]> git.proxmox.com Git - mirror_qemu.git/blob - include/exec/memory.h
Merge remote-tracking branch 'remotes/kraxel/tags/pull-cve-2014-3615-20140905-1'...
[mirror_qemu.git] / include / exec / memory.h
1 /*
2 * Physical memory management API
3 *
4 * Copyright 2011 Red Hat, Inc. and/or its affiliates
5 *
6 * Authors:
7 * Avi Kivity <avi@redhat.com>
8 *
9 * This work is licensed under the terms of the GNU GPL, version 2. See
10 * the COPYING file in the top-level directory.
11 *
12 */
13
14 #ifndef MEMORY_H
15 #define MEMORY_H
16
17 #ifndef CONFIG_USER_ONLY
18
19 #define DIRTY_MEMORY_VGA 0
20 #define DIRTY_MEMORY_CODE 1
21 #define DIRTY_MEMORY_MIGRATION 2
22 #define DIRTY_MEMORY_NUM 3 /* num of dirty bits */
23
24 #include <stdint.h>
25 #include <stdbool.h>
26 #include "qemu-common.h"
27 #include "exec/cpu-common.h"
28 #ifndef CONFIG_USER_ONLY
29 #include "exec/hwaddr.h"
30 #endif
31 #include "qemu/queue.h"
32 #include "qemu/int128.h"
33 #include "qemu/notify.h"
34 #include "qapi/error.h"
35 #include "qom/object.h"
36
37 #define MAX_PHYS_ADDR_SPACE_BITS 62
38 #define MAX_PHYS_ADDR (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1)
39
40 #define TYPE_MEMORY_REGION "qemu:memory-region"
41 #define MEMORY_REGION(obj) \
42 OBJECT_CHECK(MemoryRegion, (obj), TYPE_MEMORY_REGION)
43
44 typedef struct MemoryRegionOps MemoryRegionOps;
45 typedef struct MemoryRegionMmio MemoryRegionMmio;
46
47 struct MemoryRegionMmio {
48 CPUReadMemoryFunc *read[3];
49 CPUWriteMemoryFunc *write[3];
50 };
51
52 typedef struct IOMMUTLBEntry IOMMUTLBEntry;
53
54 /* See address_space_translate: bit 0 is read, bit 1 is write. */
55 typedef enum {
56 IOMMU_NONE = 0,
57 IOMMU_RO = 1,
58 IOMMU_WO = 2,
59 IOMMU_RW = 3,
60 } IOMMUAccessFlags;
61
62 struct IOMMUTLBEntry {
63 AddressSpace *target_as;
64 hwaddr iova;
65 hwaddr translated_addr;
66 hwaddr addr_mask; /* 0xfff = 4k translation */
67 IOMMUAccessFlags perm;
68 };
69
70 /*
71 * Memory region callbacks
72 */
73 struct MemoryRegionOps {
74 /* Read from the memory region. @addr is relative to @mr; @size is
75 * in bytes. */
76 uint64_t (*read)(void *opaque,
77 hwaddr addr,
78 unsigned size);
79 /* Write to the memory region. @addr is relative to @mr; @size is
80 * in bytes. */
81 void (*write)(void *opaque,
82 hwaddr addr,
83 uint64_t data,
84 unsigned size);
85
86 enum device_endian endianness;
87 /* Guest-visible constraints: */
88 struct {
89 /* If nonzero, specify bounds on access sizes beyond which a machine
90 * check is thrown.
91 */
92 unsigned min_access_size;
93 unsigned max_access_size;
94 /* If true, unaligned accesses are supported. Otherwise unaligned
95 * accesses throw machine checks.
96 */
97 bool unaligned;
98 /*
99 * If present, and returns #false, the transaction is not accepted
100 * by the device (and results in machine dependent behaviour such
101 * as a machine check exception).
102 */
103 bool (*accepts)(void *opaque, hwaddr addr,
104 unsigned size, bool is_write);
105 } valid;
106 /* Internal implementation constraints: */
107 struct {
108 /* If nonzero, specifies the minimum size implemented. Smaller sizes
109 * will be rounded upwards and a partial result will be returned.
110 */
111 unsigned min_access_size;
112 /* If nonzero, specifies the maximum size implemented. Larger sizes
113 * will be done as a series of accesses with smaller sizes.
114 */
115 unsigned max_access_size;
116 /* If true, unaligned accesses are supported. Otherwise all accesses
117 * are converted to (possibly multiple) naturally aligned accesses.
118 */
119 bool unaligned;
120 } impl;
121
122 /* If .read and .write are not present, old_mmio may be used for
123 * backwards compatibility with old mmio registration
124 */
125 const MemoryRegionMmio old_mmio;
126 };
127
128 typedef struct MemoryRegionIOMMUOps MemoryRegionIOMMUOps;
129
130 struct MemoryRegionIOMMUOps {
131 /* Return a TLB entry that contains a given address. */
132 IOMMUTLBEntry (*translate)(MemoryRegion *iommu, hwaddr addr, bool is_write);
133 };
134
135 typedef struct CoalescedMemoryRange CoalescedMemoryRange;
136 typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd;
137
138 struct MemoryRegion {
139 Object parent_obj;
140 /* All fields are private - violators will be prosecuted */
141 const MemoryRegionOps *ops;
142 const MemoryRegionIOMMUOps *iommu_ops;
143 void *opaque;
144 MemoryRegion *container;
145 Int128 size;
146 hwaddr addr;
147 void (*destructor)(MemoryRegion *mr);
148 ram_addr_t ram_addr;
149 bool subpage;
150 bool terminates;
151 bool romd_mode;
152 bool ram;
153 bool readonly; /* For RAM regions */
154 bool enabled;
155 bool rom_device;
156 bool warning_printed; /* For reservations */
157 bool flush_coalesced_mmio;
158 MemoryRegion *alias;
159 hwaddr alias_offset;
160 int32_t priority;
161 bool may_overlap;
162 QTAILQ_HEAD(subregions, MemoryRegion) subregions;
163 QTAILQ_ENTRY(MemoryRegion) subregions_link;
164 QTAILQ_HEAD(coalesced_ranges, CoalescedMemoryRange) coalesced;
165 const char *name;
166 uint8_t dirty_log_mask;
167 unsigned ioeventfd_nb;
168 MemoryRegionIoeventfd *ioeventfds;
169 NotifierList iommu_notify;
170 };
171
172 /**
173 * MemoryListener: callbacks structure for updates to the physical memory map
174 *
175 * Allows a component to adjust to changes in the guest-visible memory map.
176 * Use with memory_listener_register() and memory_listener_unregister().
177 */
178 struct MemoryListener {
179 void (*begin)(MemoryListener *listener);
180 void (*commit)(MemoryListener *listener);
181 void (*region_add)(MemoryListener *listener, MemoryRegionSection *section);
182 void (*region_del)(MemoryListener *listener, MemoryRegionSection *section);
183 void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section);
184 void (*log_start)(MemoryListener *listener, MemoryRegionSection *section);
185 void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section);
186 void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section);
187 void (*log_global_start)(MemoryListener *listener);
188 void (*log_global_stop)(MemoryListener *listener);
189 void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section,
190 bool match_data, uint64_t data, EventNotifier *e);
191 void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section,
192 bool match_data, uint64_t data, EventNotifier *e);
193 void (*coalesced_mmio_add)(MemoryListener *listener, MemoryRegionSection *section,
194 hwaddr addr, hwaddr len);
195 void (*coalesced_mmio_del)(MemoryListener *listener, MemoryRegionSection *section,
196 hwaddr addr, hwaddr len);
197 /* Lower = earlier (during add), later (during del) */
198 unsigned priority;
199 AddressSpace *address_space_filter;
200 QTAILQ_ENTRY(MemoryListener) link;
201 };
202
203 /**
204 * AddressSpace: describes a mapping of addresses to #MemoryRegion objects
205 */
206 struct AddressSpace {
207 /* All fields are private. */
208 char *name;
209 MemoryRegion *root;
210 struct FlatView *current_map;
211 int ioeventfd_nb;
212 struct MemoryRegionIoeventfd *ioeventfds;
213 struct AddressSpaceDispatch *dispatch;
214 struct AddressSpaceDispatch *next_dispatch;
215 MemoryListener dispatch_listener;
216
217 QTAILQ_ENTRY(AddressSpace) address_spaces_link;
218 };
219
220 /**
221 * MemoryRegionSection: describes a fragment of a #MemoryRegion
222 *
223 * @mr: the region, or %NULL if empty
224 * @address_space: the address space the region is mapped in
225 * @offset_within_region: the beginning of the section, relative to @mr's start
226 * @size: the size of the section; will not exceed @mr's boundaries
227 * @offset_within_address_space: the address of the first byte of the section
228 * relative to the region's address space
229 * @readonly: writes to this section are ignored
230 */
231 struct MemoryRegionSection {
232 MemoryRegion *mr;
233 AddressSpace *address_space;
234 hwaddr offset_within_region;
235 Int128 size;
236 hwaddr offset_within_address_space;
237 bool readonly;
238 };
239
240 /**
241 * memory_region_init: Initialize a memory region
242 *
243 * The region typically acts as a container for other memory regions. Use
244 * memory_region_add_subregion() to add subregions.
245 *
246 * @mr: the #MemoryRegion to be initialized
247 * @owner: the object that tracks the region's reference count
248 * @name: used for debugging; not visible to the user or ABI
249 * @size: size of the region; any subregions beyond this size will be clipped
250 */
251 void memory_region_init(MemoryRegion *mr,
252 struct Object *owner,
253 const char *name,
254 uint64_t size);
255
256 /**
257 * memory_region_ref: Add 1 to a memory region's reference count
258 *
259 * Whenever memory regions are accessed outside the BQL, they need to be
260 * preserved against hot-unplug. MemoryRegions actually do not have their
261 * own reference count; they piggyback on a QOM object, their "owner".
262 * This function adds a reference to the owner.
263 *
264 * All MemoryRegions must have an owner if they can disappear, even if the
265 * device they belong to operates exclusively under the BQL. This is because
266 * the region could be returned at any time by memory_region_find, and this
267 * is usually under guest control.
268 *
269 * @mr: the #MemoryRegion
270 */
271 void memory_region_ref(MemoryRegion *mr);
272
273 /**
274 * memory_region_unref: Remove 1 to a memory region's reference count
275 *
276 * Whenever memory regions are accessed outside the BQL, they need to be
277 * preserved against hot-unplug. MemoryRegions actually do not have their
278 * own reference count; they piggyback on a QOM object, their "owner".
279 * This function removes a reference to the owner and possibly destroys it.
280 *
281 * @mr: the #MemoryRegion
282 */
283 void memory_region_unref(MemoryRegion *mr);
284
285 /**
286 * memory_region_init_io: Initialize an I/O memory region.
287 *
288 * Accesses into the region will cause the callbacks in @ops to be called.
289 * if @size is nonzero, subregions will be clipped to @size.
290 *
291 * @mr: the #MemoryRegion to be initialized.
292 * @owner: the object that tracks the region's reference count
293 * @ops: a structure containing read and write callbacks to be used when
294 * I/O is performed on the region.
295 * @opaque: passed to to the read and write callbacks of the @ops structure.
296 * @name: used for debugging; not visible to the user or ABI
297 * @size: size of the region.
298 */
299 void memory_region_init_io(MemoryRegion *mr,
300 struct Object *owner,
301 const MemoryRegionOps *ops,
302 void *opaque,
303 const char *name,
304 uint64_t size);
305
306 /**
307 * memory_region_init_ram: Initialize RAM memory region. Accesses into the
308 * region will modify memory directly.
309 *
310 * @mr: the #MemoryRegion to be initialized.
311 * @owner: the object that tracks the region's reference count
312 * @name: the name of the region.
313 * @size: size of the region.
314 */
315 void memory_region_init_ram(MemoryRegion *mr,
316 struct Object *owner,
317 const char *name,
318 uint64_t size);
319
320 #ifdef __linux__
321 /**
322 * memory_region_init_ram_from_file: Initialize RAM memory region with a
323 * mmap-ed backend.
324 *
325 * @mr: the #MemoryRegion to be initialized.
326 * @owner: the object that tracks the region's reference count
327 * @name: the name of the region.
328 * @size: size of the region.
329 * @share: %true if memory must be mmaped with the MAP_SHARED flag
330 * @path: the path in which to allocate the RAM.
331 * @errp: pointer to Error*, to store an error if it happens.
332 */
333 void memory_region_init_ram_from_file(MemoryRegion *mr,
334 struct Object *owner,
335 const char *name,
336 uint64_t size,
337 bool share,
338 const char *path,
339 Error **errp);
340 #endif
341
342 /**
343 * memory_region_init_ram_ptr: Initialize RAM memory region from a
344 * user-provided pointer. Accesses into the
345 * region will modify memory directly.
346 *
347 * @mr: the #MemoryRegion to be initialized.
348 * @owner: the object that tracks the region's reference count
349 * @name: the name of the region.
350 * @size: size of the region.
351 * @ptr: memory to be mapped; must contain at least @size bytes.
352 */
353 void memory_region_init_ram_ptr(MemoryRegion *mr,
354 struct Object *owner,
355 const char *name,
356 uint64_t size,
357 void *ptr);
358
359 /**
360 * memory_region_init_alias: Initialize a memory region that aliases all or a
361 * part of another memory region.
362 *
363 * @mr: the #MemoryRegion to be initialized.
364 * @owner: the object that tracks the region's reference count
365 * @name: used for debugging; not visible to the user or ABI
366 * @orig: the region to be referenced; @mr will be equivalent to
367 * @orig between @offset and @offset + @size - 1.
368 * @offset: start of the section in @orig to be referenced.
369 * @size: size of the region.
370 */
371 void memory_region_init_alias(MemoryRegion *mr,
372 struct Object *owner,
373 const char *name,
374 MemoryRegion *orig,
375 hwaddr offset,
376 uint64_t size);
377
378 /**
379 * memory_region_init_rom_device: Initialize a ROM memory region. Writes are
380 * handled via callbacks.
381 *
382 * @mr: the #MemoryRegion to be initialized.
383 * @owner: the object that tracks the region's reference count
384 * @ops: callbacks for write access handling.
385 * @name: the name of the region.
386 * @size: size of the region.
387 */
388 void memory_region_init_rom_device(MemoryRegion *mr,
389 struct Object *owner,
390 const MemoryRegionOps *ops,
391 void *opaque,
392 const char *name,
393 uint64_t size);
394
395 /**
396 * memory_region_init_reservation: Initialize a memory region that reserves
397 * I/O space.
398 *
399 * A reservation region primariy serves debugging purposes. It claims I/O
400 * space that is not supposed to be handled by QEMU itself. Any access via
401 * the memory API will cause an abort().
402 *
403 * @mr: the #MemoryRegion to be initialized
404 * @owner: the object that tracks the region's reference count
405 * @name: used for debugging; not visible to the user or ABI
406 * @size: size of the region.
407 */
408 void memory_region_init_reservation(MemoryRegion *mr,
409 struct Object *owner,
410 const char *name,
411 uint64_t size);
412
413 /**
414 * memory_region_init_iommu: Initialize a memory region that translates
415 * addresses
416 *
417 * An IOMMU region translates addresses and forwards accesses to a target
418 * memory region.
419 *
420 * @mr: the #MemoryRegion to be initialized
421 * @owner: the object that tracks the region's reference count
422 * @ops: a function that translates addresses into the @target region
423 * @name: used for debugging; not visible to the user or ABI
424 * @size: size of the region.
425 */
426 void memory_region_init_iommu(MemoryRegion *mr,
427 struct Object *owner,
428 const MemoryRegionIOMMUOps *ops,
429 const char *name,
430 uint64_t size);
431
432 /**
433 * memory_region_owner: get a memory region's owner.
434 *
435 * @mr: the memory region being queried.
436 */
437 struct Object *memory_region_owner(MemoryRegion *mr);
438
439 /**
440 * memory_region_size: get a memory region's size.
441 *
442 * @mr: the memory region being queried.
443 */
444 uint64_t memory_region_size(MemoryRegion *mr);
445
446 /**
447 * memory_region_is_ram: check whether a memory region is random access
448 *
449 * Returns %true is a memory region is random access.
450 *
451 * @mr: the memory region being queried
452 */
453 bool memory_region_is_ram(MemoryRegion *mr);
454
455 /**
456 * memory_region_is_romd: check whether a memory region is in ROMD mode
457 *
458 * Returns %true if a memory region is a ROM device and currently set to allow
459 * direct reads.
460 *
461 * @mr: the memory region being queried
462 */
463 static inline bool memory_region_is_romd(MemoryRegion *mr)
464 {
465 return mr->rom_device && mr->romd_mode;
466 }
467
468 /**
469 * memory_region_is_iommu: check whether a memory region is an iommu
470 *
471 * Returns %true is a memory region is an iommu.
472 *
473 * @mr: the memory region being queried
474 */
475 bool memory_region_is_iommu(MemoryRegion *mr);
476
477 /**
478 * memory_region_notify_iommu: notify a change in an IOMMU translation entry.
479 *
480 * @mr: the memory region that was changed
481 * @entry: the new entry in the IOMMU translation table. The entry
482 * replaces all old entries for the same virtual I/O address range.
483 * Deleted entries have .@perm == 0.
484 */
485 void memory_region_notify_iommu(MemoryRegion *mr,
486 IOMMUTLBEntry entry);
487
488 /**
489 * memory_region_register_iommu_notifier: register a notifier for changes to
490 * IOMMU translation entries.
491 *
492 * @mr: the memory region to observe
493 * @n: the notifier to be added; the notifier receives a pointer to an
494 * #IOMMUTLBEntry as the opaque value; the pointer ceases to be
495 * valid on exit from the notifier.
496 */
497 void memory_region_register_iommu_notifier(MemoryRegion *mr, Notifier *n);
498
499 /**
500 * memory_region_unregister_iommu_notifier: unregister a notifier for
501 * changes to IOMMU translation entries.
502 *
503 * @n: the notifier to be removed.
504 */
505 void memory_region_unregister_iommu_notifier(Notifier *n);
506
507 /**
508 * memory_region_name: get a memory region's name
509 *
510 * Returns the string that was used to initialize the memory region.
511 *
512 * @mr: the memory region being queried
513 */
514 const char *memory_region_name(const MemoryRegion *mr);
515
516 /**
517 * memory_region_is_logging: return whether a memory region is logging writes
518 *
519 * Returns %true if the memory region is logging writes
520 *
521 * @mr: the memory region being queried
522 */
523 bool memory_region_is_logging(MemoryRegion *mr);
524
525 /**
526 * memory_region_is_rom: check whether a memory region is ROM
527 *
528 * Returns %true is a memory region is read-only memory.
529 *
530 * @mr: the memory region being queried
531 */
532 bool memory_region_is_rom(MemoryRegion *mr);
533
534 /**
535 * memory_region_get_fd: Get a file descriptor backing a RAM memory region.
536 *
537 * Returns a file descriptor backing a file-based RAM memory region,
538 * or -1 if the region is not a file-based RAM memory region.
539 *
540 * @mr: the RAM or alias memory region being queried.
541 */
542 int memory_region_get_fd(MemoryRegion *mr);
543
544 /**
545 * memory_region_get_ram_ptr: Get a pointer into a RAM memory region.
546 *
547 * Returns a host pointer to a RAM memory region (created with
548 * memory_region_init_ram() or memory_region_init_ram_ptr()). Use with
549 * care.
550 *
551 * @mr: the memory region being queried.
552 */
553 void *memory_region_get_ram_ptr(MemoryRegion *mr);
554
555 /**
556 * memory_region_set_log: Turn dirty logging on or off for a region.
557 *
558 * Turns dirty logging on or off for a specified client (display, migration).
559 * Only meaningful for RAM regions.
560 *
561 * @mr: the memory region being updated.
562 * @log: whether dirty logging is to be enabled or disabled.
563 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
564 * %DIRTY_MEMORY_VGA.
565 */
566 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client);
567
568 /**
569 * memory_region_get_dirty: Check whether a range of bytes is dirty
570 * for a specified client.
571 *
572 * Checks whether a range of bytes has been written to since the last
573 * call to memory_region_reset_dirty() with the same @client. Dirty logging
574 * must be enabled.
575 *
576 * @mr: the memory region being queried.
577 * @addr: the address (relative to the start of the region) being queried.
578 * @size: the size of the range being queried.
579 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
580 * %DIRTY_MEMORY_VGA.
581 */
582 bool memory_region_get_dirty(MemoryRegion *mr, hwaddr addr,
583 hwaddr size, unsigned client);
584
585 /**
586 * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region.
587 *
588 * Marks a range of bytes as dirty, after it has been dirtied outside
589 * guest code.
590 *
591 * @mr: the memory region being dirtied.
592 * @addr: the address (relative to the start of the region) being dirtied.
593 * @size: size of the range being dirtied.
594 */
595 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
596 hwaddr size);
597
598 /**
599 * memory_region_test_and_clear_dirty: Check whether a range of bytes is dirty
600 * for a specified client. It clears them.
601 *
602 * Checks whether a range of bytes has been written to since the last
603 * call to memory_region_reset_dirty() with the same @client. Dirty logging
604 * must be enabled.
605 *
606 * @mr: the memory region being queried.
607 * @addr: the address (relative to the start of the region) being queried.
608 * @size: the size of the range being queried.
609 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
610 * %DIRTY_MEMORY_VGA.
611 */
612 bool memory_region_test_and_clear_dirty(MemoryRegion *mr, hwaddr addr,
613 hwaddr size, unsigned client);
614 /**
615 * memory_region_sync_dirty_bitmap: Synchronize a region's dirty bitmap with
616 * any external TLBs (e.g. kvm)
617 *
618 * Flushes dirty information from accelerators such as kvm and vhost-net
619 * and makes it available to users of the memory API.
620 *
621 * @mr: the region being flushed.
622 */
623 void memory_region_sync_dirty_bitmap(MemoryRegion *mr);
624
625 /**
626 * memory_region_reset_dirty: Mark a range of pages as clean, for a specified
627 * client.
628 *
629 * Marks a range of pages as no longer dirty.
630 *
631 * @mr: the region being updated.
632 * @addr: the start of the subrange being cleaned.
633 * @size: the size of the subrange being cleaned.
634 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
635 * %DIRTY_MEMORY_VGA.
636 */
637 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
638 hwaddr size, unsigned client);
639
640 /**
641 * memory_region_set_readonly: Turn a memory region read-only (or read-write)
642 *
643 * Allows a memory region to be marked as read-only (turning it into a ROM).
644 * only useful on RAM regions.
645 *
646 * @mr: the region being updated.
647 * @readonly: whether rhe region is to be ROM or RAM.
648 */
649 void memory_region_set_readonly(MemoryRegion *mr, bool readonly);
650
651 /**
652 * memory_region_rom_device_set_romd: enable/disable ROMD mode
653 *
654 * Allows a ROM device (initialized with memory_region_init_rom_device() to
655 * set to ROMD mode (default) or MMIO mode. When it is in ROMD mode, the
656 * device is mapped to guest memory and satisfies read access directly.
657 * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function.
658 * Writes are always handled by the #MemoryRegion.write function.
659 *
660 * @mr: the memory region to be updated
661 * @romd_mode: %true to put the region into ROMD mode
662 */
663 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode);
664
665 /**
666 * memory_region_set_coalescing: Enable memory coalescing for the region.
667 *
668 * Enabled writes to a region to be queued for later processing. MMIO ->write
669 * callbacks may be delayed until a non-coalesced MMIO is issued.
670 * Only useful for IO regions. Roughly similar to write-combining hardware.
671 *
672 * @mr: the memory region to be write coalesced
673 */
674 void memory_region_set_coalescing(MemoryRegion *mr);
675
676 /**
677 * memory_region_add_coalescing: Enable memory coalescing for a sub-range of
678 * a region.
679 *
680 * Like memory_region_set_coalescing(), but works on a sub-range of a region.
681 * Multiple calls can be issued coalesced disjoint ranges.
682 *
683 * @mr: the memory region to be updated.
684 * @offset: the start of the range within the region to be coalesced.
685 * @size: the size of the subrange to be coalesced.
686 */
687 void memory_region_add_coalescing(MemoryRegion *mr,
688 hwaddr offset,
689 uint64_t size);
690
691 /**
692 * memory_region_clear_coalescing: Disable MMIO coalescing for the region.
693 *
694 * Disables any coalescing caused by memory_region_set_coalescing() or
695 * memory_region_add_coalescing(). Roughly equivalent to uncacheble memory
696 * hardware.
697 *
698 * @mr: the memory region to be updated.
699 */
700 void memory_region_clear_coalescing(MemoryRegion *mr);
701
702 /**
703 * memory_region_set_flush_coalesced: Enforce memory coalescing flush before
704 * accesses.
705 *
706 * Ensure that pending coalesced MMIO request are flushed before the memory
707 * region is accessed. This property is automatically enabled for all regions
708 * passed to memory_region_set_coalescing() and memory_region_add_coalescing().
709 *
710 * @mr: the memory region to be updated.
711 */
712 void memory_region_set_flush_coalesced(MemoryRegion *mr);
713
714 /**
715 * memory_region_clear_flush_coalesced: Disable memory coalescing flush before
716 * accesses.
717 *
718 * Clear the automatic coalesced MMIO flushing enabled via
719 * memory_region_set_flush_coalesced. Note that this service has no effect on
720 * memory regions that have MMIO coalescing enabled for themselves. For them,
721 * automatic flushing will stop once coalescing is disabled.
722 *
723 * @mr: the memory region to be updated.
724 */
725 void memory_region_clear_flush_coalesced(MemoryRegion *mr);
726
727 /**
728 * memory_region_add_eventfd: Request an eventfd to be triggered when a word
729 * is written to a location.
730 *
731 * Marks a word in an IO region (initialized with memory_region_init_io())
732 * as a trigger for an eventfd event. The I/O callback will not be called.
733 * The caller must be prepared to handle failure (that is, take the required
734 * action if the callback _is_ called).
735 *
736 * @mr: the memory region being updated.
737 * @addr: the address within @mr that is to be monitored
738 * @size: the size of the access to trigger the eventfd
739 * @match_data: whether to match against @data, instead of just @addr
740 * @data: the data to match against the guest write
741 * @fd: the eventfd to be triggered when @addr, @size, and @data all match.
742 **/
743 void memory_region_add_eventfd(MemoryRegion *mr,
744 hwaddr addr,
745 unsigned size,
746 bool match_data,
747 uint64_t data,
748 EventNotifier *e);
749
750 /**
751 * memory_region_del_eventfd: Cancel an eventfd.
752 *
753 * Cancels an eventfd trigger requested by a previous
754 * memory_region_add_eventfd() call.
755 *
756 * @mr: the memory region being updated.
757 * @addr: the address within @mr that is to be monitored
758 * @size: the size of the access to trigger the eventfd
759 * @match_data: whether to match against @data, instead of just @addr
760 * @data: the data to match against the guest write
761 * @fd: the eventfd to be triggered when @addr, @size, and @data all match.
762 */
763 void memory_region_del_eventfd(MemoryRegion *mr,
764 hwaddr addr,
765 unsigned size,
766 bool match_data,
767 uint64_t data,
768 EventNotifier *e);
769
770 /**
771 * memory_region_add_subregion: Add a subregion to a container.
772 *
773 * Adds a subregion at @offset. The subregion may not overlap with other
774 * subregions (except for those explicitly marked as overlapping). A region
775 * may only be added once as a subregion (unless removed with
776 * memory_region_del_subregion()); use memory_region_init_alias() if you
777 * want a region to be a subregion in multiple locations.
778 *
779 * @mr: the region to contain the new subregion; must be a container
780 * initialized with memory_region_init().
781 * @offset: the offset relative to @mr where @subregion is added.
782 * @subregion: the subregion to be added.
783 */
784 void memory_region_add_subregion(MemoryRegion *mr,
785 hwaddr offset,
786 MemoryRegion *subregion);
787 /**
788 * memory_region_add_subregion_overlap: Add a subregion to a container
789 * with overlap.
790 *
791 * Adds a subregion at @offset. The subregion may overlap with other
792 * subregions. Conflicts are resolved by having a higher @priority hide a
793 * lower @priority. Subregions without priority are taken as @priority 0.
794 * A region may only be added once as a subregion (unless removed with
795 * memory_region_del_subregion()); use memory_region_init_alias() if you
796 * want a region to be a subregion in multiple locations.
797 *
798 * @mr: the region to contain the new subregion; must be a container
799 * initialized with memory_region_init().
800 * @offset: the offset relative to @mr where @subregion is added.
801 * @subregion: the subregion to be added.
802 * @priority: used for resolving overlaps; highest priority wins.
803 */
804 void memory_region_add_subregion_overlap(MemoryRegion *mr,
805 hwaddr offset,
806 MemoryRegion *subregion,
807 int priority);
808
809 /**
810 * memory_region_get_ram_addr: Get the ram address associated with a memory
811 * region
812 *
813 * DO NOT USE THIS FUNCTION. This is a temporary workaround while the Xen
814 * code is being reworked.
815 */
816 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr);
817
818 /**
819 * memory_region_del_subregion: Remove a subregion.
820 *
821 * Removes a subregion from its container.
822 *
823 * @mr: the container to be updated.
824 * @subregion: the region being removed; must be a current subregion of @mr.
825 */
826 void memory_region_del_subregion(MemoryRegion *mr,
827 MemoryRegion *subregion);
828
829 /*
830 * memory_region_set_enabled: dynamically enable or disable a region
831 *
832 * Enables or disables a memory region. A disabled memory region
833 * ignores all accesses to itself and its subregions. It does not
834 * obscure sibling subregions with lower priority - it simply behaves as
835 * if it was removed from the hierarchy.
836 *
837 * Regions default to being enabled.
838 *
839 * @mr: the region to be updated
840 * @enabled: whether to enable or disable the region
841 */
842 void memory_region_set_enabled(MemoryRegion *mr, bool enabled);
843
844 /*
845 * memory_region_set_address: dynamically update the address of a region
846 *
847 * Dynamically updates the address of a region, relative to its container.
848 * May be used on regions are currently part of a memory hierarchy.
849 *
850 * @mr: the region to be updated
851 * @addr: new address, relative to container region
852 */
853 void memory_region_set_address(MemoryRegion *mr, hwaddr addr);
854
855 /*
856 * memory_region_set_alias_offset: dynamically update a memory alias's offset
857 *
858 * Dynamically updates the offset into the target region that an alias points
859 * to, as if the fourth argument to memory_region_init_alias() has changed.
860 *
861 * @mr: the #MemoryRegion to be updated; should be an alias.
862 * @offset: the new offset into the target memory region
863 */
864 void memory_region_set_alias_offset(MemoryRegion *mr,
865 hwaddr offset);
866
867 /**
868 * memory_region_present: checks if an address relative to a @container
869 * translates into #MemoryRegion within @container
870 *
871 * Answer whether a #MemoryRegion within @container covers the address
872 * @addr.
873 *
874 * @container: a #MemoryRegion within which @addr is a relative address
875 * @addr: the area within @container to be searched
876 */
877 bool memory_region_present(MemoryRegion *container, hwaddr addr);
878
879 /**
880 * memory_region_is_mapped: returns true if #MemoryRegion is mapped
881 * into any address space.
882 *
883 * @mr: a #MemoryRegion which should be checked if it's mapped
884 */
885 bool memory_region_is_mapped(MemoryRegion *mr);
886
887 /**
888 * memory_region_find: translate an address/size relative to a
889 * MemoryRegion into a #MemoryRegionSection.
890 *
891 * Locates the first #MemoryRegion within @mr that overlaps the range
892 * given by @addr and @size.
893 *
894 * Returns a #MemoryRegionSection that describes a contiguous overlap.
895 * It will have the following characteristics:
896 * .@size = 0 iff no overlap was found
897 * .@mr is non-%NULL iff an overlap was found
898 *
899 * Remember that in the return value the @offset_within_region is
900 * relative to the returned region (in the .@mr field), not to the
901 * @mr argument.
902 *
903 * Similarly, the .@offset_within_address_space is relative to the
904 * address space that contains both regions, the passed and the
905 * returned one. However, in the special case where the @mr argument
906 * has no container (and thus is the root of the address space), the
907 * following will hold:
908 * .@offset_within_address_space >= @addr
909 * .@offset_within_address_space + .@size <= @addr + @size
910 *
911 * @mr: a MemoryRegion within which @addr is a relative address
912 * @addr: start of the area within @as to be searched
913 * @size: size of the area to be searched
914 */
915 MemoryRegionSection memory_region_find(MemoryRegion *mr,
916 hwaddr addr, uint64_t size);
917
918 /**
919 * address_space_sync_dirty_bitmap: synchronize the dirty log for all memory
920 *
921 * Synchronizes the dirty page log for an entire address space.
922 * @as: the address space that contains the memory being synchronized
923 */
924 void address_space_sync_dirty_bitmap(AddressSpace *as);
925
926 /**
927 * memory_region_transaction_begin: Start a transaction.
928 *
929 * During a transaction, changes will be accumulated and made visible
930 * only when the transaction ends (is committed).
931 */
932 void memory_region_transaction_begin(void);
933
934 /**
935 * memory_region_transaction_commit: Commit a transaction and make changes
936 * visible to the guest.
937 */
938 void memory_region_transaction_commit(void);
939
940 /**
941 * memory_listener_register: register callbacks to be called when memory
942 * sections are mapped or unmapped into an address
943 * space
944 *
945 * @listener: an object containing the callbacks to be called
946 * @filter: if non-%NULL, only regions in this address space will be observed
947 */
948 void memory_listener_register(MemoryListener *listener, AddressSpace *filter);
949
950 /**
951 * memory_listener_unregister: undo the effect of memory_listener_register()
952 *
953 * @listener: an object containing the callbacks to be removed
954 */
955 void memory_listener_unregister(MemoryListener *listener);
956
957 /**
958 * memory_global_dirty_log_start: begin dirty logging for all regions
959 */
960 void memory_global_dirty_log_start(void);
961
962 /**
963 * memory_global_dirty_log_stop: end dirty logging for all regions
964 */
965 void memory_global_dirty_log_stop(void);
966
967 void mtree_info(fprintf_function mon_printf, void *f);
968
969 /**
970 * address_space_init: initializes an address space
971 *
972 * @as: an uninitialized #AddressSpace
973 * @root: a #MemoryRegion that routes addesses for the address space
974 * @name: an address space name. The name is only used for debugging
975 * output.
976 */
977 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name);
978
979
980 /**
981 * address_space_destroy: destroy an address space
982 *
983 * Releases all resources associated with an address space. After an address space
984 * is destroyed, its root memory region (given by address_space_init()) may be destroyed
985 * as well.
986 *
987 * @as: address space to be destroyed
988 */
989 void address_space_destroy(AddressSpace *as);
990
991 /**
992 * address_space_rw: read from or write to an address space.
993 *
994 * Return true if the operation hit any unassigned memory or encountered an
995 * IOMMU fault.
996 *
997 * @as: #AddressSpace to be accessed
998 * @addr: address within that address space
999 * @buf: buffer with the data transferred
1000 * @is_write: indicates the transfer direction
1001 */
1002 bool address_space_rw(AddressSpace *as, hwaddr addr, uint8_t *buf,
1003 int len, bool is_write);
1004
1005 /**
1006 * address_space_write: write to address space.
1007 *
1008 * Return true if the operation hit any unassigned memory or encountered an
1009 * IOMMU fault.
1010 *
1011 * @as: #AddressSpace to be accessed
1012 * @addr: address within that address space
1013 * @buf: buffer with the data transferred
1014 */
1015 bool address_space_write(AddressSpace *as, hwaddr addr,
1016 const uint8_t *buf, int len);
1017
1018 /**
1019 * address_space_read: read from an address space.
1020 *
1021 * Return true if the operation hit any unassigned memory or encountered an
1022 * IOMMU fault.
1023 *
1024 * @as: #AddressSpace to be accessed
1025 * @addr: address within that address space
1026 * @buf: buffer with the data transferred
1027 */
1028 bool address_space_read(AddressSpace *as, hwaddr addr, uint8_t *buf, int len);
1029
1030 /* address_space_translate: translate an address range into an address space
1031 * into a MemoryRegion and an address range into that section
1032 *
1033 * @as: #AddressSpace to be accessed
1034 * @addr: address within that address space
1035 * @xlat: pointer to address within the returned memory region section's
1036 * #MemoryRegion.
1037 * @len: pointer to length
1038 * @is_write: indicates the transfer direction
1039 */
1040 MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr,
1041 hwaddr *xlat, hwaddr *len,
1042 bool is_write);
1043
1044 /* address_space_access_valid: check for validity of accessing an address
1045 * space range
1046 *
1047 * Check whether memory is assigned to the given address space range, and
1048 * access is permitted by any IOMMU regions that are active for the address
1049 * space.
1050 *
1051 * For now, addr and len should be aligned to a page size. This limitation
1052 * will be lifted in the future.
1053 *
1054 * @as: #AddressSpace to be accessed
1055 * @addr: address within that address space
1056 * @len: length of the area to be checked
1057 * @is_write: indicates the transfer direction
1058 */
1059 bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write);
1060
1061 /* address_space_map: map a physical memory region into a host virtual address
1062 *
1063 * May map a subset of the requested range, given by and returned in @plen.
1064 * May return %NULL if resources needed to perform the mapping are exhausted.
1065 * Use only for reads OR writes - not for read-modify-write operations.
1066 * Use cpu_register_map_client() to know when retrying the map operation is
1067 * likely to succeed.
1068 *
1069 * @as: #AddressSpace to be accessed
1070 * @addr: address within that address space
1071 * @plen: pointer to length of buffer; updated on return
1072 * @is_write: indicates the transfer direction
1073 */
1074 void *address_space_map(AddressSpace *as, hwaddr addr,
1075 hwaddr *plen, bool is_write);
1076
1077 /* address_space_unmap: Unmaps a memory region previously mapped by address_space_map()
1078 *
1079 * Will also mark the memory as dirty if @is_write == %true. @access_len gives
1080 * the amount of memory that was actually read or written by the caller.
1081 *
1082 * @as: #AddressSpace used
1083 * @addr: address within that address space
1084 * @len: buffer length as returned by address_space_map()
1085 * @access_len: amount of data actually transferred
1086 * @is_write: indicates the transfer direction
1087 */
1088 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
1089 int is_write, hwaddr access_len);
1090
1091
1092 #endif
1093
1094 #endif