]> git.proxmox.com Git - mirror_qemu.git/blob - include/exec/memory.h
exec: revert MemoryRegionCache
[mirror_qemu.git] / include / exec / memory.h
1 /*
2 * Physical memory management API
3 *
4 * Copyright 2011 Red Hat, Inc. and/or its affiliates
5 *
6 * Authors:
7 * Avi Kivity <avi@redhat.com>
8 *
9 * This work is licensed under the terms of the GNU GPL, version 2. See
10 * the COPYING file in the top-level directory.
11 *
12 */
13
14 #ifndef MEMORY_H
15 #define MEMORY_H
16
17 #ifndef CONFIG_USER_ONLY
18
19 #include "exec/cpu-common.h"
20 #ifndef CONFIG_USER_ONLY
21 #include "exec/hwaddr.h"
22 #endif
23 #include "exec/memattrs.h"
24 #include "exec/ramlist.h"
25 #include "qemu/queue.h"
26 #include "qemu/int128.h"
27 #include "qemu/notify.h"
28 #include "qom/object.h"
29 #include "qemu/rcu.h"
30
31 #define RAM_ADDR_INVALID (~(ram_addr_t)0)
32
33 #define MAX_PHYS_ADDR_SPACE_BITS 62
34 #define MAX_PHYS_ADDR (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1)
35
36 #define TYPE_MEMORY_REGION "qemu:memory-region"
37 #define MEMORY_REGION(obj) \
38 OBJECT_CHECK(MemoryRegion, (obj), TYPE_MEMORY_REGION)
39
40 typedef struct MemoryRegionOps MemoryRegionOps;
41 typedef struct MemoryRegionMmio MemoryRegionMmio;
42
43 struct MemoryRegionMmio {
44 CPUReadMemoryFunc *read[3];
45 CPUWriteMemoryFunc *write[3];
46 };
47
48 typedef struct IOMMUTLBEntry IOMMUTLBEntry;
49
50 /* See address_space_translate: bit 0 is read, bit 1 is write. */
51 typedef enum {
52 IOMMU_NONE = 0,
53 IOMMU_RO = 1,
54 IOMMU_WO = 2,
55 IOMMU_RW = 3,
56 } IOMMUAccessFlags;
57
58 struct IOMMUTLBEntry {
59 AddressSpace *target_as;
60 hwaddr iova;
61 hwaddr translated_addr;
62 hwaddr addr_mask; /* 0xfff = 4k translation */
63 IOMMUAccessFlags perm;
64 };
65
66 /*
67 * Bitmap for different IOMMUNotifier capabilities. Each notifier can
68 * register with one or multiple IOMMU Notifier capability bit(s).
69 */
70 typedef enum {
71 IOMMU_NOTIFIER_NONE = 0,
72 /* Notify cache invalidations */
73 IOMMU_NOTIFIER_UNMAP = 0x1,
74 /* Notify entry changes (newly created entries) */
75 IOMMU_NOTIFIER_MAP = 0x2,
76 } IOMMUNotifierFlag;
77
78 #define IOMMU_NOTIFIER_ALL (IOMMU_NOTIFIER_MAP | IOMMU_NOTIFIER_UNMAP)
79
80 struct IOMMUNotifier {
81 void (*notify)(struct IOMMUNotifier *notifier, IOMMUTLBEntry *data);
82 IOMMUNotifierFlag notifier_flags;
83 QLIST_ENTRY(IOMMUNotifier) node;
84 };
85 typedef struct IOMMUNotifier IOMMUNotifier;
86
87 /* New-style MMIO accessors can indicate that the transaction failed.
88 * A zero (MEMTX_OK) response means success; anything else is a failure
89 * of some kind. The memory subsystem will bitwise-OR together results
90 * if it is synthesizing an operation from multiple smaller accesses.
91 */
92 #define MEMTX_OK 0
93 #define MEMTX_ERROR (1U << 0) /* device returned an error */
94 #define MEMTX_DECODE_ERROR (1U << 1) /* nothing at that address */
95 typedef uint32_t MemTxResult;
96
97 /*
98 * Memory region callbacks
99 */
100 struct MemoryRegionOps {
101 /* Read from the memory region. @addr is relative to @mr; @size is
102 * in bytes. */
103 uint64_t (*read)(void *opaque,
104 hwaddr addr,
105 unsigned size);
106 /* Write to the memory region. @addr is relative to @mr; @size is
107 * in bytes. */
108 void (*write)(void *opaque,
109 hwaddr addr,
110 uint64_t data,
111 unsigned size);
112
113 MemTxResult (*read_with_attrs)(void *opaque,
114 hwaddr addr,
115 uint64_t *data,
116 unsigned size,
117 MemTxAttrs attrs);
118 MemTxResult (*write_with_attrs)(void *opaque,
119 hwaddr addr,
120 uint64_t data,
121 unsigned size,
122 MemTxAttrs attrs);
123
124 enum device_endian endianness;
125 /* Guest-visible constraints: */
126 struct {
127 /* If nonzero, specify bounds on access sizes beyond which a machine
128 * check is thrown.
129 */
130 unsigned min_access_size;
131 unsigned max_access_size;
132 /* If true, unaligned accesses are supported. Otherwise unaligned
133 * accesses throw machine checks.
134 */
135 bool unaligned;
136 /*
137 * If present, and returns #false, the transaction is not accepted
138 * by the device (and results in machine dependent behaviour such
139 * as a machine check exception).
140 */
141 bool (*accepts)(void *opaque, hwaddr addr,
142 unsigned size, bool is_write);
143 } valid;
144 /* Internal implementation constraints: */
145 struct {
146 /* If nonzero, specifies the minimum size implemented. Smaller sizes
147 * will be rounded upwards and a partial result will be returned.
148 */
149 unsigned min_access_size;
150 /* If nonzero, specifies the maximum size implemented. Larger sizes
151 * will be done as a series of accesses with smaller sizes.
152 */
153 unsigned max_access_size;
154 /* If true, unaligned accesses are supported. Otherwise all accesses
155 * are converted to (possibly multiple) naturally aligned accesses.
156 */
157 bool unaligned;
158 } impl;
159
160 /* If .read and .write are not present, old_mmio may be used for
161 * backwards compatibility with old mmio registration
162 */
163 const MemoryRegionMmio old_mmio;
164 };
165
166 typedef struct MemoryRegionIOMMUOps MemoryRegionIOMMUOps;
167
168 struct MemoryRegionIOMMUOps {
169 /* Return a TLB entry that contains a given address. */
170 IOMMUTLBEntry (*translate)(MemoryRegion *iommu, hwaddr addr, bool is_write);
171 /* Returns minimum supported page size */
172 uint64_t (*get_min_page_size)(MemoryRegion *iommu);
173 /* Called when IOMMU Notifier flag changed */
174 void (*notify_flag_changed)(MemoryRegion *iommu,
175 IOMMUNotifierFlag old_flags,
176 IOMMUNotifierFlag new_flags);
177 };
178
179 typedef struct CoalescedMemoryRange CoalescedMemoryRange;
180 typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd;
181
182 struct MemoryRegion {
183 Object parent_obj;
184
185 /* All fields are private - violators will be prosecuted */
186
187 /* The following fields should fit in a cache line */
188 bool romd_mode;
189 bool ram;
190 bool subpage;
191 bool readonly; /* For RAM regions */
192 bool rom_device;
193 bool flush_coalesced_mmio;
194 bool global_locking;
195 uint8_t dirty_log_mask;
196 RAMBlock *ram_block;
197 Object *owner;
198 const MemoryRegionIOMMUOps *iommu_ops;
199
200 const MemoryRegionOps *ops;
201 void *opaque;
202 MemoryRegion *container;
203 Int128 size;
204 hwaddr addr;
205 void (*destructor)(MemoryRegion *mr);
206 uint64_t align;
207 bool terminates;
208 bool ram_device;
209 bool enabled;
210 bool warning_printed; /* For reservations */
211 uint8_t vga_logging_count;
212 MemoryRegion *alias;
213 hwaddr alias_offset;
214 int32_t priority;
215 QTAILQ_HEAD(subregions, MemoryRegion) subregions;
216 QTAILQ_ENTRY(MemoryRegion) subregions_link;
217 QTAILQ_HEAD(coalesced_ranges, CoalescedMemoryRange) coalesced;
218 const char *name;
219 unsigned ioeventfd_nb;
220 MemoryRegionIoeventfd *ioeventfds;
221 QLIST_HEAD(, IOMMUNotifier) iommu_notify;
222 IOMMUNotifierFlag iommu_notify_flags;
223 };
224
225 /**
226 * MemoryListener: callbacks structure for updates to the physical memory map
227 *
228 * Allows a component to adjust to changes in the guest-visible memory map.
229 * Use with memory_listener_register() and memory_listener_unregister().
230 */
231 struct MemoryListener {
232 void (*begin)(MemoryListener *listener);
233 void (*commit)(MemoryListener *listener);
234 void (*region_add)(MemoryListener *listener, MemoryRegionSection *section);
235 void (*region_del)(MemoryListener *listener, MemoryRegionSection *section);
236 void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section);
237 void (*log_start)(MemoryListener *listener, MemoryRegionSection *section,
238 int old, int new);
239 void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section,
240 int old, int new);
241 void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section);
242 void (*log_global_start)(MemoryListener *listener);
243 void (*log_global_stop)(MemoryListener *listener);
244 void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section,
245 bool match_data, uint64_t data, EventNotifier *e);
246 void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section,
247 bool match_data, uint64_t data, EventNotifier *e);
248 void (*coalesced_mmio_add)(MemoryListener *listener, MemoryRegionSection *section,
249 hwaddr addr, hwaddr len);
250 void (*coalesced_mmio_del)(MemoryListener *listener, MemoryRegionSection *section,
251 hwaddr addr, hwaddr len);
252 /* Lower = earlier (during add), later (during del) */
253 unsigned priority;
254 AddressSpace *address_space;
255 QTAILQ_ENTRY(MemoryListener) link;
256 QTAILQ_ENTRY(MemoryListener) link_as;
257 };
258
259 /**
260 * AddressSpace: describes a mapping of addresses to #MemoryRegion objects
261 */
262 struct AddressSpace {
263 /* All fields are private. */
264 struct rcu_head rcu;
265 char *name;
266 MemoryRegion *root;
267 int ref_count;
268 bool malloced;
269
270 /* Accessed via RCU. */
271 struct FlatView *current_map;
272
273 int ioeventfd_nb;
274 struct MemoryRegionIoeventfd *ioeventfds;
275 struct AddressSpaceDispatch *dispatch;
276 struct AddressSpaceDispatch *next_dispatch;
277 MemoryListener dispatch_listener;
278 QTAILQ_HEAD(memory_listeners_as, MemoryListener) listeners;
279 QTAILQ_ENTRY(AddressSpace) address_spaces_link;
280 };
281
282 /**
283 * MemoryRegionSection: describes a fragment of a #MemoryRegion
284 *
285 * @mr: the region, or %NULL if empty
286 * @address_space: the address space the region is mapped in
287 * @offset_within_region: the beginning of the section, relative to @mr's start
288 * @size: the size of the section; will not exceed @mr's boundaries
289 * @offset_within_address_space: the address of the first byte of the section
290 * relative to the region's address space
291 * @readonly: writes to this section are ignored
292 */
293 struct MemoryRegionSection {
294 MemoryRegion *mr;
295 AddressSpace *address_space;
296 hwaddr offset_within_region;
297 Int128 size;
298 hwaddr offset_within_address_space;
299 bool readonly;
300 };
301
302 /**
303 * memory_region_init: Initialize a memory region
304 *
305 * The region typically acts as a container for other memory regions. Use
306 * memory_region_add_subregion() to add subregions.
307 *
308 * @mr: the #MemoryRegion to be initialized
309 * @owner: the object that tracks the region's reference count
310 * @name: used for debugging; not visible to the user or ABI
311 * @size: size of the region; any subregions beyond this size will be clipped
312 */
313 void memory_region_init(MemoryRegion *mr,
314 struct Object *owner,
315 const char *name,
316 uint64_t size);
317
318 /**
319 * memory_region_ref: Add 1 to a memory region's reference count
320 *
321 * Whenever memory regions are accessed outside the BQL, they need to be
322 * preserved against hot-unplug. MemoryRegions actually do not have their
323 * own reference count; they piggyback on a QOM object, their "owner".
324 * This function adds a reference to the owner.
325 *
326 * All MemoryRegions must have an owner if they can disappear, even if the
327 * device they belong to operates exclusively under the BQL. This is because
328 * the region could be returned at any time by memory_region_find, and this
329 * is usually under guest control.
330 *
331 * @mr: the #MemoryRegion
332 */
333 void memory_region_ref(MemoryRegion *mr);
334
335 /**
336 * memory_region_unref: Remove 1 to a memory region's reference count
337 *
338 * Whenever memory regions are accessed outside the BQL, they need to be
339 * preserved against hot-unplug. MemoryRegions actually do not have their
340 * own reference count; they piggyback on a QOM object, their "owner".
341 * This function removes a reference to the owner and possibly destroys it.
342 *
343 * @mr: the #MemoryRegion
344 */
345 void memory_region_unref(MemoryRegion *mr);
346
347 /**
348 * memory_region_init_io: Initialize an I/O memory region.
349 *
350 * Accesses into the region will cause the callbacks in @ops to be called.
351 * if @size is nonzero, subregions will be clipped to @size.
352 *
353 * @mr: the #MemoryRegion to be initialized.
354 * @owner: the object that tracks the region's reference count
355 * @ops: a structure containing read and write callbacks to be used when
356 * I/O is performed on the region.
357 * @opaque: passed to the read and write callbacks of the @ops structure.
358 * @name: used for debugging; not visible to the user or ABI
359 * @size: size of the region.
360 */
361 void memory_region_init_io(MemoryRegion *mr,
362 struct Object *owner,
363 const MemoryRegionOps *ops,
364 void *opaque,
365 const char *name,
366 uint64_t size);
367
368 /**
369 * memory_region_init_ram: Initialize RAM memory region. Accesses into the
370 * region will modify memory directly.
371 *
372 * @mr: the #MemoryRegion to be initialized.
373 * @owner: the object that tracks the region's reference count
374 * @name: Region name, becomes part of RAMBlock name used in migration stream
375 * must be unique within any device
376 * @size: size of the region.
377 * @errp: pointer to Error*, to store an error if it happens.
378 */
379 void memory_region_init_ram(MemoryRegion *mr,
380 struct Object *owner,
381 const char *name,
382 uint64_t size,
383 Error **errp);
384
385 /**
386 * memory_region_init_resizeable_ram: Initialize memory region with resizeable
387 * RAM. Accesses into the region will
388 * modify memory directly. Only an initial
389 * portion of this RAM is actually used.
390 * The used size can change across reboots.
391 *
392 * @mr: the #MemoryRegion to be initialized.
393 * @owner: the object that tracks the region's reference count
394 * @name: Region name, becomes part of RAMBlock name used in migration stream
395 * must be unique within any device
396 * @size: used size of the region.
397 * @max_size: max size of the region.
398 * @resized: callback to notify owner about used size change.
399 * @errp: pointer to Error*, to store an error if it happens.
400 */
401 void memory_region_init_resizeable_ram(MemoryRegion *mr,
402 struct Object *owner,
403 const char *name,
404 uint64_t size,
405 uint64_t max_size,
406 void (*resized)(const char*,
407 uint64_t length,
408 void *host),
409 Error **errp);
410 #ifdef __linux__
411 /**
412 * memory_region_init_ram_from_file: Initialize RAM memory region with a
413 * mmap-ed backend.
414 *
415 * @mr: the #MemoryRegion to be initialized.
416 * @owner: the object that tracks the region's reference count
417 * @name: Region name, becomes part of RAMBlock name used in migration stream
418 * must be unique within any device
419 * @size: size of the region.
420 * @share: %true if memory must be mmaped with the MAP_SHARED flag
421 * @path: the path in which to allocate the RAM.
422 * @errp: pointer to Error*, to store an error if it happens.
423 */
424 void memory_region_init_ram_from_file(MemoryRegion *mr,
425 struct Object *owner,
426 const char *name,
427 uint64_t size,
428 bool share,
429 const char *path,
430 Error **errp);
431 #endif
432
433 /**
434 * memory_region_init_ram_ptr: Initialize RAM memory region from a
435 * user-provided pointer. Accesses into the
436 * region will modify memory directly.
437 *
438 * @mr: the #MemoryRegion to be initialized.
439 * @owner: the object that tracks the region's reference count
440 * @name: Region name, becomes part of RAMBlock name used in migration stream
441 * must be unique within any device
442 * @size: size of the region.
443 * @ptr: memory to be mapped; must contain at least @size bytes.
444 */
445 void memory_region_init_ram_ptr(MemoryRegion *mr,
446 struct Object *owner,
447 const char *name,
448 uint64_t size,
449 void *ptr);
450
451 /**
452 * memory_region_init_ram_device_ptr: Initialize RAM device memory region from
453 * a user-provided pointer.
454 *
455 * A RAM device represents a mapping to a physical device, such as to a PCI
456 * MMIO BAR of an vfio-pci assigned device. The memory region may be mapped
457 * into the VM address space and access to the region will modify memory
458 * directly. However, the memory region should not be included in a memory
459 * dump (device may not be enabled/mapped at the time of the dump), and
460 * operations incompatible with manipulating MMIO should be avoided. Replaces
461 * skip_dump flag.
462 *
463 * @mr: the #MemoryRegion to be initialized.
464 * @owner: the object that tracks the region's reference count
465 * @name: the name of the region.
466 * @size: size of the region.
467 * @ptr: memory to be mapped; must contain at least @size bytes.
468 */
469 void memory_region_init_ram_device_ptr(MemoryRegion *mr,
470 struct Object *owner,
471 const char *name,
472 uint64_t size,
473 void *ptr);
474
475 /**
476 * memory_region_init_alias: Initialize a memory region that aliases all or a
477 * part of another memory region.
478 *
479 * @mr: the #MemoryRegion to be initialized.
480 * @owner: the object that tracks the region's reference count
481 * @name: used for debugging; not visible to the user or ABI
482 * @orig: the region to be referenced; @mr will be equivalent to
483 * @orig between @offset and @offset + @size - 1.
484 * @offset: start of the section in @orig to be referenced.
485 * @size: size of the region.
486 */
487 void memory_region_init_alias(MemoryRegion *mr,
488 struct Object *owner,
489 const char *name,
490 MemoryRegion *orig,
491 hwaddr offset,
492 uint64_t size);
493
494 /**
495 * memory_region_init_rom: Initialize a ROM memory region.
496 *
497 * This has the same effect as calling memory_region_init_ram()
498 * and then marking the resulting region read-only with
499 * memory_region_set_readonly().
500 *
501 * @mr: the #MemoryRegion to be initialized.
502 * @owner: the object that tracks the region's reference count
503 * @name: Region name, becomes part of RAMBlock name used in migration stream
504 * must be unique within any device
505 * @size: size of the region.
506 * @errp: pointer to Error*, to store an error if it happens.
507 */
508 void memory_region_init_rom(MemoryRegion *mr,
509 struct Object *owner,
510 const char *name,
511 uint64_t size,
512 Error **errp);
513
514 /**
515 * memory_region_init_rom_device: Initialize a ROM memory region. Writes are
516 * handled via callbacks.
517 *
518 * @mr: the #MemoryRegion to be initialized.
519 * @owner: the object that tracks the region's reference count
520 * @ops: callbacks for write access handling (must not be NULL).
521 * @name: Region name, becomes part of RAMBlock name used in migration stream
522 * must be unique within any device
523 * @size: size of the region.
524 * @errp: pointer to Error*, to store an error if it happens.
525 */
526 void memory_region_init_rom_device(MemoryRegion *mr,
527 struct Object *owner,
528 const MemoryRegionOps *ops,
529 void *opaque,
530 const char *name,
531 uint64_t size,
532 Error **errp);
533
534 /**
535 * memory_region_init_reservation: Initialize a memory region that reserves
536 * I/O space.
537 *
538 * A reservation region primariy serves debugging purposes. It claims I/O
539 * space that is not supposed to be handled by QEMU itself. Any access via
540 * the memory API will cause an abort().
541 * This function is deprecated. Use memory_region_init_io() with NULL
542 * callbacks instead.
543 *
544 * @mr: the #MemoryRegion to be initialized
545 * @owner: the object that tracks the region's reference count
546 * @name: used for debugging; not visible to the user or ABI
547 * @size: size of the region.
548 */
549 static inline void memory_region_init_reservation(MemoryRegion *mr,
550 Object *owner,
551 const char *name,
552 uint64_t size)
553 {
554 memory_region_init_io(mr, owner, NULL, mr, name, size);
555 }
556
557 /**
558 * memory_region_init_iommu: Initialize a memory region that translates
559 * addresses
560 *
561 * An IOMMU region translates addresses and forwards accesses to a target
562 * memory region.
563 *
564 * @mr: the #MemoryRegion to be initialized
565 * @owner: the object that tracks the region's reference count
566 * @ops: a function that translates addresses into the @target region
567 * @name: used for debugging; not visible to the user or ABI
568 * @size: size of the region.
569 */
570 void memory_region_init_iommu(MemoryRegion *mr,
571 struct Object *owner,
572 const MemoryRegionIOMMUOps *ops,
573 const char *name,
574 uint64_t size);
575
576 /**
577 * memory_region_owner: get a memory region's owner.
578 *
579 * @mr: the memory region being queried.
580 */
581 struct Object *memory_region_owner(MemoryRegion *mr);
582
583 /**
584 * memory_region_size: get a memory region's size.
585 *
586 * @mr: the memory region being queried.
587 */
588 uint64_t memory_region_size(MemoryRegion *mr);
589
590 /**
591 * memory_region_is_ram: check whether a memory region is random access
592 *
593 * Returns %true is a memory region is random access.
594 *
595 * @mr: the memory region being queried
596 */
597 static inline bool memory_region_is_ram(MemoryRegion *mr)
598 {
599 return mr->ram;
600 }
601
602 /**
603 * memory_region_is_ram_device: check whether a memory region is a ram device
604 *
605 * Returns %true is a memory region is a device backed ram region
606 *
607 * @mr: the memory region being queried
608 */
609 bool memory_region_is_ram_device(MemoryRegion *mr);
610
611 /**
612 * memory_region_is_romd: check whether a memory region is in ROMD mode
613 *
614 * Returns %true if a memory region is a ROM device and currently set to allow
615 * direct reads.
616 *
617 * @mr: the memory region being queried
618 */
619 static inline bool memory_region_is_romd(MemoryRegion *mr)
620 {
621 return mr->rom_device && mr->romd_mode;
622 }
623
624 /**
625 * memory_region_is_iommu: check whether a memory region is an iommu
626 *
627 * Returns %true is a memory region is an iommu.
628 *
629 * @mr: the memory region being queried
630 */
631 static inline bool memory_region_is_iommu(MemoryRegion *mr)
632 {
633 if (mr->alias) {
634 return memory_region_is_iommu(mr->alias);
635 }
636 return mr->iommu_ops;
637 }
638
639
640 /**
641 * memory_region_iommu_get_min_page_size: get minimum supported page size
642 * for an iommu
643 *
644 * Returns minimum supported page size for an iommu.
645 *
646 * @mr: the memory region being queried
647 */
648 uint64_t memory_region_iommu_get_min_page_size(MemoryRegion *mr);
649
650 /**
651 * memory_region_notify_iommu: notify a change in an IOMMU translation entry.
652 *
653 * The notification type will be decided by entry.perm bits:
654 *
655 * - For UNMAP (cache invalidation) notifies: set entry.perm to IOMMU_NONE.
656 * - For MAP (newly added entry) notifies: set entry.perm to the
657 * permission of the page (which is definitely !IOMMU_NONE).
658 *
659 * Note: for any IOMMU implementation, an in-place mapping change
660 * should be notified with an UNMAP followed by a MAP.
661 *
662 * @mr: the memory region that was changed
663 * @entry: the new entry in the IOMMU translation table. The entry
664 * replaces all old entries for the same virtual I/O address range.
665 * Deleted entries have .@perm == 0.
666 */
667 void memory_region_notify_iommu(MemoryRegion *mr,
668 IOMMUTLBEntry entry);
669
670 /**
671 * memory_region_register_iommu_notifier: register a notifier for changes to
672 * IOMMU translation entries.
673 *
674 * @mr: the memory region to observe
675 * @n: the IOMMUNotifier to be added; the notify callback receives a
676 * pointer to an #IOMMUTLBEntry as the opaque value; the pointer
677 * ceases to be valid on exit from the notifier.
678 */
679 void memory_region_register_iommu_notifier(MemoryRegion *mr,
680 IOMMUNotifier *n);
681
682 /**
683 * memory_region_iommu_replay: replay existing IOMMU translations to
684 * a notifier with the minimum page granularity returned by
685 * mr->iommu_ops->get_page_size().
686 *
687 * @mr: the memory region to observe
688 * @n: the notifier to which to replay iommu mappings
689 * @is_write: Whether to treat the replay as a translate "write"
690 * through the iommu
691 */
692 void memory_region_iommu_replay(MemoryRegion *mr, IOMMUNotifier *n,
693 bool is_write);
694
695 /**
696 * memory_region_unregister_iommu_notifier: unregister a notifier for
697 * changes to IOMMU translation entries.
698 *
699 * @mr: the memory region which was observed and for which notity_stopped()
700 * needs to be called
701 * @n: the notifier to be removed.
702 */
703 void memory_region_unregister_iommu_notifier(MemoryRegion *mr,
704 IOMMUNotifier *n);
705
706 /**
707 * memory_region_name: get a memory region's name
708 *
709 * Returns the string that was used to initialize the memory region.
710 *
711 * @mr: the memory region being queried
712 */
713 const char *memory_region_name(const MemoryRegion *mr);
714
715 /**
716 * memory_region_is_logging: return whether a memory region is logging writes
717 *
718 * Returns %true if the memory region is logging writes for the given client
719 *
720 * @mr: the memory region being queried
721 * @client: the client being queried
722 */
723 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client);
724
725 /**
726 * memory_region_get_dirty_log_mask: return the clients for which a
727 * memory region is logging writes.
728 *
729 * Returns a bitmap of clients, in which the DIRTY_MEMORY_* constants
730 * are the bit indices.
731 *
732 * @mr: the memory region being queried
733 */
734 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr);
735
736 /**
737 * memory_region_is_rom: check whether a memory region is ROM
738 *
739 * Returns %true is a memory region is read-only memory.
740 *
741 * @mr: the memory region being queried
742 */
743 static inline bool memory_region_is_rom(MemoryRegion *mr)
744 {
745 return mr->ram && mr->readonly;
746 }
747
748
749 /**
750 * memory_region_get_fd: Get a file descriptor backing a RAM memory region.
751 *
752 * Returns a file descriptor backing a file-based RAM memory region,
753 * or -1 if the region is not a file-based RAM memory region.
754 *
755 * @mr: the RAM or alias memory region being queried.
756 */
757 int memory_region_get_fd(MemoryRegion *mr);
758
759 /**
760 * memory_region_set_fd: Mark a RAM memory region as backed by a
761 * file descriptor.
762 *
763 * This function is typically used after memory_region_init_ram_ptr().
764 *
765 * @mr: the memory region being queried.
766 * @fd: the file descriptor that backs @mr.
767 */
768 void memory_region_set_fd(MemoryRegion *mr, int fd);
769
770 /**
771 * memory_region_from_host: Convert a pointer into a RAM memory region
772 * and an offset within it.
773 *
774 * Given a host pointer inside a RAM memory region (created with
775 * memory_region_init_ram() or memory_region_init_ram_ptr()), return
776 * the MemoryRegion and the offset within it.
777 *
778 * Use with care; by the time this function returns, the returned pointer is
779 * not protected by RCU anymore. If the caller is not within an RCU critical
780 * section and does not hold the iothread lock, it must have other means of
781 * protecting the pointer, such as a reference to the region that includes
782 * the incoming ram_addr_t.
783 *
784 * @mr: the memory region being queried.
785 */
786 MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset);
787
788 /**
789 * memory_region_get_ram_ptr: Get a pointer into a RAM memory region.
790 *
791 * Returns a host pointer to a RAM memory region (created with
792 * memory_region_init_ram() or memory_region_init_ram_ptr()).
793 *
794 * Use with care; by the time this function returns, the returned pointer is
795 * not protected by RCU anymore. If the caller is not within an RCU critical
796 * section and does not hold the iothread lock, it must have other means of
797 * protecting the pointer, such as a reference to the region that includes
798 * the incoming ram_addr_t.
799 *
800 * @mr: the memory region being queried.
801 */
802 void *memory_region_get_ram_ptr(MemoryRegion *mr);
803
804 /* memory_region_ram_resize: Resize a RAM region.
805 *
806 * Only legal before guest might have detected the memory size: e.g. on
807 * incoming migration, or right after reset.
808 *
809 * @mr: a memory region created with @memory_region_init_resizeable_ram.
810 * @newsize: the new size the region
811 * @errp: pointer to Error*, to store an error if it happens.
812 */
813 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize,
814 Error **errp);
815
816 /**
817 * memory_region_set_log: Turn dirty logging on or off for a region.
818 *
819 * Turns dirty logging on or off for a specified client (display, migration).
820 * Only meaningful for RAM regions.
821 *
822 * @mr: the memory region being updated.
823 * @log: whether dirty logging is to be enabled or disabled.
824 * @client: the user of the logging information; %DIRTY_MEMORY_VGA only.
825 */
826 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client);
827
828 /**
829 * memory_region_get_dirty: Check whether a range of bytes is dirty
830 * for a specified client.
831 *
832 * Checks whether a range of bytes has been written to since the last
833 * call to memory_region_reset_dirty() with the same @client. Dirty logging
834 * must be enabled.
835 *
836 * @mr: the memory region being queried.
837 * @addr: the address (relative to the start of the region) being queried.
838 * @size: the size of the range being queried.
839 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
840 * %DIRTY_MEMORY_VGA.
841 */
842 bool memory_region_get_dirty(MemoryRegion *mr, hwaddr addr,
843 hwaddr size, unsigned client);
844
845 /**
846 * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region.
847 *
848 * Marks a range of bytes as dirty, after it has been dirtied outside
849 * guest code.
850 *
851 * @mr: the memory region being dirtied.
852 * @addr: the address (relative to the start of the region) being dirtied.
853 * @size: size of the range being dirtied.
854 */
855 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
856 hwaddr size);
857
858 /**
859 * memory_region_test_and_clear_dirty: Check whether a range of bytes is dirty
860 * for a specified client. It clears them.
861 *
862 * Checks whether a range of bytes has been written to since the last
863 * call to memory_region_reset_dirty() with the same @client. Dirty logging
864 * must be enabled.
865 *
866 * @mr: the memory region being queried.
867 * @addr: the address (relative to the start of the region) being queried.
868 * @size: the size of the range being queried.
869 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
870 * %DIRTY_MEMORY_VGA.
871 */
872 bool memory_region_test_and_clear_dirty(MemoryRegion *mr, hwaddr addr,
873 hwaddr size, unsigned client);
874 /**
875 * memory_region_sync_dirty_bitmap: Synchronize a region's dirty bitmap with
876 * any external TLBs (e.g. kvm)
877 *
878 * Flushes dirty information from accelerators such as kvm and vhost-net
879 * and makes it available to users of the memory API.
880 *
881 * @mr: the region being flushed.
882 */
883 void memory_region_sync_dirty_bitmap(MemoryRegion *mr);
884
885 /**
886 * memory_region_reset_dirty: Mark a range of pages as clean, for a specified
887 * client.
888 *
889 * Marks a range of pages as no longer dirty.
890 *
891 * @mr: the region being updated.
892 * @addr: the start of the subrange being cleaned.
893 * @size: the size of the subrange being cleaned.
894 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
895 * %DIRTY_MEMORY_VGA.
896 */
897 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
898 hwaddr size, unsigned client);
899
900 /**
901 * memory_region_set_readonly: Turn a memory region read-only (or read-write)
902 *
903 * Allows a memory region to be marked as read-only (turning it into a ROM).
904 * only useful on RAM regions.
905 *
906 * @mr: the region being updated.
907 * @readonly: whether rhe region is to be ROM or RAM.
908 */
909 void memory_region_set_readonly(MemoryRegion *mr, bool readonly);
910
911 /**
912 * memory_region_rom_device_set_romd: enable/disable ROMD mode
913 *
914 * Allows a ROM device (initialized with memory_region_init_rom_device() to
915 * set to ROMD mode (default) or MMIO mode. When it is in ROMD mode, the
916 * device is mapped to guest memory and satisfies read access directly.
917 * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function.
918 * Writes are always handled by the #MemoryRegion.write function.
919 *
920 * @mr: the memory region to be updated
921 * @romd_mode: %true to put the region into ROMD mode
922 */
923 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode);
924
925 /**
926 * memory_region_set_coalescing: Enable memory coalescing for the region.
927 *
928 * Enabled writes to a region to be queued for later processing. MMIO ->write
929 * callbacks may be delayed until a non-coalesced MMIO is issued.
930 * Only useful for IO regions. Roughly similar to write-combining hardware.
931 *
932 * @mr: the memory region to be write coalesced
933 */
934 void memory_region_set_coalescing(MemoryRegion *mr);
935
936 /**
937 * memory_region_add_coalescing: Enable memory coalescing for a sub-range of
938 * a region.
939 *
940 * Like memory_region_set_coalescing(), but works on a sub-range of a region.
941 * Multiple calls can be issued coalesced disjoint ranges.
942 *
943 * @mr: the memory region to be updated.
944 * @offset: the start of the range within the region to be coalesced.
945 * @size: the size of the subrange to be coalesced.
946 */
947 void memory_region_add_coalescing(MemoryRegion *mr,
948 hwaddr offset,
949 uint64_t size);
950
951 /**
952 * memory_region_clear_coalescing: Disable MMIO coalescing for the region.
953 *
954 * Disables any coalescing caused by memory_region_set_coalescing() or
955 * memory_region_add_coalescing(). Roughly equivalent to uncacheble memory
956 * hardware.
957 *
958 * @mr: the memory region to be updated.
959 */
960 void memory_region_clear_coalescing(MemoryRegion *mr);
961
962 /**
963 * memory_region_set_flush_coalesced: Enforce memory coalescing flush before
964 * accesses.
965 *
966 * Ensure that pending coalesced MMIO request are flushed before the memory
967 * region is accessed. This property is automatically enabled for all regions
968 * passed to memory_region_set_coalescing() and memory_region_add_coalescing().
969 *
970 * @mr: the memory region to be updated.
971 */
972 void memory_region_set_flush_coalesced(MemoryRegion *mr);
973
974 /**
975 * memory_region_clear_flush_coalesced: Disable memory coalescing flush before
976 * accesses.
977 *
978 * Clear the automatic coalesced MMIO flushing enabled via
979 * memory_region_set_flush_coalesced. Note that this service has no effect on
980 * memory regions that have MMIO coalescing enabled for themselves. For them,
981 * automatic flushing will stop once coalescing is disabled.
982 *
983 * @mr: the memory region to be updated.
984 */
985 void memory_region_clear_flush_coalesced(MemoryRegion *mr);
986
987 /**
988 * memory_region_set_global_locking: Declares the access processing requires
989 * QEMU's global lock.
990 *
991 * When this is invoked, accesses to the memory region will be processed while
992 * holding the global lock of QEMU. This is the default behavior of memory
993 * regions.
994 *
995 * @mr: the memory region to be updated.
996 */
997 void memory_region_set_global_locking(MemoryRegion *mr);
998
999 /**
1000 * memory_region_clear_global_locking: Declares that access processing does
1001 * not depend on the QEMU global lock.
1002 *
1003 * By clearing this property, accesses to the memory region will be processed
1004 * outside of QEMU's global lock (unless the lock is held on when issuing the
1005 * access request). In this case, the device model implementing the access
1006 * handlers is responsible for synchronization of concurrency.
1007 *
1008 * @mr: the memory region to be updated.
1009 */
1010 void memory_region_clear_global_locking(MemoryRegion *mr);
1011
1012 /**
1013 * memory_region_add_eventfd: Request an eventfd to be triggered when a word
1014 * is written to a location.
1015 *
1016 * Marks a word in an IO region (initialized with memory_region_init_io())
1017 * as a trigger for an eventfd event. The I/O callback will not be called.
1018 * The caller must be prepared to handle failure (that is, take the required
1019 * action if the callback _is_ called).
1020 *
1021 * @mr: the memory region being updated.
1022 * @addr: the address within @mr that is to be monitored
1023 * @size: the size of the access to trigger the eventfd
1024 * @match_data: whether to match against @data, instead of just @addr
1025 * @data: the data to match against the guest write
1026 * @fd: the eventfd to be triggered when @addr, @size, and @data all match.
1027 **/
1028 void memory_region_add_eventfd(MemoryRegion *mr,
1029 hwaddr addr,
1030 unsigned size,
1031 bool match_data,
1032 uint64_t data,
1033 EventNotifier *e);
1034
1035 /**
1036 * memory_region_del_eventfd: Cancel an eventfd.
1037 *
1038 * Cancels an eventfd trigger requested by a previous
1039 * memory_region_add_eventfd() call.
1040 *
1041 * @mr: the memory region being updated.
1042 * @addr: the address within @mr that is to be monitored
1043 * @size: the size of the access to trigger the eventfd
1044 * @match_data: whether to match against @data, instead of just @addr
1045 * @data: the data to match against the guest write
1046 * @fd: the eventfd to be triggered when @addr, @size, and @data all match.
1047 */
1048 void memory_region_del_eventfd(MemoryRegion *mr,
1049 hwaddr addr,
1050 unsigned size,
1051 bool match_data,
1052 uint64_t data,
1053 EventNotifier *e);
1054
1055 /**
1056 * memory_region_add_subregion: Add a subregion to a container.
1057 *
1058 * Adds a subregion at @offset. The subregion may not overlap with other
1059 * subregions (except for those explicitly marked as overlapping). A region
1060 * may only be added once as a subregion (unless removed with
1061 * memory_region_del_subregion()); use memory_region_init_alias() if you
1062 * want a region to be a subregion in multiple locations.
1063 *
1064 * @mr: the region to contain the new subregion; must be a container
1065 * initialized with memory_region_init().
1066 * @offset: the offset relative to @mr where @subregion is added.
1067 * @subregion: the subregion to be added.
1068 */
1069 void memory_region_add_subregion(MemoryRegion *mr,
1070 hwaddr offset,
1071 MemoryRegion *subregion);
1072 /**
1073 * memory_region_add_subregion_overlap: Add a subregion to a container
1074 * with overlap.
1075 *
1076 * Adds a subregion at @offset. The subregion may overlap with other
1077 * subregions. Conflicts are resolved by having a higher @priority hide a
1078 * lower @priority. Subregions without priority are taken as @priority 0.
1079 * A region may only be added once as a subregion (unless removed with
1080 * memory_region_del_subregion()); use memory_region_init_alias() if you
1081 * want a region to be a subregion in multiple locations.
1082 *
1083 * @mr: the region to contain the new subregion; must be a container
1084 * initialized with memory_region_init().
1085 * @offset: the offset relative to @mr where @subregion is added.
1086 * @subregion: the subregion to be added.
1087 * @priority: used for resolving overlaps; highest priority wins.
1088 */
1089 void memory_region_add_subregion_overlap(MemoryRegion *mr,
1090 hwaddr offset,
1091 MemoryRegion *subregion,
1092 int priority);
1093
1094 /**
1095 * memory_region_get_ram_addr: Get the ram address associated with a memory
1096 * region
1097 */
1098 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr);
1099
1100 uint64_t memory_region_get_alignment(const MemoryRegion *mr);
1101 /**
1102 * memory_region_del_subregion: Remove a subregion.
1103 *
1104 * Removes a subregion from its container.
1105 *
1106 * @mr: the container to be updated.
1107 * @subregion: the region being removed; must be a current subregion of @mr.
1108 */
1109 void memory_region_del_subregion(MemoryRegion *mr,
1110 MemoryRegion *subregion);
1111
1112 /*
1113 * memory_region_set_enabled: dynamically enable or disable a region
1114 *
1115 * Enables or disables a memory region. A disabled memory region
1116 * ignores all accesses to itself and its subregions. It does not
1117 * obscure sibling subregions with lower priority - it simply behaves as
1118 * if it was removed from the hierarchy.
1119 *
1120 * Regions default to being enabled.
1121 *
1122 * @mr: the region to be updated
1123 * @enabled: whether to enable or disable the region
1124 */
1125 void memory_region_set_enabled(MemoryRegion *mr, bool enabled);
1126
1127 /*
1128 * memory_region_set_address: dynamically update the address of a region
1129 *
1130 * Dynamically updates the address of a region, relative to its container.
1131 * May be used on regions are currently part of a memory hierarchy.
1132 *
1133 * @mr: the region to be updated
1134 * @addr: new address, relative to container region
1135 */
1136 void memory_region_set_address(MemoryRegion *mr, hwaddr addr);
1137
1138 /*
1139 * memory_region_set_size: dynamically update the size of a region.
1140 *
1141 * Dynamically updates the size of a region.
1142 *
1143 * @mr: the region to be updated
1144 * @size: used size of the region.
1145 */
1146 void memory_region_set_size(MemoryRegion *mr, uint64_t size);
1147
1148 /*
1149 * memory_region_set_alias_offset: dynamically update a memory alias's offset
1150 *
1151 * Dynamically updates the offset into the target region that an alias points
1152 * to, as if the fourth argument to memory_region_init_alias() has changed.
1153 *
1154 * @mr: the #MemoryRegion to be updated; should be an alias.
1155 * @offset: the new offset into the target memory region
1156 */
1157 void memory_region_set_alias_offset(MemoryRegion *mr,
1158 hwaddr offset);
1159
1160 /**
1161 * memory_region_present: checks if an address relative to a @container
1162 * translates into #MemoryRegion within @container
1163 *
1164 * Answer whether a #MemoryRegion within @container covers the address
1165 * @addr.
1166 *
1167 * @container: a #MemoryRegion within which @addr is a relative address
1168 * @addr: the area within @container to be searched
1169 */
1170 bool memory_region_present(MemoryRegion *container, hwaddr addr);
1171
1172 /**
1173 * memory_region_is_mapped: returns true if #MemoryRegion is mapped
1174 * into any address space.
1175 *
1176 * @mr: a #MemoryRegion which should be checked if it's mapped
1177 */
1178 bool memory_region_is_mapped(MemoryRegion *mr);
1179
1180 /**
1181 * memory_region_find: translate an address/size relative to a
1182 * MemoryRegion into a #MemoryRegionSection.
1183 *
1184 * Locates the first #MemoryRegion within @mr that overlaps the range
1185 * given by @addr and @size.
1186 *
1187 * Returns a #MemoryRegionSection that describes a contiguous overlap.
1188 * It will have the following characteristics:
1189 * .@size = 0 iff no overlap was found
1190 * .@mr is non-%NULL iff an overlap was found
1191 *
1192 * Remember that in the return value the @offset_within_region is
1193 * relative to the returned region (in the .@mr field), not to the
1194 * @mr argument.
1195 *
1196 * Similarly, the .@offset_within_address_space is relative to the
1197 * address space that contains both regions, the passed and the
1198 * returned one. However, in the special case where the @mr argument
1199 * has no container (and thus is the root of the address space), the
1200 * following will hold:
1201 * .@offset_within_address_space >= @addr
1202 * .@offset_within_address_space + .@size <= @addr + @size
1203 *
1204 * @mr: a MemoryRegion within which @addr is a relative address
1205 * @addr: start of the area within @as to be searched
1206 * @size: size of the area to be searched
1207 */
1208 MemoryRegionSection memory_region_find(MemoryRegion *mr,
1209 hwaddr addr, uint64_t size);
1210
1211 /**
1212 * memory_global_dirty_log_sync: synchronize the dirty log for all memory
1213 *
1214 * Synchronizes the dirty page log for all address spaces.
1215 */
1216 void memory_global_dirty_log_sync(void);
1217
1218 /**
1219 * memory_region_transaction_begin: Start a transaction.
1220 *
1221 * During a transaction, changes will be accumulated and made visible
1222 * only when the transaction ends (is committed).
1223 */
1224 void memory_region_transaction_begin(void);
1225
1226 /**
1227 * memory_region_transaction_commit: Commit a transaction and make changes
1228 * visible to the guest.
1229 */
1230 void memory_region_transaction_commit(void);
1231
1232 /**
1233 * memory_listener_register: register callbacks to be called when memory
1234 * sections are mapped or unmapped into an address
1235 * space
1236 *
1237 * @listener: an object containing the callbacks to be called
1238 * @filter: if non-%NULL, only regions in this address space will be observed
1239 */
1240 void memory_listener_register(MemoryListener *listener, AddressSpace *filter);
1241
1242 /**
1243 * memory_listener_unregister: undo the effect of memory_listener_register()
1244 *
1245 * @listener: an object containing the callbacks to be removed
1246 */
1247 void memory_listener_unregister(MemoryListener *listener);
1248
1249 /**
1250 * memory_global_dirty_log_start: begin dirty logging for all regions
1251 */
1252 void memory_global_dirty_log_start(void);
1253
1254 /**
1255 * memory_global_dirty_log_stop: end dirty logging for all regions
1256 */
1257 void memory_global_dirty_log_stop(void);
1258
1259 void mtree_info(fprintf_function mon_printf, void *f, bool flatview);
1260
1261 /**
1262 * memory_region_dispatch_read: perform a read directly to the specified
1263 * MemoryRegion.
1264 *
1265 * @mr: #MemoryRegion to access
1266 * @addr: address within that region
1267 * @pval: pointer to uint64_t which the data is written to
1268 * @size: size of the access in bytes
1269 * @attrs: memory transaction attributes to use for the access
1270 */
1271 MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
1272 hwaddr addr,
1273 uint64_t *pval,
1274 unsigned size,
1275 MemTxAttrs attrs);
1276 /**
1277 * memory_region_dispatch_write: perform a write directly to the specified
1278 * MemoryRegion.
1279 *
1280 * @mr: #MemoryRegion to access
1281 * @addr: address within that region
1282 * @data: data to write
1283 * @size: size of the access in bytes
1284 * @attrs: memory transaction attributes to use for the access
1285 */
1286 MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
1287 hwaddr addr,
1288 uint64_t data,
1289 unsigned size,
1290 MemTxAttrs attrs);
1291
1292 /**
1293 * address_space_init: initializes an address space
1294 *
1295 * @as: an uninitialized #AddressSpace
1296 * @root: a #MemoryRegion that routes addresses for the address space
1297 * @name: an address space name. The name is only used for debugging
1298 * output.
1299 */
1300 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name);
1301
1302 /**
1303 * address_space_init_shareable: return an address space for a memory region,
1304 * creating it if it does not already exist
1305 *
1306 * @root: a #MemoryRegion that routes addresses for the address space
1307 * @name: an address space name. The name is only used for debugging
1308 * output.
1309 *
1310 * This function will return a pointer to an existing AddressSpace
1311 * which was initialized with the specified MemoryRegion, or it will
1312 * create and initialize one if it does not already exist. The ASes
1313 * are reference-counted, so the memory will be freed automatically
1314 * when the AddressSpace is destroyed via address_space_destroy.
1315 */
1316 AddressSpace *address_space_init_shareable(MemoryRegion *root,
1317 const char *name);
1318
1319 /**
1320 * address_space_destroy: destroy an address space
1321 *
1322 * Releases all resources associated with an address space. After an address space
1323 * is destroyed, its root memory region (given by address_space_init()) may be destroyed
1324 * as well.
1325 *
1326 * @as: address space to be destroyed
1327 */
1328 void address_space_destroy(AddressSpace *as);
1329
1330 /**
1331 * address_space_rw: read from or write to an address space.
1332 *
1333 * Return a MemTxResult indicating whether the operation succeeded
1334 * or failed (eg unassigned memory, device rejected the transaction,
1335 * IOMMU fault).
1336 *
1337 * @as: #AddressSpace to be accessed
1338 * @addr: address within that address space
1339 * @attrs: memory transaction attributes
1340 * @buf: buffer with the data transferred
1341 * @is_write: indicates the transfer direction
1342 */
1343 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr,
1344 MemTxAttrs attrs, uint8_t *buf,
1345 int len, bool is_write);
1346
1347 /**
1348 * address_space_write: write to address space.
1349 *
1350 * Return a MemTxResult indicating whether the operation succeeded
1351 * or failed (eg unassigned memory, device rejected the transaction,
1352 * IOMMU fault).
1353 *
1354 * @as: #AddressSpace to be accessed
1355 * @addr: address within that address space
1356 * @attrs: memory transaction attributes
1357 * @buf: buffer with the data transferred
1358 */
1359 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
1360 MemTxAttrs attrs,
1361 const uint8_t *buf, int len);
1362
1363 /* address_space_ld*: load from an address space
1364 * address_space_st*: store to an address space
1365 *
1366 * These functions perform a load or store of the byte, word,
1367 * longword or quad to the specified address within the AddressSpace.
1368 * The _le suffixed functions treat the data as little endian;
1369 * _be indicates big endian; no suffix indicates "same endianness
1370 * as guest CPU".
1371 *
1372 * The "guest CPU endianness" accessors are deprecated for use outside
1373 * target-* code; devices should be CPU-agnostic and use either the LE
1374 * or the BE accessors.
1375 *
1376 * @as #AddressSpace to be accessed
1377 * @addr: address within that address space
1378 * @val: data value, for stores
1379 * @attrs: memory transaction attributes
1380 * @result: location to write the success/failure of the transaction;
1381 * if NULL, this information is discarded
1382 */
1383 uint32_t address_space_ldub(AddressSpace *as, hwaddr addr,
1384 MemTxAttrs attrs, MemTxResult *result);
1385 uint32_t address_space_lduw_le(AddressSpace *as, hwaddr addr,
1386 MemTxAttrs attrs, MemTxResult *result);
1387 uint32_t address_space_lduw_be(AddressSpace *as, hwaddr addr,
1388 MemTxAttrs attrs, MemTxResult *result);
1389 uint32_t address_space_ldl_le(AddressSpace *as, hwaddr addr,
1390 MemTxAttrs attrs, MemTxResult *result);
1391 uint32_t address_space_ldl_be(AddressSpace *as, hwaddr addr,
1392 MemTxAttrs attrs, MemTxResult *result);
1393 uint64_t address_space_ldq_le(AddressSpace *as, hwaddr addr,
1394 MemTxAttrs attrs, MemTxResult *result);
1395 uint64_t address_space_ldq_be(AddressSpace *as, hwaddr addr,
1396 MemTxAttrs attrs, MemTxResult *result);
1397 void address_space_stb(AddressSpace *as, hwaddr addr, uint32_t val,
1398 MemTxAttrs attrs, MemTxResult *result);
1399 void address_space_stw_le(AddressSpace *as, hwaddr addr, uint32_t val,
1400 MemTxAttrs attrs, MemTxResult *result);
1401 void address_space_stw_be(AddressSpace *as, hwaddr addr, uint32_t val,
1402 MemTxAttrs attrs, MemTxResult *result);
1403 void address_space_stl_le(AddressSpace *as, hwaddr addr, uint32_t val,
1404 MemTxAttrs attrs, MemTxResult *result);
1405 void address_space_stl_be(AddressSpace *as, hwaddr addr, uint32_t val,
1406 MemTxAttrs attrs, MemTxResult *result);
1407 void address_space_stq_le(AddressSpace *as, hwaddr addr, uint64_t val,
1408 MemTxAttrs attrs, MemTxResult *result);
1409 void address_space_stq_be(AddressSpace *as, hwaddr addr, uint64_t val,
1410 MemTxAttrs attrs, MemTxResult *result);
1411
1412 uint32_t ldub_phys(AddressSpace *as, hwaddr addr);
1413 uint32_t lduw_le_phys(AddressSpace *as, hwaddr addr);
1414 uint32_t lduw_be_phys(AddressSpace *as, hwaddr addr);
1415 uint32_t ldl_le_phys(AddressSpace *as, hwaddr addr);
1416 uint32_t ldl_be_phys(AddressSpace *as, hwaddr addr);
1417 uint64_t ldq_le_phys(AddressSpace *as, hwaddr addr);
1418 uint64_t ldq_be_phys(AddressSpace *as, hwaddr addr);
1419 void stb_phys(AddressSpace *as, hwaddr addr, uint32_t val);
1420 void stw_le_phys(AddressSpace *as, hwaddr addr, uint32_t val);
1421 void stw_be_phys(AddressSpace *as, hwaddr addr, uint32_t val);
1422 void stl_le_phys(AddressSpace *as, hwaddr addr, uint32_t val);
1423 void stl_be_phys(AddressSpace *as, hwaddr addr, uint32_t val);
1424 void stq_le_phys(AddressSpace *as, hwaddr addr, uint64_t val);
1425 void stq_be_phys(AddressSpace *as, hwaddr addr, uint64_t val);
1426
1427 struct MemoryRegionCache {
1428 hwaddr xlat;
1429 hwaddr len;
1430 AddressSpace *as;
1431 };
1432
1433 #define MEMORY_REGION_CACHE_INVALID ((MemoryRegionCache) { .as = NULL })
1434
1435 /* address_space_cache_init: prepare for repeated access to a physical
1436 * memory region
1437 *
1438 * @cache: #MemoryRegionCache to be filled
1439 * @as: #AddressSpace to be accessed
1440 * @addr: address within that address space
1441 * @len: length of buffer
1442 * @is_write: indicates the transfer direction
1443 *
1444 * Will only work with RAM, and may map a subset of the requested range by
1445 * returning a value that is less than @len. On failure, return a negative
1446 * errno value.
1447 *
1448 * Because it only works with RAM, this function can be used for
1449 * read-modify-write operations. In this case, is_write should be %true.
1450 *
1451 * Note that addresses passed to the address_space_*_cached functions
1452 * are relative to @addr.
1453 */
1454 int64_t address_space_cache_init(MemoryRegionCache *cache,
1455 AddressSpace *as,
1456 hwaddr addr,
1457 hwaddr len,
1458 bool is_write);
1459
1460 /**
1461 * address_space_cache_invalidate: complete a write to a #MemoryRegionCache
1462 *
1463 * @cache: The #MemoryRegionCache to operate on.
1464 * @addr: The first physical address that was written, relative to the
1465 * address that was passed to @address_space_cache_init.
1466 * @access_len: The number of bytes that were written starting at @addr.
1467 */
1468 void address_space_cache_invalidate(MemoryRegionCache *cache,
1469 hwaddr addr,
1470 hwaddr access_len);
1471
1472 /**
1473 * address_space_cache_destroy: free a #MemoryRegionCache
1474 *
1475 * @cache: The #MemoryRegionCache whose memory should be released.
1476 */
1477 void address_space_cache_destroy(MemoryRegionCache *cache);
1478
1479 /* address_space_ld*_cached: load from a cached #MemoryRegion
1480 * address_space_st*_cached: store into a cached #MemoryRegion
1481 *
1482 * These functions perform a load or store of the byte, word,
1483 * longword or quad to the specified address. The address is
1484 * a physical address in the AddressSpace, but it must lie within
1485 * a #MemoryRegion that was mapped with address_space_cache_init.
1486 *
1487 * The _le suffixed functions treat the data as little endian;
1488 * _be indicates big endian; no suffix indicates "same endianness
1489 * as guest CPU".
1490 *
1491 * The "guest CPU endianness" accessors are deprecated for use outside
1492 * target-* code; devices should be CPU-agnostic and use either the LE
1493 * or the BE accessors.
1494 *
1495 * @cache: previously initialized #MemoryRegionCache to be accessed
1496 * @addr: address within the address space
1497 * @val: data value, for stores
1498 * @attrs: memory transaction attributes
1499 * @result: location to write the success/failure of the transaction;
1500 * if NULL, this information is discarded
1501 */
1502 uint32_t address_space_ldub_cached(MemoryRegionCache *cache, hwaddr addr,
1503 MemTxAttrs attrs, MemTxResult *result);
1504 uint32_t address_space_lduw_le_cached(MemoryRegionCache *cache, hwaddr addr,
1505 MemTxAttrs attrs, MemTxResult *result);
1506 uint32_t address_space_lduw_be_cached(MemoryRegionCache *cache, hwaddr addr,
1507 MemTxAttrs attrs, MemTxResult *result);
1508 uint32_t address_space_ldl_le_cached(MemoryRegionCache *cache, hwaddr addr,
1509 MemTxAttrs attrs, MemTxResult *result);
1510 uint32_t address_space_ldl_be_cached(MemoryRegionCache *cache, hwaddr addr,
1511 MemTxAttrs attrs, MemTxResult *result);
1512 uint64_t address_space_ldq_le_cached(MemoryRegionCache *cache, hwaddr addr,
1513 MemTxAttrs attrs, MemTxResult *result);
1514 uint64_t address_space_ldq_be_cached(MemoryRegionCache *cache, hwaddr addr,
1515 MemTxAttrs attrs, MemTxResult *result);
1516 void address_space_stb_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val,
1517 MemTxAttrs attrs, MemTxResult *result);
1518 void address_space_stw_le_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val,
1519 MemTxAttrs attrs, MemTxResult *result);
1520 void address_space_stw_be_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val,
1521 MemTxAttrs attrs, MemTxResult *result);
1522 void address_space_stl_le_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val,
1523 MemTxAttrs attrs, MemTxResult *result);
1524 void address_space_stl_be_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val,
1525 MemTxAttrs attrs, MemTxResult *result);
1526 void address_space_stq_le_cached(MemoryRegionCache *cache, hwaddr addr, uint64_t val,
1527 MemTxAttrs attrs, MemTxResult *result);
1528 void address_space_stq_be_cached(MemoryRegionCache *cache, hwaddr addr, uint64_t val,
1529 MemTxAttrs attrs, MemTxResult *result);
1530
1531 uint32_t ldub_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1532 uint32_t lduw_le_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1533 uint32_t lduw_be_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1534 uint32_t ldl_le_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1535 uint32_t ldl_be_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1536 uint64_t ldq_le_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1537 uint64_t ldq_be_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1538 void stb_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val);
1539 void stw_le_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val);
1540 void stw_be_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val);
1541 void stl_le_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val);
1542 void stl_be_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val);
1543 void stq_le_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint64_t val);
1544 void stq_be_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint64_t val);
1545 /* address_space_get_iotlb_entry: translate an address into an IOTLB
1546 * entry. Should be called from an RCU critical section.
1547 */
1548 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
1549 bool is_write);
1550
1551 /* address_space_translate: translate an address range into an address space
1552 * into a MemoryRegion and an address range into that section. Should be
1553 * called from an RCU critical section, to avoid that the last reference
1554 * to the returned region disappears after address_space_translate returns.
1555 *
1556 * @as: #AddressSpace to be accessed
1557 * @addr: address within that address space
1558 * @xlat: pointer to address within the returned memory region section's
1559 * #MemoryRegion.
1560 * @len: pointer to length
1561 * @is_write: indicates the transfer direction
1562 */
1563 MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr,
1564 hwaddr *xlat, hwaddr *len,
1565 bool is_write);
1566
1567 /* address_space_access_valid: check for validity of accessing an address
1568 * space range
1569 *
1570 * Check whether memory is assigned to the given address space range, and
1571 * access is permitted by any IOMMU regions that are active for the address
1572 * space.
1573 *
1574 * For now, addr and len should be aligned to a page size. This limitation
1575 * will be lifted in the future.
1576 *
1577 * @as: #AddressSpace to be accessed
1578 * @addr: address within that address space
1579 * @len: length of the area to be checked
1580 * @is_write: indicates the transfer direction
1581 */
1582 bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write);
1583
1584 /* address_space_map: map a physical memory region into a host virtual address
1585 *
1586 * May map a subset of the requested range, given by and returned in @plen.
1587 * May return %NULL if resources needed to perform the mapping are exhausted.
1588 * Use only for reads OR writes - not for read-modify-write operations.
1589 * Use cpu_register_map_client() to know when retrying the map operation is
1590 * likely to succeed.
1591 *
1592 * @as: #AddressSpace to be accessed
1593 * @addr: address within that address space
1594 * @plen: pointer to length of buffer; updated on return
1595 * @is_write: indicates the transfer direction
1596 */
1597 void *address_space_map(AddressSpace *as, hwaddr addr,
1598 hwaddr *plen, bool is_write);
1599
1600 /* address_space_unmap: Unmaps a memory region previously mapped by address_space_map()
1601 *
1602 * Will also mark the memory as dirty if @is_write == %true. @access_len gives
1603 * the amount of memory that was actually read or written by the caller.
1604 *
1605 * @as: #AddressSpace used
1606 * @addr: address within that address space
1607 * @len: buffer length as returned by address_space_map()
1608 * @access_len: amount of data actually transferred
1609 * @is_write: indicates the transfer direction
1610 */
1611 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
1612 int is_write, hwaddr access_len);
1613
1614
1615 /* Internal functions, part of the implementation of address_space_read. */
1616 MemTxResult address_space_read_continue(AddressSpace *as, hwaddr addr,
1617 MemTxAttrs attrs, uint8_t *buf,
1618 int len, hwaddr addr1, hwaddr l,
1619 MemoryRegion *mr);
1620 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
1621 MemTxAttrs attrs, uint8_t *buf, int len);
1622 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr);
1623
1624 static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write)
1625 {
1626 if (is_write) {
1627 return memory_region_is_ram(mr) &&
1628 !mr->readonly && !memory_region_is_ram_device(mr);
1629 } else {
1630 return (memory_region_is_ram(mr) && !memory_region_is_ram_device(mr)) ||
1631 memory_region_is_romd(mr);
1632 }
1633 }
1634
1635 /**
1636 * address_space_read: read from an address space.
1637 *
1638 * Return a MemTxResult indicating whether the operation succeeded
1639 * or failed (eg unassigned memory, device rejected the transaction,
1640 * IOMMU fault).
1641 *
1642 * @as: #AddressSpace to be accessed
1643 * @addr: address within that address space
1644 * @attrs: memory transaction attributes
1645 * @buf: buffer with the data transferred
1646 */
1647 static inline __attribute__((__always_inline__))
1648 MemTxResult address_space_read(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
1649 uint8_t *buf, int len)
1650 {
1651 MemTxResult result = MEMTX_OK;
1652 hwaddr l, addr1;
1653 void *ptr;
1654 MemoryRegion *mr;
1655
1656 if (__builtin_constant_p(len)) {
1657 if (len) {
1658 rcu_read_lock();
1659 l = len;
1660 mr = address_space_translate(as, addr, &addr1, &l, false);
1661 if (len == l && memory_access_is_direct(mr, false)) {
1662 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
1663 memcpy(buf, ptr, len);
1664 } else {
1665 result = address_space_read_continue(as, addr, attrs, buf, len,
1666 addr1, l, mr);
1667 }
1668 rcu_read_unlock();
1669 }
1670 } else {
1671 result = address_space_read_full(as, addr, attrs, buf, len);
1672 }
1673 return result;
1674 }
1675
1676 /**
1677 * address_space_read_cached: read from a cached RAM region
1678 *
1679 * @cache: Cached region to be addressed
1680 * @addr: address relative to the base of the RAM region
1681 * @buf: buffer with the data transferred
1682 * @len: length of the data transferred
1683 */
1684 static inline void
1685 address_space_read_cached(MemoryRegionCache *cache, hwaddr addr,
1686 void *buf, int len)
1687 {
1688 assert(addr < cache->len && len <= cache->len - addr);
1689 address_space_read(cache->as, cache->xlat + addr, MEMTXATTRS_UNSPECIFIED, buf, len);
1690 }
1691
1692 /**
1693 * address_space_write_cached: write to a cached RAM region
1694 *
1695 * @cache: Cached region to be addressed
1696 * @addr: address relative to the base of the RAM region
1697 * @buf: buffer with the data transferred
1698 * @len: length of the data transferred
1699 */
1700 static inline void
1701 address_space_write_cached(MemoryRegionCache *cache, hwaddr addr,
1702 void *buf, int len)
1703 {
1704 assert(addr < cache->len && len <= cache->len - addr);
1705 address_space_write(cache->as, cache->xlat + addr, MEMTXATTRS_UNSPECIFIED, buf, len);
1706 }
1707
1708 #endif
1709
1710 #endif