryRegion to access
2458 * @addr: address within that region
2459 * @data: data to write
2460 * @op: size, sign, and endianness of the memory operation
2461 * @attrs: memory transaction attributes to use for the access
2462 */
2463 MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
2464 hwaddr addr,
2465 uint64_t data,
2466 MemOp op,
2467 MemTxAttrs attrs);
2468
2469 /**
2470 * address_space_init: initializes an address space
2471 *
2472 * @as: an uninitialized #AddressSpace
2473 * @root: a #MemoryRegion that routes addresses for the address space
2474 * @name: an address space name. The name is only used for debugging
2475 * output.
2476 */
2477 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name);
2478
2479 /**
2480 * address_space_destroy: destroy an address space
2481 *
2482 * Releases all resources associated with an address space. After an address space
2483 * is destroyed, its root memory region (given by address_space_init()) may be destroyed
2484 * as well.
2485 *
2486 * @as: address space to be destroyed
2487 */
2488 void address_space_destroy(AddressSpace *as);
2489
2490 /**
2491 * address_space_remove_listeners: unregister all listeners of an address space
2492 *
2493 * Removes all callbacks previously registered with memory_listener_register()
2494 * for @as.
2495 *
2496 * @as: an initialized #AddressSpace
2497 */
2498 void address_space_remove_listeners(AddressSpace *as);
2499
2500 /**
2501 * address_space_rw: read from or write to an address space.
2502 *
2503 * Return a MemTxResult indicating whether the operation succeeded
2504 * or failed (eg unassigned memory, device rejected the transaction,
2505 * IOMMU fault).
2506 *
2507 * @as: #AddressSpace to be accessed
2508 * @addr: address within that address space
2509 * @attrs: memory transaction attributes
2510 * @buf: buffer with the data transferred
2511 * @len: the number of bytes to read or write
2512 * @is_write: indicates the transfer direction
2513 */
2514 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr,
2515 MemTxAttrs attrs, void *buf,
2516 hwaddr len, bool is_write);
2517
2518 /**
2519 * address_space_write: write to address space.
2520 *
2521 * Return a MemTxResult indicating whether the operation succeeded
2522 * or failed (eg unassigned memory, device rejected the transaction,
2523 * IOMMU fault).
2524 *
2525 * @as: #AddressSpace to be accessed
2526 * @addr: address within that address space
2527 * @attrs: memory transaction attributes
2528 * @buf: buffer with the data transferred
2529 * @len: the number of bytes to write
2530 */
2531 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
2532 MemTxAttrs attrs,
2533 const void *buf, hwaddr len);
2534
2535 /**
2536 * address_space_write_rom: write to address space, including ROM.
2537 *
2538 * This function writes to the specified address space, but will
2539 * write data to both ROM and RAM. This is used for non-guest
2540 * writes like writes from the gdb debug stub or initial loading
2541 * of ROM contents.
2542 *
2543 * Note that portions of the write which attempt to write data to
2544 * a device will be silently ignored -- only real RAM and ROM will
2545 * be written to.
2546 *
2547 * Return a MemTxResult indicating whether the operation succeeded
2548 * or failed (eg unassigned memory, device rejected the transaction,
2549 * IOMMU fault).
2550 *
2551 * @as: #AddressSpace to be accessed
2552 * @addr: address within that address space
2553 * @attrs: memory transaction attributes
2554 * @buf: buffer with the data transferred
2555 * @len: the number of bytes to write
2556 */
2557 MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
2558 MemTxAttrs attrs,
2559 const void *buf, hwaddr len);
2560
2561 /* address_space_ld*: load from an address space
2562 * address_space_st*: store to an address space
2563 *
2564 * These functions perform a load or store of the byte, word,
2565 * longword or quad to the specified address within the AddressSpace.
2566 * The _le suffixed functions treat the data as little endian;
2567 * _be indicates big endian; no suffix indicates "same endianness
2568 * as guest CPU".
2569 *
2570 * The "guest CPU endianness" accessors are deprecated for use outside
2571 * target-* code; devices should be CPU-agnostic and use either the LE
2572 * or the BE accessors.
2573 *
2574 * @as #AddressSpace to be accessed
2575 * @addr: address within that address space
2576 * @val: data value, for stores
2577 * @attrs: memory transaction attributes
2578 * @result: location to write the success/failure of the transaction;
2579 * if NULL, this information is discarded
2580 */
2581
2582 #define SUFFIX
2583 #define ARG1 as
2584 #define ARG1_DECL AddressSpace *as
2585 #include "exec/memory_ldst.h.inc"
2586
2587 #define SUFFIX
2588 #define ARG1 as
2589 #define ARG1_DECL AddressSpace *as
2590 #include "exec/memory_ldst_phys.h.inc"
2591
2592 struct MemoryRegionCache {
2593 void *ptr;
2594 hwaddr xlat;
2595 hwaddr len;
2596 FlatView *fv;
2597 MemoryRegionSection mrs;
2598 bool is_write;
2599 };
2600
2601 #define MEMORY_REGION_CACHE_INVALID ((MemoryRegionCache) { .mrs.mr = NULL })
2602
2603
2604 /* address_space_ld*_cached: load from a cached #MemoryRegion
2605 * address_space_st*_cached: store into a cached #MemoryRegion
2606 *
2607 * These functions perform a load or store of the byte, word,
2608 * longword or quad to the specified address. The address is
2609 * a physical address in the AddressSpace, but it must lie within
2610 * a #MemoryRegion that was mapped with address_space_cache_init.
2611 *
2612 * The _le suffixed functions treat the data as little endian;
2613 * _be indicates big endian; no suffix indicates "same endianness
2614 * as guest CPU".
2615 *
2616 * The "guest CPU endianness" accessors are deprecated for use outside
2617 * target-* code; devices should be CPU-agnostic and use either the LE
2618 * or the BE accessors.
2619 *
2620 * @cache: previously initialized #MemoryRegionCache to be accessed
2621 * @addr: address within the address space
2622 * @val: data value, for stores
2623 * @attrs: memory transaction attributes
2624 * @result: location to write the success/failure of the transaction;
2625 * if NULL, this information is discarded
2626 */
2627
2628 #define SUFFIX _cached_slow
2629 #define ARG1 cache
2630 #define ARG1_DECL MemoryRegionCache *cache
2631 #include "exec/memory_ldst.h.inc"
2632
2633 /* Inline fast path for direct RAM access. */
2634 static inline uint8_t address_space_ldub_cached(MemoryRegionCache *cache,
2635 hwaddr addr, MemTxAttrs attrs, MemTxResult *result)
2636 {
2637 assert(addr < cache->len);
2638 if (likely(cache->ptr)) {
2639 return ldub_p(cache->ptr + addr);
2640 } else {
2641 return address_space_ldub_cached_slow(cache, addr, attrs, result);
2642 }
2643 }
2644
2645 static inline void address_space_stb_cached(MemoryRegionCache *cache,
2646 hwaddr addr, uint8_t val, MemTxAttrs attrs, MemTxResult *result)
2647 {
2648 assert(addr < cache->len);
2649 if (likely(cache->ptr)) {
2650 stb_p(cache->ptr + addr, val);
2651 } else {
2652 address_space_stb_cached_slow(cache, addr, val, attrs, result);
2653 }
2654 }
2655
2656 #define ENDIANNESS _le
2657 #include "exec/memory_ldst_cached.h.inc"
2658
2659 #define ENDIANNESS _be
2660 #include "exec/memory_ldst_cached.h.inc"
2661
2662 #define SUFFIX _cached
2663 #define ARG1 cache
2664 #define ARG1_DECL MemoryRegionCache *cache
2665 #include "exec/memory_ldst_phys.h.inc"
2666
2667 /* address_space_cache_init: prepare for repeated access to a physical
2668 * memory region
2669 *
2670 * @cache: #MemoryRegionCache to be filled
2671 * @as: #AddressSpace to be accessed
2672 * @addr: address within that address space
2673 * @len: length of buffer
2674 * @is_write: indicates the transfer direction
2675 *
2676 * Will only work with RAM, and may map a subset of the requested range by
2677 * returning a value that is less than @len. On failure, return a negative
2678 * errno value.
2679 *
2680 * Because it only works with RAM, this function can be used for
2681 * read-modify-write operations. In this case, is_write should be %true.
2682 *
2683 * Note that addresses passed to the address_space_*_cached functions
2684 * are relative to @addr.
2685 */
2686 int64_t address_space_cache_init(MemoryRegionCache *cache,
2687 AddressSpace *as,
2688 hwaddr addr,
2689 hwaddr len,
2690 bool is_write);
2691
2692 /**
2693 * address_space_cache_invalidate: complete a write to a #MemoryRegionCache
2694 *
2695 * @cache: The #MemoryRegionCache to operate on.
2696 * @addr: The first physical address that was written, relative to the
2697 * address that was passed to @address_space_cache_init.
2698 * @access_len: The number of bytes that were written starting at @addr.
2699 */
2700 void address_space_cache_invalidate(MemoryRegionCache *cache,
2701 hwaddr addr,
2702 hwaddr access_len);
2703
2704 /**
2705 * address_space_cache_destroy: free a #MemoryRegionCache
2706 *
2707 * @cache: The #MemoryRegionCache whose memory should be released.
2708 */
2709 void address_space_cache_destroy(MemoryRegionCache *cache);
2710
2711 /* address_space_get_iotlb_entry: translate an address into an IOTLB
2712 * entry. Should be called from an RCU critical section.
2713 */
2714 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
2715 bool is_write, MemTxAttrs attrs);
2716
2717 /* address_space_translate: translate an address range into an address space
2718 * into a MemoryRegion and an address range into that section. Should be
2719 * called from an RCU critical section, to avoid that the last reference
2720 * to the returned region disappears after address_space_translate returns.
2721 *
2722 * @fv: #FlatView to be accessed
2723 * @addr: address within that address space
2724 * @xlat: pointer to address within the returned memory region section's
2725 * #MemoryRegion.
2726 * @len: pointer to length
2727 * @is_write: indicates the transfer direction
2728 * @attrs: memory attributes
2729 */
2730 MemoryRegion *flatview_translate(FlatView *fv,
2731 hwaddr addr, hwaddr *xlat,
2732 hwaddr *len, bool is_write,
2733 MemTxAttrs attrs);
2734
2735 static inline MemoryRegion *address_space_translate(AddressSpace *as,
2736 hwaddr addr, hwaddr *xlat,
2737 hwaddr *len, bool is_write,
2738 MemTxAttrs attrs)
2739 {
2740 return flatview_translate(address_space_to_flatview(as),
2741 addr, xlat, len, is_write, attrs);
2742 }
2743
2744 /* address_space_access_valid: check for validity of accessing an address
2745 * space range
2746 *
2747 * Check whether memory is assigned to the given address space range, and
2748 * access is permitted by any IOMMU regions that are active for the address
2749 * space.
2750 *
2751 * For now, addr and len should be aligned to a page size. This limitation
2752 * will be lifted in the future.
2753 *
2754 * @as: #AddressSpace to be accessed
2755 * @addr: address within that address space
2756 * @len: length of the area to be checked
2757 * @is_write: indicates the transfer direction
2758 * @attrs: memory attributes
2759 */
2760 bool address_space_access_valid(AddressSpace *as, hwaddr addr, hwaddr len,
2761 bool is_write, MemTxAttrs attrs);
2762
2763 /* address_space_map: map a physical memory region into a host virtual address
2764 *
2765 * May map a subset of the requested range, given by and returned in @plen.
2766 * May return %NULL and set *@plen to zero(0), if resources needed to perform
2767 * the mapping are exhausted.
2768 * Use only for reads OR writes - not for read-modify-write operations.
2769 * Use cpu_register_map_client() to know when retrying the map operation is
2770 * likely to succeed.
2771 *
2772 * @as: #AddressSpace to be accessed
2773 * @addr: address within that address space
2774 * @plen: pointer to length of buffer; updated on return
2775 * @is_write: indicates the transfer direction
2776 * @attrs: memory attributes
2777 */
2778 void *address_space_map(AddressSpace *as, hwaddr addr,
2779 hwaddr *plen, bool is_write, MemTxAttrs attrs);
2780
2781 /* address_space_unmap: Unmaps a memory region previously mapped by address_space_map()
2782 *
2783 * Will also mark the memory as dirty if @is_write == %true. @access_len gives
2784 * the amount of memory that was actually read or written by the caller.
2785 *
2786 * @as: #AddressSpace used
2787 * @buffer: host pointer as returned by address_space_map()
2788 * @len: buffer length as returned by address_space_map()
2789 * @access_len: amount of data actually transferred
2790 * @is_write: indicates the transfer direction
2791 */
2792 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
2793 bool is_write, hwaddr access_len);
2794
2795
2796 /* Internal functions, part of the implementation of address_space_read. */
2797 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
2798 MemTxAttrs attrs, void *buf, hwaddr len);
2799 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
2800 MemTxAttrs attrs, void *buf,
2801 hwaddr len, hwaddr addr1, hwaddr l,
2802 MemoryRegion *mr);
2803 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr);
2804
2805 /* Internal functions, part of the implementation of address_space_read_cached
2806 * and address_space_write_cached. */
2807 MemTxResult address_space_read_cached_slow(MemoryRegionCache *cache,
2808 hwaddr addr, void *buf, hwaddr len);
2809 MemTxResult address_space_write_cached_slow(MemoryRegionCache *cache,
2810 hwaddr addr, const void *buf,
2811 hwaddr len);
2812
2813 static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write)
2814 {
2815 if (is_write) {
2816 return memory_region_is_ram(mr) && !mr->readonly &&
2817 !mr->rom_device && !memory_region_is_ram_device(mr);
2818 } else {
2819 return (memory_region_is_ram(mr) && !memory_region_is_ram_device(mr)) ||
2820 memory_region_is_romd(mr);
2821 }
2822 }
2823
2824 /**
2825 * address_space_read: read from an address space.
2826 *
2827 * Return a MemTxResult indicating whether the operation succeeded
2828 * or failed (eg unassigned memory, device rejected the transaction,
2829 * IOMMU fault). Called within RCU critical section.
2830 *
2831 * @as: #AddressSpace to be accessed
2832 * @addr: address within that address space
2833 * @attrs: memory transaction attributes
2834 * @buf: buffer with the data transferred
2835 * @len: length of the data transferred
2836 */
2837 static inline __attribute__((__always_inline__))
2838 MemTxResult address_space_read(AddressSpace *as, hwaddr addr,
2839 MemTxAttrs attrs, void *buf,
2840 hwaddr len)
2841 {
2842 MemTxResult result = MEMTX_OK;
2843 hwaddr l, addr1;
2844 void *ptr;
2845 MemoryRegion *mr;
2846 FlatView *fv;
2847
2848 if (__builtin_constant_p(len)) {
2849 if (len) {
2850 RCU_READ_LOCK_GUARD();
2851 fv = address_space_to_flatview(as);
2852 l = len;
2853 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
2854 if (len == l && memory_access_is_direct(mr, false)) {
2855 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
2856 memcpy(buf, ptr, len);
2857 } else {
2858 result = flatview_read_continue(fv, addr, attrs, buf, len,
2859 addr1, l, mr);
2860 }
2861 }
2862 } else {
2863 result = address_space_read_full(as, addr, attrs, buf, len);
2864 }
2865 return result;
2866 }
2867
2868 /**
2869 * address_space_read_cached: read from a cached RAM region
2870 *
2871 * @cache: Cached region to be addressed
2872 * @addr: address relative to the base of the RAM region
2873 * @buf: buffer with the data transferred
2874 * @len: length of the data transferred
2875 */
2876 static inline MemTxResult
2877 address_space_read_cached(MemoryRegionCache *cache, hwaddr addr,
2878 void *buf, hwaddr len)
2879 {
2880 assert(addr < cache->len && len <= cache->len - addr);
2881 fuzz_dma_read_cb(cache->xlat + addr, len, cache->mrs.mr);
2882 if (likely(cache->ptr)) {
2883 memcpy(buf, cache->ptr + addr, len);
2884 return MEMTX_OK;
2885 } else {
2886 return address_space_read_cached_slow(cache, addr, buf, len);
2887 }
2888 }
2889
2890 /**
2891 * address_space_write_cached: write to a cached RAM region
2892 *
2893 * @cache: Cached region to be addressed
2894 * @addr: address relative to the base of the RAM region
2895 * @buf: buffer with the data transferred
2896 * @len: length of the data transferred
2897 */
2898 static inline MemTxResult
2899 address_space_write_cached(MemoryRegionCache *cache, hwaddr addr,
2900 const void *buf, hwaddr len)
2901 {
2902 assert(addr < cache->len && len <= cache->len - addr);
2903 if (likely(cache->ptr)) {
2904 memcpy(cache->ptr + addr, buf, len);
2905 return MEMTX_OK;
2906 } else {
2907 return address_space_write_cached_slow(cache, addr, buf, len);
2908 }
2909 }
2910
2911 #ifdef NEED_CPU_H
2912 /* enum device_endian to MemOp. */
2913 static inline MemOp devend_memop(enum device_endian end)
2914 {
2915 QEMU_BUILD_BUG_ON(DEVICE_HOST_ENDIAN != DEVICE_LITTLE_ENDIAN &&
2916 DEVICE_HOST_ENDIAN != DEVICE_BIG_ENDIAN);
2917
2918 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
2919 /* Swap if non-host endianness or native (target) endianness */
2920 return (end == DEVICE_HOST_ENDIAN) ? 0 : MO_BSWAP;
2921 #else
2922 const int non_host_endianness =
2923 DEVICE_LITTLE_ENDIAN ^ DEVICE_BIG_ENDIAN ^ DEVICE_HOST_ENDIAN;
2924
2925 /* In this case, native (target) endianness needs no swap. */
2926 return (end == non_host_endianness) ? MO_BSWAP : 0;
2927 #endif
2928 }
2929 #endif
2930
2931 /*
2932 * Inhibit technologies that require discarding of pages in RAM blocks, e.g.,
2933 * to manage the actual amount of memory consumed by the VM (then, the memory
2934 * provided by RAM blocks might be bigger than the desired memory consumption).
2935 * This *must* be set if:
2936 * - Discarding parts of a RAM blocks does not result in the change being
2937 * reflected in the VM and the pages getting freed.
2938 * - All memory in RAM blocks is pinned or duplicated, invaldiating any previous
2939 * discards blindly.
2940 * - Discarding parts of a RAM blocks will result in integrity issues (e.g.,
2941 * encrypted VMs).
2942 * Technologies that only temporarily pin the current working set of a
2943 * driver are fine, because we don't expect such pages to be discarded
2944 * (esp. based on guest action like balloon inflation).
2945 *
2946 * This is *not* to be used to protect from concurrent discards (esp.,
2947 * postcopy).
2948 *
2949 * Returns 0 if successful. Returns -EBUSY if a technology that relies on
2950 * discards to work reliably is active.
2951 */
2952 int ram_block_discard_disable(bool state);
2953
2954 /*
2955 * See ram_block_discard_disable(): only disable uncoordinated discards,
2956 * keeping coordinated discards (via the RamDiscardManager) enabled.
2957 */
2958 int ram_block_uncoordinated_discard_disable(bool state);
2959
2960 /*
2961 * Inhibit technologies that disable discarding of pages in RAM blocks.
2962 *
2963 * Returns 0 if successful. Returns -EBUSY if discards are already set to
2964 * broken.
2965 */
2966 int ram_block_discard_require(bool state);
2967
2968 /*
2969 * See ram_block_discard_require(): only inhibit technologies that disable
2970 * uncoordinated discarding of pages in RAM blocks, allowing co-existance with
2971 * technologies that only inhibit uncoordinated discards (via the
2972 * RamDiscardManager).
2973 */
2974 int ram_block_coordinated_discard_require(bool state);
2975
2976 /*
2977 * Test if any discarding of memory in ram blocks is disabled.
2978 */
2979 bool ram_block_discard_is_disabled(void);
2980
2981 /*
2982 * Test if any discarding of memory in ram blocks is required to work reliably.
2983 */
2984 bool ram_block_discard_is_required(void);
2985
2986 #endif
2987
2988 #endif