]> git.proxmox.com Git - mirror_qemu.git/blob - include/exec/memory.h
exec: move listener from AddressSpaceDispatch to AddressSpace
[mirror_qemu.git] / include / exec / memory.h
1 /*
2 * Physical memory management API
3 *
4 * Copyright 2011 Red Hat, Inc. and/or its affiliates
5 *
6 * Authors:
7 * Avi Kivity <avi@redhat.com>
8 *
9 * This work is licensed under the terms of the GNU GPL, version 2. See
10 * the COPYING file in the top-level directory.
11 *
12 */
13
14 #ifndef MEMORY_H
15 #define MEMORY_H
16
17 #ifndef CONFIG_USER_ONLY
18
19 #include <stdint.h>
20 #include <stdbool.h>
21 #include "qemu-common.h"
22 #include "exec/cpu-common.h"
23 #ifndef CONFIG_USER_ONLY
24 #include "exec/hwaddr.h"
25 #endif
26 #include "qemu/queue.h"
27 #include "qemu/int128.h"
28 #include "qemu/notify.h"
29
30 #define MAX_PHYS_ADDR_SPACE_BITS 62
31 #define MAX_PHYS_ADDR (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1)
32
33 typedef struct MemoryRegionOps MemoryRegionOps;
34 typedef struct MemoryRegionMmio MemoryRegionMmio;
35
36 /* Must match *_DIRTY_FLAGS in cpu-all.h. To be replaced with dynamic
37 * registration.
38 */
39 #define DIRTY_MEMORY_VGA 0
40 #define DIRTY_MEMORY_CODE 1
41 #define DIRTY_MEMORY_MIGRATION 3
42
43 struct MemoryRegionMmio {
44 CPUReadMemoryFunc *read[3];
45 CPUWriteMemoryFunc *write[3];
46 };
47
48 typedef struct IOMMUTLBEntry IOMMUTLBEntry;
49
50 /* See address_space_translate: bit 0 is read, bit 1 is write. */
51 typedef enum {
52 IOMMU_NONE = 0,
53 IOMMU_RO = 1,
54 IOMMU_WO = 2,
55 IOMMU_RW = 3,
56 } IOMMUAccessFlags;
57
58 struct IOMMUTLBEntry {
59 AddressSpace *target_as;
60 hwaddr iova;
61 hwaddr translated_addr;
62 hwaddr addr_mask; /* 0xfff = 4k translation */
63 IOMMUAccessFlags perm;
64 };
65
66 /*
67 * Memory region callbacks
68 */
69 struct MemoryRegionOps {
70 /* Read from the memory region. @addr is relative to @mr; @size is
71 * in bytes. */
72 uint64_t (*read)(void *opaque,
73 hwaddr addr,
74 unsigned size);
75 /* Write to the memory region. @addr is relative to @mr; @size is
76 * in bytes. */
77 void (*write)(void *opaque,
78 hwaddr addr,
79 uint64_t data,
80 unsigned size);
81
82 enum device_endian endianness;
83 /* Guest-visible constraints: */
84 struct {
85 /* If nonzero, specify bounds on access sizes beyond which a machine
86 * check is thrown.
87 */
88 unsigned min_access_size;
89 unsigned max_access_size;
90 /* If true, unaligned accesses are supported. Otherwise unaligned
91 * accesses throw machine checks.
92 */
93 bool unaligned;
94 /*
95 * If present, and returns #false, the transaction is not accepted
96 * by the device (and results in machine dependent behaviour such
97 * as a machine check exception).
98 */
99 bool (*accepts)(void *opaque, hwaddr addr,
100 unsigned size, bool is_write);
101 } valid;
102 /* Internal implementation constraints: */
103 struct {
104 /* If nonzero, specifies the minimum size implemented. Smaller sizes
105 * will be rounded upwards and a partial result will be returned.
106 */
107 unsigned min_access_size;
108 /* If nonzero, specifies the maximum size implemented. Larger sizes
109 * will be done as a series of accesses with smaller sizes.
110 */
111 unsigned max_access_size;
112 /* If true, unaligned accesses are supported. Otherwise all accesses
113 * are converted to (possibly multiple) naturally aligned accesses.
114 */
115 bool unaligned;
116 } impl;
117
118 /* If .read and .write are not present, old_mmio may be used for
119 * backwards compatibility with old mmio registration
120 */
121 const MemoryRegionMmio old_mmio;
122 };
123
124 typedef struct MemoryRegionIOMMUOps MemoryRegionIOMMUOps;
125
126 struct MemoryRegionIOMMUOps {
127 /* Return a TLB entry that contains a given address. */
128 IOMMUTLBEntry (*translate)(MemoryRegion *iommu, hwaddr addr);
129 };
130
131 typedef struct CoalescedMemoryRange CoalescedMemoryRange;
132 typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd;
133
134 struct MemoryRegion {
135 /* All fields are private - violators will be prosecuted */
136 const MemoryRegionOps *ops;
137 const MemoryRegionIOMMUOps *iommu_ops;
138 void *opaque;
139 struct Object *owner;
140 MemoryRegion *parent;
141 Int128 size;
142 hwaddr addr;
143 void (*destructor)(MemoryRegion *mr);
144 ram_addr_t ram_addr;
145 bool subpage;
146 bool terminates;
147 bool romd_mode;
148 bool ram;
149 bool readonly; /* For RAM regions */
150 bool enabled;
151 bool rom_device;
152 bool warning_printed; /* For reservations */
153 bool flush_coalesced_mmio;
154 MemoryRegion *alias;
155 hwaddr alias_offset;
156 unsigned priority;
157 bool may_overlap;
158 QTAILQ_HEAD(subregions, MemoryRegion) subregions;
159 QTAILQ_ENTRY(MemoryRegion) subregions_link;
160 QTAILQ_HEAD(coalesced_ranges, CoalescedMemoryRange) coalesced;
161 const char *name;
162 uint8_t dirty_log_mask;
163 unsigned ioeventfd_nb;
164 MemoryRegionIoeventfd *ioeventfds;
165 NotifierList iommu_notify;
166 };
167
168 typedef struct MemoryListener MemoryListener;
169
170 /**
171 * MemoryListener: callbacks structure for updates to the physical memory map
172 *
173 * Allows a component to adjust to changes in the guest-visible memory map.
174 * Use with memory_listener_register() and memory_listener_unregister().
175 */
176 struct MemoryListener {
177 void (*begin)(MemoryListener *listener);
178 void (*commit)(MemoryListener *listener);
179 void (*region_add)(MemoryListener *listener, MemoryRegionSection *section);
180 void (*region_del)(MemoryListener *listener, MemoryRegionSection *section);
181 void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section);
182 void (*log_start)(MemoryListener *listener, MemoryRegionSection *section);
183 void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section);
184 void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section);
185 void (*log_global_start)(MemoryListener *listener);
186 void (*log_global_stop)(MemoryListener *listener);
187 void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section,
188 bool match_data, uint64_t data, EventNotifier *e);
189 void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section,
190 bool match_data, uint64_t data, EventNotifier *e);
191 void (*coalesced_mmio_add)(MemoryListener *listener, MemoryRegionSection *section,
192 hwaddr addr, hwaddr len);
193 void (*coalesced_mmio_del)(MemoryListener *listener, MemoryRegionSection *section,
194 hwaddr addr, hwaddr len);
195 /* Lower = earlier (during add), later (during del) */
196 unsigned priority;
197 AddressSpace *address_space_filter;
198 QTAILQ_ENTRY(MemoryListener) link;
199 };
200
201 /**
202 * AddressSpace: describes a mapping of addresses to #MemoryRegion objects
203 */
204 struct AddressSpace {
205 /* All fields are private. */
206 char *name;
207 MemoryRegion *root;
208 struct FlatView *current_map;
209 int ioeventfd_nb;
210 struct MemoryRegionIoeventfd *ioeventfds;
211 struct AddressSpaceDispatch *dispatch;
212 MemoryListener dispatch_listener;
213
214 QTAILQ_ENTRY(AddressSpace) address_spaces_link;
215 };
216
217 /**
218 * MemoryRegionSection: describes a fragment of a #MemoryRegion
219 *
220 * @mr: the region, or %NULL if empty
221 * @address_space: the address space the region is mapped in
222 * @offset_within_region: the beginning of the section, relative to @mr's start
223 * @size: the size of the section; will not exceed @mr's boundaries
224 * @offset_within_address_space: the address of the first byte of the section
225 * relative to the region's address space
226 * @readonly: writes to this section are ignored
227 */
228 struct MemoryRegionSection {
229 MemoryRegion *mr;
230 AddressSpace *address_space;
231 hwaddr offset_within_region;
232 Int128 size;
233 hwaddr offset_within_address_space;
234 bool readonly;
235 };
236
237 /**
238 * memory_region_init: Initialize a memory region
239 *
240 * The region typically acts as a container for other memory regions. Use
241 * memory_region_add_subregion() to add subregions.
242 *
243 * @mr: the #MemoryRegion to be initialized
244 * @owner: the object that tracks the region's reference count
245 * @name: used for debugging; not visible to the user or ABI
246 * @size: size of the region; any subregions beyond this size will be clipped
247 */
248 void memory_region_init(MemoryRegion *mr,
249 struct Object *owner,
250 const char *name,
251 uint64_t size);
252
253 /**
254 * memory_region_ref: Add 1 to a memory region's reference count
255 *
256 * Whenever memory regions are accessed outside the BQL, they need to be
257 * preserved against hot-unplug. MemoryRegions actually do not have their
258 * own reference count; they piggyback on a QOM object, their "owner".
259 * This function adds a reference to the owner.
260 *
261 * All MemoryRegions must have an owner if they can disappear, even if the
262 * device they belong to operates exclusively under the BQL. This is because
263 * the region could be returned at any time by memory_region_find, and this
264 * is usually under guest control.
265 *
266 * @mr: the #MemoryRegion
267 */
268 void memory_region_ref(MemoryRegion *mr);
269
270 /**
271 * memory_region_unref: Remove 1 to a memory region's reference count
272 *
273 * Whenever memory regions are accessed outside the BQL, they need to be
274 * preserved against hot-unplug. MemoryRegions actually do not have their
275 * own reference count; they piggyback on a QOM object, their "owner".
276 * This function removes a reference to the owner and possibly destroys it.
277 *
278 * @mr: the #MemoryRegion
279 */
280 void memory_region_unref(MemoryRegion *mr);
281
282 /**
283 * memory_region_init_io: Initialize an I/O memory region.
284 *
285 * Accesses into the region will cause the callbacks in @ops to be called.
286 * if @size is nonzero, subregions will be clipped to @size.
287 *
288 * @mr: the #MemoryRegion to be initialized.
289 * @owner: the object that tracks the region's reference count
290 * @ops: a structure containing read and write callbacks to be used when
291 * I/O is performed on the region.
292 * @opaque: passed to to the read and write callbacks of the @ops structure.
293 * @name: used for debugging; not visible to the user or ABI
294 * @size: size of the region.
295 */
296 void memory_region_init_io(MemoryRegion *mr,
297 struct Object *owner,
298 const MemoryRegionOps *ops,
299 void *opaque,
300 const char *name,
301 uint64_t size);
302
303 /**
304 * memory_region_init_ram: Initialize RAM memory region. Accesses into the
305 * region will modify memory directly.
306 *
307 * @mr: the #MemoryRegion to be initialized.
308 * @owner: the object that tracks the region's reference count
309 * @name: the name of the region.
310 * @size: size of the region.
311 */
312 void memory_region_init_ram(MemoryRegion *mr,
313 struct Object *owner,
314 const char *name,
315 uint64_t size);
316
317 /**
318 * memory_region_init_ram_ptr: Initialize RAM memory region from a
319 * user-provided pointer. Accesses into the
320 * region will modify memory directly.
321 *
322 * @mr: the #MemoryRegion to be initialized.
323 * @owner: the object that tracks the region's reference count
324 * @name: the name of the region.
325 * @size: size of the region.
326 * @ptr: memory to be mapped; must contain at least @size bytes.
327 */
328 void memory_region_init_ram_ptr(MemoryRegion *mr,
329 struct Object *owner,
330 const char *name,
331 uint64_t size,
332 void *ptr);
333
334 /**
335 * memory_region_init_alias: Initialize a memory region that aliases all or a
336 * part of another memory region.
337 *
338 * @mr: the #MemoryRegion to be initialized.
339 * @owner: the object that tracks the region's reference count
340 * @name: used for debugging; not visible to the user or ABI
341 * @orig: the region to be referenced; @mr will be equivalent to
342 * @orig between @offset and @offset + @size - 1.
343 * @offset: start of the section in @orig to be referenced.
344 * @size: size of the region.
345 */
346 void memory_region_init_alias(MemoryRegion *mr,
347 struct Object *owner,
348 const char *name,
349 MemoryRegion *orig,
350 hwaddr offset,
351 uint64_t size);
352
353 /**
354 * memory_region_init_rom_device: Initialize a ROM memory region. Writes are
355 * handled via callbacks.
356 *
357 * @mr: the #MemoryRegion to be initialized.
358 * @owner: the object that tracks the region's reference count
359 * @ops: callbacks for write access handling.
360 * @name: the name of the region.
361 * @size: size of the region.
362 */
363 void memory_region_init_rom_device(MemoryRegion *mr,
364 struct Object *owner,
365 const MemoryRegionOps *ops,
366 void *opaque,
367 const char *name,
368 uint64_t size);
369
370 /**
371 * memory_region_init_reservation: Initialize a memory region that reserves
372 * I/O space.
373 *
374 * A reservation region primariy serves debugging purposes. It claims I/O
375 * space that is not supposed to be handled by QEMU itself. Any access via
376 * the memory API will cause an abort().
377 *
378 * @mr: the #MemoryRegion to be initialized
379 * @owner: the object that tracks the region's reference count
380 * @name: used for debugging; not visible to the user or ABI
381 * @size: size of the region.
382 */
383 void memory_region_init_reservation(MemoryRegion *mr,
384 struct Object *owner,
385 const char *name,
386 uint64_t size);
387
388 /**
389 * memory_region_init_iommu: Initialize a memory region that translates
390 * addresses
391 *
392 * An IOMMU region translates addresses and forwards accesses to a target
393 * memory region.
394 *
395 * @mr: the #MemoryRegion to be initialized
396 * @owner: the object that tracks the region's reference count
397 * @ops: a function that translates addresses into the @target region
398 * @name: used for debugging; not visible to the user or ABI
399 * @size: size of the region.
400 */
401 void memory_region_init_iommu(MemoryRegion *mr,
402 struct Object *owner,
403 const MemoryRegionIOMMUOps *ops,
404 const char *name,
405 uint64_t size);
406
407 /**
408 * memory_region_destroy: Destroy a memory region and reclaim all resources.
409 *
410 * @mr: the region to be destroyed. May not currently be a subregion
411 * (see memory_region_add_subregion()) or referenced in an alias
412 * (see memory_region_init_alias()).
413 */
414 void memory_region_destroy(MemoryRegion *mr);
415
416 /**
417 * memory_region_owner: get a memory region's owner.
418 *
419 * @mr: the memory region being queried.
420 */
421 struct Object *memory_region_owner(MemoryRegion *mr);
422
423 /**
424 * memory_region_size: get a memory region's size.
425 *
426 * @mr: the memory region being queried.
427 */
428 uint64_t memory_region_size(MemoryRegion *mr);
429
430 /**
431 * memory_region_is_ram: check whether a memory region is random access
432 *
433 * Returns %true is a memory region is random access.
434 *
435 * @mr: the memory region being queried
436 */
437 bool memory_region_is_ram(MemoryRegion *mr);
438
439 /**
440 * memory_region_is_romd: check whether a memory region is in ROMD mode
441 *
442 * Returns %true if a memory region is a ROM device and currently set to allow
443 * direct reads.
444 *
445 * @mr: the memory region being queried
446 */
447 static inline bool memory_region_is_romd(MemoryRegion *mr)
448 {
449 return mr->rom_device && mr->romd_mode;
450 }
451
452 /**
453 * memory_region_is_iommu: check whether a memory region is an iommu
454 *
455 * Returns %true is a memory region is an iommu.
456 *
457 * @mr: the memory region being queried
458 */
459 bool memory_region_is_iommu(MemoryRegion *mr);
460
461 /**
462 * memory_region_notify_iommu: notify a change in an IOMMU translation entry.
463 *
464 * @mr: the memory region that was changed
465 * @entry: the new entry in the IOMMU translation table. The entry
466 * replaces all old entries for the same virtual I/O address range.
467 * Deleted entries have .@perm == 0.
468 */
469 void memory_region_notify_iommu(MemoryRegion *mr,
470 IOMMUTLBEntry entry);
471
472 /**
473 * memory_region_register_iommu_notifier: register a notifier for changes to
474 * IOMMU translation entries.
475 *
476 * @mr: the memory region to observe
477 * @n: the notifier to be added; the notifier receives a pointer to an
478 * #IOMMUTLBEntry as the opaque value; the pointer ceases to be
479 * valid on exit from the notifier.
480 */
481 void memory_region_register_iommu_notifier(MemoryRegion *mr, Notifier *n);
482
483 /**
484 * memory_region_unregister_iommu_notifier: unregister a notifier for
485 * changes to IOMMU translation entries.
486 *
487 * @n: the notifier to be removed.
488 */
489 void memory_region_unregister_iommu_notifier(Notifier *n);
490
491 /**
492 * memory_region_name: get a memory region's name
493 *
494 * Returns the string that was used to initialize the memory region.
495 *
496 * @mr: the memory region being queried
497 */
498 const char *memory_region_name(MemoryRegion *mr);
499
500 /**
501 * memory_region_is_logging: return whether a memory region is logging writes
502 *
503 * Returns %true if the memory region is logging writes
504 *
505 * @mr: the memory region being queried
506 */
507 bool memory_region_is_logging(MemoryRegion *mr);
508
509 /**
510 * memory_region_is_rom: check whether a memory region is ROM
511 *
512 * Returns %true is a memory region is read-only memory.
513 *
514 * @mr: the memory region being queried
515 */
516 bool memory_region_is_rom(MemoryRegion *mr);
517
518 /**
519 * memory_region_get_ram_ptr: Get a pointer into a RAM memory region.
520 *
521 * Returns a host pointer to a RAM memory region (created with
522 * memory_region_init_ram() or memory_region_init_ram_ptr()). Use with
523 * care.
524 *
525 * @mr: the memory region being queried.
526 */
527 void *memory_region_get_ram_ptr(MemoryRegion *mr);
528
529 /**
530 * memory_region_set_log: Turn dirty logging on or off for a region.
531 *
532 * Turns dirty logging on or off for a specified client (display, migration).
533 * Only meaningful for RAM regions.
534 *
535 * @mr: the memory region being updated.
536 * @log: whether dirty logging is to be enabled or disabled.
537 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
538 * %DIRTY_MEMORY_VGA.
539 */
540 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client);
541
542 /**
543 * memory_region_get_dirty: Check whether a range of bytes is dirty
544 * for a specified client.
545 *
546 * Checks whether a range of bytes has been written to since the last
547 * call to memory_region_reset_dirty() with the same @client. Dirty logging
548 * must be enabled.
549 *
550 * @mr: the memory region being queried.
551 * @addr: the address (relative to the start of the region) being queried.
552 * @size: the size of the range being queried.
553 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
554 * %DIRTY_MEMORY_VGA.
555 */
556 bool memory_region_get_dirty(MemoryRegion *mr, hwaddr addr,
557 hwaddr size, unsigned client);
558
559 /**
560 * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region.
561 *
562 * Marks a range of bytes as dirty, after it has been dirtied outside
563 * guest code.
564 *
565 * @mr: the memory region being dirtied.
566 * @addr: the address (relative to the start of the region) being dirtied.
567 * @size: size of the range being dirtied.
568 */
569 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
570 hwaddr size);
571
572 /**
573 * memory_region_test_and_clear_dirty: Check whether a range of bytes is dirty
574 * for a specified client. It clears them.
575 *
576 * Checks whether a range of bytes has been written to since the last
577 * call to memory_region_reset_dirty() with the same @client. Dirty logging
578 * must be enabled.
579 *
580 * @mr: the memory region being queried.
581 * @addr: the address (relative to the start of the region) being queried.
582 * @size: the size of the range being queried.
583 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
584 * %DIRTY_MEMORY_VGA.
585 */
586 bool memory_region_test_and_clear_dirty(MemoryRegion *mr, hwaddr addr,
587 hwaddr size, unsigned client);
588 /**
589 * memory_region_sync_dirty_bitmap: Synchronize a region's dirty bitmap with
590 * any external TLBs (e.g. kvm)
591 *
592 * Flushes dirty information from accelerators such as kvm and vhost-net
593 * and makes it available to users of the memory API.
594 *
595 * @mr: the region being flushed.
596 */
597 void memory_region_sync_dirty_bitmap(MemoryRegion *mr);
598
599 /**
600 * memory_region_reset_dirty: Mark a range of pages as clean, for a specified
601 * client.
602 *
603 * Marks a range of pages as no longer dirty.
604 *
605 * @mr: the region being updated.
606 * @addr: the start of the subrange being cleaned.
607 * @size: the size of the subrange being cleaned.
608 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
609 * %DIRTY_MEMORY_VGA.
610 */
611 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
612 hwaddr size, unsigned client);
613
614 /**
615 * memory_region_set_readonly: Turn a memory region read-only (or read-write)
616 *
617 * Allows a memory region to be marked as read-only (turning it into a ROM).
618 * only useful on RAM regions.
619 *
620 * @mr: the region being updated.
621 * @readonly: whether rhe region is to be ROM or RAM.
622 */
623 void memory_region_set_readonly(MemoryRegion *mr, bool readonly);
624
625 /**
626 * memory_region_rom_device_set_romd: enable/disable ROMD mode
627 *
628 * Allows a ROM device (initialized with memory_region_init_rom_device() to
629 * set to ROMD mode (default) or MMIO mode. When it is in ROMD mode, the
630 * device is mapped to guest memory and satisfies read access directly.
631 * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function.
632 * Writes are always handled by the #MemoryRegion.write function.
633 *
634 * @mr: the memory region to be updated
635 * @romd_mode: %true to put the region into ROMD mode
636 */
637 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode);
638
639 /**
640 * memory_region_set_coalescing: Enable memory coalescing for the region.
641 *
642 * Enabled writes to a region to be queued for later processing. MMIO ->write
643 * callbacks may be delayed until a non-coalesced MMIO is issued.
644 * Only useful for IO regions. Roughly similar to write-combining hardware.
645 *
646 * @mr: the memory region to be write coalesced
647 */
648 void memory_region_set_coalescing(MemoryRegion *mr);
649
650 /**
651 * memory_region_add_coalescing: Enable memory coalescing for a sub-range of
652 * a region.
653 *
654 * Like memory_region_set_coalescing(), but works on a sub-range of a region.
655 * Multiple calls can be issued coalesced disjoint ranges.
656 *
657 * @mr: the memory region to be updated.
658 * @offset: the start of the range within the region to be coalesced.
659 * @size: the size of the subrange to be coalesced.
660 */
661 void memory_region_add_coalescing(MemoryRegion *mr,
662 hwaddr offset,
663 uint64_t size);
664
665 /**
666 * memory_region_clear_coalescing: Disable MMIO coalescing for the region.
667 *
668 * Disables any coalescing caused by memory_region_set_coalescing() or
669 * memory_region_add_coalescing(). Roughly equivalent to uncacheble memory
670 * hardware.
671 *
672 * @mr: the memory region to be updated.
673 */
674 void memory_region_clear_coalescing(MemoryRegion *mr);
675
676 /**
677 * memory_region_set_flush_coalesced: Enforce memory coalescing flush before
678 * accesses.
679 *
680 * Ensure that pending coalesced MMIO request are flushed before the memory
681 * region is accessed. This property is automatically enabled for all regions
682 * passed to memory_region_set_coalescing() and memory_region_add_coalescing().
683 *
684 * @mr: the memory region to be updated.
685 */
686 void memory_region_set_flush_coalesced(MemoryRegion *mr);
687
688 /**
689 * memory_region_clear_flush_coalesced: Disable memory coalescing flush before
690 * accesses.
691 *
692 * Clear the automatic coalesced MMIO flushing enabled via
693 * memory_region_set_flush_coalesced. Note that this service has no effect on
694 * memory regions that have MMIO coalescing enabled for themselves. For them,
695 * automatic flushing will stop once coalescing is disabled.
696 *
697 * @mr: the memory region to be updated.
698 */
699 void memory_region_clear_flush_coalesced(MemoryRegion *mr);
700
701 /**
702 * memory_region_add_eventfd: Request an eventfd to be triggered when a word
703 * is written to a location.
704 *
705 * Marks a word in an IO region (initialized with memory_region_init_io())
706 * as a trigger for an eventfd event. The I/O callback will not be called.
707 * The caller must be prepared to handle failure (that is, take the required
708 * action if the callback _is_ called).
709 *
710 * @mr: the memory region being updated.
711 * @addr: the address within @mr that is to be monitored
712 * @size: the size of the access to trigger the eventfd
713 * @match_data: whether to match against @data, instead of just @addr
714 * @data: the data to match against the guest write
715 * @fd: the eventfd to be triggered when @addr, @size, and @data all match.
716 **/
717 void memory_region_add_eventfd(MemoryRegion *mr,
718 hwaddr addr,
719 unsigned size,
720 bool match_data,
721 uint64_t data,
722 EventNotifier *e);
723
724 /**
725 * memory_region_del_eventfd: Cancel an eventfd.
726 *
727 * Cancels an eventfd trigger requested by a previous
728 * memory_region_add_eventfd() call.
729 *
730 * @mr: the memory region being updated.
731 * @addr: the address within @mr that is to be monitored
732 * @size: the size of the access to trigger the eventfd
733 * @match_data: whether to match against @data, instead of just @addr
734 * @data: the data to match against the guest write
735 * @fd: the eventfd to be triggered when @addr, @size, and @data all match.
736 */
737 void memory_region_del_eventfd(MemoryRegion *mr,
738 hwaddr addr,
739 unsigned size,
740 bool match_data,
741 uint64_t data,
742 EventNotifier *e);
743
744 /**
745 * memory_region_add_subregion: Add a subregion to a container.
746 *
747 * Adds a subregion at @offset. The subregion may not overlap with other
748 * subregions (except for those explicitly marked as overlapping). A region
749 * may only be added once as a subregion (unless removed with
750 * memory_region_del_subregion()); use memory_region_init_alias() if you
751 * want a region to be a subregion in multiple locations.
752 *
753 * @mr: the region to contain the new subregion; must be a container
754 * initialized with memory_region_init().
755 * @offset: the offset relative to @mr where @subregion is added.
756 * @subregion: the subregion to be added.
757 */
758 void memory_region_add_subregion(MemoryRegion *mr,
759 hwaddr offset,
760 MemoryRegion *subregion);
761 /**
762 * memory_region_add_subregion_overlap: Add a subregion to a container
763 * with overlap.
764 *
765 * Adds a subregion at @offset. The subregion may overlap with other
766 * subregions. Conflicts are resolved by having a higher @priority hide a
767 * lower @priority. Subregions without priority are taken as @priority 0.
768 * A region may only be added once as a subregion (unless removed with
769 * memory_region_del_subregion()); use memory_region_init_alias() if you
770 * want a region to be a subregion in multiple locations.
771 *
772 * @mr: the region to contain the new subregion; must be a container
773 * initialized with memory_region_init().
774 * @offset: the offset relative to @mr where @subregion is added.
775 * @subregion: the subregion to be added.
776 * @priority: used for resolving overlaps; highest priority wins.
777 */
778 void memory_region_add_subregion_overlap(MemoryRegion *mr,
779 hwaddr offset,
780 MemoryRegion *subregion,
781 unsigned priority);
782
783 /**
784 * memory_region_get_ram_addr: Get the ram address associated with a memory
785 * region
786 *
787 * DO NOT USE THIS FUNCTION. This is a temporary workaround while the Xen
788 * code is being reworked.
789 */
790 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr);
791
792 /**
793 * memory_region_del_subregion: Remove a subregion.
794 *
795 * Removes a subregion from its container.
796 *
797 * @mr: the container to be updated.
798 * @subregion: the region being removed; must be a current subregion of @mr.
799 */
800 void memory_region_del_subregion(MemoryRegion *mr,
801 MemoryRegion *subregion);
802
803 /*
804 * memory_region_set_enabled: dynamically enable or disable a region
805 *
806 * Enables or disables a memory region. A disabled memory region
807 * ignores all accesses to itself and its subregions. It does not
808 * obscure sibling subregions with lower priority - it simply behaves as
809 * if it was removed from the hierarchy.
810 *
811 * Regions default to being enabled.
812 *
813 * @mr: the region to be updated
814 * @enabled: whether to enable or disable the region
815 */
816 void memory_region_set_enabled(MemoryRegion *mr, bool enabled);
817
818 /*
819 * memory_region_set_address: dynamically update the address of a region
820 *
821 * Dynamically updates the address of a region, relative to its parent.
822 * May be used on regions are currently part of a memory hierarchy.
823 *
824 * @mr: the region to be updated
825 * @addr: new address, relative to parent region
826 */
827 void memory_region_set_address(MemoryRegion *mr, hwaddr addr);
828
829 /*
830 * memory_region_set_alias_offset: dynamically update a memory alias's offset
831 *
832 * Dynamically updates the offset into the target region that an alias points
833 * to, as if the fourth argument to memory_region_init_alias() has changed.
834 *
835 * @mr: the #MemoryRegion to be updated; should be an alias.
836 * @offset: the new offset into the target memory region
837 */
838 void memory_region_set_alias_offset(MemoryRegion *mr,
839 hwaddr offset);
840
841 /**
842 * memory_region_present: translate an address/size relative to a
843 * MemoryRegion into a #MemoryRegionSection.
844 *
845 * Answer whether a #MemoryRegion within @parent covers the address
846 * @addr.
847 *
848 * @parent: a MemoryRegion within which @addr is a relative address
849 * @addr: the area within @parent to be searched
850 */
851 bool memory_region_present(MemoryRegion *parent, hwaddr addr);
852
853 /**
854 * memory_region_find: translate an address/size relative to a
855 * MemoryRegion into a #MemoryRegionSection.
856 *
857 * Locates the first #MemoryRegion within @mr that overlaps the range
858 * given by @addr and @size.
859 *
860 * Returns a #MemoryRegionSection that describes a contiguous overlap.
861 * It will have the following characteristics:
862 * .@size = 0 iff no overlap was found
863 * .@mr is non-%NULL iff an overlap was found
864 *
865 * Remember that in the return value the @offset_within_region is
866 * relative to the returned region (in the .@mr field), not to the
867 * @mr argument.
868 *
869 * Similarly, the .@offset_within_address_space is relative to the
870 * address space that contains both regions, the passed and the
871 * returned one. However, in the special case where the @mr argument
872 * has no parent (and thus is the root of the address space), the
873 * following will hold:
874 * .@offset_within_address_space >= @addr
875 * .@offset_within_address_space + .@size <= @addr + @size
876 *
877 * @mr: a MemoryRegion within which @addr is a relative address
878 * @addr: start of the area within @as to be searched
879 * @size: size of the area to be searched
880 */
881 MemoryRegionSection memory_region_find(MemoryRegion *mr,
882 hwaddr addr, uint64_t size);
883
884 /**
885 * address_space_sync_dirty_bitmap: synchronize the dirty log for all memory
886 *
887 * Synchronizes the dirty page log for an entire address space.
888 * @as: the address space that contains the memory being synchronized
889 */
890 void address_space_sync_dirty_bitmap(AddressSpace *as);
891
892 /**
893 * memory_region_transaction_begin: Start a transaction.
894 *
895 * During a transaction, changes will be accumulated and made visible
896 * only when the transaction ends (is committed).
897 */
898 void memory_region_transaction_begin(void);
899
900 /**
901 * memory_region_transaction_commit: Commit a transaction and make changes
902 * visible to the guest.
903 */
904 void memory_region_transaction_commit(void);
905
906 /**
907 * memory_listener_register: register callbacks to be called when memory
908 * sections are mapped or unmapped into an address
909 * space
910 *
911 * @listener: an object containing the callbacks to be called
912 * @filter: if non-%NULL, only regions in this address space will be observed
913 */
914 void memory_listener_register(MemoryListener *listener, AddressSpace *filter);
915
916 /**
917 * memory_listener_unregister: undo the effect of memory_listener_register()
918 *
919 * @listener: an object containing the callbacks to be removed
920 */
921 void memory_listener_unregister(MemoryListener *listener);
922
923 /**
924 * memory_global_dirty_log_start: begin dirty logging for all regions
925 */
926 void memory_global_dirty_log_start(void);
927
928 /**
929 * memory_global_dirty_log_stop: end dirty logging for all regions
930 */
931 void memory_global_dirty_log_stop(void);
932
933 void mtree_info(fprintf_function mon_printf, void *f);
934
935 /**
936 * address_space_init: initializes an address space
937 *
938 * @as: an uninitialized #AddressSpace
939 * @root: a #MemoryRegion that routes addesses for the address space
940 * @name: an address space name. The name is only used for debugging
941 * output.
942 */
943 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name);
944
945
946 /**
947 * address_space_destroy: destroy an address space
948 *
949 * Releases all resources associated with an address space. After an address space
950 * is destroyed, its root memory region (given by address_space_init()) may be destroyed
951 * as well.
952 *
953 * @as: address space to be destroyed
954 */
955 void address_space_destroy(AddressSpace *as);
956
957 /**
958 * address_space_rw: read from or write to an address space.
959 *
960 * Return true if the operation hit any unassigned memory or encountered an
961 * IOMMU fault.
962 *
963 * @as: #AddressSpace to be accessed
964 * @addr: address within that address space
965 * @buf: buffer with the data transferred
966 * @is_write: indicates the transfer direction
967 */
968 bool address_space_rw(AddressSpace *as, hwaddr addr, uint8_t *buf,
969 int len, bool is_write);
970
971 /**
972 * address_space_write: write to address space.
973 *
974 * Return true if the operation hit any unassigned memory or encountered an
975 * IOMMU fault.
976 *
977 * @as: #AddressSpace to be accessed
978 * @addr: address within that address space
979 * @buf: buffer with the data transferred
980 */
981 bool address_space_write(AddressSpace *as, hwaddr addr,
982 const uint8_t *buf, int len);
983
984 /**
985 * address_space_read: read from an address space.
986 *
987 * Return true if the operation hit any unassigned memory or encountered an
988 * IOMMU fault.
989 *
990 * @as: #AddressSpace to be accessed
991 * @addr: address within that address space
992 * @buf: buffer with the data transferred
993 */
994 bool address_space_read(AddressSpace *as, hwaddr addr, uint8_t *buf, int len);
995
996 /* address_space_translate: translate an address range into an address space
997 * into a MemoryRegion and an address range into that section
998 *
999 * @as: #AddressSpace to be accessed
1000 * @addr: address within that address space
1001 * @xlat: pointer to address within the returned memory region section's
1002 * #MemoryRegion.
1003 * @len: pointer to length
1004 * @is_write: indicates the transfer direction
1005 */
1006 MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr,
1007 hwaddr *xlat, hwaddr *len,
1008 bool is_write);
1009
1010 /* address_space_access_valid: check for validity of accessing an address
1011 * space range
1012 *
1013 * Check whether memory is assigned to the given address space range, and
1014 * access is permitted by any IOMMU regions that are active for the address
1015 * space.
1016 *
1017 * For now, addr and len should be aligned to a page size. This limitation
1018 * will be lifted in the future.
1019 *
1020 * @as: #AddressSpace to be accessed
1021 * @addr: address within that address space
1022 * @len: length of the area to be checked
1023 * @is_write: indicates the transfer direction
1024 */
1025 bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write);
1026
1027 /* address_space_map: map a physical memory region into a host virtual address
1028 *
1029 * May map a subset of the requested range, given by and returned in @plen.
1030 * May return %NULL if resources needed to perform the mapping are exhausted.
1031 * Use only for reads OR writes - not for read-modify-write operations.
1032 * Use cpu_register_map_client() to know when retrying the map operation is
1033 * likely to succeed.
1034 *
1035 * @as: #AddressSpace to be accessed
1036 * @addr: address within that address space
1037 * @plen: pointer to length of buffer; updated on return
1038 * @is_write: indicates the transfer direction
1039 */
1040 void *address_space_map(AddressSpace *as, hwaddr addr,
1041 hwaddr *plen, bool is_write);
1042
1043 /* address_space_unmap: Unmaps a memory region previously mapped by address_space_map()
1044 *
1045 * Will also mark the memory as dirty if @is_write == %true. @access_len gives
1046 * the amount of memory that was actually read or written by the caller.
1047 *
1048 * @as: #AddressSpace used
1049 * @addr: address within that address space
1050 * @len: buffer length as returned by address_space_map()
1051 * @access_len: amount of data actually transferred
1052 * @is_write: indicates the transfer direction
1053 */
1054 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
1055 int is_write, hwaddr access_len);
1056
1057
1058 #endif
1059
1060 #endif