]> git.proxmox.com Git - mirror_qemu.git/blob - include/exec/memory.h
Merge remote-tracking branch 'remotes/stefanha/tags/block-pull-request' into staging
[mirror_qemu.git] / include / exec / memory.h
1 /*
2 * Physical memory management API
3 *
4 * Copyright 2011 Red Hat, Inc. and/or its affiliates
5 *
6 * Authors:
7 * Avi Kivity <avi@redhat.com>
8 *
9 * This work is licensed under the terms of the GNU GPL, version 2. See
10 * the COPYING file in the top-level directory.
11 *
12 */
13
14 #ifndef MEMORY_H
15 #define MEMORY_H
16
17 #ifndef CONFIG_USER_ONLY
18
19 #include "exec/cpu-common.h"
20 #include "exec/hwaddr.h"
21 #include "exec/memattrs.h"
22 #include "exec/ramlist.h"
23 #include "qemu/queue.h"
24 #include "qemu/int128.h"
25 #include "qemu/notify.h"
26 #include "qom/object.h"
27 #include "qemu/rcu.h"
28 #include "hw/qdev-core.h"
29
30 #define RAM_ADDR_INVALID (~(ram_addr_t)0)
31
32 #define MAX_PHYS_ADDR_SPACE_BITS 62
33 #define MAX_PHYS_ADDR (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1)
34
35 #define TYPE_MEMORY_REGION "qemu:memory-region"
36 #define MEMORY_REGION(obj) \
37 OBJECT_CHECK(MemoryRegion, (obj), TYPE_MEMORY_REGION)
38
39 #define TYPE_IOMMU_MEMORY_REGION "qemu:iommu-memory-region"
40 #define IOMMU_MEMORY_REGION(obj) \
41 OBJECT_CHECK(IOMMUMemoryRegion, (obj), TYPE_IOMMU_MEMORY_REGION)
42 #define IOMMU_MEMORY_REGION_CLASS(klass) \
43 OBJECT_CLASS_CHECK(IOMMUMemoryRegionClass, (klass), \
44 TYPE_IOMMU_MEMORY_REGION)
45 #define IOMMU_MEMORY_REGION_GET_CLASS(obj) \
46 OBJECT_GET_CLASS(IOMMUMemoryRegionClass, (obj), \
47 TYPE_IOMMU_MEMORY_REGION)
48
49 typedef struct MemoryRegionOps MemoryRegionOps;
50 typedef struct MemoryRegionMmio MemoryRegionMmio;
51
52 struct MemoryRegionMmio {
53 CPUReadMemoryFunc *read[3];
54 CPUWriteMemoryFunc *write[3];
55 };
56
57 typedef struct IOMMUTLBEntry IOMMUTLBEntry;
58
59 /* See address_space_translate: bit 0 is read, bit 1 is write. */
60 typedef enum {
61 IOMMU_NONE = 0,
62 IOMMU_RO = 1,
63 IOMMU_WO = 2,
64 IOMMU_RW = 3,
65 } IOMMUAccessFlags;
66
67 #define IOMMU_ACCESS_FLAG(r, w) (((r) ? IOMMU_RO : 0) | ((w) ? IOMMU_WO : 0))
68
69 struct IOMMUTLBEntry {
70 AddressSpace *target_as;
71 hwaddr iova;
72 hwaddr translated_addr;
73 hwaddr addr_mask; /* 0xfff = 4k translation */
74 IOMMUAccessFlags perm;
75 };
76
77 /*
78 * Bitmap for different IOMMUNotifier capabilities. Each notifier can
79 * register with one or multiple IOMMU Notifier capability bit(s).
80 */
81 typedef enum {
82 IOMMU_NOTIFIER_NONE = 0,
83 /* Notify cache invalidations */
84 IOMMU_NOTIFIER_UNMAP = 0x1,
85 /* Notify entry changes (newly created entries) */
86 IOMMU_NOTIFIER_MAP = 0x2,
87 } IOMMUNotifierFlag;
88
89 #define IOMMU_NOTIFIER_ALL (IOMMU_NOTIFIER_MAP | IOMMU_NOTIFIER_UNMAP)
90
91 struct IOMMUNotifier;
92 typedef void (*IOMMUNotify)(struct IOMMUNotifier *notifier,
93 IOMMUTLBEntry *data);
94
95 struct IOMMUNotifier {
96 IOMMUNotify notify;
97 IOMMUNotifierFlag notifier_flags;
98 /* Notify for address space range start <= addr <= end */
99 hwaddr start;
100 hwaddr end;
101 QLIST_ENTRY(IOMMUNotifier) node;
102 };
103 typedef struct IOMMUNotifier IOMMUNotifier;
104
105 static inline void iommu_notifier_init(IOMMUNotifier *n, IOMMUNotify fn,
106 IOMMUNotifierFlag flags,
107 hwaddr start, hwaddr end)
108 {
109 n->notify = fn;
110 n->notifier_flags = flags;
111 n->start = start;
112 n->end = end;
113 }
114
115 /* New-style MMIO accessors can indicate that the transaction failed.
116 * A zero (MEMTX_OK) response means success; anything else is a failure
117 * of some kind. The memory subsystem will bitwise-OR together results
118 * if it is synthesizing an operation from multiple smaller accesses.
119 */
120 #define MEMTX_OK 0
121 #define MEMTX_ERROR (1U << 0) /* device returned an error */
122 #define MEMTX_DECODE_ERROR (1U << 1) /* nothing at that address */
123 typedef uint32_t MemTxResult;
124
125 /*
126 * Memory region callbacks
127 */
128 struct MemoryRegionOps {
129 /* Read from the memory region. @addr is relative to @mr; @size is
130 * in bytes. */
131 uint64_t (*read)(void *opaque,
132 hwaddr addr,
133 unsigned size);
134 /* Write to the memory region. @addr is relative to @mr; @size is
135 * in bytes. */
136 void (*write)(void *opaque,
137 hwaddr addr,
138 uint64_t data,
139 unsigned size);
140
141 MemTxResult (*read_with_attrs)(void *opaque,
142 hwaddr addr,
143 uint64_t *data,
144 unsigned size,
145 MemTxAttrs attrs);
146 MemTxResult (*write_with_attrs)(void *opaque,
147 hwaddr addr,
148 uint64_t data,
149 unsigned size,
150 MemTxAttrs attrs);
151 /* Instruction execution pre-callback:
152 * @addr is the address of the access relative to the @mr.
153 * @size is the size of the area returned by the callback.
154 * @offset is the location of the pointer inside @mr.
155 *
156 * Returns a pointer to a location which contains guest code.
157 */
158 void *(*request_ptr)(void *opaque, hwaddr addr, unsigned *size,
159 unsigned *offset);
160
161 enum device_endian endianness;
162 /* Guest-visible constraints: */
163 struct {
164 /* If nonzero, specify bounds on access sizes beyond which a machine
165 * check is thrown.
166 */
167 unsigned min_access_size;
168 unsigned max_access_size;
169 /* If true, unaligned accesses are supported. Otherwise unaligned
170 * accesses throw machine checks.
171 */
172 bool unaligned;
173 /*
174 * If present, and returns #false, the transaction is not accepted
175 * by the device (and results in machine dependent behaviour such
176 * as a machine check exception).
177 */
178 bool (*accepts)(void *opaque, hwaddr addr,
179 unsigned size, bool is_write);
180 } valid;
181 /* Internal implementation constraints: */
182 struct {
183 /* If nonzero, specifies the minimum size implemented. Smaller sizes
184 * will be rounded upwards and a partial result will be returned.
185 */
186 unsigned min_access_size;
187 /* If nonzero, specifies the maximum size implemented. Larger sizes
188 * will be done as a series of accesses with smaller sizes.
189 */
190 unsigned max_access_size;
191 /* If true, unaligned accesses are supported. Otherwise all accesses
192 * are converted to (possibly multiple) naturally aligned accesses.
193 */
194 bool unaligned;
195 } impl;
196
197 /* If .read and .write are not present, old_mmio may be used for
198 * backwards compatibility with old mmio registration
199 */
200 const MemoryRegionMmio old_mmio;
201 };
202
203 typedef struct IOMMUMemoryRegionClass {
204 /* private */
205 struct DeviceClass parent_class;
206
207 /*
208 * Return a TLB entry that contains a given address. Flag should
209 * be the access permission of this translation operation. We can
210 * set flag to IOMMU_NONE to mean that we don't need any
211 * read/write permission checks, like, when for region replay.
212 */
213 IOMMUTLBEntry (*translate)(IOMMUMemoryRegion *iommu, hwaddr addr,
214 IOMMUAccessFlags flag);
215 /* Returns minimum supported page size */
216 uint64_t (*get_min_page_size)(IOMMUMemoryRegion *iommu);
217 /* Called when IOMMU Notifier flag changed */
218 void (*notify_flag_changed)(IOMMUMemoryRegion *iommu,
219 IOMMUNotifierFlag old_flags,
220 IOMMUNotifierFlag new_flags);
221 /* Set this up to provide customized IOMMU replay function */
222 void (*replay)(IOMMUMemoryRegion *iommu, IOMMUNotifier *notifier);
223 } IOMMUMemoryRegionClass;
224
225 typedef struct CoalescedMemoryRange CoalescedMemoryRange;
226 typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd;
227
228 struct MemoryRegion {
229 Object parent_obj;
230
231 /* All fields are private - violators will be prosecuted */
232
233 /* The following fields should fit in a cache line */
234 bool romd_mode;
235 bool ram;
236 bool subpage;
237 bool readonly; /* For RAM regions */
238 bool rom_device;
239 bool flush_coalesced_mmio;
240 bool global_locking;
241 uint8_t dirty_log_mask;
242 bool is_iommu;
243 RAMBlock *ram_block;
244 Object *owner;
245
246 const MemoryRegionOps *ops;
247 void *opaque;
248 MemoryRegion *container;
249 Int128 size;
250 hwaddr addr;
251 void (*destructor)(MemoryRegion *mr);
252 uint64_t align;
253 bool terminates;
254 bool ram_device;
255 bool enabled;
256 bool warning_printed; /* For reservations */
257 uint8_t vga_logging_count;
258 MemoryRegion *alias;
259 hwaddr alias_offset;
260 int32_t priority;
261 QTAILQ_HEAD(subregions, MemoryRegion) subregions;
262 QTAILQ_ENTRY(MemoryRegion) subregions_link;
263 QTAILQ_HEAD(coalesced_ranges, CoalescedMemoryRange) coalesced;
264 const char *name;
265 unsigned ioeventfd_nb;
266 MemoryRegionIoeventfd *ioeventfds;
267 };
268
269 struct IOMMUMemoryRegion {
270 MemoryRegion parent_obj;
271
272 QLIST_HEAD(, IOMMUNotifier) iommu_notify;
273 IOMMUNotifierFlag iommu_notify_flags;
274 };
275
276 #define IOMMU_NOTIFIER_FOREACH(n, mr) \
277 QLIST_FOREACH((n), &(mr)->iommu_notify, node)
278
279 /**
280 * MemoryListener: callbacks structure for updates to the physical memory map
281 *
282 * Allows a component to adjust to changes in the guest-visible memory map.
283 * Use with memory_listener_register() and memory_listener_unregister().
284 */
285 struct MemoryListener {
286 void (*begin)(MemoryListener *listener);
287 void (*commit)(MemoryListener *listener);
288 void (*region_add)(MemoryListener *listener, MemoryRegionSection *section);
289 void (*region_del)(MemoryListener *listener, MemoryRegionSection *section);
290 void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section);
291 void (*log_start)(MemoryListener *listener, MemoryRegionSection *section,
292 int old, int new);
293 void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section,
294 int old, int new);
295 void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section);
296 void (*log_global_start)(MemoryListener *listener);
297 void (*log_global_stop)(MemoryListener *listener);
298 void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section,
299 bool match_data, uint64_t data, EventNotifier *e);
300 void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section,
301 bool match_data, uint64_t data, EventNotifier *e);
302 void (*coalesced_mmio_add)(MemoryListener *listener, MemoryRegionSection *section,
303 hwaddr addr, hwaddr len);
304 void (*coalesced_mmio_del)(MemoryListener *listener, MemoryRegionSection *section,
305 hwaddr addr, hwaddr len);
306 /* Lower = earlier (during add), later (during del) */
307 unsigned priority;
308 AddressSpace *address_space;
309 QTAILQ_ENTRY(MemoryListener) link;
310 QTAILQ_ENTRY(MemoryListener) link_as;
311 };
312
313 /**
314 * AddressSpace: describes a mapping of addresses to #MemoryRegion objects
315 */
316 struct AddressSpace {
317 /* All fields are private. */
318 struct rcu_head rcu;
319 char *name;
320 MemoryRegion *root;
321 int ref_count;
322 bool malloced;
323
324 /* Accessed via RCU. */
325 struct FlatView *current_map;
326
327 int ioeventfd_nb;
328 struct MemoryRegionIoeventfd *ioeventfds;
329 struct AddressSpaceDispatch *dispatch;
330 struct AddressSpaceDispatch *next_dispatch;
331 MemoryListener dispatch_listener;
332 QTAILQ_HEAD(memory_listeners_as, MemoryListener) listeners;
333 QTAILQ_ENTRY(AddressSpace) address_spaces_link;
334 };
335
336 /**
337 * MemoryRegionSection: describes a fragment of a #MemoryRegion
338 *
339 * @mr: the region, or %NULL if empty
340 * @address_space: the address space the region is mapped in
341 * @offset_within_region: the beginning of the section, relative to @mr's start
342 * @size: the size of the section; will not exceed @mr's boundaries
343 * @offset_within_address_space: the address of the first byte of the section
344 * relative to the region's address space
345 * @readonly: writes to this section are ignored
346 */
347 struct MemoryRegionSection {
348 MemoryRegion *mr;
349 AddressSpace *address_space;
350 hwaddr offset_within_region;
351 Int128 size;
352 hwaddr offset_within_address_space;
353 bool readonly;
354 };
355
356 /**
357 * memory_region_init: Initialize a memory region
358 *
359 * The region typically acts as a container for other memory regions. Use
360 * memory_region_add_subregion() to add subregions.
361 *
362 * @mr: the #MemoryRegion to be initialized
363 * @owner: the object that tracks the region's reference count
364 * @name: used for debugging; not visible to the user or ABI
365 * @size: size of the region; any subregions beyond this size will be clipped
366 */
367 void memory_region_init(MemoryRegion *mr,
368 struct Object *owner,
369 const char *name,
370 uint64_t size);
371
372 /**
373 * memory_region_ref: Add 1 to a memory region's reference count
374 *
375 * Whenever memory regions are accessed outside the BQL, they need to be
376 * preserved against hot-unplug. MemoryRegions actually do not have their
377 * own reference count; they piggyback on a QOM object, their "owner".
378 * This function adds a reference to the owner.
379 *
380 * All MemoryRegions must have an owner if they can disappear, even if the
381 * device they belong to operates exclusively under the BQL. This is because
382 * the region could be returned at any time by memory_region_find, and this
383 * is usually under guest control.
384 *
385 * @mr: the #MemoryRegion
386 */
387 void memory_region_ref(MemoryRegion *mr);
388
389 /**
390 * memory_region_unref: Remove 1 to a memory region's reference count
391 *
392 * Whenever memory regions are accessed outside the BQL, they need to be
393 * preserved against hot-unplug. MemoryRegions actually do not have their
394 * own reference count; they piggyback on a QOM object, their "owner".
395 * This function removes a reference to the owner and possibly destroys it.
396 *
397 * @mr: the #MemoryRegion
398 */
399 void memory_region_unref(MemoryRegion *mr);
400
401 /**
402 * memory_region_init_io: Initialize an I/O memory region.
403 *
404 * Accesses into the region will cause the callbacks in @ops to be called.
405 * if @size is nonzero, subregions will be clipped to @size.
406 *
407 * @mr: the #MemoryRegion to be initialized.
408 * @owner: the object that tracks the region's reference count
409 * @ops: a structure containing read and write callbacks to be used when
410 * I/O is performed on the region.
411 * @opaque: passed to the read and write callbacks of the @ops structure.
412 * @name: used for debugging; not visible to the user or ABI
413 * @size: size of the region.
414 */
415 void memory_region_init_io(MemoryRegion *mr,
416 struct Object *owner,
417 const MemoryRegionOps *ops,
418 void *opaque,
419 const char *name,
420 uint64_t size);
421
422 /**
423 * memory_region_init_ram_nomigrate: Initialize RAM memory region. Accesses
424 * into the region will modify memory
425 * directly.
426 *
427 * @mr: the #MemoryRegion to be initialized.
428 * @owner: the object that tracks the region's reference count
429 * @name: Region name, becomes part of RAMBlock name used in migration stream
430 * must be unique within any device
431 * @size: size of the region.
432 * @errp: pointer to Error*, to store an error if it happens.
433 *
434 * Note that this function does not do anything to cause the data in the
435 * RAM memory region to be migrated; that is the responsibility of the caller.
436 */
437 void memory_region_init_ram_nomigrate(MemoryRegion *mr,
438 struct Object *owner,
439 const char *name,
440 uint64_t size,
441 Error **errp);
442
443 /**
444 * memory_region_init_resizeable_ram: Initialize memory region with resizeable
445 * RAM. Accesses into the region will
446 * modify memory directly. Only an initial
447 * portion of this RAM is actually used.
448 * The used size can change across reboots.
449 *
450 * @mr: the #MemoryRegion to be initialized.
451 * @owner: the object that tracks the region's reference count
452 * @name: Region name, becomes part of RAMBlock name used in migration stream
453 * must be unique within any device
454 * @size: used size of the region.
455 * @max_size: max size of the region.
456 * @resized: callback to notify owner about used size change.
457 * @errp: pointer to Error*, to store an error if it happens.
458 *
459 * Note that this function does not do anything to cause the data in the
460 * RAM memory region to be migrated; that is the responsibility of the caller.
461 */
462 void memory_region_init_resizeable_ram(MemoryRegion *mr,
463 struct Object *owner,
464 const char *name,
465 uint64_t size,
466 uint64_t max_size,
467 void (*resized)(const char*,
468 uint64_t length,
469 void *host),
470 Error **errp);
471 #ifdef __linux__
472 /**
473 * memory_region_init_ram_from_file: Initialize RAM memory region with a
474 * mmap-ed backend.
475 *
476 * @mr: the #MemoryRegion to be initialized.
477 * @owner: the object that tracks the region's reference count
478 * @name: Region name, becomes part of RAMBlock name used in migration stream
479 * must be unique within any device
480 * @size: size of the region.
481 * @share: %true if memory must be mmaped with the MAP_SHARED flag
482 * @path: the path in which to allocate the RAM.
483 * @errp: pointer to Error*, to store an error if it happens.
484 *
485 * Note that this function does not do anything to cause the data in the
486 * RAM memory region to be migrated; that is the responsibility of the caller.
487 */
488 void memory_region_init_ram_from_file(MemoryRegion *mr,
489 struct Object *owner,
490 const char *name,
491 uint64_t size,
492 bool share,
493 const char *path,
494 Error **errp);
495
496 /**
497 * memory_region_init_ram_from_fd: Initialize RAM memory region with a
498 * mmap-ed backend.
499 *
500 * @mr: the #MemoryRegion to be initialized.
501 * @owner: the object that tracks the region's reference count
502 * @name: the name of the region.
503 * @size: size of the region.
504 * @share: %true if memory must be mmaped with the MAP_SHARED flag
505 * @fd: the fd to mmap.
506 * @errp: pointer to Error*, to store an error if it happens.
507 *
508 * Note that this function does not do anything to cause the data in the
509 * RAM memory region to be migrated; that is the responsibility of the caller.
510 */
511 void memory_region_init_ram_from_fd(MemoryRegion *mr,
512 struct Object *owner,
513 const char *name,
514 uint64_t size,
515 bool share,
516 int fd,
517 Error **errp);
518 #endif
519
520 /**
521 * memory_region_init_ram_ptr: Initialize RAM memory region from a
522 * user-provided pointer. Accesses into the
523 * region will modify memory directly.
524 *
525 * @mr: the #MemoryRegion to be initialized.
526 * @owner: the object that tracks the region's reference count
527 * @name: Region name, becomes part of RAMBlock name used in migration stream
528 * must be unique within any device
529 * @size: size of the region.
530 * @ptr: memory to be mapped; must contain at least @size bytes.
531 *
532 * Note that this function does not do anything to cause the data in the
533 * RAM memory region to be migrated; that is the responsibility of the caller.
534 */
535 void memory_region_init_ram_ptr(MemoryRegion *mr,
536 struct Object *owner,
537 const char *name,
538 uint64_t size,
539 void *ptr);
540
541 /**
542 * memory_region_init_ram_device_ptr: Initialize RAM device memory region from
543 * a user-provided pointer.
544 *
545 * A RAM device represents a mapping to a physical device, such as to a PCI
546 * MMIO BAR of an vfio-pci assigned device. The memory region may be mapped
547 * into the VM address space and access to the region will modify memory
548 * directly. However, the memory region should not be included in a memory
549 * dump (device may not be enabled/mapped at the time of the dump), and
550 * operations incompatible with manipulating MMIO should be avoided. Replaces
551 * skip_dump flag.
552 *
553 * @mr: the #MemoryRegion to be initialized.
554 * @owner: the object that tracks the region's reference count
555 * @name: the name of the region.
556 * @size: size of the region.
557 * @ptr: memory to be mapped; must contain at least @size bytes.
558 *
559 * Note that this function does not do anything to cause the data in the
560 * RAM memory region to be migrated; that is the responsibility of the caller.
561 * (For RAM device memory regions, migrating the contents rarely makes sense.)
562 */
563 void memory_region_init_ram_device_ptr(MemoryRegion *mr,
564 struct Object *owner,
565 const char *name,
566 uint64_t size,
567 void *ptr);
568
569 /**
570 * memory_region_init_alias: Initialize a memory region that aliases all or a
571 * part of another memory region.
572 *
573 * @mr: the #MemoryRegion to be initialized.
574 * @owner: the object that tracks the region's reference count
575 * @name: used for debugging; not visible to the user or ABI
576 * @orig: the region to be referenced; @mr will be equivalent to
577 * @orig between @offset and @offset + @size - 1.
578 * @offset: start of the section in @orig to be referenced.
579 * @size: size of the region.
580 */
581 void memory_region_init_alias(MemoryRegion *mr,
582 struct Object *owner,
583 const char *name,
584 MemoryRegion *orig,
585 hwaddr offset,
586 uint64_t size);
587
588 /**
589 * memory_region_init_rom_nomigrate: Initialize a ROM memory region.
590 *
591 * This has the same effect as calling memory_region_init_ram_nomigrate()
592 * and then marking the resulting region read-only with
593 * memory_region_set_readonly().
594 *
595 * Note that this function does not do anything to cause the data in the
596 * RAM side of the memory region to be migrated; that is the responsibility
597 * of the caller.
598 *
599 * @mr: the #MemoryRegion to be initialized.
600 * @owner: the object that tracks the region's reference count
601 * @name: Region name, becomes part of RAMBlock name used in migration stream
602 * must be unique within any device
603 * @size: size of the region.
604 * @errp: pointer to Error*, to store an error if it happens.
605 */
606 void memory_region_init_rom_nomigrate(MemoryRegion *mr,
607 struct Object *owner,
608 const char *name,
609 uint64_t size,
610 Error **errp);
611
612 /**
613 * memory_region_init_rom_device_nomigrate: Initialize a ROM memory region.
614 * Writes are handled via callbacks.
615 *
616 * Note that this function does not do anything to cause the data in the
617 * RAM side of the memory region to be migrated; that is the responsibility
618 * of the caller.
619 *
620 * @mr: the #MemoryRegion to be initialized.
621 * @owner: the object that tracks the region's reference count
622 * @ops: callbacks for write access handling (must not be NULL).
623 * @name: Region name, becomes part of RAMBlock name used in migration stream
624 * must be unique within any device
625 * @size: size of the region.
626 * @errp: pointer to Error*, to store an error if it happens.
627 */
628 void memory_region_init_rom_device_nomigrate(MemoryRegion *mr,
629 struct Object *owner,
630 const MemoryRegionOps *ops,
631 void *opaque,
632 const char *name,
633 uint64_t size,
634 Error **errp);
635
636 /**
637 * memory_region_init_reservation: Initialize a memory region that reserves
638 * I/O space.
639 *
640 * A reservation region primariy serves debugging purposes. It claims I/O
641 * space that is not supposed to be handled by QEMU itself. Any access via
642 * the memory API will cause an abort().
643 * This function is deprecated. Use memory_region_init_io() with NULL
644 * callbacks instead.
645 *
646 * @mr: the #MemoryRegion to be initialized
647 * @owner: the object that tracks the region's reference count
648 * @name: used for debugging; not visible to the user or ABI
649 * @size: size of the region.
650 */
651 static inline void memory_region_init_reservation(MemoryRegion *mr,
652 Object *owner,
653 const char *name,
654 uint64_t size)
655 {
656 memory_region_init_io(mr, owner, NULL, mr, name, size);
657 }
658
659 /**
660 * memory_region_init_iommu: Initialize a memory region of a custom type
661 * that translates addresses
662 *
663 * An IOMMU region translates addresses and forwards accesses to a target
664 * memory region.
665 *
666 * @typename: QOM class name
667 * @_iommu_mr: the #IOMMUMemoryRegion to be initialized
668 * @instance_size: the IOMMUMemoryRegion subclass instance size
669 * @owner: the object that tracks the region's reference count
670 * @ops: a function that translates addresses into the @target region
671 * @name: used for debugging; not visible to the user or ABI
672 * @size: size of the region.
673 */
674 void memory_region_init_iommu(void *_iommu_mr,
675 size_t instance_size,
676 const char *mrtypename,
677 Object *owner,
678 const char *name,
679 uint64_t size);
680
681 /**
682 * memory_region_init_ram - Initialize RAM memory region. Accesses into the
683 * region will modify memory directly.
684 *
685 * @mr: the #MemoryRegion to be initialized
686 * @owner: the object that tracks the region's reference count (must be
687 * TYPE_DEVICE or a subclass of TYPE_DEVICE, or NULL)
688 * @name: name of the memory region
689 * @size: size of the region in bytes
690 * @errp: pointer to Error*, to store an error if it happens.
691 *
692 * This function allocates RAM for a board model or device, and
693 * arranges for it to be migrated (by calling vmstate_register_ram()
694 * if @owner is a DeviceState, or vmstate_register_ram_global() if
695 * @owner is NULL).
696 *
697 * TODO: Currently we restrict @owner to being either NULL (for
698 * global RAM regions with no owner) or devices, so that we can
699 * give the RAM block a unique name for migration purposes.
700 * We should lift this restriction and allow arbitrary Objects.
701 * If you pass a non-NULL non-device @owner then we will assert.
702 */
703 void memory_region_init_ram(MemoryRegion *mr,
704 struct Object *owner,
705 const char *name,
706 uint64_t size,
707 Error **errp);
708
709 /**
710 * memory_region_init_rom: Initialize a ROM memory region.
711 *
712 * This has the same effect as calling memory_region_init_ram()
713 * and then marking the resulting region read-only with
714 * memory_region_set_readonly(). This includes arranging for the
715 * contents to be migrated.
716 *
717 * TODO: Currently we restrict @owner to being either NULL (for
718 * global RAM regions with no owner) or devices, so that we can
719 * give the RAM block a unique name for migration purposes.
720 * We should lift this restriction and allow arbitrary Objects.
721 * If you pass a non-NULL non-device @owner then we will assert.
722 *
723 * @mr: the #MemoryRegion to be initialized.
724 * @owner: the object that tracks the region's reference count
725 * @name: Region name, becomes part of RAMBlock name used in migration stream
726 * must be unique within any device
727 * @size: size of the region.
728 * @errp: pointer to Error*, to store an error if it happens.
729 */
730 void memory_region_init_rom(MemoryRegion *mr,
731 struct Object *owner,
732 const char *name,
733 uint64_t size,
734 Error **errp);
735
736 /**
737 * memory_region_init_rom_device: Initialize a ROM memory region.
738 * Writes are handled via callbacks.
739 *
740 * This function initializes a memory region backed by RAM for reads
741 * and callbacks for writes, and arranges for the RAM backing to
742 * be migrated (by calling vmstate_register_ram()
743 * if @owner is a DeviceState, or vmstate_register_ram_global() if
744 * @owner is NULL).
745 *
746 * TODO: Currently we restrict @owner to being either NULL (for
747 * global RAM regions with no owner) or devices, so that we can
748 * give the RAM block a unique name for migration purposes.
749 * We should lift this restriction and allow arbitrary Objects.
750 * If you pass a non-NULL non-device @owner then we will assert.
751 *
752 * @mr: the #MemoryRegion to be initialized.
753 * @owner: the object that tracks the region's reference count
754 * @ops: callbacks for write access handling (must not be NULL).
755 * @name: Region name, becomes part of RAMBlock name used in migration stream
756 * must be unique within any device
757 * @size: size of the region.
758 * @errp: pointer to Error*, to store an error if it happens.
759 */
760 void memory_region_init_rom_device(MemoryRegion *mr,
761 struct Object *owner,
762 const MemoryRegionOps *ops,
763 void *opaque,
764 const char *name,
765 uint64_t size,
766 Error **errp);
767
768
769 /**
770 * memory_region_owner: get a memory region's owner.
771 *
772 * @mr: the memory region being queried.
773 */
774 struct Object *memory_region_owner(MemoryRegion *mr);
775
776 /**
777 * memory_region_size: get a memory region's size.
778 *
779 * @mr: the memory region being queried.
780 */
781 uint64_t memory_region_size(MemoryRegion *mr);
782
783 /**
784 * memory_region_is_ram: check whether a memory region is random access
785 *
786 * Returns %true is a memory region is random access.
787 *
788 * @mr: the memory region being queried
789 */
790 static inline bool memory_region_is_ram(MemoryRegion *mr)
791 {
792 return mr->ram;
793 }
794
795 /**
796 * memory_region_is_ram_device: check whether a memory region is a ram device
797 *
798 * Returns %true is a memory region is a device backed ram region
799 *
800 * @mr: the memory region being queried
801 */
802 bool memory_region_is_ram_device(MemoryRegion *mr);
803
804 /**
805 * memory_region_is_romd: check whether a memory region is in ROMD mode
806 *
807 * Returns %true if a memory region is a ROM device and currently set to allow
808 * direct reads.
809 *
810 * @mr: the memory region being queried
811 */
812 static inline bool memory_region_is_romd(MemoryRegion *mr)
813 {
814 return mr->rom_device && mr->romd_mode;
815 }
816
817 /**
818 * memory_region_get_iommu: check whether a memory region is an iommu
819 *
820 * Returns pointer to IOMMUMemoryRegion if a memory region is an iommu,
821 * otherwise NULL.
822 *
823 * @mr: the memory region being queried
824 */
825 static inline IOMMUMemoryRegion *memory_region_get_iommu(MemoryRegion *mr)
826 {
827 if (mr->alias) {
828 return memory_region_get_iommu(mr->alias);
829 }
830 if (mr->is_iommu) {
831 return (IOMMUMemoryRegion *) mr;
832 }
833 return NULL;
834 }
835
836 /**
837 * memory_region_get_iommu_class_nocheck: returns iommu memory region class
838 * if an iommu or NULL if not
839 *
840 * Returns pointer to IOMMUMemoryRegioniClass if a memory region is an iommu,
841 * otherwise NULL. This is fast path avoinding QOM checking, use with caution.
842 *
843 * @mr: the memory region being queried
844 */
845 static inline IOMMUMemoryRegionClass *memory_region_get_iommu_class_nocheck(
846 IOMMUMemoryRegion *iommu_mr)
847 {
848 return (IOMMUMemoryRegionClass *) (((Object *)iommu_mr)->class);
849 }
850
851 #define memory_region_is_iommu(mr) (memory_region_get_iommu(mr) != NULL)
852
853 /**
854 * memory_region_iommu_get_min_page_size: get minimum supported page size
855 * for an iommu
856 *
857 * Returns minimum supported page size for an iommu.
858 *
859 * @iommu_mr: the memory region being queried
860 */
861 uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion *iommu_mr);
862
863 /**
864 * memory_region_notify_iommu: notify a change in an IOMMU translation entry.
865 *
866 * The notification type will be decided by entry.perm bits:
867 *
868 * - For UNMAP (cache invalidation) notifies: set entry.perm to IOMMU_NONE.
869 * - For MAP (newly added entry) notifies: set entry.perm to the
870 * permission of the page (which is definitely !IOMMU_NONE).
871 *
872 * Note: for any IOMMU implementation, an in-place mapping change
873 * should be notified with an UNMAP followed by a MAP.
874 *
875 * @iommu_mr: the memory region that was changed
876 * @entry: the new entry in the IOMMU translation table. The entry
877 * replaces all old entries for the same virtual I/O address range.
878 * Deleted entries have .@perm == 0.
879 */
880 void memory_region_notify_iommu(IOMMUMemoryRegion *iommu_mr,
881 IOMMUTLBEntry entry);
882
883 /**
884 * memory_region_notify_one: notify a change in an IOMMU translation
885 * entry to a single notifier
886 *
887 * This works just like memory_region_notify_iommu(), but it only
888 * notifies a specific notifier, not all of them.
889 *
890 * @notifier: the notifier to be notified
891 * @entry: the new entry in the IOMMU translation table. The entry
892 * replaces all old entries for the same virtual I/O address range.
893 * Deleted entries have .@perm == 0.
894 */
895 void memory_region_notify_one(IOMMUNotifier *notifier,
896 IOMMUTLBEntry *entry);
897
898 /**
899 * memory_region_register_iommu_notifier: register a notifier for changes to
900 * IOMMU translation entries.
901 *
902 * @mr: the memory region to observe
903 * @n: the IOMMUNotifier to be added; the notify callback receives a
904 * pointer to an #IOMMUTLBEntry as the opaque value; the pointer
905 * ceases to be valid on exit from the notifier.
906 */
907 void memory_region_register_iommu_notifier(MemoryRegion *mr,
908 IOMMUNotifier *n);
909
910 /**
911 * memory_region_iommu_replay: replay existing IOMMU translations to
912 * a notifier with the minimum page granularity returned by
913 * mr->iommu_ops->get_page_size().
914 *
915 * @iommu_mr: the memory region to observe
916 * @n: the notifier to which to replay iommu mappings
917 */
918 void memory_region_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n);
919
920 /**
921 * memory_region_iommu_replay_all: replay existing IOMMU translations
922 * to all the notifiers registered.
923 *
924 * @iommu_mr: the memory region to observe
925 */
926 void memory_region_iommu_replay_all(IOMMUMemoryRegion *iommu_mr);
927
928 /**
929 * memory_region_unregister_iommu_notifier: unregister a notifier for
930 * changes to IOMMU translation entries.
931 *
932 * @mr: the memory region which was observed and for which notity_stopped()
933 * needs to be called
934 * @n: the notifier to be removed.
935 */
936 void memory_region_unregister_iommu_notifier(MemoryRegion *mr,
937 IOMMUNotifier *n);
938
939 /**
940 * memory_region_name: get a memory region's name
941 *
942 * Returns the string that was used to initialize the memory region.
943 *
944 * @mr: the memory region being queried
945 */
946 const char *memory_region_name(const MemoryRegion *mr);
947
948 /**
949 * memory_region_is_logging: return whether a memory region is logging writes
950 *
951 * Returns %true if the memory region is logging writes for the given client
952 *
953 * @mr: the memory region being queried
954 * @client: the client being queried
955 */
956 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client);
957
958 /**
959 * memory_region_get_dirty_log_mask: return the clients for which a
960 * memory region is logging writes.
961 *
962 * Returns a bitmap of clients, in which the DIRTY_MEMORY_* constants
963 * are the bit indices.
964 *
965 * @mr: the memory region being queried
966 */
967 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr);
968
969 /**
970 * memory_region_is_rom: check whether a memory region is ROM
971 *
972 * Returns %true is a memory region is read-only memory.
973 *
974 * @mr: the memory region being queried
975 */
976 static inline bool memory_region_is_rom(MemoryRegion *mr)
977 {
978 return mr->ram && mr->readonly;
979 }
980
981
982 /**
983 * memory_region_get_fd: Get a file descriptor backing a RAM memory region.
984 *
985 * Returns a file descriptor backing a file-based RAM memory region,
986 * or -1 if the region is not a file-based RAM memory region.
987 *
988 * @mr: the RAM or alias memory region being queried.
989 */
990 int memory_region_get_fd(MemoryRegion *mr);
991
992 /**
993 * memory_region_from_host: Convert a pointer into a RAM memory region
994 * and an offset within it.
995 *
996 * Given a host pointer inside a RAM memory region (created with
997 * memory_region_init_ram() or memory_region_init_ram_ptr()), return
998 * the MemoryRegion and the offset within it.
999 *
1000 * Use with care; by the time this function returns, the returned pointer is
1001 * not protected by RCU anymore. If the caller is not within an RCU critical
1002 * section and does not hold the iothread lock, it must have other means of
1003 * protecting the pointer, such as a reference to the region that includes
1004 * the incoming ram_addr_t.
1005 *
1006 * @mr: the memory region being queried.
1007 */
1008 MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset);
1009
1010 /**
1011 * memory_region_get_ram_ptr: Get a pointer into a RAM memory region.
1012 *
1013 * Returns a host pointer to a RAM memory region (created with
1014 * memory_region_init_ram() or memory_region_init_ram_ptr()).
1015 *
1016 * Use with care; by the time this function returns, the returned pointer is
1017 * not protected by RCU anymore. If the caller is not within an RCU critical
1018 * section and does not hold the iothread lock, it must have other means of
1019 * protecting the pointer, such as a reference to the region that includes
1020 * the incoming ram_addr_t.
1021 *
1022 * @mr: the memory region being queried.
1023 */
1024 void *memory_region_get_ram_ptr(MemoryRegion *mr);
1025
1026 /* memory_region_ram_resize: Resize a RAM region.
1027 *
1028 * Only legal before guest might have detected the memory size: e.g. on
1029 * incoming migration, or right after reset.
1030 *
1031 * @mr: a memory region created with @memory_region_init_resizeable_ram.
1032 * @newsize: the new size the region
1033 * @errp: pointer to Error*, to store an error if it happens.
1034 */
1035 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize,
1036 Error **errp);
1037
1038 /**
1039 * memory_region_set_log: Turn dirty logging on or off for a region.
1040 *
1041 * Turns dirty logging on or off for a specified client (display, migration).
1042 * Only meaningful for RAM regions.
1043 *
1044 * @mr: the memory region being updated.
1045 * @log: whether dirty logging is to be enabled or disabled.
1046 * @client: the user of the logging information; %DIRTY_MEMORY_VGA only.
1047 */
1048 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client);
1049
1050 /**
1051 * memory_region_get_dirty: Check whether a range of bytes is dirty
1052 * for a specified client.
1053 *
1054 * Checks whether a range of bytes has been written to since the last
1055 * call to memory_region_reset_dirty() with the same @client. Dirty logging
1056 * must be enabled.
1057 *
1058 * @mr: the memory region being queried.
1059 * @addr: the address (relative to the start of the region) being queried.
1060 * @size: the size of the range being queried.
1061 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
1062 * %DIRTY_MEMORY_VGA.
1063 */
1064 bool memory_region_get_dirty(MemoryRegion *mr, hwaddr addr,
1065 hwaddr size, unsigned client);
1066
1067 /**
1068 * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region.
1069 *
1070 * Marks a range of bytes as dirty, after it has been dirtied outside
1071 * guest code.
1072 *
1073 * @mr: the memory region being dirtied.
1074 * @addr: the address (relative to the start of the region) being dirtied.
1075 * @size: size of the range being dirtied.
1076 */
1077 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
1078 hwaddr size);
1079
1080 /**
1081 * memory_region_test_and_clear_dirty: Check whether a range of bytes is dirty
1082 * for a specified client. It clears them.
1083 *
1084 * Checks whether a range of bytes has been written to since the last
1085 * call to memory_region_reset_dirty() with the same @client. Dirty logging
1086 * must be enabled.
1087 *
1088 * @mr: the memory region being queried.
1089 * @addr: the address (relative to the start of the region) being queried.
1090 * @size: the size of the range being queried.
1091 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
1092 * %DIRTY_MEMORY_VGA.
1093 */
1094 bool memory_region_test_and_clear_dirty(MemoryRegion *mr, hwaddr addr,
1095 hwaddr size, unsigned client);
1096
1097 /**
1098 * memory_region_snapshot_and_clear_dirty: Get a snapshot of the dirty
1099 * bitmap and clear it.
1100 *
1101 * Creates a snapshot of the dirty bitmap, clears the dirty bitmap and
1102 * returns the snapshot. The snapshot can then be used to query dirty
1103 * status, using memory_region_snapshot_get_dirty. Unlike
1104 * memory_region_test_and_clear_dirty this allows to query the same
1105 * page multiple times, which is especially useful for display updates
1106 * where the scanlines often are not page aligned.
1107 *
1108 * The dirty bitmap region which gets copyed into the snapshot (and
1109 * cleared afterwards) can be larger than requested. The boundaries
1110 * are rounded up/down so complete bitmap longs (covering 64 pages on
1111 * 64bit hosts) can be copied over into the bitmap snapshot. Which
1112 * isn't a problem for display updates as the extra pages are outside
1113 * the visible area, and in case the visible area changes a full
1114 * display redraw is due anyway. Should other use cases for this
1115 * function emerge we might have to revisit this implementation
1116 * detail.
1117 *
1118 * Use g_free to release DirtyBitmapSnapshot.
1119 *
1120 * @mr: the memory region being queried.
1121 * @addr: the address (relative to the start of the region) being queried.
1122 * @size: the size of the range being queried.
1123 * @client: the user of the logging information; typically %DIRTY_MEMORY_VGA.
1124 */
1125 DirtyBitmapSnapshot *memory_region_snapshot_and_clear_dirty(MemoryRegion *mr,
1126 hwaddr addr,
1127 hwaddr size,
1128 unsigned client);
1129
1130 /**
1131 * memory_region_snapshot_get_dirty: Check whether a range of bytes is dirty
1132 * in the specified dirty bitmap snapshot.
1133 *
1134 * @mr: the memory region being queried.
1135 * @snap: the dirty bitmap snapshot
1136 * @addr: the address (relative to the start of the region) being queried.
1137 * @size: the size of the range being queried.
1138 */
1139 bool memory_region_snapshot_get_dirty(MemoryRegion *mr,
1140 DirtyBitmapSnapshot *snap,
1141 hwaddr addr, hwaddr size);
1142
1143 /**
1144 * memory_region_sync_dirty_bitmap: Synchronize a region's dirty bitmap with
1145 * any external TLBs (e.g. kvm)
1146 *
1147 * Flushes dirty information from accelerators such as kvm and vhost-net
1148 * and makes it available to users of the memory API.
1149 *
1150 * @mr: the region being flushed.
1151 */
1152 void memory_region_sync_dirty_bitmap(MemoryRegion *mr);
1153
1154 /**
1155 * memory_region_reset_dirty: Mark a range of pages as clean, for a specified
1156 * client.
1157 *
1158 * Marks a range of pages as no longer dirty.
1159 *
1160 * @mr: the region being updated.
1161 * @addr: the start of the subrange being cleaned.
1162 * @size: the size of the subrange being cleaned.
1163 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
1164 * %DIRTY_MEMORY_VGA.
1165 */
1166 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
1167 hwaddr size, unsigned client);
1168
1169 /**
1170 * memory_region_set_readonly: Turn a memory region read-only (or read-write)
1171 *
1172 * Allows a memory region to be marked as read-only (turning it into a ROM).
1173 * only useful on RAM regions.
1174 *
1175 * @mr: the region being updated.
1176 * @readonly: whether rhe region is to be ROM or RAM.
1177 */
1178 void memory_region_set_readonly(MemoryRegion *mr, bool readonly);
1179
1180 /**
1181 * memory_region_rom_device_set_romd: enable/disable ROMD mode
1182 *
1183 * Allows a ROM device (initialized with memory_region_init_rom_device() to
1184 * set to ROMD mode (default) or MMIO mode. When it is in ROMD mode, the
1185 * device is mapped to guest memory and satisfies read access directly.
1186 * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function.
1187 * Writes are always handled by the #MemoryRegion.write function.
1188 *
1189 * @mr: the memory region to be updated
1190 * @romd_mode: %true to put the region into ROMD mode
1191 */
1192 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode);
1193
1194 /**
1195 * memory_region_set_coalescing: Enable memory coalescing for the region.
1196 *
1197 * Enabled writes to a region to be queued for later processing. MMIO ->write
1198 * callbacks may be delayed until a non-coalesced MMIO is issued.
1199 * Only useful for IO regions. Roughly similar to write-combining hardware.
1200 *
1201 * @mr: the memory region to be write coalesced
1202 */
1203 void memory_region_set_coalescing(MemoryRegion *mr);
1204
1205 /**
1206 * memory_region_add_coalescing: Enable memory coalescing for a sub-range of
1207 * a region.
1208 *
1209 * Like memory_region_set_coalescing(), but works on a sub-range of a region.
1210 * Multiple calls can be issued coalesced disjoint ranges.
1211 *
1212 * @mr: the memory region to be updated.
1213 * @offset: the start of the range within the region to be coalesced.
1214 * @size: the size of the subrange to be coalesced.
1215 */
1216 void memory_region_add_coalescing(MemoryRegion *mr,
1217 hwaddr offset,
1218 uint64_t size);
1219
1220 /**
1221 * memory_region_clear_coalescing: Disable MMIO coalescing for the region.
1222 *
1223 * Disables any coalescing caused by memory_region_set_coalescing() or
1224 * memory_region_add_coalescing(). Roughly equivalent to uncacheble memory
1225 * hardware.
1226 *
1227 * @mr: the memory region to be updated.
1228 */
1229 void memory_region_clear_coalescing(MemoryRegion *mr);
1230
1231 /**
1232 * memory_region_set_flush_coalesced: Enforce memory coalescing flush before
1233 * accesses.
1234 *
1235 * Ensure that pending coalesced MMIO request are flushed before the memory
1236 * region is accessed. This property is automatically enabled for all regions
1237 * passed to memory_region_set_coalescing() and memory_region_add_coalescing().
1238 *
1239 * @mr: the memory region to be updated.
1240 */
1241 void memory_region_set_flush_coalesced(MemoryRegion *mr);
1242
1243 /**
1244 * memory_region_clear_flush_coalesced: Disable memory coalescing flush before
1245 * accesses.
1246 *
1247 * Clear the automatic coalesced MMIO flushing enabled via
1248 * memory_region_set_flush_coalesced. Note that this service has no effect on
1249 * memory regions that have MMIO coalescing enabled for themselves. For them,
1250 * automatic flushing will stop once coalescing is disabled.
1251 *
1252 * @mr: the memory region to be updated.
1253 */
1254 void memory_region_clear_flush_coalesced(MemoryRegion *mr);
1255
1256 /**
1257 * memory_region_set_global_locking: Declares the access processing requires
1258 * QEMU's global lock.
1259 *
1260 * When this is invoked, accesses to the memory region will be processed while
1261 * holding the global lock of QEMU. This is the default behavior of memory
1262 * regions.
1263 *
1264 * @mr: the memory region to be updated.
1265 */
1266 void memory_region_set_global_locking(MemoryRegion *mr);
1267
1268 /**
1269 * memory_region_clear_global_locking: Declares that access processing does
1270 * not depend on the QEMU global lock.
1271 *
1272 * By clearing this property, accesses to the memory region will be processed
1273 * outside of QEMU's global lock (unless the lock is held on when issuing the
1274 * access request). In this case, the device model implementing the access
1275 * handlers is responsible for synchronization of concurrency.
1276 *
1277 * @mr: the memory region to be updated.
1278 */
1279 void memory_region_clear_global_locking(MemoryRegion *mr);
1280
1281 /**
1282 * memory_region_add_eventfd: Request an eventfd to be triggered when a word
1283 * is written to a location.
1284 *
1285 * Marks a word in an IO region (initialized with memory_region_init_io())
1286 * as a trigger for an eventfd event. The I/O callback will not be called.
1287 * The caller must be prepared to handle failure (that is, take the required
1288 * action if the callback _is_ called).
1289 *
1290 * @mr: the memory region being updated.
1291 * @addr: the address within @mr that is to be monitored
1292 * @size: the size of the access to trigger the eventfd
1293 * @match_data: whether to match against @data, instead of just @addr
1294 * @data: the data to match against the guest write
1295 * @fd: the eventfd to be triggered when @addr, @size, and @data all match.
1296 **/
1297 void memory_region_add_eventfd(MemoryRegion *mr,
1298 hwaddr addr,
1299 unsigned size,
1300 bool match_data,
1301 uint64_t data,
1302 EventNotifier *e);
1303
1304 /**
1305 * memory_region_del_eventfd: Cancel an eventfd.
1306 *
1307 * Cancels an eventfd trigger requested by a previous
1308 * memory_region_add_eventfd() call.
1309 *
1310 * @mr: the memory region being updated.
1311 * @addr: the address within @mr that is to be monitored
1312 * @size: the size of the access to trigger the eventfd
1313 * @match_data: whether to match against @data, instead of just @addr
1314 * @data: the data to match against the guest write
1315 * @fd: the eventfd to be triggered when @addr, @size, and @data all match.
1316 */
1317 void memory_region_del_eventfd(MemoryRegion *mr,
1318 hwaddr addr,
1319 unsigned size,
1320 bool match_data,
1321 uint64_t data,
1322 EventNotifier *e);
1323
1324 /**
1325 * memory_region_add_subregion: Add a subregion to a container.
1326 *
1327 * Adds a subregion at @offset. The subregion may not overlap with other
1328 * subregions (except for those explicitly marked as overlapping). A region
1329 * may only be added once as a subregion (unless removed with
1330 * memory_region_del_subregion()); use memory_region_init_alias() if you
1331 * want a region to be a subregion in multiple locations.
1332 *
1333 * @mr: the region to contain the new subregion; must be a container
1334 * initialized with memory_region_init().
1335 * @offset: the offset relative to @mr where @subregion is added.
1336 * @subregion: the subregion to be added.
1337 */
1338 void memory_region_add_subregion(MemoryRegion *mr,
1339 hwaddr offset,
1340 MemoryRegion *subregion);
1341 /**
1342 * memory_region_add_subregion_overlap: Add a subregion to a container
1343 * with overlap.
1344 *
1345 * Adds a subregion at @offset. The subregion may overlap with other
1346 * subregions. Conflicts are resolved by having a higher @priority hide a
1347 * lower @priority. Subregions without priority are taken as @priority 0.
1348 * A region may only be added once as a subregion (unless removed with
1349 * memory_region_del_subregion()); use memory_region_init_alias() if you
1350 * want a region to be a subregion in multiple locations.
1351 *
1352 * @mr: the region to contain the new subregion; must be a container
1353 * initialized with memory_region_init().
1354 * @offset: the offset relative to @mr where @subregion is added.
1355 * @subregion: the subregion to be added.
1356 * @priority: used for resolving overlaps; highest priority wins.
1357 */
1358 void memory_region_add_subregion_overlap(MemoryRegion *mr,
1359 hwaddr offset,
1360 MemoryRegion *subregion,
1361 int priority);
1362
1363 /**
1364 * memory_region_get_ram_addr: Get the ram address associated with a memory
1365 * region
1366 */
1367 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr);
1368
1369 uint64_t memory_region_get_alignment(const MemoryRegion *mr);
1370 /**
1371 * memory_region_del_subregion: Remove a subregion.
1372 *
1373 * Removes a subregion from its container.
1374 *
1375 * @mr: the container to be updated.
1376 * @subregion: the region being removed; must be a current subregion of @mr.
1377 */
1378 void memory_region_del_subregion(MemoryRegion *mr,
1379 MemoryRegion *subregion);
1380
1381 /*
1382 * memory_region_set_enabled: dynamically enable or disable a region
1383 *
1384 * Enables or disables a memory region. A disabled memory region
1385 * ignores all accesses to itself and its subregions. It does not
1386 * obscure sibling subregions with lower priority - it simply behaves as
1387 * if it was removed from the hierarchy.
1388 *
1389 * Regions default to being enabled.
1390 *
1391 * @mr: the region to be updated
1392 * @enabled: whether to enable or disable the region
1393 */
1394 void memory_region_set_enabled(MemoryRegion *mr, bool enabled);
1395
1396 /*
1397 * memory_region_set_address: dynamically update the address of a region
1398 *
1399 * Dynamically updates the address of a region, relative to its container.
1400 * May be used on regions are currently part of a memory hierarchy.
1401 *
1402 * @mr: the region to be updated
1403 * @addr: new address, relative to container region
1404 */
1405 void memory_region_set_address(MemoryRegion *mr, hwaddr addr);
1406
1407 /*
1408 * memory_region_set_size: dynamically update the size of a region.
1409 *
1410 * Dynamically updates the size of a region.
1411 *
1412 * @mr: the region to be updated
1413 * @size: used size of the region.
1414 */
1415 void memory_region_set_size(MemoryRegion *mr, uint64_t size);
1416
1417 /*
1418 * memory_region_set_alias_offset: dynamically update a memory alias's offset
1419 *
1420 * Dynamically updates the offset into the target region that an alias points
1421 * to, as if the fourth argument to memory_region_init_alias() has changed.
1422 *
1423 * @mr: the #MemoryRegion to be updated; should be an alias.
1424 * @offset: the new offset into the target memory region
1425 */
1426 void memory_region_set_alias_offset(MemoryRegion *mr,
1427 hwaddr offset);
1428
1429 /**
1430 * memory_region_present: checks if an address relative to a @container
1431 * translates into #MemoryRegion within @container
1432 *
1433 * Answer whether a #MemoryRegion within @container covers the address
1434 * @addr.
1435 *
1436 * @container: a #MemoryRegion within which @addr is a relative address
1437 * @addr: the area within @container to be searched
1438 */
1439 bool memory_region_present(MemoryRegion *container, hwaddr addr);
1440
1441 /**
1442 * memory_region_is_mapped: returns true if #MemoryRegion is mapped
1443 * into any address space.
1444 *
1445 * @mr: a #MemoryRegion which should be checked if it's mapped
1446 */
1447 bool memory_region_is_mapped(MemoryRegion *mr);
1448
1449 /**
1450 * memory_region_find: translate an address/size relative to a
1451 * MemoryRegion into a #MemoryRegionSection.
1452 *
1453 * Locates the first #MemoryRegion within @mr that overlaps the range
1454 * given by @addr and @size.
1455 *
1456 * Returns a #MemoryRegionSection that describes a contiguous overlap.
1457 * It will have the following characteristics:
1458 * .@size = 0 iff no overlap was found
1459 * .@mr is non-%NULL iff an overlap was found
1460 *
1461 * Remember that in the return value the @offset_within_region is
1462 * relative to the returned region (in the .@mr field), not to the
1463 * @mr argument.
1464 *
1465 * Similarly, the .@offset_within_address_space is relative to the
1466 * address space that contains both regions, the passed and the
1467 * returned one. However, in the special case where the @mr argument
1468 * has no container (and thus is the root of the address space), the
1469 * following will hold:
1470 * .@offset_within_address_space >= @addr
1471 * .@offset_within_address_space + .@size <= @addr + @size
1472 *
1473 * @mr: a MemoryRegion within which @addr is a relative address
1474 * @addr: start of the area within @as to be searched
1475 * @size: size of the area to be searched
1476 */
1477 MemoryRegionSection memory_region_find(MemoryRegion *mr,
1478 hwaddr addr, uint64_t size);
1479
1480 /**
1481 * memory_global_dirty_log_sync: synchronize the dirty log for all memory
1482 *
1483 * Synchronizes the dirty page log for all address spaces.
1484 */
1485 void memory_global_dirty_log_sync(void);
1486
1487 /**
1488 * memory_region_transaction_begin: Start a transaction.
1489 *
1490 * During a transaction, changes will be accumulated and made visible
1491 * only when the transaction ends (is committed).
1492 */
1493 void memory_region_transaction_begin(void);
1494
1495 /**
1496 * memory_region_transaction_commit: Commit a transaction and make changes
1497 * visible to the guest.
1498 */
1499 void memory_region_transaction_commit(void);
1500
1501 /**
1502 * memory_listener_register: register callbacks to be called when memory
1503 * sections are mapped or unmapped into an address
1504 * space
1505 *
1506 * @listener: an object containing the callbacks to be called
1507 * @filter: if non-%NULL, only regions in this address space will be observed
1508 */
1509 void memory_listener_register(MemoryListener *listener, AddressSpace *filter);
1510
1511 /**
1512 * memory_listener_unregister: undo the effect of memory_listener_register()
1513 *
1514 * @listener: an object containing the callbacks to be removed
1515 */
1516 void memory_listener_unregister(MemoryListener *listener);
1517
1518 /**
1519 * memory_global_dirty_log_start: begin dirty logging for all regions
1520 */
1521 void memory_global_dirty_log_start(void);
1522
1523 /**
1524 * memory_global_dirty_log_stop: end dirty logging for all regions
1525 */
1526 void memory_global_dirty_log_stop(void);
1527
1528 void mtree_info(fprintf_function mon_printf, void *f, bool flatview);
1529
1530 /**
1531 * memory_region_request_mmio_ptr: request a pointer to an mmio
1532 * MemoryRegion. If it is possible map a RAM MemoryRegion with this pointer.
1533 * When the device wants to invalidate the pointer it will call
1534 * memory_region_invalidate_mmio_ptr.
1535 *
1536 * @mr: #MemoryRegion to check
1537 * @addr: address within that region
1538 *
1539 * Returns true on success, false otherwise.
1540 */
1541 bool memory_region_request_mmio_ptr(MemoryRegion *mr, hwaddr addr);
1542
1543 /**
1544 * memory_region_invalidate_mmio_ptr: invalidate the pointer to an mmio
1545 * previously requested.
1546 * In the end that means that if something wants to execute from this area it
1547 * will need to request the pointer again.
1548 *
1549 * @mr: #MemoryRegion associated to the pointer.
1550 * @addr: address within that region
1551 * @size: size of that area.
1552 */
1553 void memory_region_invalidate_mmio_ptr(MemoryRegion *mr, hwaddr offset,
1554 unsigned size);
1555
1556 /**
1557 * memory_region_dispatch_read: perform a read directly to the specified
1558 * MemoryRegion.
1559 *
1560 * @mr: #MemoryRegion to access
1561 * @addr: address within that region
1562 * @pval: pointer to uint64_t which the data is written to
1563 * @size: size of the access in bytes
1564 * @attrs: memory transaction attributes to use for the access
1565 */
1566 MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
1567 hwaddr addr,
1568 uint64_t *pval,
1569 unsigned size,
1570 MemTxAttrs attrs);
1571 /**
1572 * memory_region_dispatch_write: perform a write directly to the specified
1573 * MemoryRegion.
1574 *
1575 * @mr: #MemoryRegion to access
1576 * @addr: address within that region
1577 * @data: data to write
1578 * @size: size of the access in bytes
1579 * @attrs: memory transaction attributes to use for the access
1580 */
1581 MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
1582 hwaddr addr,
1583 uint64_t data,
1584 unsigned size,
1585 MemTxAttrs attrs);
1586
1587 /**
1588 * address_space_init: initializes an address space
1589 *
1590 * @as: an uninitialized #AddressSpace
1591 * @root: a #MemoryRegion that routes addresses for the address space
1592 * @name: an address space name. The name is only used for debugging
1593 * output.
1594 */
1595 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name);
1596
1597 /**
1598 * address_space_init_shareable: return an address space for a memory region,
1599 * creating it if it does not already exist
1600 *
1601 * @root: a #MemoryRegion that routes addresses for the address space
1602 * @name: an address space name. The name is only used for debugging
1603 * output.
1604 *
1605 * This function will return a pointer to an existing AddressSpace
1606 * which was initialized with the specified MemoryRegion, or it will
1607 * create and initialize one if it does not already exist. The ASes
1608 * are reference-counted, so the memory will be freed automatically
1609 * when the AddressSpace is destroyed via address_space_destroy.
1610 */
1611 AddressSpace *address_space_init_shareable(MemoryRegion *root,
1612 const char *name);
1613
1614 /**
1615 * address_space_destroy: destroy an address space
1616 *
1617 * Releases all resources associated with an address space. After an address space
1618 * is destroyed, its root memory region (given by address_space_init()) may be destroyed
1619 * as well.
1620 *
1621 * @as: address space to be destroyed
1622 */
1623 void address_space_destroy(AddressSpace *as);
1624
1625 /**
1626 * address_space_rw: read from or write to an address space.
1627 *
1628 * Return a MemTxResult indicating whether the operation succeeded
1629 * or failed (eg unassigned memory, device rejected the transaction,
1630 * IOMMU fault).
1631 *
1632 * @as: #AddressSpace to be accessed
1633 * @addr: address within that address space
1634 * @attrs: memory transaction attributes
1635 * @buf: buffer with the data transferred
1636 * @is_write: indicates the transfer direction
1637 */
1638 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr,
1639 MemTxAttrs attrs, uint8_t *buf,
1640 int len, bool is_write);
1641
1642 /**
1643 * address_space_write: write to address space.
1644 *
1645 * Return a MemTxResult indicating whether the operation succeeded
1646 * or failed (eg unassigned memory, device rejected the transaction,
1647 * IOMMU fault).
1648 *
1649 * @as: #AddressSpace to be accessed
1650 * @addr: address within that address space
1651 * @attrs: memory transaction attributes
1652 * @buf: buffer with the data transferred
1653 */
1654 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
1655 MemTxAttrs attrs,
1656 const uint8_t *buf, int len);
1657
1658 /* address_space_ld*: load from an address space
1659 * address_space_st*: store to an address space
1660 *
1661 * These functions perform a load or store of the byte, word,
1662 * longword or quad to the specified address within the AddressSpace.
1663 * The _le suffixed functions treat the data as little endian;
1664 * _be indicates big endian; no suffix indicates "same endianness
1665 * as guest CPU".
1666 *
1667 * The "guest CPU endianness" accessors are deprecated for use outside
1668 * target-* code; devices should be CPU-agnostic and use either the LE
1669 * or the BE accessors.
1670 *
1671 * @as #AddressSpace to be accessed
1672 * @addr: address within that address space
1673 * @val: data value, for stores
1674 * @attrs: memory transaction attributes
1675 * @result: location to write the success/failure of the transaction;
1676 * if NULL, this information is discarded
1677 */
1678 uint32_t address_space_ldub(AddressSpace *as, hwaddr addr,
1679 MemTxAttrs attrs, MemTxResult *result);
1680 uint32_t address_space_lduw_le(AddressSpace *as, hwaddr addr,
1681 MemTxAttrs attrs, MemTxResult *result);
1682 uint32_t address_space_lduw_be(AddressSpace *as, hwaddr addr,
1683 MemTxAttrs attrs, MemTxResult *result);
1684 uint32_t address_space_ldl_le(AddressSpace *as, hwaddr addr,
1685 MemTxAttrs attrs, MemTxResult *result);
1686 uint32_t address_space_ldl_be(AddressSpace *as, hwaddr addr,
1687 MemTxAttrs attrs, MemTxResult *result);
1688 uint64_t address_space_ldq_le(AddressSpace *as, hwaddr addr,
1689 MemTxAttrs attrs, MemTxResult *result);
1690 uint64_t address_space_ldq_be(AddressSpace *as, hwaddr addr,
1691 MemTxAttrs attrs, MemTxResult *result);
1692 void address_space_stb(AddressSpace *as, hwaddr addr, uint32_t val,
1693 MemTxAttrs attrs, MemTxResult *result);
1694 void address_space_stw_le(AddressSpace *as, hwaddr addr, uint32_t val,
1695 MemTxAttrs attrs, MemTxResult *result);
1696 void address_space_stw_be(AddressSpace *as, hwaddr addr, uint32_t val,
1697 MemTxAttrs attrs, MemTxResult *result);
1698 void address_space_stl_le(AddressSpace *as, hwaddr addr, uint32_t val,
1699 MemTxAttrs attrs, MemTxResult *result);
1700 void address_space_stl_be(AddressSpace *as, hwaddr addr, uint32_t val,
1701 MemTxAttrs attrs, MemTxResult *result);
1702 void address_space_stq_le(AddressSpace *as, hwaddr addr, uint64_t val,
1703 MemTxAttrs attrs, MemTxResult *result);
1704 void address_space_stq_be(AddressSpace *as, hwaddr addr, uint64_t val,
1705 MemTxAttrs attrs, MemTxResult *result);
1706
1707 uint32_t ldub_phys(AddressSpace *as, hwaddr addr);
1708 uint32_t lduw_le_phys(AddressSpace *as, hwaddr addr);
1709 uint32_t lduw_be_phys(AddressSpace *as, hwaddr addr);
1710 uint32_t ldl_le_phys(AddressSpace *as, hwaddr addr);
1711 uint32_t ldl_be_phys(AddressSpace *as, hwaddr addr);
1712 uint64_t ldq_le_phys(AddressSpace *as, hwaddr addr);
1713 uint64_t ldq_be_phys(AddressSpace *as, hwaddr addr);
1714 void stb_phys(AddressSpace *as, hwaddr addr, uint32_t val);
1715 void stw_le_phys(AddressSpace *as, hwaddr addr, uint32_t val);
1716 void stw_be_phys(AddressSpace *as, hwaddr addr, uint32_t val);
1717 void stl_le_phys(AddressSpace *as, hwaddr addr, uint32_t val);
1718 void stl_be_phys(AddressSpace *as, hwaddr addr, uint32_t val);
1719 void stq_le_phys(AddressSpace *as, hwaddr addr, uint64_t val);
1720 void stq_be_phys(AddressSpace *as, hwaddr addr, uint64_t val);
1721
1722 struct MemoryRegionCache {
1723 hwaddr xlat;
1724 hwaddr len;
1725 AddressSpace *as;
1726 };
1727
1728 #define MEMORY_REGION_CACHE_INVALID ((MemoryRegionCache) { .as = NULL })
1729
1730 /* address_space_cache_init: prepare for repeated access to a physical
1731 * memory region
1732 *
1733 * @cache: #MemoryRegionCache to be filled
1734 * @as: #AddressSpace to be accessed
1735 * @addr: address within that address space
1736 * @len: length of buffer
1737 * @is_write: indicates the transfer direction
1738 *
1739 * Will only work with RAM, and may map a subset of the requested range by
1740 * returning a value that is less than @len. On failure, return a negative
1741 * errno value.
1742 *
1743 * Because it only works with RAM, this function can be used for
1744 * read-modify-write operations. In this case, is_write should be %true.
1745 *
1746 * Note that addresses passed to the address_space_*_cached functions
1747 * are relative to @addr.
1748 */
1749 int64_t address_space_cache_init(MemoryRegionCache *cache,
1750 AddressSpace *as,
1751 hwaddr addr,
1752 hwaddr len,
1753 bool is_write);
1754
1755 /**
1756 * address_space_cache_invalidate: complete a write to a #MemoryRegionCache
1757 *
1758 * @cache: The #MemoryRegionCache to operate on.
1759 * @addr: The first physical address that was written, relative to the
1760 * address that was passed to @address_space_cache_init.
1761 * @access_len: The number of bytes that were written starting at @addr.
1762 */
1763 void address_space_cache_invalidate(MemoryRegionCache *cache,
1764 hwaddr addr,
1765 hwaddr access_len);
1766
1767 /**
1768 * address_space_cache_destroy: free a #MemoryRegionCache
1769 *
1770 * @cache: The #MemoryRegionCache whose memory should be released.
1771 */
1772 void address_space_cache_destroy(MemoryRegionCache *cache);
1773
1774 /* address_space_ld*_cached: load from a cached #MemoryRegion
1775 * address_space_st*_cached: store into a cached #MemoryRegion
1776 *
1777 * These functions perform a load or store of the byte, word,
1778 * longword or quad to the specified address. The address is
1779 * a physical address in the AddressSpace, but it must lie within
1780 * a #MemoryRegion that was mapped with address_space_cache_init.
1781 *
1782 * The _le suffixed functions treat the data as little endian;
1783 * _be indicates big endian; no suffix indicates "same endianness
1784 * as guest CPU".
1785 *
1786 * The "guest CPU endianness" accessors are deprecated for use outside
1787 * target-* code; devices should be CPU-agnostic and use either the LE
1788 * or the BE accessors.
1789 *
1790 * @cache: previously initialized #MemoryRegionCache to be accessed
1791 * @addr: address within the address space
1792 * @val: data value, for stores
1793 * @attrs: memory transaction attributes
1794 * @result: location to write the success/failure of the transaction;
1795 * if NULL, this information is discarded
1796 */
1797 uint32_t address_space_ldub_cached(MemoryRegionCache *cache, hwaddr addr,
1798 MemTxAttrs attrs, MemTxResult *result);
1799 uint32_t address_space_lduw_le_cached(MemoryRegionCache *cache, hwaddr addr,
1800 MemTxAttrs attrs, MemTxResult *result);
1801 uint32_t address_space_lduw_be_cached(MemoryRegionCache *cache, hwaddr addr,
1802 MemTxAttrs attrs, MemTxResult *result);
1803 uint32_t address_space_ldl_le_cached(MemoryRegionCache *cache, hwaddr addr,
1804 MemTxAttrs attrs, MemTxResult *result);
1805 uint32_t address_space_ldl_be_cached(MemoryRegionCache *cache, hwaddr addr,
1806 MemTxAttrs attrs, MemTxResult *result);
1807 uint64_t address_space_ldq_le_cached(MemoryRegionCache *cache, hwaddr addr,
1808 MemTxAttrs attrs, MemTxResult *result);
1809 uint64_t address_space_ldq_be_cached(MemoryRegionCache *cache, hwaddr addr,
1810 MemTxAttrs attrs, MemTxResult *result);
1811 void address_space_stb_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val,
1812 MemTxAttrs attrs, MemTxResult *result);
1813 void address_space_stw_le_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val,
1814 MemTxAttrs attrs, MemTxResult *result);
1815 void address_space_stw_be_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val,
1816 MemTxAttrs attrs, MemTxResult *result);
1817 void address_space_stl_le_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val,
1818 MemTxAttrs attrs, MemTxResult *result);
1819 void address_space_stl_be_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val,
1820 MemTxAttrs attrs, MemTxResult *result);
1821 void address_space_stq_le_cached(MemoryRegionCache *cache, hwaddr addr, uint64_t val,
1822 MemTxAttrs attrs, MemTxResult *result);
1823 void address_space_stq_be_cached(MemoryRegionCache *cache, hwaddr addr, uint64_t val,
1824 MemTxAttrs attrs, MemTxResult *result);
1825
1826 uint32_t ldub_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1827 uint32_t lduw_le_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1828 uint32_t lduw_be_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1829 uint32_t ldl_le_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1830 uint32_t ldl_be_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1831 uint64_t ldq_le_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1832 uint64_t ldq_be_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1833 void stb_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val);
1834 void stw_le_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val);
1835 void stw_be_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val);
1836 void stl_le_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val);
1837 void stl_be_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val);
1838 void stq_le_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint64_t val);
1839 void stq_be_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint64_t val);
1840 /* address_space_get_iotlb_entry: translate an address into an IOTLB
1841 * entry. Should be called from an RCU critical section.
1842 */
1843 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
1844 bool is_write);
1845
1846 /* address_space_translate: translate an address range into an address space
1847 * into a MemoryRegion and an address range into that section. Should be
1848 * called from an RCU critical section, to avoid that the last reference
1849 * to the returned region disappears after address_space_translate returns.
1850 *
1851 * @as: #AddressSpace to be accessed
1852 * @addr: address within that address space
1853 * @xlat: pointer to address within the returned memory region section's
1854 * #MemoryRegion.
1855 * @len: pointer to length
1856 * @is_write: indicates the transfer direction
1857 */
1858 MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr,
1859 hwaddr *xlat, hwaddr *len,
1860 bool is_write);
1861
1862 /* address_space_access_valid: check for validity of accessing an address
1863 * space range
1864 *
1865 * Check whether memory is assigned to the given address space range, and
1866 * access is permitted by any IOMMU regions that are active for the address
1867 * space.
1868 *
1869 * For now, addr and len should be aligned to a page size. This limitation
1870 * will be lifted in the future.
1871 *
1872 * @as: #AddressSpace to be accessed
1873 * @addr: address within that address space
1874 * @len: length of the area to be checked
1875 * @is_write: indicates the transfer direction
1876 */
1877 bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write);
1878
1879 /* address_space_map: map a physical memory region into a host virtual address
1880 *
1881 * May map a subset of the requested range, given by and returned in @plen.
1882 * May return %NULL if resources needed to perform the mapping are exhausted.
1883 * Use only for reads OR writes - not for read-modify-write operations.
1884 * Use cpu_register_map_client() to know when retrying the map operation is
1885 * likely to succeed.
1886 *
1887 * @as: #AddressSpace to be accessed
1888 * @addr: address within that address space
1889 * @plen: pointer to length of buffer; updated on return
1890 * @is_write: indicates the transfer direction
1891 */
1892 void *address_space_map(AddressSpace *as, hwaddr addr,
1893 hwaddr *plen, bool is_write);
1894
1895 /* address_space_unmap: Unmaps a memory region previously mapped by address_space_map()
1896 *
1897 * Will also mark the memory as dirty if @is_write == %true. @access_len gives
1898 * the amount of memory that was actually read or written by the caller.
1899 *
1900 * @as: #AddressSpace used
1901 * @addr: address within that address space
1902 * @len: buffer length as returned by address_space_map()
1903 * @access_len: amount of data actually transferred
1904 * @is_write: indicates the transfer direction
1905 */
1906 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
1907 int is_write, hwaddr access_len);
1908
1909
1910 /* Internal functions, part of the implementation of address_space_read. */
1911 MemTxResult address_space_read_continue(AddressSpace *as, hwaddr addr,
1912 MemTxAttrs attrs, uint8_t *buf,
1913 int len, hwaddr addr1, hwaddr l,
1914 MemoryRegion *mr);
1915 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
1916 MemTxAttrs attrs, uint8_t *buf, int len);
1917 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr);
1918
1919 static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write)
1920 {
1921 if (is_write) {
1922 return memory_region_is_ram(mr) &&
1923 !mr->readonly && !memory_region_is_ram_device(mr);
1924 } else {
1925 return (memory_region_is_ram(mr) && !memory_region_is_ram_device(mr)) ||
1926 memory_region_is_romd(mr);
1927 }
1928 }
1929
1930 /**
1931 * address_space_read: read from an address space.
1932 *
1933 * Return a MemTxResult indicating whether the operation succeeded
1934 * or failed (eg unassigned memory, device rejected the transaction,
1935 * IOMMU fault).
1936 *
1937 * @as: #AddressSpace to be accessed
1938 * @addr: address within that address space
1939 * @attrs: memory transaction attributes
1940 * @buf: buffer with the data transferred
1941 */
1942 static inline __attribute__((__always_inline__))
1943 MemTxResult address_space_read(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
1944 uint8_t *buf, int len)
1945 {
1946 MemTxResult result = MEMTX_OK;
1947 hwaddr l, addr1;
1948 void *ptr;
1949 MemoryRegion *mr;
1950
1951 if (__builtin_constant_p(len)) {
1952 if (len) {
1953 rcu_read_lock();
1954 l = len;
1955 mr = address_space_translate(as, addr, &addr1, &l, false);
1956 if (len == l && memory_access_is_direct(mr, false)) {
1957 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
1958 memcpy(buf, ptr, len);
1959 } else {
1960 result = address_space_read_continue(as, addr, attrs, buf, len,
1961 addr1, l, mr);
1962 }
1963 rcu_read_unlock();
1964 }
1965 } else {
1966 result = address_space_read_full(as, addr, attrs, buf, len);
1967 }
1968 return result;
1969 }
1970
1971 /**
1972 * address_space_read_cached: read from a cached RAM region
1973 *
1974 * @cache: Cached region to be addressed
1975 * @addr: address relative to the base of the RAM region
1976 * @buf: buffer with the data transferred
1977 * @len: length of the data transferred
1978 */
1979 static inline void
1980 address_space_read_cached(MemoryRegionCache *cache, hwaddr addr,
1981 void *buf, int len)
1982 {
1983 assert(addr < cache->len && len <= cache->len - addr);
1984 address_space_read(cache->as, cache->xlat + addr, MEMTXATTRS_UNSPECIFIED, buf, len);
1985 }
1986
1987 /**
1988 * address_space_write_cached: write to a cached RAM region
1989 *
1990 * @cache: Cached region to be addressed
1991 * @addr: address relative to the base of the RAM region
1992 * @buf: buffer with the data transferred
1993 * @len: length of the data transferred
1994 */
1995 static inline void
1996 address_space_write_cached(MemoryRegionCache *cache, hwaddr addr,
1997 void *buf, int len)
1998 {
1999 assert(addr < cache->len && len <= cache->len - addr);
2000 address_space_write(cache->as, cache->xlat + addr, MEMTXATTRS_UNSPECIFIED, buf, len);
2001 }
2002
2003 #endif
2004
2005 #endif