]> git.proxmox.com Git - mirror_qemu.git/blob - include/exec/memory.h
Merge remote-tracking branch 'remotes/ehabkost/tags/x86-pull-request' into staging
[mirror_qemu.git] / include / exec / memory.h
1 /*
2 * Physical memory management API
3 *
4 * Copyright 2011 Red Hat, Inc. and/or its affiliates
5 *
6 * Authors:
7 * Avi Kivity <avi@redhat.com>
8 *
9 * This work is licensed under the terms of the GNU GPL, version 2. See
10 * the COPYING file in the top-level directory.
11 *
12 */
13
14 #ifndef MEMORY_H
15 #define MEMORY_H
16
17 #ifndef CONFIG_USER_ONLY
18
19 #define DIRTY_MEMORY_VGA 0
20 #define DIRTY_MEMORY_CODE 1
21 #define DIRTY_MEMORY_MIGRATION 2
22 #define DIRTY_MEMORY_NUM 3 /* num of dirty bits */
23
24 #include <stdint.h>
25 #include <stdbool.h>
26 #include "qemu-common.h"
27 #include "exec/cpu-common.h"
28 #ifndef CONFIG_USER_ONLY
29 #include "exec/hwaddr.h"
30 #endif
31 #include "exec/memattrs.h"
32 #include "qemu/queue.h"
33 #include "qemu/int128.h"
34 #include "qemu/notify.h"
35 #include "qapi/error.h"
36 #include "qom/object.h"
37 #include "qemu/rcu.h"
38
39 #define MAX_PHYS_ADDR_SPACE_BITS 62
40 #define MAX_PHYS_ADDR (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1)
41
42 #define TYPE_MEMORY_REGION "qemu:memory-region"
43 #define MEMORY_REGION(obj) \
44 OBJECT_CHECK(MemoryRegion, (obj), TYPE_MEMORY_REGION)
45
46 typedef struct MemoryRegionOps MemoryRegionOps;
47 typedef struct MemoryRegionMmio MemoryRegionMmio;
48
49 struct MemoryRegionMmio {
50 CPUReadMemoryFunc *read[3];
51 CPUWriteMemoryFunc *write[3];
52 };
53
54 typedef struct IOMMUTLBEntry IOMMUTLBEntry;
55
56 /* See address_space_translate: bit 0 is read, bit 1 is write. */
57 typedef enum {
58 IOMMU_NONE = 0,
59 IOMMU_RO = 1,
60 IOMMU_WO = 2,
61 IOMMU_RW = 3,
62 } IOMMUAccessFlags;
63
64 struct IOMMUTLBEntry {
65 AddressSpace *target_as;
66 hwaddr iova;
67 hwaddr translated_addr;
68 hwaddr addr_mask; /* 0xfff = 4k translation */
69 IOMMUAccessFlags perm;
70 };
71
72 /* New-style MMIO accessors can indicate that the transaction failed.
73 * A zero (MEMTX_OK) response means success; anything else is a failure
74 * of some kind. The memory subsystem will bitwise-OR together results
75 * if it is synthesizing an operation from multiple smaller accesses.
76 */
77 #define MEMTX_OK 0
78 #define MEMTX_ERROR (1U << 0) /* device returned an error */
79 #define MEMTX_DECODE_ERROR (1U << 1) /* nothing at that address */
80 typedef uint32_t MemTxResult;
81
82 /*
83 * Memory region callbacks
84 */
85 struct MemoryRegionOps {
86 /* Read from the memory region. @addr is relative to @mr; @size is
87 * in bytes. */
88 uint64_t (*read)(void *opaque,
89 hwaddr addr,
90 unsigned size);
91 /* Write to the memory region. @addr is relative to @mr; @size is
92 * in bytes. */
93 void (*write)(void *opaque,
94 hwaddr addr,
95 uint64_t data,
96 unsigned size);
97
98 MemTxResult (*read_with_attrs)(void *opaque,
99 hwaddr addr,
100 uint64_t *data,
101 unsigned size,
102 MemTxAttrs attrs);
103 MemTxResult (*write_with_attrs)(void *opaque,
104 hwaddr addr,
105 uint64_t data,
106 unsigned size,
107 MemTxAttrs attrs);
108
109 enum device_endian endianness;
110 /* Guest-visible constraints: */
111 struct {
112 /* If nonzero, specify bounds on access sizes beyond which a machine
113 * check is thrown.
114 */
115 unsigned min_access_size;
116 unsigned max_access_size;
117 /* If true, unaligned accesses are supported. Otherwise unaligned
118 * accesses throw machine checks.
119 */
120 bool unaligned;
121 /*
122 * If present, and returns #false, the transaction is not accepted
123 * by the device (and results in machine dependent behaviour such
124 * as a machine check exception).
125 */
126 bool (*accepts)(void *opaque, hwaddr addr,
127 unsigned size, bool is_write);
128 } valid;
129 /* Internal implementation constraints: */
130 struct {
131 /* If nonzero, specifies the minimum size implemented. Smaller sizes
132 * will be rounded upwards and a partial result will be returned.
133 */
134 unsigned min_access_size;
135 /* If nonzero, specifies the maximum size implemented. Larger sizes
136 * will be done as a series of accesses with smaller sizes.
137 */
138 unsigned max_access_size;
139 /* If true, unaligned accesses are supported. Otherwise all accesses
140 * are converted to (possibly multiple) naturally aligned accesses.
141 */
142 bool unaligned;
143 } impl;
144
145 /* If .read and .write are not present, old_mmio may be used for
146 * backwards compatibility with old mmio registration
147 */
148 const MemoryRegionMmio old_mmio;
149 };
150
151 typedef struct MemoryRegionIOMMUOps MemoryRegionIOMMUOps;
152
153 struct MemoryRegionIOMMUOps {
154 /* Return a TLB entry that contains a given address. */
155 IOMMUTLBEntry (*translate)(MemoryRegion *iommu, hwaddr addr, bool is_write);
156 };
157
158 typedef struct CoalescedMemoryRange CoalescedMemoryRange;
159 typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd;
160
161 struct MemoryRegion {
162 Object parent_obj;
163 /* All fields are private - violators will be prosecuted */
164 const MemoryRegionOps *ops;
165 const MemoryRegionIOMMUOps *iommu_ops;
166 void *opaque;
167 MemoryRegion *container;
168 Int128 size;
169 hwaddr addr;
170 void (*destructor)(MemoryRegion *mr);
171 ram_addr_t ram_addr;
172 uint64_t align;
173 bool subpage;
174 bool terminates;
175 bool romd_mode;
176 bool ram;
177 bool skip_dump;
178 bool readonly; /* For RAM regions */
179 bool enabled;
180 bool rom_device;
181 bool warning_printed; /* For reservations */
182 bool flush_coalesced_mmio;
183 MemoryRegion *alias;
184 hwaddr alias_offset;
185 int32_t priority;
186 bool may_overlap;
187 QTAILQ_HEAD(subregions, MemoryRegion) subregions;
188 QTAILQ_ENTRY(MemoryRegion) subregions_link;
189 QTAILQ_HEAD(coalesced_ranges, CoalescedMemoryRange) coalesced;
190 const char *name;
191 uint8_t dirty_log_mask;
192 unsigned ioeventfd_nb;
193 MemoryRegionIoeventfd *ioeventfds;
194 NotifierList iommu_notify;
195 };
196
197 /**
198 * MemoryListener: callbacks structure for updates to the physical memory map
199 *
200 * Allows a component to adjust to changes in the guest-visible memory map.
201 * Use with memory_listener_register() and memory_listener_unregister().
202 */
203 struct MemoryListener {
204 void (*begin)(MemoryListener *listener);
205 void (*commit)(MemoryListener *listener);
206 void (*region_add)(MemoryListener *listener, MemoryRegionSection *section);
207 void (*region_del)(MemoryListener *listener, MemoryRegionSection *section);
208 void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section);
209 void (*log_start)(MemoryListener *listener, MemoryRegionSection *section);
210 void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section);
211 void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section);
212 void (*log_global_start)(MemoryListener *listener);
213 void (*log_global_stop)(MemoryListener *listener);
214 void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section,
215 bool match_data, uint64_t data, EventNotifier *e);
216 void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section,
217 bool match_data, uint64_t data, EventNotifier *e);
218 void (*coalesced_mmio_add)(MemoryListener *listener, MemoryRegionSection *section,
219 hwaddr addr, hwaddr len);
220 void (*coalesced_mmio_del)(MemoryListener *listener, MemoryRegionSection *section,
221 hwaddr addr, hwaddr len);
222 /* Lower = earlier (during add), later (during del) */
223 unsigned priority;
224 AddressSpace *address_space_filter;
225 QTAILQ_ENTRY(MemoryListener) link;
226 };
227
228 /**
229 * AddressSpace: describes a mapping of addresses to #MemoryRegion objects
230 */
231 struct AddressSpace {
232 /* All fields are private. */
233 struct rcu_head rcu;
234 char *name;
235 MemoryRegion *root;
236
237 /* Accessed via RCU. */
238 struct FlatView *current_map;
239
240 int ioeventfd_nb;
241 struct MemoryRegionIoeventfd *ioeventfds;
242 struct AddressSpaceDispatch *dispatch;
243 struct AddressSpaceDispatch *next_dispatch;
244 MemoryListener dispatch_listener;
245
246 QTAILQ_ENTRY(AddressSpace) address_spaces_link;
247 };
248
249 /**
250 * MemoryRegionSection: describes a fragment of a #MemoryRegion
251 *
252 * @mr: the region, or %NULL if empty
253 * @address_space: the address space the region is mapped in
254 * @offset_within_region: the beginning of the section, relative to @mr's start
255 * @size: the size of the section; will not exceed @mr's boundaries
256 * @offset_within_address_space: the address of the first byte of the section
257 * relative to the region's address space
258 * @readonly: writes to this section are ignored
259 */
260 struct MemoryRegionSection {
261 MemoryRegion *mr;
262 AddressSpace *address_space;
263 hwaddr offset_within_region;
264 Int128 size;
265 hwaddr offset_within_address_space;
266 bool readonly;
267 };
268
269 /**
270 * memory_region_init: Initialize a memory region
271 *
272 * The region typically acts as a container for other memory regions. Use
273 * memory_region_add_subregion() to add subregions.
274 *
275 * @mr: the #MemoryRegion to be initialized
276 * @owner: the object that tracks the region's reference count
277 * @name: used for debugging; not visible to the user or ABI
278 * @size: size of the region; any subregions beyond this size will be clipped
279 */
280 void memory_region_init(MemoryRegion *mr,
281 struct Object *owner,
282 const char *name,
283 uint64_t size);
284
285 /**
286 * memory_region_ref: Add 1 to a memory region's reference count
287 *
288 * Whenever memory regions are accessed outside the BQL, they need to be
289 * preserved against hot-unplug. MemoryRegions actually do not have their
290 * own reference count; they piggyback on a QOM object, their "owner".
291 * This function adds a reference to the owner.
292 *
293 * All MemoryRegions must have an owner if they can disappear, even if the
294 * device they belong to operates exclusively under the BQL. This is because
295 * the region could be returned at any time by memory_region_find, and this
296 * is usually under guest control.
297 *
298 * @mr: the #MemoryRegion
299 */
300 void memory_region_ref(MemoryRegion *mr);
301
302 /**
303 * memory_region_unref: Remove 1 to a memory region's reference count
304 *
305 * Whenever memory regions are accessed outside the BQL, they need to be
306 * preserved against hot-unplug. MemoryRegions actually do not have their
307 * own reference count; they piggyback on a QOM object, their "owner".
308 * This function removes a reference to the owner and possibly destroys it.
309 *
310 * @mr: the #MemoryRegion
311 */
312 void memory_region_unref(MemoryRegion *mr);
313
314 /**
315 * memory_region_init_io: Initialize an I/O memory region.
316 *
317 * Accesses into the region will cause the callbacks in @ops to be called.
318 * if @size is nonzero, subregions will be clipped to @size.
319 *
320 * @mr: the #MemoryRegion to be initialized.
321 * @owner: the object that tracks the region's reference count
322 * @ops: a structure containing read and write callbacks to be used when
323 * I/O is performed on the region.
324 * @opaque: passed to to the read and write callbacks of the @ops structure.
325 * @name: used for debugging; not visible to the user or ABI
326 * @size: size of the region.
327 */
328 void memory_region_init_io(MemoryRegion *mr,
329 struct Object *owner,
330 const MemoryRegionOps *ops,
331 void *opaque,
332 const char *name,
333 uint64_t size);
334
335 /**
336 * memory_region_init_ram: Initialize RAM memory region. Accesses into the
337 * region will modify memory directly.
338 *
339 * @mr: the #MemoryRegion to be initialized.
340 * @owner: the object that tracks the region's reference count
341 * @name: the name of the region.
342 * @size: size of the region.
343 * @errp: pointer to Error*, to store an error if it happens.
344 */
345 void memory_region_init_ram(MemoryRegion *mr,
346 struct Object *owner,
347 const char *name,
348 uint64_t size,
349 Error **errp);
350
351 /**
352 * memory_region_init_resizeable_ram: Initialize memory region with resizeable
353 * RAM. Accesses into the region will
354 * modify memory directly. Only an initial
355 * portion of this RAM is actually used.
356 * The used size can change across reboots.
357 *
358 * @mr: the #MemoryRegion to be initialized.
359 * @owner: the object that tracks the region's reference count
360 * @name: the name of the region.
361 * @size: used size of the region.
362 * @max_size: max size of the region.
363 * @resized: callback to notify owner about used size change.
364 * @errp: pointer to Error*, to store an error if it happens.
365 */
366 void memory_region_init_resizeable_ram(MemoryRegion *mr,
367 struct Object *owner,
368 const char *name,
369 uint64_t size,
370 uint64_t max_size,
371 void (*resized)(const char*,
372 uint64_t length,
373 void *host),
374 Error **errp);
375 #ifdef __linux__
376 /**
377 * memory_region_init_ram_from_file: Initialize RAM memory region with a
378 * mmap-ed backend.
379 *
380 * @mr: the #MemoryRegion to be initialized.
381 * @owner: the object that tracks the region's reference count
382 * @name: the name of the region.
383 * @size: size of the region.
384 * @share: %true if memory must be mmaped with the MAP_SHARED flag
385 * @path: the path in which to allocate the RAM.
386 * @errp: pointer to Error*, to store an error if it happens.
387 */
388 void memory_region_init_ram_from_file(MemoryRegion *mr,
389 struct Object *owner,
390 const char *name,
391 uint64_t size,
392 bool share,
393 const char *path,
394 Error **errp);
395 #endif
396
397 /**
398 * memory_region_init_ram_ptr: Initialize RAM memory region from a
399 * user-provided pointer. Accesses into the
400 * region will modify memory directly.
401 *
402 * @mr: the #MemoryRegion to be initialized.
403 * @owner: the object that tracks the region's reference count
404 * @name: the name of the region.
405 * @size: size of the region.
406 * @ptr: memory to be mapped; must contain at least @size bytes.
407 */
408 void memory_region_init_ram_ptr(MemoryRegion *mr,
409 struct Object *owner,
410 const char *name,
411 uint64_t size,
412 void *ptr);
413
414 /**
415 * memory_region_init_alias: Initialize a memory region that aliases all or a
416 * part of another memory region.
417 *
418 * @mr: the #MemoryRegion to be initialized.
419 * @owner: the object that tracks the region's reference count
420 * @name: used for debugging; not visible to the user or ABI
421 * @orig: the region to be referenced; @mr will be equivalent to
422 * @orig between @offset and @offset + @size - 1.
423 * @offset: start of the section in @orig to be referenced.
424 * @size: size of the region.
425 */
426 void memory_region_init_alias(MemoryRegion *mr,
427 struct Object *owner,
428 const char *name,
429 MemoryRegion *orig,
430 hwaddr offset,
431 uint64_t size);
432
433 /**
434 * memory_region_init_rom_device: Initialize a ROM memory region. Writes are
435 * handled via callbacks.
436 *
437 * @mr: the #MemoryRegion to be initialized.
438 * @owner: the object that tracks the region's reference count
439 * @ops: callbacks for write access handling.
440 * @name: the name of the region.
441 * @size: size of the region.
442 * @errp: pointer to Error*, to store an error if it happens.
443 */
444 void memory_region_init_rom_device(MemoryRegion *mr,
445 struct Object *owner,
446 const MemoryRegionOps *ops,
447 void *opaque,
448 const char *name,
449 uint64_t size,
450 Error **errp);
451
452 /**
453 * memory_region_init_reservation: Initialize a memory region that reserves
454 * I/O space.
455 *
456 * A reservation region primariy serves debugging purposes. It claims I/O
457 * space that is not supposed to be handled by QEMU itself. Any access via
458 * the memory API will cause an abort().
459 *
460 * @mr: the #MemoryRegion to be initialized
461 * @owner: the object that tracks the region's reference count
462 * @name: used for debugging; not visible to the user or ABI
463 * @size: size of the region.
464 */
465 void memory_region_init_reservation(MemoryRegion *mr,
466 struct Object *owner,
467 const char *name,
468 uint64_t size);
469
470 /**
471 * memory_region_init_iommu: Initialize a memory region that translates
472 * addresses
473 *
474 * An IOMMU region translates addresses and forwards accesses to a target
475 * memory region.
476 *
477 * @mr: the #MemoryRegion to be initialized
478 * @owner: the object that tracks the region's reference count
479 * @ops: a function that translates addresses into the @target region
480 * @name: used for debugging; not visible to the user or ABI
481 * @size: size of the region.
482 */
483 void memory_region_init_iommu(MemoryRegion *mr,
484 struct Object *owner,
485 const MemoryRegionIOMMUOps *ops,
486 const char *name,
487 uint64_t size);
488
489 /**
490 * memory_region_owner: get a memory region's owner.
491 *
492 * @mr: the memory region being queried.
493 */
494 struct Object *memory_region_owner(MemoryRegion *mr);
495
496 /**
497 * memory_region_size: get a memory region's size.
498 *
499 * @mr: the memory region being queried.
500 */
501 uint64_t memory_region_size(MemoryRegion *mr);
502
503 /**
504 * memory_region_is_ram: check whether a memory region is random access
505 *
506 * Returns %true is a memory region is random access.
507 *
508 * @mr: the memory region being queried
509 */
510 bool memory_region_is_ram(MemoryRegion *mr);
511
512 /**
513 * memory_region_is_skip_dump: check whether a memory region should not be
514 * dumped
515 *
516 * Returns %true is a memory region should not be dumped(e.g. VFIO BAR MMAP).
517 *
518 * @mr: the memory region being queried
519 */
520 bool memory_region_is_skip_dump(MemoryRegion *mr);
521
522 /**
523 * memory_region_set_skip_dump: Set skip_dump flag, dump will ignore this memory
524 * region
525 *
526 * @mr: the memory region being queried
527 */
528 void memory_region_set_skip_dump(MemoryRegion *mr);
529
530 /**
531 * memory_region_is_romd: check whether a memory region is in ROMD mode
532 *
533 * Returns %true if a memory region is a ROM device and currently set to allow
534 * direct reads.
535 *
536 * @mr: the memory region being queried
537 */
538 static inline bool memory_region_is_romd(MemoryRegion *mr)
539 {
540 return mr->rom_device && mr->romd_mode;
541 }
542
543 /**
544 * memory_region_is_iommu: check whether a memory region is an iommu
545 *
546 * Returns %true is a memory region is an iommu.
547 *
548 * @mr: the memory region being queried
549 */
550 bool memory_region_is_iommu(MemoryRegion *mr);
551
552 /**
553 * memory_region_notify_iommu: notify a change in an IOMMU translation entry.
554 *
555 * @mr: the memory region that was changed
556 * @entry: the new entry in the IOMMU translation table. The entry
557 * replaces all old entries for the same virtual I/O address range.
558 * Deleted entries have .@perm == 0.
559 */
560 void memory_region_notify_iommu(MemoryRegion *mr,
561 IOMMUTLBEntry entry);
562
563 /**
564 * memory_region_register_iommu_notifier: register a notifier for changes to
565 * IOMMU translation entries.
566 *
567 * @mr: the memory region to observe
568 * @n: the notifier to be added; the notifier receives a pointer to an
569 * #IOMMUTLBEntry as the opaque value; the pointer ceases to be
570 * valid on exit from the notifier.
571 */
572 void memory_region_register_iommu_notifier(MemoryRegion *mr, Notifier *n);
573
574 /**
575 * memory_region_unregister_iommu_notifier: unregister a notifier for
576 * changes to IOMMU translation entries.
577 *
578 * @n: the notifier to be removed.
579 */
580 void memory_region_unregister_iommu_notifier(Notifier *n);
581
582 /**
583 * memory_region_name: get a memory region's name
584 *
585 * Returns the string that was used to initialize the memory region.
586 *
587 * @mr: the memory region being queried
588 */
589 const char *memory_region_name(const MemoryRegion *mr);
590
591 /**
592 * memory_region_is_logging: return whether a memory region is logging writes
593 *
594 * Returns %true if the memory region is logging writes
595 *
596 * @mr: the memory region being queried
597 */
598 bool memory_region_is_logging(MemoryRegion *mr);
599
600 /**
601 * memory_region_is_rom: check whether a memory region is ROM
602 *
603 * Returns %true is a memory region is read-only memory.
604 *
605 * @mr: the memory region being queried
606 */
607 bool memory_region_is_rom(MemoryRegion *mr);
608
609 /**
610 * memory_region_get_fd: Get a file descriptor backing a RAM memory region.
611 *
612 * Returns a file descriptor backing a file-based RAM memory region,
613 * or -1 if the region is not a file-based RAM memory region.
614 *
615 * @mr: the RAM or alias memory region being queried.
616 */
617 int memory_region_get_fd(MemoryRegion *mr);
618
619 /**
620 * memory_region_get_ram_ptr: Get a pointer into a RAM memory region.
621 *
622 * Returns a host pointer to a RAM memory region (created with
623 * memory_region_init_ram() or memory_region_init_ram_ptr()). Use with
624 * care.
625 *
626 * @mr: the memory region being queried.
627 */
628 void *memory_region_get_ram_ptr(MemoryRegion *mr);
629
630 /**
631 * memory_region_set_log: Turn dirty logging on or off for a region.
632 *
633 * Turns dirty logging on or off for a specified client (display, migration).
634 * Only meaningful for RAM regions.
635 *
636 * @mr: the memory region being updated.
637 * @log: whether dirty logging is to be enabled or disabled.
638 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
639 * %DIRTY_MEMORY_VGA.
640 */
641 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client);
642
643 /**
644 * memory_region_get_dirty: Check whether a range of bytes is dirty
645 * for a specified client.
646 *
647 * Checks whether a range of bytes has been written to since the last
648 * call to memory_region_reset_dirty() with the same @client. Dirty logging
649 * must be enabled.
650 *
651 * @mr: the memory region being queried.
652 * @addr: the address (relative to the start of the region) being queried.
653 * @size: the size of the range being queried.
654 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
655 * %DIRTY_MEMORY_VGA.
656 */
657 bool memory_region_get_dirty(MemoryRegion *mr, hwaddr addr,
658 hwaddr size, unsigned client);
659
660 /**
661 * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region.
662 *
663 * Marks a range of bytes as dirty, after it has been dirtied outside
664 * guest code.
665 *
666 * @mr: the memory region being dirtied.
667 * @addr: the address (relative to the start of the region) being dirtied.
668 * @size: size of the range being dirtied.
669 */
670 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
671 hwaddr size);
672
673 /**
674 * memory_region_test_and_clear_dirty: Check whether a range of bytes is dirty
675 * for a specified client. It clears them.
676 *
677 * Checks whether a range of bytes has been written to since the last
678 * call to memory_region_reset_dirty() with the same @client. Dirty logging
679 * must be enabled.
680 *
681 * @mr: the memory region being queried.
682 * @addr: the address (relative to the start of the region) being queried.
683 * @size: the size of the range being queried.
684 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
685 * %DIRTY_MEMORY_VGA.
686 */
687 bool memory_region_test_and_clear_dirty(MemoryRegion *mr, hwaddr addr,
688 hwaddr size, unsigned client);
689 /**
690 * memory_region_sync_dirty_bitmap: Synchronize a region's dirty bitmap with
691 * any external TLBs (e.g. kvm)
692 *
693 * Flushes dirty information from accelerators such as kvm and vhost-net
694 * and makes it available to users of the memory API.
695 *
696 * @mr: the region being flushed.
697 */
698 void memory_region_sync_dirty_bitmap(MemoryRegion *mr);
699
700 /**
701 * memory_region_reset_dirty: Mark a range of pages as clean, for a specified
702 * client.
703 *
704 * Marks a range of pages as no longer dirty.
705 *
706 * @mr: the region being updated.
707 * @addr: the start of the subrange being cleaned.
708 * @size: the size of the subrange being cleaned.
709 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
710 * %DIRTY_MEMORY_VGA.
711 */
712 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
713 hwaddr size, unsigned client);
714
715 /**
716 * memory_region_set_readonly: Turn a memory region read-only (or read-write)
717 *
718 * Allows a memory region to be marked as read-only (turning it into a ROM).
719 * only useful on RAM regions.
720 *
721 * @mr: the region being updated.
722 * @readonly: whether rhe region is to be ROM or RAM.
723 */
724 void memory_region_set_readonly(MemoryRegion *mr, bool readonly);
725
726 /**
727 * memory_region_rom_device_set_romd: enable/disable ROMD mode
728 *
729 * Allows a ROM device (initialized with memory_region_init_rom_device() to
730 * set to ROMD mode (default) or MMIO mode. When it is in ROMD mode, the
731 * device is mapped to guest memory and satisfies read access directly.
732 * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function.
733 * Writes are always handled by the #MemoryRegion.write function.
734 *
735 * @mr: the memory region to be updated
736 * @romd_mode: %true to put the region into ROMD mode
737 */
738 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode);
739
740 /**
741 * memory_region_set_coalescing: Enable memory coalescing for the region.
742 *
743 * Enabled writes to a region to be queued for later processing. MMIO ->write
744 * callbacks may be delayed until a non-coalesced MMIO is issued.
745 * Only useful for IO regions. Roughly similar to write-combining hardware.
746 *
747 * @mr: the memory region to be write coalesced
748 */
749 void memory_region_set_coalescing(MemoryRegion *mr);
750
751 /**
752 * memory_region_add_coalescing: Enable memory coalescing for a sub-range of
753 * a region.
754 *
755 * Like memory_region_set_coalescing(), but works on a sub-range of a region.
756 * Multiple calls can be issued coalesced disjoint ranges.
757 *
758 * @mr: the memory region to be updated.
759 * @offset: the start of the range within the region to be coalesced.
760 * @size: the size of the subrange to be coalesced.
761 */
762 void memory_region_add_coalescing(MemoryRegion *mr,
763 hwaddr offset,
764 uint64_t size);
765
766 /**
767 * memory_region_clear_coalescing: Disable MMIO coalescing for the region.
768 *
769 * Disables any coalescing caused by memory_region_set_coalescing() or
770 * memory_region_add_coalescing(). Roughly equivalent to uncacheble memory
771 * hardware.
772 *
773 * @mr: the memory region to be updated.
774 */
775 void memory_region_clear_coalescing(MemoryRegion *mr);
776
777 /**
778 * memory_region_set_flush_coalesced: Enforce memory coalescing flush before
779 * accesses.
780 *
781 * Ensure that pending coalesced MMIO request are flushed before the memory
782 * region is accessed. This property is automatically enabled for all regions
783 * passed to memory_region_set_coalescing() and memory_region_add_coalescing().
784 *
785 * @mr: the memory region to be updated.
786 */
787 void memory_region_set_flush_coalesced(MemoryRegion *mr);
788
789 /**
790 * memory_region_clear_flush_coalesced: Disable memory coalescing flush before
791 * accesses.
792 *
793 * Clear the automatic coalesced MMIO flushing enabled via
794 * memory_region_set_flush_coalesced. Note that this service has no effect on
795 * memory regions that have MMIO coalescing enabled for themselves. For them,
796 * automatic flushing will stop once coalescing is disabled.
797 *
798 * @mr: the memory region to be updated.
799 */
800 void memory_region_clear_flush_coalesced(MemoryRegion *mr);
801
802 /**
803 * memory_region_add_eventfd: Request an eventfd to be triggered when a word
804 * is written to a location.
805 *
806 * Marks a word in an IO region (initialized with memory_region_init_io())
807 * as a trigger for an eventfd event. The I/O callback will not be called.
808 * The caller must be prepared to handle failure (that is, take the required
809 * action if the callback _is_ called).
810 *
811 * @mr: the memory region being updated.
812 * @addr: the address within @mr that is to be monitored
813 * @size: the size of the access to trigger the eventfd
814 * @match_data: whether to match against @data, instead of just @addr
815 * @data: the data to match against the guest write
816 * @fd: the eventfd to be triggered when @addr, @size, and @data all match.
817 **/
818 void memory_region_add_eventfd(MemoryRegion *mr,
819 hwaddr addr,
820 unsigned size,
821 bool match_data,
822 uint64_t data,
823 EventNotifier *e);
824
825 /**
826 * memory_region_del_eventfd: Cancel an eventfd.
827 *
828 * Cancels an eventfd trigger requested by a previous
829 * memory_region_add_eventfd() call.
830 *
831 * @mr: the memory region being updated.
832 * @addr: the address within @mr that is to be monitored
833 * @size: the size of the access to trigger the eventfd
834 * @match_data: whether to match against @data, instead of just @addr
835 * @data: the data to match against the guest write
836 * @fd: the eventfd to be triggered when @addr, @size, and @data all match.
837 */
838 void memory_region_del_eventfd(MemoryRegion *mr,
839 hwaddr addr,
840 unsigned size,
841 bool match_data,
842 uint64_t data,
843 EventNotifier *e);
844
845 /**
846 * memory_region_add_subregion: Add a subregion to a container.
847 *
848 * Adds a subregion at @offset. The subregion may not overlap with other
849 * subregions (except for those explicitly marked as overlapping). A region
850 * may only be added once as a subregion (unless removed with
851 * memory_region_del_subregion()); use memory_region_init_alias() if you
852 * want a region to be a subregion in multiple locations.
853 *
854 * @mr: the region to contain the new subregion; must be a container
855 * initialized with memory_region_init().
856 * @offset: the offset relative to @mr where @subregion is added.
857 * @subregion: the subregion to be added.
858 */
859 void memory_region_add_subregion(MemoryRegion *mr,
860 hwaddr offset,
861 MemoryRegion *subregion);
862 /**
863 * memory_region_add_subregion_overlap: Add a subregion to a container
864 * with overlap.
865 *
866 * Adds a subregion at @offset. The subregion may overlap with other
867 * subregions. Conflicts are resolved by having a higher @priority hide a
868 * lower @priority. Subregions without priority are taken as @priority 0.
869 * A region may only be added once as a subregion (unless removed with
870 * memory_region_del_subregion()); use memory_region_init_alias() if you
871 * want a region to be a subregion in multiple locations.
872 *
873 * @mr: the region to contain the new subregion; must be a container
874 * initialized with memory_region_init().
875 * @offset: the offset relative to @mr where @subregion is added.
876 * @subregion: the subregion to be added.
877 * @priority: used for resolving overlaps; highest priority wins.
878 */
879 void memory_region_add_subregion_overlap(MemoryRegion *mr,
880 hwaddr offset,
881 MemoryRegion *subregion,
882 int priority);
883
884 /**
885 * memory_region_get_ram_addr: Get the ram address associated with a memory
886 * region
887 *
888 * DO NOT USE THIS FUNCTION. This is a temporary workaround while the Xen
889 * code is being reworked.
890 */
891 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr);
892
893 uint64_t memory_region_get_alignment(const MemoryRegion *mr);
894 /**
895 * memory_region_del_subregion: Remove a subregion.
896 *
897 * Removes a subregion from its container.
898 *
899 * @mr: the container to be updated.
900 * @subregion: the region being removed; must be a current subregion of @mr.
901 */
902 void memory_region_del_subregion(MemoryRegion *mr,
903 MemoryRegion *subregion);
904
905 /*
906 * memory_region_set_enabled: dynamically enable or disable a region
907 *
908 * Enables or disables a memory region. A disabled memory region
909 * ignores all accesses to itself and its subregions. It does not
910 * obscure sibling subregions with lower priority - it simply behaves as
911 * if it was removed from the hierarchy.
912 *
913 * Regions default to being enabled.
914 *
915 * @mr: the region to be updated
916 * @enabled: whether to enable or disable the region
917 */
918 void memory_region_set_enabled(MemoryRegion *mr, bool enabled);
919
920 /*
921 * memory_region_set_address: dynamically update the address of a region
922 *
923 * Dynamically updates the address of a region, relative to its container.
924 * May be used on regions are currently part of a memory hierarchy.
925 *
926 * @mr: the region to be updated
927 * @addr: new address, relative to container region
928 */
929 void memory_region_set_address(MemoryRegion *mr, hwaddr addr);
930
931 /*
932 * memory_region_set_size: dynamically update the size of a region.
933 *
934 * Dynamically updates the size of a region.
935 *
936 * @mr: the region to be updated
937 * @size: used size of the region.
938 */
939 void memory_region_set_size(MemoryRegion *mr, uint64_t size);
940
941 /*
942 * memory_region_set_alias_offset: dynamically update a memory alias's offset
943 *
944 * Dynamically updates the offset into the target region that an alias points
945 * to, as if the fourth argument to memory_region_init_alias() has changed.
946 *
947 * @mr: the #MemoryRegion to be updated; should be an alias.
948 * @offset: the new offset into the target memory region
949 */
950 void memory_region_set_alias_offset(MemoryRegion *mr,
951 hwaddr offset);
952
953 /**
954 * memory_region_present: checks if an address relative to a @container
955 * translates into #MemoryRegion within @container
956 *
957 * Answer whether a #MemoryRegion within @container covers the address
958 * @addr.
959 *
960 * @container: a #MemoryRegion within which @addr is a relative address
961 * @addr: the area within @container to be searched
962 */
963 bool memory_region_present(MemoryRegion *container, hwaddr addr);
964
965 /**
966 * memory_region_is_mapped: returns true if #MemoryRegion is mapped
967 * into any address space.
968 *
969 * @mr: a #MemoryRegion which should be checked if it's mapped
970 */
971 bool memory_region_is_mapped(MemoryRegion *mr);
972
973 /**
974 * memory_region_find: translate an address/size relative to a
975 * MemoryRegion into a #MemoryRegionSection.
976 *
977 * Locates the first #MemoryRegion within @mr that overlaps the range
978 * given by @addr and @size.
979 *
980 * Returns a #MemoryRegionSection that describes a contiguous overlap.
981 * It will have the following characteristics:
982 * .@size = 0 iff no overlap was found
983 * .@mr is non-%NULL iff an overlap was found
984 *
985 * Remember that in the return value the @offset_within_region is
986 * relative to the returned region (in the .@mr field), not to the
987 * @mr argument.
988 *
989 * Similarly, the .@offset_within_address_space is relative to the
990 * address space that contains both regions, the passed and the
991 * returned one. However, in the special case where the @mr argument
992 * has no container (and thus is the root of the address space), the
993 * following will hold:
994 * .@offset_within_address_space >= @addr
995 * .@offset_within_address_space + .@size <= @addr + @size
996 *
997 * @mr: a MemoryRegion within which @addr is a relative address
998 * @addr: start of the area within @as to be searched
999 * @size: size of the area to be searched
1000 */
1001 MemoryRegionSection memory_region_find(MemoryRegion *mr,
1002 hwaddr addr, uint64_t size);
1003
1004 /**
1005 * address_space_sync_dirty_bitmap: synchronize the dirty log for all memory
1006 *
1007 * Synchronizes the dirty page log for an entire address space.
1008 * @as: the address space that contains the memory being synchronized
1009 */
1010 void address_space_sync_dirty_bitmap(AddressSpace *as);
1011
1012 /**
1013 * memory_region_transaction_begin: Start a transaction.
1014 *
1015 * During a transaction, changes will be accumulated and made visible
1016 * only when the transaction ends (is committed).
1017 */
1018 void memory_region_transaction_begin(void);
1019
1020 /**
1021 * memory_region_transaction_commit: Commit a transaction and make changes
1022 * visible to the guest.
1023 */
1024 void memory_region_transaction_commit(void);
1025
1026 /**
1027 * memory_listener_register: register callbacks to be called when memory
1028 * sections are mapped or unmapped into an address
1029 * space
1030 *
1031 * @listener: an object containing the callbacks to be called
1032 * @filter: if non-%NULL, only regions in this address space will be observed
1033 */
1034 void memory_listener_register(MemoryListener *listener, AddressSpace *filter);
1035
1036 /**
1037 * memory_listener_unregister: undo the effect of memory_listener_register()
1038 *
1039 * @listener: an object containing the callbacks to be removed
1040 */
1041 void memory_listener_unregister(MemoryListener *listener);
1042
1043 /**
1044 * memory_global_dirty_log_start: begin dirty logging for all regions
1045 */
1046 void memory_global_dirty_log_start(void);
1047
1048 /**
1049 * memory_global_dirty_log_stop: end dirty logging for all regions
1050 */
1051 void memory_global_dirty_log_stop(void);
1052
1053 void mtree_info(fprintf_function mon_printf, void *f);
1054
1055 /**
1056 * memory_region_dispatch_read: perform a read directly to the specified
1057 * MemoryRegion.
1058 *
1059 * @mr: #MemoryRegion to access
1060 * @addr: address within that region
1061 * @pval: pointer to uint64_t which the data is written to
1062 * @size: size of the access in bytes
1063 * @attrs: memory transaction attributes to use for the access
1064 */
1065 MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
1066 hwaddr addr,
1067 uint64_t *pval,
1068 unsigned size,
1069 MemTxAttrs attrs);
1070 /**
1071 * memory_region_dispatch_write: perform a write directly to the specified
1072 * MemoryRegion.
1073 *
1074 * @mr: #MemoryRegion to access
1075 * @addr: address within that region
1076 * @data: data to write
1077 * @size: size of the access in bytes
1078 * @attrs: memory transaction attributes to use for the access
1079 */
1080 MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
1081 hwaddr addr,
1082 uint64_t data,
1083 unsigned size,
1084 MemTxAttrs attrs);
1085
1086 /**
1087 * address_space_init: initializes an address space
1088 *
1089 * @as: an uninitialized #AddressSpace
1090 * @root: a #MemoryRegion that routes addesses for the address space
1091 * @name: an address space name. The name is only used for debugging
1092 * output.
1093 */
1094 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name);
1095
1096
1097 /**
1098 * address_space_destroy: destroy an address space
1099 *
1100 * Releases all resources associated with an address space. After an address space
1101 * is destroyed, its root memory region (given by address_space_init()) may be destroyed
1102 * as well.
1103 *
1104 * @as: address space to be destroyed
1105 */
1106 void address_space_destroy(AddressSpace *as);
1107
1108 /**
1109 * address_space_rw: read from or write to an address space.
1110 *
1111 * Return a MemTxResult indicating whether the operation succeeded
1112 * or failed (eg unassigned memory, device rejected the transaction,
1113 * IOMMU fault).
1114 *
1115 * @as: #AddressSpace to be accessed
1116 * @addr: address within that address space
1117 * @attrs: memory transaction attributes
1118 * @buf: buffer with the data transferred
1119 * @is_write: indicates the transfer direction
1120 */
1121 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr,
1122 MemTxAttrs attrs, uint8_t *buf,
1123 int len, bool is_write);
1124
1125 /**
1126 * address_space_write: write to address space.
1127 *
1128 * Return a MemTxResult indicating whether the operation succeeded
1129 * or failed (eg unassigned memory, device rejected the transaction,
1130 * IOMMU fault).
1131 *
1132 * @as: #AddressSpace to be accessed
1133 * @addr: address within that address space
1134 * @attrs: memory transaction attributes
1135 * @buf: buffer with the data transferred
1136 */
1137 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
1138 MemTxAttrs attrs,
1139 const uint8_t *buf, int len);
1140
1141 /**
1142 * address_space_read: read from an address space.
1143 *
1144 * Return a MemTxResult indicating whether the operation succeeded
1145 * or failed (eg unassigned memory, device rejected the transaction,
1146 * IOMMU fault).
1147 *
1148 * @as: #AddressSpace to be accessed
1149 * @addr: address within that address space
1150 * @attrs: memory transaction attributes
1151 * @buf: buffer with the data transferred
1152 */
1153 MemTxResult address_space_read(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
1154 uint8_t *buf, int len);
1155
1156 /**
1157 * address_space_ld*: load from an address space
1158 * address_space_st*: store to an address space
1159 *
1160 * These functions perform a load or store of the byte, word,
1161 * longword or quad to the specified address within the AddressSpace.
1162 * The _le suffixed functions treat the data as little endian;
1163 * _be indicates big endian; no suffix indicates "same endianness
1164 * as guest CPU".
1165 *
1166 * The "guest CPU endianness" accessors are deprecated for use outside
1167 * target-* code; devices should be CPU-agnostic and use either the LE
1168 * or the BE accessors.
1169 *
1170 * @as #AddressSpace to be accessed
1171 * @addr: address within that address space
1172 * @val: data value, for stores
1173 * @attrs: memory transaction attributes
1174 * @result: location to write the success/failure of the transaction;
1175 * if NULL, this information is discarded
1176 */
1177 uint32_t address_space_ldub(AddressSpace *as, hwaddr addr,
1178 MemTxAttrs attrs, MemTxResult *result);
1179 uint32_t address_space_lduw_le(AddressSpace *as, hwaddr addr,
1180 MemTxAttrs attrs, MemTxResult *result);
1181 uint32_t address_space_lduw_be(AddressSpace *as, hwaddr addr,
1182 MemTxAttrs attrs, MemTxResult *result);
1183 uint32_t address_space_ldl_le(AddressSpace *as, hwaddr addr,
1184 MemTxAttrs attrs, MemTxResult *result);
1185 uint32_t address_space_ldl_be(AddressSpace *as, hwaddr addr,
1186 MemTxAttrs attrs, MemTxResult *result);
1187 uint64_t address_space_ldq_le(AddressSpace *as, hwaddr addr,
1188 MemTxAttrs attrs, MemTxResult *result);
1189 uint64_t address_space_ldq_be(AddressSpace *as, hwaddr addr,
1190 MemTxAttrs attrs, MemTxResult *result);
1191 void address_space_stb(AddressSpace *as, hwaddr addr, uint32_t val,
1192 MemTxAttrs attrs, MemTxResult *result);
1193 void address_space_stw_le(AddressSpace *as, hwaddr addr, uint32_t val,
1194 MemTxAttrs attrs, MemTxResult *result);
1195 void address_space_stw_be(AddressSpace *as, hwaddr addr, uint32_t val,
1196 MemTxAttrs attrs, MemTxResult *result);
1197 void address_space_stl_le(AddressSpace *as, hwaddr addr, uint32_t val,
1198 MemTxAttrs attrs, MemTxResult *result);
1199 void address_space_stl_be(AddressSpace *as, hwaddr addr, uint32_t val,
1200 MemTxAttrs attrs, MemTxResult *result);
1201 void address_space_stq_le(AddressSpace *as, hwaddr addr, uint64_t val,
1202 MemTxAttrs attrs, MemTxResult *result);
1203 void address_space_stq_be(AddressSpace *as, hwaddr addr, uint64_t val,
1204 MemTxAttrs attrs, MemTxResult *result);
1205
1206 #ifdef NEED_CPU_H
1207 uint32_t address_space_lduw(AddressSpace *as, hwaddr addr,
1208 MemTxAttrs attrs, MemTxResult *result);
1209 uint32_t address_space_ldl(AddressSpace *as, hwaddr addr,
1210 MemTxAttrs attrs, MemTxResult *result);
1211 uint64_t address_space_ldq(AddressSpace *as, hwaddr addr,
1212 MemTxAttrs attrs, MemTxResult *result);
1213 void address_space_stl_notdirty(AddressSpace *as, hwaddr addr, uint32_t val,
1214 MemTxAttrs attrs, MemTxResult *result);
1215 void address_space_stw(AddressSpace *as, hwaddr addr, uint32_t val,
1216 MemTxAttrs attrs, MemTxResult *result);
1217 void address_space_stl(AddressSpace *as, hwaddr addr, uint32_t val,
1218 MemTxAttrs attrs, MemTxResult *result);
1219 void address_space_stq(AddressSpace *as, hwaddr addr, uint64_t val,
1220 MemTxAttrs attrs, MemTxResult *result);
1221 #endif
1222
1223 /* address_space_translate: translate an address range into an address space
1224 * into a MemoryRegion and an address range into that section
1225 *
1226 * @as: #AddressSpace to be accessed
1227 * @addr: address within that address space
1228 * @xlat: pointer to address within the returned memory region section's
1229 * #MemoryRegion.
1230 * @len: pointer to length
1231 * @is_write: indicates the transfer direction
1232 */
1233 MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr,
1234 hwaddr *xlat, hwaddr *len,
1235 bool is_write);
1236
1237 /* address_space_access_valid: check for validity of accessing an address
1238 * space range
1239 *
1240 * Check whether memory is assigned to the given address space range, and
1241 * access is permitted by any IOMMU regions that are active for the address
1242 * space.
1243 *
1244 * For now, addr and len should be aligned to a page size. This limitation
1245 * will be lifted in the future.
1246 *
1247 * @as: #AddressSpace to be accessed
1248 * @addr: address within that address space
1249 * @len: length of the area to be checked
1250 * @is_write: indicates the transfer direction
1251 */
1252 bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write);
1253
1254 /* address_space_map: map a physical memory region into a host virtual address
1255 *
1256 * May map a subset of the requested range, given by and returned in @plen.
1257 * May return %NULL if resources needed to perform the mapping are exhausted.
1258 * Use only for reads OR writes - not for read-modify-write operations.
1259 * Use cpu_register_map_client() to know when retrying the map operation is
1260 * likely to succeed.
1261 *
1262 * @as: #AddressSpace to be accessed
1263 * @addr: address within that address space
1264 * @plen: pointer to length of buffer; updated on return
1265 * @is_write: indicates the transfer direction
1266 */
1267 void *address_space_map(AddressSpace *as, hwaddr addr,
1268 hwaddr *plen, bool is_write);
1269
1270 /* address_space_unmap: Unmaps a memory region previously mapped by address_space_map()
1271 *
1272 * Will also mark the memory as dirty if @is_write == %true. @access_len gives
1273 * the amount of memory that was actually read or written by the caller.
1274 *
1275 * @as: #AddressSpace used
1276 * @addr: address within that address space
1277 * @len: buffer length as returned by address_space_map()
1278 * @access_len: amount of data actually transferred
1279 * @is_write: indicates the transfer direction
1280 */
1281 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
1282 int is_write, hwaddr access_len);
1283
1284
1285 #endif
1286
1287 #endif