]> git.proxmox.com Git - mirror_qemu.git/blob - include/exec/memory.h
Merge remote-tracking branch 'remotes/mjt/tags/pull-trivial-patches-2015-10-08' into...
[mirror_qemu.git] / include / exec / memory.h
1 /*
2 * Physical memory management API
3 *
4 * Copyright 2011 Red Hat, Inc. and/or its affiliates
5 *
6 * Authors:
7 * Avi Kivity <avi@redhat.com>
8 *
9 * This work is licensed under the terms of the GNU GPL, version 2. See
10 * the COPYING file in the top-level directory.
11 *
12 */
13
14 #ifndef MEMORY_H
15 #define MEMORY_H
16
17 #ifndef CONFIG_USER_ONLY
18
19 #define DIRTY_MEMORY_VGA 0
20 #define DIRTY_MEMORY_CODE 1
21 #define DIRTY_MEMORY_MIGRATION 2
22 #define DIRTY_MEMORY_NUM 3 /* num of dirty bits */
23
24 #include <stdint.h>
25 #include <stdbool.h>
26 #include "exec/cpu-common.h"
27 #ifndef CONFIG_USER_ONLY
28 #include "exec/hwaddr.h"
29 #endif
30 #include "exec/memattrs.h"
31 #include "qemu/queue.h"
32 #include "qemu/int128.h"
33 #include "qemu/notify.h"
34 #include "qapi/error.h"
35 #include "qom/object.h"
36 #include "qemu/rcu.h"
37
38 #define MAX_PHYS_ADDR_SPACE_BITS 62
39 #define MAX_PHYS_ADDR (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1)
40
41 #define TYPE_MEMORY_REGION "qemu:memory-region"
42 #define MEMORY_REGION(obj) \
43 OBJECT_CHECK(MemoryRegion, (obj), TYPE_MEMORY_REGION)
44
45 typedef struct MemoryRegionOps MemoryRegionOps;
46 typedef struct MemoryRegionMmio MemoryRegionMmio;
47
48 struct MemoryRegionMmio {
49 CPUReadMemoryFunc *read[3];
50 CPUWriteMemoryFunc *write[3];
51 };
52
53 typedef struct IOMMUTLBEntry IOMMUTLBEntry;
54
55 /* See address_space_translate: bit 0 is read, bit 1 is write. */
56 typedef enum {
57 IOMMU_NONE = 0,
58 IOMMU_RO = 1,
59 IOMMU_WO = 2,
60 IOMMU_RW = 3,
61 } IOMMUAccessFlags;
62
63 struct IOMMUTLBEntry {
64 AddressSpace *target_as;
65 hwaddr iova;
66 hwaddr translated_addr;
67 hwaddr addr_mask; /* 0xfff = 4k translation */
68 IOMMUAccessFlags perm;
69 };
70
71 /* New-style MMIO accessors can indicate that the transaction failed.
72 * A zero (MEMTX_OK) response means success; anything else is a failure
73 * of some kind. The memory subsystem will bitwise-OR together results
74 * if it is synthesizing an operation from multiple smaller accesses.
75 */
76 #define MEMTX_OK 0
77 #define MEMTX_ERROR (1U << 0) /* device returned an error */
78 #define MEMTX_DECODE_ERROR (1U << 1) /* nothing at that address */
79 typedef uint32_t MemTxResult;
80
81 /*
82 * Memory region callbacks
83 */
84 struct MemoryRegionOps {
85 /* Read from the memory region. @addr is relative to @mr; @size is
86 * in bytes. */
87 uint64_t (*read)(void *opaque,
88 hwaddr addr,
89 unsigned size);
90 /* Write to the memory region. @addr is relative to @mr; @size is
91 * in bytes. */
92 void (*write)(void *opaque,
93 hwaddr addr,
94 uint64_t data,
95 unsigned size);
96
97 MemTxResult (*read_with_attrs)(void *opaque,
98 hwaddr addr,
99 uint64_t *data,
100 unsigned size,
101 MemTxAttrs attrs);
102 MemTxResult (*write_with_attrs)(void *opaque,
103 hwaddr addr,
104 uint64_t data,
105 unsigned size,
106 MemTxAttrs attrs);
107
108 enum device_endian endianness;
109 /* Guest-visible constraints: */
110 struct {
111 /* If nonzero, specify bounds on access sizes beyond which a machine
112 * check is thrown.
113 */
114 unsigned min_access_size;
115 unsigned max_access_size;
116 /* If true, unaligned accesses are supported. Otherwise unaligned
117 * accesses throw machine checks.
118 */
119 bool unaligned;
120 /*
121 * If present, and returns #false, the transaction is not accepted
122 * by the device (and results in machine dependent behaviour such
123 * as a machine check exception).
124 */
125 bool (*accepts)(void *opaque, hwaddr addr,
126 unsigned size, bool is_write);
127 } valid;
128 /* Internal implementation constraints: */
129 struct {
130 /* If nonzero, specifies the minimum size implemented. Smaller sizes
131 * will be rounded upwards and a partial result will be returned.
132 */
133 unsigned min_access_size;
134 /* If nonzero, specifies the maximum size implemented. Larger sizes
135 * will be done as a series of accesses with smaller sizes.
136 */
137 unsigned max_access_size;
138 /* If true, unaligned accesses are supported. Otherwise all accesses
139 * are converted to (possibly multiple) naturally aligned accesses.
140 */
141 bool unaligned;
142 } impl;
143
144 /* If .read and .write are not present, old_mmio may be used for
145 * backwards compatibility with old mmio registration
146 */
147 const MemoryRegionMmio old_mmio;
148 };
149
150 typedef struct MemoryRegionIOMMUOps MemoryRegionIOMMUOps;
151
152 struct MemoryRegionIOMMUOps {
153 /* Return a TLB entry that contains a given address. */
154 IOMMUTLBEntry (*translate)(MemoryRegion *iommu, hwaddr addr, bool is_write);
155 };
156
157 typedef struct CoalescedMemoryRange CoalescedMemoryRange;
158 typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd;
159
160 struct MemoryRegion {
161 Object parent_obj;
162 /* All fields are private - violators will be prosecuted */
163 const MemoryRegionOps *ops;
164 const MemoryRegionIOMMUOps *iommu_ops;
165 void *opaque;
166 MemoryRegion *container;
167 Int128 size;
168 hwaddr addr;
169 void (*destructor)(MemoryRegion *mr);
170 ram_addr_t ram_addr;
171 uint64_t align;
172 bool subpage;
173 bool terminates;
174 bool romd_mode;
175 bool ram;
176 bool skip_dump;
177 bool readonly; /* For RAM regions */
178 bool enabled;
179 bool rom_device;
180 bool warning_printed; /* For reservations */
181 bool flush_coalesced_mmio;
182 bool global_locking;
183 uint8_t vga_logging_count;
184 MemoryRegion *alias;
185 hwaddr alias_offset;
186 int32_t priority;
187 bool may_overlap;
188 QTAILQ_HEAD(subregions, MemoryRegion) subregions;
189 QTAILQ_ENTRY(MemoryRegion) subregions_link;
190 QTAILQ_HEAD(coalesced_ranges, CoalescedMemoryRange) coalesced;
191 const char *name;
192 uint8_t dirty_log_mask;
193 unsigned ioeventfd_nb;
194 MemoryRegionIoeventfd *ioeventfds;
195 NotifierList iommu_notify;
196 };
197
198 /**
199 * MemoryListener: callbacks structure for updates to the physical memory map
200 *
201 * Allows a component to adjust to changes in the guest-visible memory map.
202 * Use with memory_listener_register() and memory_listener_unregister().
203 */
204 struct MemoryListener {
205 void (*begin)(MemoryListener *listener);
206 void (*commit)(MemoryListener *listener);
207 void (*region_add)(MemoryListener *listener, MemoryRegionSection *section);
208 void (*region_del)(MemoryListener *listener, MemoryRegionSection *section);
209 void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section);
210 void (*log_start)(MemoryListener *listener, MemoryRegionSection *section,
211 int old, int new);
212 void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section,
213 int old, int new);
214 void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section);
215 void (*log_global_start)(MemoryListener *listener);
216 void (*log_global_stop)(MemoryListener *listener);
217 void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section,
218 bool match_data, uint64_t data, EventNotifier *e);
219 void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section,
220 bool match_data, uint64_t data, EventNotifier *e);
221 void (*coalesced_mmio_add)(MemoryListener *listener, MemoryRegionSection *section,
222 hwaddr addr, hwaddr len);
223 void (*coalesced_mmio_del)(MemoryListener *listener, MemoryRegionSection *section,
224 hwaddr addr, hwaddr len);
225 /* Lower = earlier (during add), later (during del) */
226 unsigned priority;
227 AddressSpace *address_space_filter;
228 QTAILQ_ENTRY(MemoryListener) link;
229 };
230
231 /**
232 * AddressSpace: describes a mapping of addresses to #MemoryRegion objects
233 */
234 struct AddressSpace {
235 /* All fields are private. */
236 struct rcu_head rcu;
237 char *name;
238 MemoryRegion *root;
239
240 /* Accessed via RCU. */
241 struct FlatView *current_map;
242
243 int ioeventfd_nb;
244 struct MemoryRegionIoeventfd *ioeventfds;
245 struct AddressSpaceDispatch *dispatch;
246 struct AddressSpaceDispatch *next_dispatch;
247 MemoryListener dispatch_listener;
248
249 QTAILQ_ENTRY(AddressSpace) address_spaces_link;
250 };
251
252 /**
253 * MemoryRegionSection: describes a fragment of a #MemoryRegion
254 *
255 * @mr: the region, or %NULL if empty
256 * @address_space: the address space the region is mapped in
257 * @offset_within_region: the beginning of the section, relative to @mr's start
258 * @size: the size of the section; will not exceed @mr's boundaries
259 * @offset_within_address_space: the address of the first byte of the section
260 * relative to the region's address space
261 * @readonly: writes to this section are ignored
262 */
263 struct MemoryRegionSection {
264 MemoryRegion *mr;
265 AddressSpace *address_space;
266 hwaddr offset_within_region;
267 Int128 size;
268 hwaddr offset_within_address_space;
269 bool readonly;
270 };
271
272 /**
273 * memory_region_init: Initialize a memory region
274 *
275 * The region typically acts as a container for other memory regions. Use
276 * memory_region_add_subregion() to add subregions.
277 *
278 * @mr: the #MemoryRegion to be initialized
279 * @owner: the object that tracks the region's reference count
280 * @name: used for debugging; not visible to the user or ABI
281 * @size: size of the region; any subregions beyond this size will be clipped
282 */
283 void memory_region_init(MemoryRegion *mr,
284 struct Object *owner,
285 const char *name,
286 uint64_t size);
287
288 /**
289 * memory_region_ref: Add 1 to a memory region's reference count
290 *
291 * Whenever memory regions are accessed outside the BQL, they need to be
292 * preserved against hot-unplug. MemoryRegions actually do not have their
293 * own reference count; they piggyback on a QOM object, their "owner".
294 * This function adds a reference to the owner.
295 *
296 * All MemoryRegions must have an owner if they can disappear, even if the
297 * device they belong to operates exclusively under the BQL. This is because
298 * the region could be returned at any time by memory_region_find, and this
299 * is usually under guest control.
300 *
301 * @mr: the #MemoryRegion
302 */
303 void memory_region_ref(MemoryRegion *mr);
304
305 /**
306 * memory_region_unref: Remove 1 to a memory region's reference count
307 *
308 * Whenever memory regions are accessed outside the BQL, they need to be
309 * preserved against hot-unplug. MemoryRegions actually do not have their
310 * own reference count; they piggyback on a QOM object, their "owner".
311 * This function removes a reference to the owner and possibly destroys it.
312 *
313 * @mr: the #MemoryRegion
314 */
315 void memory_region_unref(MemoryRegion *mr);
316
317 /**
318 * memory_region_init_io: Initialize an I/O memory region.
319 *
320 * Accesses into the region will cause the callbacks in @ops to be called.
321 * if @size is nonzero, subregions will be clipped to @size.
322 *
323 * @mr: the #MemoryRegion to be initialized.
324 * @owner: the object that tracks the region's reference count
325 * @ops: a structure containing read and write callbacks to be used when
326 * I/O is performed on the region.
327 * @opaque: passed to the read and write callbacks of the @ops structure.
328 * @name: used for debugging; not visible to the user or ABI
329 * @size: size of the region.
330 */
331 void memory_region_init_io(MemoryRegion *mr,
332 struct Object *owner,
333 const MemoryRegionOps *ops,
334 void *opaque,
335 const char *name,
336 uint64_t size);
337
338 /**
339 * memory_region_init_ram: Initialize RAM memory region. Accesses into the
340 * region will modify memory directly.
341 *
342 * @mr: the #MemoryRegion to be initialized.
343 * @owner: the object that tracks the region's reference count
344 * @name: the name of the region.
345 * @size: size of the region.
346 * @errp: pointer to Error*, to store an error if it happens.
347 */
348 void memory_region_init_ram(MemoryRegion *mr,
349 struct Object *owner,
350 const char *name,
351 uint64_t size,
352 Error **errp);
353
354 /**
355 * memory_region_init_resizeable_ram: Initialize memory region with resizeable
356 * RAM. Accesses into the region will
357 * modify memory directly. Only an initial
358 * portion of this RAM is actually used.
359 * The used size can change across reboots.
360 *
361 * @mr: the #MemoryRegion to be initialized.
362 * @owner: the object that tracks the region's reference count
363 * @name: the name of the region.
364 * @size: used size of the region.
365 * @max_size: max size of the region.
366 * @resized: callback to notify owner about used size change.
367 * @errp: pointer to Error*, to store an error if it happens.
368 */
369 void memory_region_init_resizeable_ram(MemoryRegion *mr,
370 struct Object *owner,
371 const char *name,
372 uint64_t size,
373 uint64_t max_size,
374 void (*resized)(const char*,
375 uint64_t length,
376 void *host),
377 Error **errp);
378 #ifdef __linux__
379 /**
380 * memory_region_init_ram_from_file: Initialize RAM memory region with a
381 * mmap-ed backend.
382 *
383 * @mr: the #MemoryRegion to be initialized.
384 * @owner: the object that tracks the region's reference count
385 * @name: the name of the region.
386 * @size: size of the region.
387 * @share: %true if memory must be mmaped with the MAP_SHARED flag
388 * @path: the path in which to allocate the RAM.
389 * @errp: pointer to Error*, to store an error if it happens.
390 */
391 void memory_region_init_ram_from_file(MemoryRegion *mr,
392 struct Object *owner,
393 const char *name,
394 uint64_t size,
395 bool share,
396 const char *path,
397 Error **errp);
398 #endif
399
400 /**
401 * memory_region_init_ram_ptr: Initialize RAM memory region from a
402 * user-provided pointer. Accesses into the
403 * region will modify memory directly.
404 *
405 * @mr: the #MemoryRegion to be initialized.
406 * @owner: the object that tracks the region's reference count
407 * @name: the name of the region.
408 * @size: size of the region.
409 * @ptr: memory to be mapped; must contain at least @size bytes.
410 */
411 void memory_region_init_ram_ptr(MemoryRegion *mr,
412 struct Object *owner,
413 const char *name,
414 uint64_t size,
415 void *ptr);
416
417 /**
418 * memory_region_init_alias: Initialize a memory region that aliases all or a
419 * part of another memory region.
420 *
421 * @mr: the #MemoryRegion to be initialized.
422 * @owner: the object that tracks the region's reference count
423 * @name: used for debugging; not visible to the user or ABI
424 * @orig: the region to be referenced; @mr will be equivalent to
425 * @orig between @offset and @offset + @size - 1.
426 * @offset: start of the section in @orig to be referenced.
427 * @size: size of the region.
428 */
429 void memory_region_init_alias(MemoryRegion *mr,
430 struct Object *owner,
431 const char *name,
432 MemoryRegion *orig,
433 hwaddr offset,
434 uint64_t size);
435
436 /**
437 * memory_region_init_rom_device: Initialize a ROM memory region. Writes are
438 * handled via callbacks.
439 *
440 * If NULL callbacks pointer is given, then I/O space is not supposed to be
441 * handled by QEMU itself. Any access via the memory API will cause an abort().
442 *
443 * @mr: the #MemoryRegion to be initialized.
444 * @owner: the object that tracks the region's reference count
445 * @ops: callbacks for write access handling.
446 * @name: the name of the region.
447 * @size: size of the region.
448 * @errp: pointer to Error*, to store an error if it happens.
449 */
450 void memory_region_init_rom_device(MemoryRegion *mr,
451 struct Object *owner,
452 const MemoryRegionOps *ops,
453 void *opaque,
454 const char *name,
455 uint64_t size,
456 Error **errp);
457
458 /**
459 * memory_region_init_reservation: Initialize a memory region that reserves
460 * I/O space.
461 *
462 * A reservation region primariy serves debugging purposes. It claims I/O
463 * space that is not supposed to be handled by QEMU itself. Any access via
464 * the memory API will cause an abort().
465 * This function is deprecated. Use memory_region_init_io() with NULL
466 * callbacks instead.
467 *
468 * @mr: the #MemoryRegion to be initialized
469 * @owner: the object that tracks the region's reference count
470 * @name: used for debugging; not visible to the user or ABI
471 * @size: size of the region.
472 */
473 static inline void memory_region_init_reservation(MemoryRegion *mr,
474 Object *owner,
475 const char *name,
476 uint64_t size)
477 {
478 memory_region_init_io(mr, owner, NULL, mr, name, size);
479 }
480
481 /**
482 * memory_region_init_iommu: Initialize a memory region that translates
483 * addresses
484 *
485 * An IOMMU region translates addresses and forwards accesses to a target
486 * memory region.
487 *
488 * @mr: the #MemoryRegion to be initialized
489 * @owner: the object that tracks the region's reference count
490 * @ops: a function that translates addresses into the @target region
491 * @name: used for debugging; not visible to the user or ABI
492 * @size: size of the region.
493 */
494 void memory_region_init_iommu(MemoryRegion *mr,
495 struct Object *owner,
496 const MemoryRegionIOMMUOps *ops,
497 const char *name,
498 uint64_t size);
499
500 /**
501 * memory_region_owner: get a memory region's owner.
502 *
503 * @mr: the memory region being queried.
504 */
505 struct Object *memory_region_owner(MemoryRegion *mr);
506
507 /**
508 * memory_region_size: get a memory region's size.
509 *
510 * @mr: the memory region being queried.
511 */
512 uint64_t memory_region_size(MemoryRegion *mr);
513
514 /**
515 * memory_region_is_ram: check whether a memory region is random access
516 *
517 * Returns %true is a memory region is random access.
518 *
519 * @mr: the memory region being queried
520 */
521 bool memory_region_is_ram(MemoryRegion *mr);
522
523 /**
524 * memory_region_is_skip_dump: check whether a memory region should not be
525 * dumped
526 *
527 * Returns %true is a memory region should not be dumped(e.g. VFIO BAR MMAP).
528 *
529 * @mr: the memory region being queried
530 */
531 bool memory_region_is_skip_dump(MemoryRegion *mr);
532
533 /**
534 * memory_region_set_skip_dump: Set skip_dump flag, dump will ignore this memory
535 * region
536 *
537 * @mr: the memory region being queried
538 */
539 void memory_region_set_skip_dump(MemoryRegion *mr);
540
541 /**
542 * memory_region_is_romd: check whether a memory region is in ROMD mode
543 *
544 * Returns %true if a memory region is a ROM device and currently set to allow
545 * direct reads.
546 *
547 * @mr: the memory region being queried
548 */
549 static inline bool memory_region_is_romd(MemoryRegion *mr)
550 {
551 return mr->rom_device && mr->romd_mode;
552 }
553
554 /**
555 * memory_region_is_iommu: check whether a memory region is an iommu
556 *
557 * Returns %true is a memory region is an iommu.
558 *
559 * @mr: the memory region being queried
560 */
561 bool memory_region_is_iommu(MemoryRegion *mr);
562
563 /**
564 * memory_region_notify_iommu: notify a change in an IOMMU translation entry.
565 *
566 * @mr: the memory region that was changed
567 * @entry: the new entry in the IOMMU translation table. The entry
568 * replaces all old entries for the same virtual I/O address range.
569 * Deleted entries have .@perm == 0.
570 */
571 void memory_region_notify_iommu(MemoryRegion *mr,
572 IOMMUTLBEntry entry);
573
574 /**
575 * memory_region_register_iommu_notifier: register a notifier for changes to
576 * IOMMU translation entries.
577 *
578 * @mr: the memory region to observe
579 * @n: the notifier to be added; the notifier receives a pointer to an
580 * #IOMMUTLBEntry as the opaque value; the pointer ceases to be
581 * valid on exit from the notifier.
582 */
583 void memory_region_register_iommu_notifier(MemoryRegion *mr, Notifier *n);
584
585 /**
586 * memory_region_iommu_replay: replay existing IOMMU translations to
587 * a notifier
588 *
589 * @mr: the memory region to observe
590 * @n: the notifier to which to replay iommu mappings
591 * @granularity: Minimum page granularity to replay notifications for
592 * @is_write: Whether to treat the replay as a translate "write"
593 * through the iommu
594 */
595 void memory_region_iommu_replay(MemoryRegion *mr, Notifier *n,
596 hwaddr granularity, bool is_write);
597
598 /**
599 * memory_region_unregister_iommu_notifier: unregister a notifier for
600 * changes to IOMMU translation entries.
601 *
602 * @n: the notifier to be removed.
603 */
604 void memory_region_unregister_iommu_notifier(Notifier *n);
605
606 /**
607 * memory_region_name: get a memory region's name
608 *
609 * Returns the string that was used to initialize the memory region.
610 *
611 * @mr: the memory region being queried
612 */
613 const char *memory_region_name(const MemoryRegion *mr);
614
615 /**
616 * memory_region_is_logging: return whether a memory region is logging writes
617 *
618 * Returns %true if the memory region is logging writes for the given client
619 *
620 * @mr: the memory region being queried
621 * @client: the client being queried
622 */
623 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client);
624
625 /**
626 * memory_region_get_dirty_log_mask: return the clients for which a
627 * memory region is logging writes.
628 *
629 * Returns a bitmap of clients, in which the DIRTY_MEMORY_* constants
630 * are the bit indices.
631 *
632 * @mr: the memory region being queried
633 */
634 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr);
635
636 /**
637 * memory_region_is_rom: check whether a memory region is ROM
638 *
639 * Returns %true is a memory region is read-only memory.
640 *
641 * @mr: the memory region being queried
642 */
643 bool memory_region_is_rom(MemoryRegion *mr);
644
645 /**
646 * memory_region_get_fd: Get a file descriptor backing a RAM memory region.
647 *
648 * Returns a file descriptor backing a file-based RAM memory region,
649 * or -1 if the region is not a file-based RAM memory region.
650 *
651 * @mr: the RAM or alias memory region being queried.
652 */
653 int memory_region_get_fd(MemoryRegion *mr);
654
655 /**
656 * memory_region_get_ram_ptr: Get a pointer into a RAM memory region.
657 *
658 * Returns a host pointer to a RAM memory region (created with
659 * memory_region_init_ram() or memory_region_init_ram_ptr()). Use with
660 * care.
661 *
662 * @mr: the memory region being queried.
663 */
664 void *memory_region_get_ram_ptr(MemoryRegion *mr);
665
666 /* memory_region_ram_resize: Resize a RAM region.
667 *
668 * Only legal before guest might have detected the memory size: e.g. on
669 * incoming migration, or right after reset.
670 *
671 * @mr: a memory region created with @memory_region_init_resizeable_ram.
672 * @newsize: the new size the region
673 * @errp: pointer to Error*, to store an error if it happens.
674 */
675 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize,
676 Error **errp);
677
678 /**
679 * memory_region_set_log: Turn dirty logging on or off for a region.
680 *
681 * Turns dirty logging on or off for a specified client (display, migration).
682 * Only meaningful for RAM regions.
683 *
684 * @mr: the memory region being updated.
685 * @log: whether dirty logging is to be enabled or disabled.
686 * @client: the user of the logging information; %DIRTY_MEMORY_VGA only.
687 */
688 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client);
689
690 /**
691 * memory_region_get_dirty: Check whether a range of bytes is dirty
692 * for a specified client.
693 *
694 * Checks whether a range of bytes has been written to since the last
695 * call to memory_region_reset_dirty() with the same @client. Dirty logging
696 * must be enabled.
697 *
698 * @mr: the memory region being queried.
699 * @addr: the address (relative to the start of the region) being queried.
700 * @size: the size of the range being queried.
701 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
702 * %DIRTY_MEMORY_VGA.
703 */
704 bool memory_region_get_dirty(MemoryRegion *mr, hwaddr addr,
705 hwaddr size, unsigned client);
706
707 /**
708 * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region.
709 *
710 * Marks a range of bytes as dirty, after it has been dirtied outside
711 * guest code.
712 *
713 * @mr: the memory region being dirtied.
714 * @addr: the address (relative to the start of the region) being dirtied.
715 * @size: size of the range being dirtied.
716 */
717 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
718 hwaddr size);
719
720 /**
721 * memory_region_test_and_clear_dirty: Check whether a range of bytes is dirty
722 * for a specified client. It clears them.
723 *
724 * Checks whether a range of bytes has been written to since the last
725 * call to memory_region_reset_dirty() with the same @client. Dirty logging
726 * must be enabled.
727 *
728 * @mr: the memory region being queried.
729 * @addr: the address (relative to the start of the region) being queried.
730 * @size: the size of the range being queried.
731 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
732 * %DIRTY_MEMORY_VGA.
733 */
734 bool memory_region_test_and_clear_dirty(MemoryRegion *mr, hwaddr addr,
735 hwaddr size, unsigned client);
736 /**
737 * memory_region_sync_dirty_bitmap: Synchronize a region's dirty bitmap with
738 * any external TLBs (e.g. kvm)
739 *
740 * Flushes dirty information from accelerators such as kvm and vhost-net
741 * and makes it available to users of the memory API.
742 *
743 * @mr: the region being flushed.
744 */
745 void memory_region_sync_dirty_bitmap(MemoryRegion *mr);
746
747 /**
748 * memory_region_reset_dirty: Mark a range of pages as clean, for a specified
749 * client.
750 *
751 * Marks a range of pages as no longer dirty.
752 *
753 * @mr: the region being updated.
754 * @addr: the start of the subrange being cleaned.
755 * @size: the size of the subrange being cleaned.
756 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
757 * %DIRTY_MEMORY_VGA.
758 */
759 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
760 hwaddr size, unsigned client);
761
762 /**
763 * memory_region_set_readonly: Turn a memory region read-only (or read-write)
764 *
765 * Allows a memory region to be marked as read-only (turning it into a ROM).
766 * only useful on RAM regions.
767 *
768 * @mr: the region being updated.
769 * @readonly: whether rhe region is to be ROM or RAM.
770 */
771 void memory_region_set_readonly(MemoryRegion *mr, bool readonly);
772
773 /**
774 * memory_region_rom_device_set_romd: enable/disable ROMD mode
775 *
776 * Allows a ROM device (initialized with memory_region_init_rom_device() to
777 * set to ROMD mode (default) or MMIO mode. When it is in ROMD mode, the
778 * device is mapped to guest memory and satisfies read access directly.
779 * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function.
780 * Writes are always handled by the #MemoryRegion.write function.
781 *
782 * @mr: the memory region to be updated
783 * @romd_mode: %true to put the region into ROMD mode
784 */
785 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode);
786
787 /**
788 * memory_region_set_coalescing: Enable memory coalescing for the region.
789 *
790 * Enabled writes to a region to be queued for later processing. MMIO ->write
791 * callbacks may be delayed until a non-coalesced MMIO is issued.
792 * Only useful for IO regions. Roughly similar to write-combining hardware.
793 *
794 * @mr: the memory region to be write coalesced
795 */
796 void memory_region_set_coalescing(MemoryRegion *mr);
797
798 /**
799 * memory_region_add_coalescing: Enable memory coalescing for a sub-range of
800 * a region.
801 *
802 * Like memory_region_set_coalescing(), but works on a sub-range of a region.
803 * Multiple calls can be issued coalesced disjoint ranges.
804 *
805 * @mr: the memory region to be updated.
806 * @offset: the start of the range within the region to be coalesced.
807 * @size: the size of the subrange to be coalesced.
808 */
809 void memory_region_add_coalescing(MemoryRegion *mr,
810 hwaddr offset,
811 uint64_t size);
812
813 /**
814 * memory_region_clear_coalescing: Disable MMIO coalescing for the region.
815 *
816 * Disables any coalescing caused by memory_region_set_coalescing() or
817 * memory_region_add_coalescing(). Roughly equivalent to uncacheble memory
818 * hardware.
819 *
820 * @mr: the memory region to be updated.
821 */
822 void memory_region_clear_coalescing(MemoryRegion *mr);
823
824 /**
825 * memory_region_set_flush_coalesced: Enforce memory coalescing flush before
826 * accesses.
827 *
828 * Ensure that pending coalesced MMIO request are flushed before the memory
829 * region is accessed. This property is automatically enabled for all regions
830 * passed to memory_region_set_coalescing() and memory_region_add_coalescing().
831 *
832 * @mr: the memory region to be updated.
833 */
834 void memory_region_set_flush_coalesced(MemoryRegion *mr);
835
836 /**
837 * memory_region_clear_flush_coalesced: Disable memory coalescing flush before
838 * accesses.
839 *
840 * Clear the automatic coalesced MMIO flushing enabled via
841 * memory_region_set_flush_coalesced. Note that this service has no effect on
842 * memory regions that have MMIO coalescing enabled for themselves. For them,
843 * automatic flushing will stop once coalescing is disabled.
844 *
845 * @mr: the memory region to be updated.
846 */
847 void memory_region_clear_flush_coalesced(MemoryRegion *mr);
848
849 /**
850 * memory_region_set_global_locking: Declares the access processing requires
851 * QEMU's global lock.
852 *
853 * When this is invoked, accesses to the memory region will be processed while
854 * holding the global lock of QEMU. This is the default behavior of memory
855 * regions.
856 *
857 * @mr: the memory region to be updated.
858 */
859 void memory_region_set_global_locking(MemoryRegion *mr);
860
861 /**
862 * memory_region_clear_global_locking: Declares that access processing does
863 * not depend on the QEMU global lock.
864 *
865 * By clearing this property, accesses to the memory region will be processed
866 * outside of QEMU's global lock (unless the lock is held on when issuing the
867 * access request). In this case, the device model implementing the access
868 * handlers is responsible for synchronization of concurrency.
869 *
870 * @mr: the memory region to be updated.
871 */
872 void memory_region_clear_global_locking(MemoryRegion *mr);
873
874 /**
875 * memory_region_add_eventfd: Request an eventfd to be triggered when a word
876 * is written to a location.
877 *
878 * Marks a word in an IO region (initialized with memory_region_init_io())
879 * as a trigger for an eventfd event. The I/O callback will not be called.
880 * The caller must be prepared to handle failure (that is, take the required
881 * action if the callback _is_ called).
882 *
883 * @mr: the memory region being updated.
884 * @addr: the address within @mr that is to be monitored
885 * @size: the size of the access to trigger the eventfd
886 * @match_data: whether to match against @data, instead of just @addr
887 * @data: the data to match against the guest write
888 * @fd: the eventfd to be triggered when @addr, @size, and @data all match.
889 **/
890 void memory_region_add_eventfd(MemoryRegion *mr,
891 hwaddr addr,
892 unsigned size,
893 bool match_data,
894 uint64_t data,
895 EventNotifier *e);
896
897 /**
898 * memory_region_del_eventfd: Cancel an eventfd.
899 *
900 * Cancels an eventfd trigger requested by a previous
901 * memory_region_add_eventfd() call.
902 *
903 * @mr: the memory region being updated.
904 * @addr: the address within @mr that is to be monitored
905 * @size: the size of the access to trigger the eventfd
906 * @match_data: whether to match against @data, instead of just @addr
907 * @data: the data to match against the guest write
908 * @fd: the eventfd to be triggered when @addr, @size, and @data all match.
909 */
910 void memory_region_del_eventfd(MemoryRegion *mr,
911 hwaddr addr,
912 unsigned size,
913 bool match_data,
914 uint64_t data,
915 EventNotifier *e);
916
917 /**
918 * memory_region_add_subregion: Add a subregion to a container.
919 *
920 * Adds a subregion at @offset. The subregion may not overlap with other
921 * subregions (except for those explicitly marked as overlapping). A region
922 * may only be added once as a subregion (unless removed with
923 * memory_region_del_subregion()); use memory_region_init_alias() if you
924 * want a region to be a subregion in multiple locations.
925 *
926 * @mr: the region to contain the new subregion; must be a container
927 * initialized with memory_region_init().
928 * @offset: the offset relative to @mr where @subregion is added.
929 * @subregion: the subregion to be added.
930 */
931 void memory_region_add_subregion(MemoryRegion *mr,
932 hwaddr offset,
933 MemoryRegion *subregion);
934 /**
935 * memory_region_add_subregion_overlap: Add a subregion to a container
936 * with overlap.
937 *
938 * Adds a subregion at @offset. The subregion may overlap with other
939 * subregions. Conflicts are resolved by having a higher @priority hide a
940 * lower @priority. Subregions without priority are taken as @priority 0.
941 * A region may only be added once as a subregion (unless removed with
942 * memory_region_del_subregion()); use memory_region_init_alias() if you
943 * want a region to be a subregion in multiple locations.
944 *
945 * @mr: the region to contain the new subregion; must be a container
946 * initialized with memory_region_init().
947 * @offset: the offset relative to @mr where @subregion is added.
948 * @subregion: the subregion to be added.
949 * @priority: used for resolving overlaps; highest priority wins.
950 */
951 void memory_region_add_subregion_overlap(MemoryRegion *mr,
952 hwaddr offset,
953 MemoryRegion *subregion,
954 int priority);
955
956 /**
957 * memory_region_get_ram_addr: Get the ram address associated with a memory
958 * region
959 *
960 * DO NOT USE THIS FUNCTION. This is a temporary workaround while the Xen
961 * code is being reworked.
962 */
963 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr);
964
965 uint64_t memory_region_get_alignment(const MemoryRegion *mr);
966 /**
967 * memory_region_del_subregion: Remove a subregion.
968 *
969 * Removes a subregion from its container.
970 *
971 * @mr: the container to be updated.
972 * @subregion: the region being removed; must be a current subregion of @mr.
973 */
974 void memory_region_del_subregion(MemoryRegion *mr,
975 MemoryRegion *subregion);
976
977 /*
978 * memory_region_set_enabled: dynamically enable or disable a region
979 *
980 * Enables or disables a memory region. A disabled memory region
981 * ignores all accesses to itself and its subregions. It does not
982 * obscure sibling subregions with lower priority - it simply behaves as
983 * if it was removed from the hierarchy.
984 *
985 * Regions default to being enabled.
986 *
987 * @mr: the region to be updated
988 * @enabled: whether to enable or disable the region
989 */
990 void memory_region_set_enabled(MemoryRegion *mr, bool enabled);
991
992 /*
993 * memory_region_set_address: dynamically update the address of a region
994 *
995 * Dynamically updates the address of a region, relative to its container.
996 * May be used on regions are currently part of a memory hierarchy.
997 *
998 * @mr: the region to be updated
999 * @addr: new address, relative to container region
1000 */
1001 void memory_region_set_address(MemoryRegion *mr, hwaddr addr);
1002
1003 /*
1004 * memory_region_set_size: dynamically update the size of a region.
1005 *
1006 * Dynamically updates the size of a region.
1007 *
1008 * @mr: the region to be updated
1009 * @size: used size of the region.
1010 */
1011 void memory_region_set_size(MemoryRegion *mr, uint64_t size);
1012
1013 /*
1014 * memory_region_set_alias_offset: dynamically update a memory alias's offset
1015 *
1016 * Dynamically updates the offset into the target region that an alias points
1017 * to, as if the fourth argument to memory_region_init_alias() has changed.
1018 *
1019 * @mr: the #MemoryRegion to be updated; should be an alias.
1020 * @offset: the new offset into the target memory region
1021 */
1022 void memory_region_set_alias_offset(MemoryRegion *mr,
1023 hwaddr offset);
1024
1025 /**
1026 * memory_region_present: checks if an address relative to a @container
1027 * translates into #MemoryRegion within @container
1028 *
1029 * Answer whether a #MemoryRegion within @container covers the address
1030 * @addr.
1031 *
1032 * @container: a #MemoryRegion within which @addr is a relative address
1033 * @addr: the area within @container to be searched
1034 */
1035 bool memory_region_present(MemoryRegion *container, hwaddr addr);
1036
1037 /**
1038 * memory_region_is_mapped: returns true if #MemoryRegion is mapped
1039 * into any address space.
1040 *
1041 * @mr: a #MemoryRegion which should be checked if it's mapped
1042 */
1043 bool memory_region_is_mapped(MemoryRegion *mr);
1044
1045 /**
1046 * memory_region_find: translate an address/size relative to a
1047 * MemoryRegion into a #MemoryRegionSection.
1048 *
1049 * Locates the first #MemoryRegion within @mr that overlaps the range
1050 * given by @addr and @size.
1051 *
1052 * Returns a #MemoryRegionSection that describes a contiguous overlap.
1053 * It will have the following characteristics:
1054 * .@size = 0 iff no overlap was found
1055 * .@mr is non-%NULL iff an overlap was found
1056 *
1057 * Remember that in the return value the @offset_within_region is
1058 * relative to the returned region (in the .@mr field), not to the
1059 * @mr argument.
1060 *
1061 * Similarly, the .@offset_within_address_space is relative to the
1062 * address space that contains both regions, the passed and the
1063 * returned one. However, in the special case where the @mr argument
1064 * has no container (and thus is the root of the address space), the
1065 * following will hold:
1066 * .@offset_within_address_space >= @addr
1067 * .@offset_within_address_space + .@size <= @addr + @size
1068 *
1069 * @mr: a MemoryRegion within which @addr is a relative address
1070 * @addr: start of the area within @as to be searched
1071 * @size: size of the area to be searched
1072 */
1073 MemoryRegionSection memory_region_find(MemoryRegion *mr,
1074 hwaddr addr, uint64_t size);
1075
1076 /**
1077 * address_space_sync_dirty_bitmap: synchronize the dirty log for all memory
1078 *
1079 * Synchronizes the dirty page log for an entire address space.
1080 * @as: the address space that contains the memory being synchronized
1081 */
1082 void address_space_sync_dirty_bitmap(AddressSpace *as);
1083
1084 /**
1085 * memory_region_transaction_begin: Start a transaction.
1086 *
1087 * During a transaction, changes will be accumulated and made visible
1088 * only when the transaction ends (is committed).
1089 */
1090 void memory_region_transaction_begin(void);
1091
1092 /**
1093 * memory_region_transaction_commit: Commit a transaction and make changes
1094 * visible to the guest.
1095 */
1096 void memory_region_transaction_commit(void);
1097
1098 /**
1099 * memory_listener_register: register callbacks to be called when memory
1100 * sections are mapped or unmapped into an address
1101 * space
1102 *
1103 * @listener: an object containing the callbacks to be called
1104 * @filter: if non-%NULL, only regions in this address space will be observed
1105 */
1106 void memory_listener_register(MemoryListener *listener, AddressSpace *filter);
1107
1108 /**
1109 * memory_listener_unregister: undo the effect of memory_listener_register()
1110 *
1111 * @listener: an object containing the callbacks to be removed
1112 */
1113 void memory_listener_unregister(MemoryListener *listener);
1114
1115 /**
1116 * memory_global_dirty_log_start: begin dirty logging for all regions
1117 */
1118 void memory_global_dirty_log_start(void);
1119
1120 /**
1121 * memory_global_dirty_log_stop: end dirty logging for all regions
1122 */
1123 void memory_global_dirty_log_stop(void);
1124
1125 void mtree_info(fprintf_function mon_printf, void *f);
1126
1127 /**
1128 * memory_region_dispatch_read: perform a read directly to the specified
1129 * MemoryRegion.
1130 *
1131 * @mr: #MemoryRegion to access
1132 * @addr: address within that region
1133 * @pval: pointer to uint64_t which the data is written to
1134 * @size: size of the access in bytes
1135 * @attrs: memory transaction attributes to use for the access
1136 */
1137 MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
1138 hwaddr addr,
1139 uint64_t *pval,
1140 unsigned size,
1141 MemTxAttrs attrs);
1142 /**
1143 * memory_region_dispatch_write: perform a write directly to the specified
1144 * MemoryRegion.
1145 *
1146 * @mr: #MemoryRegion to access
1147 * @addr: address within that region
1148 * @data: data to write
1149 * @size: size of the access in bytes
1150 * @attrs: memory transaction attributes to use for the access
1151 */
1152 MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
1153 hwaddr addr,
1154 uint64_t data,
1155 unsigned size,
1156 MemTxAttrs attrs);
1157
1158 /**
1159 * address_space_init: initializes an address space
1160 *
1161 * @as: an uninitialized #AddressSpace
1162 * @root: a #MemoryRegion that routes addresses for the address space
1163 * @name: an address space name. The name is only used for debugging
1164 * output.
1165 */
1166 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name);
1167
1168
1169 /**
1170 * address_space_destroy: destroy an address space
1171 *
1172 * Releases all resources associated with an address space. After an address space
1173 * is destroyed, its root memory region (given by address_space_init()) may be destroyed
1174 * as well.
1175 *
1176 * @as: address space to be destroyed
1177 */
1178 void address_space_destroy(AddressSpace *as);
1179
1180 /**
1181 * address_space_rw: read from or write to an address space.
1182 *
1183 * Return a MemTxResult indicating whether the operation succeeded
1184 * or failed (eg unassigned memory, device rejected the transaction,
1185 * IOMMU fault).
1186 *
1187 * @as: #AddressSpace to be accessed
1188 * @addr: address within that address space
1189 * @attrs: memory transaction attributes
1190 * @buf: buffer with the data transferred
1191 * @is_write: indicates the transfer direction
1192 */
1193 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr,
1194 MemTxAttrs attrs, uint8_t *buf,
1195 int len, bool is_write);
1196
1197 /**
1198 * address_space_write: write to address space.
1199 *
1200 * Return a MemTxResult indicating whether the operation succeeded
1201 * or failed (eg unassigned memory, device rejected the transaction,
1202 * IOMMU fault).
1203 *
1204 * @as: #AddressSpace to be accessed
1205 * @addr: address within that address space
1206 * @attrs: memory transaction attributes
1207 * @buf: buffer with the data transferred
1208 */
1209 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
1210 MemTxAttrs attrs,
1211 const uint8_t *buf, int len);
1212
1213 /**
1214 * address_space_read: read from an address space.
1215 *
1216 * Return a MemTxResult indicating whether the operation succeeded
1217 * or failed (eg unassigned memory, device rejected the transaction,
1218 * IOMMU fault).
1219 *
1220 * @as: #AddressSpace to be accessed
1221 * @addr: address within that address space
1222 * @attrs: memory transaction attributes
1223 * @buf: buffer with the data transferred
1224 */
1225 MemTxResult address_space_read(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
1226 uint8_t *buf, int len);
1227
1228 /**
1229 * address_space_ld*: load from an address space
1230 * address_space_st*: store to an address space
1231 *
1232 * These functions perform a load or store of the byte, word,
1233 * longword or quad to the specified address within the AddressSpace.
1234 * The _le suffixed functions treat the data as little endian;
1235 * _be indicates big endian; no suffix indicates "same endianness
1236 * as guest CPU".
1237 *
1238 * The "guest CPU endianness" accessors are deprecated for use outside
1239 * target-* code; devices should be CPU-agnostic and use either the LE
1240 * or the BE accessors.
1241 *
1242 * @as #AddressSpace to be accessed
1243 * @addr: address within that address space
1244 * @val: data value, for stores
1245 * @attrs: memory transaction attributes
1246 * @result: location to write the success/failure of the transaction;
1247 * if NULL, this information is discarded
1248 */
1249 uint32_t address_space_ldub(AddressSpace *as, hwaddr addr,
1250 MemTxAttrs attrs, MemTxResult *result);
1251 uint32_t address_space_lduw_le(AddressSpace *as, hwaddr addr,
1252 MemTxAttrs attrs, MemTxResult *result);
1253 uint32_t address_space_lduw_be(AddressSpace *as, hwaddr addr,
1254 MemTxAttrs attrs, MemTxResult *result);
1255 uint32_t address_space_ldl_le(AddressSpace *as, hwaddr addr,
1256 MemTxAttrs attrs, MemTxResult *result);
1257 uint32_t address_space_ldl_be(AddressSpace *as, hwaddr addr,
1258 MemTxAttrs attrs, MemTxResult *result);
1259 uint64_t address_space_ldq_le(AddressSpace *as, hwaddr addr,
1260 MemTxAttrs attrs, MemTxResult *result);
1261 uint64_t address_space_ldq_be(AddressSpace *as, hwaddr addr,
1262 MemTxAttrs attrs, MemTxResult *result);
1263 void address_space_stb(AddressSpace *as, hwaddr addr, uint32_t val,
1264 MemTxAttrs attrs, MemTxResult *result);
1265 void address_space_stw_le(AddressSpace *as, hwaddr addr, uint32_t val,
1266 MemTxAttrs attrs, MemTxResult *result);
1267 void address_space_stw_be(AddressSpace *as, hwaddr addr, uint32_t val,
1268 MemTxAttrs attrs, MemTxResult *result);
1269 void address_space_stl_le(AddressSpace *as, hwaddr addr, uint32_t val,
1270 MemTxAttrs attrs, MemTxResult *result);
1271 void address_space_stl_be(AddressSpace *as, hwaddr addr, uint32_t val,
1272 MemTxAttrs attrs, MemTxResult *result);
1273 void address_space_stq_le(AddressSpace *as, hwaddr addr, uint64_t val,
1274 MemTxAttrs attrs, MemTxResult *result);
1275 void address_space_stq_be(AddressSpace *as, hwaddr addr, uint64_t val,
1276 MemTxAttrs attrs, MemTxResult *result);
1277
1278 #ifdef NEED_CPU_H
1279 uint32_t address_space_lduw(AddressSpace *as, hwaddr addr,
1280 MemTxAttrs attrs, MemTxResult *result);
1281 uint32_t address_space_ldl(AddressSpace *as, hwaddr addr,
1282 MemTxAttrs attrs, MemTxResult *result);
1283 uint64_t address_space_ldq(AddressSpace *as, hwaddr addr,
1284 MemTxAttrs attrs, MemTxResult *result);
1285 void address_space_stl_notdirty(AddressSpace *as, hwaddr addr, uint32_t val,
1286 MemTxAttrs attrs, MemTxResult *result);
1287 void address_space_stw(AddressSpace *as, hwaddr addr, uint32_t val,
1288 MemTxAttrs attrs, MemTxResult *result);
1289 void address_space_stl(AddressSpace *as, hwaddr addr, uint32_t val,
1290 MemTxAttrs attrs, MemTxResult *result);
1291 void address_space_stq(AddressSpace *as, hwaddr addr, uint64_t val,
1292 MemTxAttrs attrs, MemTxResult *result);
1293 #endif
1294
1295 /* address_space_translate: translate an address range into an address space
1296 * into a MemoryRegion and an address range into that section. Should be
1297 * called from an RCU critical section, to avoid that the last reference
1298 * to the returned region disappears after address_space_translate returns.
1299 *
1300 * @as: #AddressSpace to be accessed
1301 * @addr: address within that address space
1302 * @xlat: pointer to address within the returned memory region section's
1303 * #MemoryRegion.
1304 * @len: pointer to length
1305 * @is_write: indicates the transfer direction
1306 */
1307 MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr,
1308 hwaddr *xlat, hwaddr *len,
1309 bool is_write);
1310
1311 /* address_space_access_valid: check for validity of accessing an address
1312 * space range
1313 *
1314 * Check whether memory is assigned to the given address space range, and
1315 * access is permitted by any IOMMU regions that are active for the address
1316 * space.
1317 *
1318 * For now, addr and len should be aligned to a page size. This limitation
1319 * will be lifted in the future.
1320 *
1321 * @as: #AddressSpace to be accessed
1322 * @addr: address within that address space
1323 * @len: length of the area to be checked
1324 * @is_write: indicates the transfer direction
1325 */
1326 bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write);
1327
1328 /* address_space_map: map a physical memory region into a host virtual address
1329 *
1330 * May map a subset of the requested range, given by and returned in @plen.
1331 * May return %NULL if resources needed to perform the mapping are exhausted.
1332 * Use only for reads OR writes - not for read-modify-write operations.
1333 * Use cpu_register_map_client() to know when retrying the map operation is
1334 * likely to succeed.
1335 *
1336 * @as: #AddressSpace to be accessed
1337 * @addr: address within that address space
1338 * @plen: pointer to length of buffer; updated on return
1339 * @is_write: indicates the transfer direction
1340 */
1341 void *address_space_map(AddressSpace *as, hwaddr addr,
1342 hwaddr *plen, bool is_write);
1343
1344 /* address_space_unmap: Unmaps a memory region previously mapped by address_space_map()
1345 *
1346 * Will also mark the memory as dirty if @is_write == %true. @access_len gives
1347 * the amount of memory that was actually read or written by the caller.
1348 *
1349 * @as: #AddressSpace used
1350 * @addr: address within that address space
1351 * @len: buffer length as returned by address_space_map()
1352 * @access_len: amount of data actually transferred
1353 * @is_write: indicates the transfer direction
1354 */
1355 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
1356 int is_write, hwaddr access_len);
1357
1358
1359 #endif
1360
1361 #endif