]> git.proxmox.com Git - mirror_qemu.git/blob - include/exec/memory.h
Merge remote-tracking branch 'remotes/armbru/tags/pull-include-2019-08-13-v2' into...
[mirror_qemu.git] / include / exec / memory.h
1 /*
2 * Physical memory management API
3 *
4 * Copyright 2011 Red Hat, Inc. and/or its affiliates
5 *
6 * Authors:
7 * Avi Kivity <avi@redhat.com>
8 *
9 * This work is licensed under the terms of the GNU GPL, version 2. See
10 * the COPYING file in the top-level directory.
11 *
12 */
13
14 #ifndef MEMORY_H
15 #define MEMORY_H
16
17 #ifndef CONFIG_USER_ONLY
18
19 #include "exec/cpu-common.h"
20 #include "exec/hwaddr.h"
21 #include "exec/memattrs.h"
22 #include "exec/ramlist.h"
23 #include "qemu/bswap.h"
24 #include "qemu/queue.h"
25 #include "qemu/int128.h"
26 #include "qemu/notify.h"
27 #include "qom/object.h"
28 #include "qemu/rcu.h"
29
30 #define RAM_ADDR_INVALID (~(ram_addr_t)0)
31
32 #define MAX_PHYS_ADDR_SPACE_BITS 62
33 #define MAX_PHYS_ADDR (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1)
34
35 #define TYPE_MEMORY_REGION "qemu:memory-region"
36 #define MEMORY_REGION(obj) \
37 OBJECT_CHECK(MemoryRegion, (obj), TYPE_MEMORY_REGION)
38
39 #define TYPE_IOMMU_MEMORY_REGION "qemu:iommu-memory-region"
40 #define IOMMU_MEMORY_REGION(obj) \
41 OBJECT_CHECK(IOMMUMemoryRegion, (obj), TYPE_IOMMU_MEMORY_REGION)
42 #define IOMMU_MEMORY_REGION_CLASS(klass) \
43 OBJECT_CLASS_CHECK(IOMMUMemoryRegionClass, (klass), \
44 TYPE_IOMMU_MEMORY_REGION)
45 #define IOMMU_MEMORY_REGION_GET_CLASS(obj) \
46 OBJECT_GET_CLASS(IOMMUMemoryRegionClass, (obj), \
47 TYPE_IOMMU_MEMORY_REGION)
48
49 extern bool global_dirty_log;
50
51 typedef struct MemoryRegionOps MemoryRegionOps;
52 typedef struct MemoryRegionMmio MemoryRegionMmio;
53
54 struct MemoryRegionMmio {
55 CPUReadMemoryFunc *read[3];
56 CPUWriteMemoryFunc *write[3];
57 };
58
59 typedef struct IOMMUTLBEntry IOMMUTLBEntry;
60
61 /* See address_space_translate: bit 0 is read, bit 1 is write. */
62 typedef enum {
63 IOMMU_NONE = 0,
64 IOMMU_RO = 1,
65 IOMMU_WO = 2,
66 IOMMU_RW = 3,
67 } IOMMUAccessFlags;
68
69 #define IOMMU_ACCESS_FLAG(r, w) (((r) ? IOMMU_RO : 0) | ((w) ? IOMMU_WO : 0))
70
71 struct IOMMUTLBEntry {
72 AddressSpace *target_as;
73 hwaddr iova;
74 hwaddr translated_addr;
75 hwaddr addr_mask; /* 0xfff = 4k translation */
76 IOMMUAccessFlags perm;
77 };
78
79 /*
80 * Bitmap for different IOMMUNotifier capabilities. Each notifier can
81 * register with one or multiple IOMMU Notifier capability bit(s).
82 */
83 typedef enum {
84 IOMMU_NOTIFIER_NONE = 0,
85 /* Notify cache invalidations */
86 IOMMU_NOTIFIER_UNMAP = 0x1,
87 /* Notify entry changes (newly created entries) */
88 IOMMU_NOTIFIER_MAP = 0x2,
89 } IOMMUNotifierFlag;
90
91 #define IOMMU_NOTIFIER_ALL (IOMMU_NOTIFIER_MAP | IOMMU_NOTIFIER_UNMAP)
92
93 struct IOMMUNotifier;
94 typedef void (*IOMMUNotify)(struct IOMMUNotifier *notifier,
95 IOMMUTLBEntry *data);
96
97 struct IOMMUNotifier {
98 IOMMUNotify notify;
99 IOMMUNotifierFlag notifier_flags;
100 /* Notify for address space range start <= addr <= end */
101 hwaddr start;
102 hwaddr end;
103 int iommu_idx;
104 QLIST_ENTRY(IOMMUNotifier) node;
105 };
106 typedef struct IOMMUNotifier IOMMUNotifier;
107
108 /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
109 #define RAM_PREALLOC (1 << 0)
110
111 /* RAM is mmap-ed with MAP_SHARED */
112 #define RAM_SHARED (1 << 1)
113
114 /* Only a portion of RAM (used_length) is actually used, and migrated.
115 * This used_length size can change across reboots.
116 */
117 #define RAM_RESIZEABLE (1 << 2)
118
119 /* UFFDIO_ZEROPAGE is available on this RAMBlock to atomically
120 * zero the page and wake waiting processes.
121 * (Set during postcopy)
122 */
123 #define RAM_UF_ZEROPAGE (1 << 3)
124
125 /* RAM can be migrated */
126 #define RAM_MIGRATABLE (1 << 4)
127
128 /* RAM is a persistent kind memory */
129 #define RAM_PMEM (1 << 5)
130
131 static inline void iommu_notifier_init(IOMMUNotifier *n, IOMMUNotify fn,
132 IOMMUNotifierFlag flags,
133 hwaddr start, hwaddr end,
134 int iommu_idx)
135 {
136 n->notify = fn;
137 n->notifier_flags = flags;
138 n->start = start;
139 n->end = end;
140 n->iommu_idx = iommu_idx;
141 }
142
143 /*
144 * Memory region callbacks
145 */
146 struct MemoryRegionOps {
147 /* Read from the memory region. @addr is relative to @mr; @size is
148 * in bytes. */
149 uint64_t (*read)(void *opaque,
150 hwaddr addr,
151 unsigned size);
152 /* Write to the memory region. @addr is relative to @mr; @size is
153 * in bytes. */
154 void (*write)(void *opaque,
155 hwaddr addr,
156 uint64_t data,
157 unsigned size);
158
159 MemTxResult (*read_with_attrs)(void *opaque,
160 hwaddr addr,
161 uint64_t *data,
162 unsigned size,
163 MemTxAttrs attrs);
164 MemTxResult (*write_with_attrs)(void *opaque,
165 hwaddr addr,
166 uint64_t data,
167 unsigned size,
168 MemTxAttrs attrs);
169
170 enum device_endian endianness;
171 /* Guest-visible constraints: */
172 struct {
173 /* If nonzero, specify bounds on access sizes beyond which a machine
174 * check is thrown.
175 */
176 unsigned min_access_size;
177 unsigned max_access_size;
178 /* If true, unaligned accesses are supported. Otherwise unaligned
179 * accesses throw machine checks.
180 */
181 bool unaligned;
182 /*
183 * If present, and returns #false, the transaction is not accepted
184 * by the device (and results in machine dependent behaviour such
185 * as a machine check exception).
186 */
187 bool (*accepts)(void *opaque, hwaddr addr,
188 unsigned size, bool is_write,
189 MemTxAttrs attrs);
190 } valid;
191 /* Internal implementation constraints: */
192 struct {
193 /* If nonzero, specifies the minimum size implemented. Smaller sizes
194 * will be rounded upwards and a partial result will be returned.
195 */
196 unsigned min_access_size;
197 /* If nonzero, specifies the maximum size implemented. Larger sizes
198 * will be done as a series of accesses with smaller sizes.
199 */
200 unsigned max_access_size;
201 /* If true, unaligned accesses are supported. Otherwise all accesses
202 * are converted to (possibly multiple) naturally aligned accesses.
203 */
204 bool unaligned;
205 } impl;
206 };
207
208 typedef struct MemoryRegionClass {
209 /* private */
210 ObjectClass parent_class;
211 } MemoryRegionClass;
212
213
214 enum IOMMUMemoryRegionAttr {
215 IOMMU_ATTR_SPAPR_TCE_FD
216 };
217
218 /**
219 * IOMMUMemoryRegionClass:
220 *
221 * All IOMMU implementations need to subclass TYPE_IOMMU_MEMORY_REGION
222 * and provide an implementation of at least the @translate method here
223 * to handle requests to the memory region. Other methods are optional.
224 *
225 * The IOMMU implementation must use the IOMMU notifier infrastructure
226 * to report whenever mappings are changed, by calling
227 * memory_region_notify_iommu() (or, if necessary, by calling
228 * memory_region_notify_one() for each registered notifier).
229 *
230 * Conceptually an IOMMU provides a mapping from input address
231 * to an output TLB entry. If the IOMMU is aware of memory transaction
232 * attributes and the output TLB entry depends on the transaction
233 * attributes, we represent this using IOMMU indexes. Each index
234 * selects a particular translation table that the IOMMU has:
235 * @attrs_to_index returns the IOMMU index for a set of transaction attributes
236 * @translate takes an input address and an IOMMU index
237 * and the mapping returned can only depend on the input address and the
238 * IOMMU index.
239 *
240 * Most IOMMUs don't care about the transaction attributes and support
241 * only a single IOMMU index. A more complex IOMMU might have one index
242 * for secure transactions and one for non-secure transactions.
243 */
244 typedef struct IOMMUMemoryRegionClass {
245 /* private */
246 MemoryRegionClass parent_class;
247
248 /*
249 * Return a TLB entry that contains a given address.
250 *
251 * The IOMMUAccessFlags indicated via @flag are optional and may
252 * be specified as IOMMU_NONE to indicate that the caller needs
253 * the full translation information for both reads and writes. If
254 * the access flags are specified then the IOMMU implementation
255 * may use this as an optimization, to stop doing a page table
256 * walk as soon as it knows that the requested permissions are not
257 * allowed. If IOMMU_NONE is passed then the IOMMU must do the
258 * full page table walk and report the permissions in the returned
259 * IOMMUTLBEntry. (Note that this implies that an IOMMU may not
260 * return different mappings for reads and writes.)
261 *
262 * The returned information remains valid while the caller is
263 * holding the big QEMU lock or is inside an RCU critical section;
264 * if the caller wishes to cache the mapping beyond that it must
265 * register an IOMMU notifier so it can invalidate its cached
266 * information when the IOMMU mapping changes.
267 *
268 * @iommu: the IOMMUMemoryRegion
269 * @hwaddr: address to be translated within the memory region
270 * @flag: requested access permissions
271 * @iommu_idx: IOMMU index for the translation
272 */
273 IOMMUTLBEntry (*translate)(IOMMUMemoryRegion *iommu, hwaddr addr,
274 IOMMUAccessFlags flag, int iommu_idx);
275 /* Returns minimum supported page size in bytes.
276 * If this method is not provided then the minimum is assumed to
277 * be TARGET_PAGE_SIZE.
278 *
279 * @iommu: the IOMMUMemoryRegion
280 */
281 uint64_t (*get_min_page_size)(IOMMUMemoryRegion *iommu);
282 /* Called when IOMMU Notifier flag changes (ie when the set of
283 * events which IOMMU users are requesting notification for changes).
284 * Optional method -- need not be provided if the IOMMU does not
285 * need to know exactly which events must be notified.
286 *
287 * @iommu: the IOMMUMemoryRegion
288 * @old_flags: events which previously needed to be notified
289 * @new_flags: events which now need to be notified
290 */
291 void (*notify_flag_changed)(IOMMUMemoryRegion *iommu,
292 IOMMUNotifierFlag old_flags,
293 IOMMUNotifierFlag new_flags);
294 /* Called to handle memory_region_iommu_replay().
295 *
296 * The default implementation of memory_region_iommu_replay() is to
297 * call the IOMMU translate method for every page in the address space
298 * with flag == IOMMU_NONE and then call the notifier if translate
299 * returns a valid mapping. If this method is implemented then it
300 * overrides the default behaviour, and must provide the full semantics
301 * of memory_region_iommu_replay(), by calling @notifier for every
302 * translation present in the IOMMU.
303 *
304 * Optional method -- an IOMMU only needs to provide this method
305 * if the default is inefficient or produces undesirable side effects.
306 *
307 * Note: this is not related to record-and-replay functionality.
308 */
309 void (*replay)(IOMMUMemoryRegion *iommu, IOMMUNotifier *notifier);
310
311 /* Get IOMMU misc attributes. This is an optional method that
312 * can be used to allow users of the IOMMU to get implementation-specific
313 * information. The IOMMU implements this method to handle calls
314 * by IOMMU users to memory_region_iommu_get_attr() by filling in
315 * the arbitrary data pointer for any IOMMUMemoryRegionAttr values that
316 * the IOMMU supports. If the method is unimplemented then
317 * memory_region_iommu_get_attr() will always return -EINVAL.
318 *
319 * @iommu: the IOMMUMemoryRegion
320 * @attr: attribute being queried
321 * @data: memory to fill in with the attribute data
322 *
323 * Returns 0 on success, or a negative errno; in particular
324 * returns -EINVAL for unrecognized or unimplemented attribute types.
325 */
326 int (*get_attr)(IOMMUMemoryRegion *iommu, enum IOMMUMemoryRegionAttr attr,
327 void *data);
328
329 /* Return the IOMMU index to use for a given set of transaction attributes.
330 *
331 * Optional method: if an IOMMU only supports a single IOMMU index then
332 * the default implementation of memory_region_iommu_attrs_to_index()
333 * will return 0.
334 *
335 * The indexes supported by an IOMMU must be contiguous, starting at 0.
336 *
337 * @iommu: the IOMMUMemoryRegion
338 * @attrs: memory transaction attributes
339 */
340 int (*attrs_to_index)(IOMMUMemoryRegion *iommu, MemTxAttrs attrs);
341
342 /* Return the number of IOMMU indexes this IOMMU supports.
343 *
344 * Optional method: if this method is not provided, then
345 * memory_region_iommu_num_indexes() will return 1, indicating that
346 * only a single IOMMU index is supported.
347 *
348 * @iommu: the IOMMUMemoryRegion
349 */
350 int (*num_indexes)(IOMMUMemoryRegion *iommu);
351 } IOMMUMemoryRegionClass;
352
353 typedef struct CoalescedMemoryRange CoalescedMemoryRange;
354 typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd;
355
356 struct MemoryRegion {
357 Object parent_obj;
358
359 /* All fields are private - violators will be prosecuted */
360
361 /* The following fields should fit in a cache line */
362 bool romd_mode;
363 bool ram;
364 bool subpage;
365 bool readonly; /* For RAM regions */
366 bool nonvolatile;
367 bool rom_device;
368 bool flush_coalesced_mmio;
369 bool global_locking;
370 uint8_t dirty_log_mask;
371 bool is_iommu;
372 RAMBlock *ram_block;
373 Object *owner;
374
375 const MemoryRegionOps *ops;
376 void *opaque;
377 MemoryRegion *container;
378 Int128 size;
379 hwaddr addr;
380 void (*destructor)(MemoryRegion *mr);
381 uint64_t align;
382 bool terminates;
383 bool ram_device;
384 bool enabled;
385 bool warning_printed; /* For reservations */
386 uint8_t vga_logging_count;
387 MemoryRegion *alias;
388 hwaddr alias_offset;
389 int32_t priority;
390 QTAILQ_HEAD(, MemoryRegion) subregions;
391 QTAILQ_ENTRY(MemoryRegion) subregions_link;
392 QTAILQ_HEAD(, CoalescedMemoryRange) coalesced;
393 const char *name;
394 unsigned ioeventfd_nb;
395 MemoryRegionIoeventfd *ioeventfds;
396 };
397
398 struct IOMMUMemoryRegion {
399 MemoryRegion parent_obj;
400
401 QLIST_HEAD(, IOMMUNotifier) iommu_notify;
402 IOMMUNotifierFlag iommu_notify_flags;
403 };
404
405 #define IOMMU_NOTIFIER_FOREACH(n, mr) \
406 QLIST_FOREACH((n), &(mr)->iommu_notify, node)
407
408 /**
409 * MemoryListener: callbacks structure for updates to the physical memory map
410 *
411 * Allows a component to adjust to changes in the guest-visible memory map.
412 * Use with memory_listener_register() and memory_listener_unregister().
413 */
414 struct MemoryListener {
415 void (*begin)(MemoryListener *listener);
416 void (*commit)(MemoryListener *listener);
417 void (*region_add)(MemoryListener *listener, MemoryRegionSection *section);
418 void (*region_del)(MemoryListener *listener, MemoryRegionSection *section);
419 void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section);
420 void (*log_start)(MemoryListener *listener, MemoryRegionSection *section,
421 int old, int new);
422 void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section,
423 int old, int new);
424 void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section);
425 void (*log_clear)(MemoryListener *listener, MemoryRegionSection *section);
426 void (*log_global_start)(MemoryListener *listener);
427 void (*log_global_stop)(MemoryListener *listener);
428 void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section,
429 bool match_data, uint64_t data, EventNotifier *e);
430 void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section,
431 bool match_data, uint64_t data, EventNotifier *e);
432 void (*coalesced_io_add)(MemoryListener *listener, MemoryRegionSection *section,
433 hwaddr addr, hwaddr len);
434 void (*coalesced_io_del)(MemoryListener *listener, MemoryRegionSection *section,
435 hwaddr addr, hwaddr len);
436 /* Lower = earlier (during add), later (during del) */
437 unsigned priority;
438 AddressSpace *address_space;
439 QTAILQ_ENTRY(MemoryListener) link;
440 QTAILQ_ENTRY(MemoryListener) link_as;
441 };
442
443 /**
444 * AddressSpace: describes a mapping of addresses to #MemoryRegion objects
445 */
446 struct AddressSpace {
447 /* All fields are private. */
448 struct rcu_head rcu;
449 char *name;
450 MemoryRegion *root;
451
452 /* Accessed via RCU. */
453 struct FlatView *current_map;
454
455 int ioeventfd_nb;
456 struct MemoryRegionIoeventfd *ioeventfds;
457 QTAILQ_HEAD(, MemoryListener) listeners;
458 QTAILQ_ENTRY(AddressSpace) address_spaces_link;
459 };
460
461 typedef struct AddressSpaceDispatch AddressSpaceDispatch;
462 typedef struct FlatRange FlatRange;
463
464 /* Flattened global view of current active memory hierarchy. Kept in sorted
465 * order.
466 */
467 struct FlatView {
468 struct rcu_head rcu;
469 unsigned ref;
470 FlatRange *ranges;
471 unsigned nr;
472 unsigned nr_allocated;
473 struct AddressSpaceDispatch *dispatch;
474 MemoryRegion *root;
475 };
476
477 static inline FlatView *address_space_to_flatview(AddressSpace *as)
478 {
479 return atomic_rcu_read(&as->current_map);
480 }
481
482
483 /**
484 * MemoryRegionSection: describes a fragment of a #MemoryRegion
485 *
486 * @mr: the region, or %NULL if empty
487 * @fv: the flat view of the address space the region is mapped in
488 * @offset_within_region: the beginning of the section, relative to @mr's start
489 * @size: the size of the section; will not exceed @mr's boundaries
490 * @offset_within_address_space: the address of the first byte of the section
491 * relative to the region's address space
492 * @readonly: writes to this section are ignored
493 * @nonvolatile: this section is non-volatile
494 */
495 struct MemoryRegionSection {
496 MemoryRegion *mr;
497 FlatView *fv;
498 hwaddr offset_within_region;
499 Int128 size;
500 hwaddr offset_within_address_space;
501 bool readonly;
502 bool nonvolatile;
503 };
504
505 /**
506 * memory_region_init: Initialize a memory region
507 *
508 * The region typically acts as a container for other memory regions. Use
509 * memory_region_add_subregion() to add subregions.
510 *
511 * @mr: the #MemoryRegion to be initialized
512 * @owner: the object that tracks the region's reference count
513 * @name: used for debugging; not visible to the user or ABI
514 * @size: size of the region; any subregions beyond this size will be clipped
515 */
516 void memory_region_init(MemoryRegion *mr,
517 struct Object *owner,
518 const char *name,
519 uint64_t size);
520
521 /**
522 * memory_region_ref: Add 1 to a memory region's reference count
523 *
524 * Whenever memory regions are accessed outside the BQL, they need to be
525 * preserved against hot-unplug. MemoryRegions actually do not have their
526 * own reference count; they piggyback on a QOM object, their "owner".
527 * This function adds a reference to the owner.
528 *
529 * All MemoryRegions must have an owner if they can disappear, even if the
530 * device they belong to operates exclusively under the BQL. This is because
531 * the region could be returned at any time by memory_region_find, and this
532 * is usually under guest control.
533 *
534 * @mr: the #MemoryRegion
535 */
536 void memory_region_ref(MemoryRegion *mr);
537
538 /**
539 * memory_region_unref: Remove 1 to a memory region's reference count
540 *
541 * Whenever memory regions are accessed outside the BQL, they need to be
542 * preserved against hot-unplug. MemoryRegions actually do not have their
543 * own reference count; they piggyback on a QOM object, their "owner".
544 * This function removes a reference to the owner and possibly destroys it.
545 *
546 * @mr: the #MemoryRegion
547 */
548 void memory_region_unref(MemoryRegion *mr);
549
550 /**
551 * memory_region_init_io: Initialize an I/O memory region.
552 *
553 * Accesses into the region will cause the callbacks in @ops to be called.
554 * if @size is nonzero, subregions will be clipped to @size.
555 *
556 * @mr: the #MemoryRegion to be initialized.
557 * @owner: the object that tracks the region's reference count
558 * @ops: a structure containing read and write callbacks to be used when
559 * I/O is performed on the region.
560 * @opaque: passed to the read and write callbacks of the @ops structure.
561 * @name: used for debugging; not visible to the user or ABI
562 * @size: size of the region.
563 */
564 void memory_region_init_io(MemoryRegion *mr,
565 struct Object *owner,
566 const MemoryRegionOps *ops,
567 void *opaque,
568 const char *name,
569 uint64_t size);
570
571 /**
572 * memory_region_init_ram_nomigrate: Initialize RAM memory region. Accesses
573 * into the region will modify memory
574 * directly.
575 *
576 * @mr: the #MemoryRegion to be initialized.
577 * @owner: the object that tracks the region's reference count
578 * @name: Region name, becomes part of RAMBlock name used in migration stream
579 * must be unique within any device
580 * @size: size of the region.
581 * @errp: pointer to Error*, to store an error if it happens.
582 *
583 * Note that this function does not do anything to cause the data in the
584 * RAM memory region to be migrated; that is the responsibility of the caller.
585 */
586 void memory_region_init_ram_nomigrate(MemoryRegion *mr,
587 struct Object *owner,
588 const char *name,
589 uint64_t size,
590 Error **errp);
591
592 /**
593 * memory_region_init_ram_shared_nomigrate: Initialize RAM memory region.
594 * Accesses into the region will
595 * modify memory directly.
596 *
597 * @mr: the #MemoryRegion to be initialized.
598 * @owner: the object that tracks the region's reference count
599 * @name: Region name, becomes part of RAMBlock name used in migration stream
600 * must be unique within any device
601 * @size: size of the region.
602 * @share: allow remapping RAM to different addresses
603 * @errp: pointer to Error*, to store an error if it happens.
604 *
605 * Note that this function is similar to memory_region_init_ram_nomigrate.
606 * The only difference is part of the RAM region can be remapped.
607 */
608 void memory_region_init_ram_shared_nomigrate(MemoryRegion *mr,
609 struct Object *owner,
610 const char *name,
611 uint64_t size,
612 bool share,
613 Error **errp);
614
615 /**
616 * memory_region_init_resizeable_ram: Initialize memory region with resizeable
617 * RAM. Accesses into the region will
618 * modify memory directly. Only an initial
619 * portion of this RAM is actually used.
620 * The used size can change across reboots.
621 *
622 * @mr: the #MemoryRegion to be initialized.
623 * @owner: the object that tracks the region's reference count
624 * @name: Region name, becomes part of RAMBlock name used in migration stream
625 * must be unique within any device
626 * @size: used size of the region.
627 * @max_size: max size of the region.
628 * @resized: callback to notify owner about used size change.
629 * @errp: pointer to Error*, to store an error if it happens.
630 *
631 * Note that this function does not do anything to cause the data in the
632 * RAM memory region to be migrated; that is the responsibility of the caller.
633 */
634 void memory_region_init_resizeable_ram(MemoryRegion *mr,
635 struct Object *owner,
636 const char *name,
637 uint64_t size,
638 uint64_t max_size,
639 void (*resized)(const char*,
640 uint64_t length,
641 void *host),
642 Error **errp);
643 #ifdef CONFIG_POSIX
644
645 /**
646 * memory_region_init_ram_from_file: Initialize RAM memory region with a
647 * mmap-ed backend.
648 *
649 * @mr: the #MemoryRegion to be initialized.
650 * @owner: the object that tracks the region's reference count
651 * @name: Region name, becomes part of RAMBlock name used in migration stream
652 * must be unique within any device
653 * @size: size of the region.
654 * @align: alignment of the region base address; if 0, the default alignment
655 * (getpagesize()) will be used.
656 * @ram_flags: Memory region features:
657 * - RAM_SHARED: memory must be mmaped with the MAP_SHARED flag
658 * - RAM_PMEM: the memory is persistent memory
659 * Other bits are ignored now.
660 * @path: the path in which to allocate the RAM.
661 * @errp: pointer to Error*, to store an error if it happens.
662 *
663 * Note that this function does not do anything to cause the data in the
664 * RAM memory region to be migrated; that is the responsibility of the caller.
665 */
666 void memory_region_init_ram_from_file(MemoryRegion *mr,
667 struct Object *owner,
668 const char *name,
669 uint64_t size,
670 uint64_t align,
671 uint32_t ram_flags,
672 const char *path,
673 Error **errp);
674
675 /**
676 * memory_region_init_ram_from_fd: Initialize RAM memory region with a
677 * mmap-ed backend.
678 *
679 * @mr: the #MemoryRegion to be initialized.
680 * @owner: the object that tracks the region's reference count
681 * @name: the name of the region.
682 * @size: size of the region.
683 * @share: %true if memory must be mmaped with the MAP_SHARED flag
684 * @fd: the fd to mmap.
685 * @errp: pointer to Error*, to store an error if it happens.
686 *
687 * Note that this function does not do anything to cause the data in the
688 * RAM memory region to be migrated; that is the responsibility of the caller.
689 */
690 void memory_region_init_ram_from_fd(MemoryRegion *mr,
691 struct Object *owner,
692 const char *name,
693 uint64_t size,
694 bool share,
695 int fd,
696 Error **errp);
697 #endif
698
699 /**
700 * memory_region_init_ram_ptr: Initialize RAM memory region from a
701 * user-provided pointer. Accesses into the
702 * region will modify memory directly.
703 *
704 * @mr: the #MemoryRegion to be initialized.
705 * @owner: the object that tracks the region's reference count
706 * @name: Region name, becomes part of RAMBlock name used in migration stream
707 * must be unique within any device
708 * @size: size of the region.
709 * @ptr: memory to be mapped; must contain at least @size bytes.
710 *
711 * Note that this function does not do anything to cause the data in the
712 * RAM memory region to be migrated; that is the responsibility of the caller.
713 */
714 void memory_region_init_ram_ptr(MemoryRegion *mr,
715 struct Object *owner,
716 const char *name,
717 uint64_t size,
718 void *ptr);
719
720 /**
721 * memory_region_init_ram_device_ptr: Initialize RAM device memory region from
722 * a user-provided pointer.
723 *
724 * A RAM device represents a mapping to a physical device, such as to a PCI
725 * MMIO BAR of an vfio-pci assigned device. The memory region may be mapped
726 * into the VM address space and access to the region will modify memory
727 * directly. However, the memory region should not be included in a memory
728 * dump (device may not be enabled/mapped at the time of the dump), and
729 * operations incompatible with manipulating MMIO should be avoided. Replaces
730 * skip_dump flag.
731 *
732 * @mr: the #MemoryRegion to be initialized.
733 * @owner: the object that tracks the region's reference count
734 * @name: the name of the region.
735 * @size: size of the region.
736 * @ptr: memory to be mapped; must contain at least @size bytes.
737 *
738 * Note that this function does not do anything to cause the data in the
739 * RAM memory region to be migrated; that is the responsibility of the caller.
740 * (For RAM device memory regions, migrating the contents rarely makes sense.)
741 */
742 void memory_region_init_ram_device_ptr(MemoryRegion *mr,
743 struct Object *owner,
744 const char *name,
745 uint64_t size,
746 void *ptr);
747
748 /**
749 * memory_region_init_alias: Initialize a memory region that aliases all or a
750 * part of another memory region.
751 *
752 * @mr: the #MemoryRegion to be initialized.
753 * @owner: the object that tracks the region's reference count
754 * @name: used for debugging; not visible to the user or ABI
755 * @orig: the region to be referenced; @mr will be equivalent to
756 * @orig between @offset and @offset + @size - 1.
757 * @offset: start of the section in @orig to be referenced.
758 * @size: size of the region.
759 */
760 void memory_region_init_alias(MemoryRegion *mr,
761 struct Object *owner,
762 const char *name,
763 MemoryRegion *orig,
764 hwaddr offset,
765 uint64_t size);
766
767 /**
768 * memory_region_init_rom_nomigrate: Initialize a ROM memory region.
769 *
770 * This has the same effect as calling memory_region_init_ram_nomigrate()
771 * and then marking the resulting region read-only with
772 * memory_region_set_readonly().
773 *
774 * Note that this function does not do anything to cause the data in the
775 * RAM side of the memory region to be migrated; that is the responsibility
776 * of the caller.
777 *
778 * @mr: the #MemoryRegion to be initialized.
779 * @owner: the object that tracks the region's reference count
780 * @name: Region name, becomes part of RAMBlock name used in migration stream
781 * must be unique within any device
782 * @size: size of the region.
783 * @errp: pointer to Error*, to store an error if it happens.
784 */
785 void memory_region_init_rom_nomigrate(MemoryRegion *mr,
786 struct Object *owner,
787 const char *name,
788 uint64_t size,
789 Error **errp);
790
791 /**
792 * memory_region_init_rom_device_nomigrate: Initialize a ROM memory region.
793 * Writes are handled via callbacks.
794 *
795 * Note that this function does not do anything to cause the data in the
796 * RAM side of the memory region to be migrated; that is the responsibility
797 * of the caller.
798 *
799 * @mr: the #MemoryRegion to be initialized.
800 * @owner: the object that tracks the region's reference count
801 * @ops: callbacks for write access handling (must not be NULL).
802 * @opaque: passed to the read and write callbacks of the @ops structure.
803 * @name: Region name, becomes part of RAMBlock name used in migration stream
804 * must be unique within any device
805 * @size: size of the region.
806 * @errp: pointer to Error*, to store an error if it happens.
807 */
808 void memory_region_init_rom_device_nomigrate(MemoryRegion *mr,
809 struct Object *owner,
810 const MemoryRegionOps *ops,
811 void *opaque,
812 const char *name,
813 uint64_t size,
814 Error **errp);
815
816 /**
817 * memory_region_init_iommu: Initialize a memory region of a custom type
818 * that translates addresses
819 *
820 * An IOMMU region translates addresses and forwards accesses to a target
821 * memory region.
822 *
823 * The IOMMU implementation must define a subclass of TYPE_IOMMU_MEMORY_REGION.
824 * @_iommu_mr should be a pointer to enough memory for an instance of
825 * that subclass, @instance_size is the size of that subclass, and
826 * @mrtypename is its name. This function will initialize @_iommu_mr as an
827 * instance of the subclass, and its methods will then be called to handle
828 * accesses to the memory region. See the documentation of
829 * #IOMMUMemoryRegionClass for further details.
830 *
831 * @_iommu_mr: the #IOMMUMemoryRegion to be initialized
832 * @instance_size: the IOMMUMemoryRegion subclass instance size
833 * @mrtypename: the type name of the #IOMMUMemoryRegion
834 * @owner: the object that tracks the region's reference count
835 * @name: used for debugging; not visible to the user or ABI
836 * @size: size of the region.
837 */
838 void memory_region_init_iommu(void *_iommu_mr,
839 size_t instance_size,
840 const char *mrtypename,
841 Object *owner,
842 const char *name,
843 uint64_t size);
844
845 /**
846 * memory_region_init_ram - Initialize RAM memory region. Accesses into the
847 * region will modify memory directly.
848 *
849 * @mr: the #MemoryRegion to be initialized
850 * @owner: the object that tracks the region's reference count (must be
851 * TYPE_DEVICE or a subclass of TYPE_DEVICE, or NULL)
852 * @name: name of the memory region
853 * @size: size of the region in bytes
854 * @errp: pointer to Error*, to store an error if it happens.
855 *
856 * This function allocates RAM for a board model or device, and
857 * arranges for it to be migrated (by calling vmstate_register_ram()
858 * if @owner is a DeviceState, or vmstate_register_ram_global() if
859 * @owner is NULL).
860 *
861 * TODO: Currently we restrict @owner to being either NULL (for
862 * global RAM regions with no owner) or devices, so that we can
863 * give the RAM block a unique name for migration purposes.
864 * We should lift this restriction and allow arbitrary Objects.
865 * If you pass a non-NULL non-device @owner then we will assert.
866 */
867 void memory_region_init_ram(MemoryRegion *mr,
868 struct Object *owner,
869 const char *name,
870 uint64_t size,
871 Error **errp);
872
873 /**
874 * memory_region_init_rom: Initialize a ROM memory region.
875 *
876 * This has the same effect as calling memory_region_init_ram()
877 * and then marking the resulting region read-only with
878 * memory_region_set_readonly(). This includes arranging for the
879 * contents to be migrated.
880 *
881 * TODO: Currently we restrict @owner to being either NULL (for
882 * global RAM regions with no owner) or devices, so that we can
883 * give the RAM block a unique name for migration purposes.
884 * We should lift this restriction and allow arbitrary Objects.
885 * If you pass a non-NULL non-device @owner then we will assert.
886 *
887 * @mr: the #MemoryRegion to be initialized.
888 * @owner: the object that tracks the region's reference count
889 * @name: Region name, becomes part of RAMBlock name used in migration stream
890 * must be unique within any device
891 * @size: size of the region.
892 * @errp: pointer to Error*, to store an error if it happens.
893 */
894 void memory_region_init_rom(MemoryRegion *mr,
895 struct Object *owner,
896 const char *name,
897 uint64_t size,
898 Error **errp);
899
900 /**
901 * memory_region_init_rom_device: Initialize a ROM memory region.
902 * Writes are handled via callbacks.
903 *
904 * This function initializes a memory region backed by RAM for reads
905 * and callbacks for writes, and arranges for the RAM backing to
906 * be migrated (by calling vmstate_register_ram()
907 * if @owner is a DeviceState, or vmstate_register_ram_global() if
908 * @owner is NULL).
909 *
910 * TODO: Currently we restrict @owner to being either NULL (for
911 * global RAM regions with no owner) or devices, so that we can
912 * give the RAM block a unique name for migration purposes.
913 * We should lift this restriction and allow arbitrary Objects.
914 * If you pass a non-NULL non-device @owner then we will assert.
915 *
916 * @mr: the #MemoryRegion to be initialized.
917 * @owner: the object that tracks the region's reference count
918 * @ops: callbacks for write access handling (must not be NULL).
919 * @name: Region name, becomes part of RAMBlock name used in migration stream
920 * must be unique within any device
921 * @size: size of the region.
922 * @errp: pointer to Error*, to store an error if it happens.
923 */
924 void memory_region_init_rom_device(MemoryRegion *mr,
925 struct Object *owner,
926 const MemoryRegionOps *ops,
927 void *opaque,
928 const char *name,
929 uint64_t size,
930 Error **errp);
931
932
933 /**
934 * memory_region_owner: get a memory region's owner.
935 *
936 * @mr: the memory region being queried.
937 */
938 struct Object *memory_region_owner(MemoryRegion *mr);
939
940 /**
941 * memory_region_size: get a memory region's size.
942 *
943 * @mr: the memory region being queried.
944 */
945 uint64_t memory_region_size(MemoryRegion *mr);
946
947 /**
948 * memory_region_is_ram: check whether a memory region is random access
949 *
950 * Returns %true if a memory region is random access.
951 *
952 * @mr: the memory region being queried
953 */
954 static inline bool memory_region_is_ram(MemoryRegion *mr)
955 {
956 return mr->ram;
957 }
958
959 /**
960 * memory_region_is_ram_device: check whether a memory region is a ram device
961 *
962 * Returns %true if a memory region is a device backed ram region
963 *
964 * @mr: the memory region being queried
965 */
966 bool memory_region_is_ram_device(MemoryRegion *mr);
967
968 /**
969 * memory_region_is_romd: check whether a memory region is in ROMD mode
970 *
971 * Returns %true if a memory region is a ROM device and currently set to allow
972 * direct reads.
973 *
974 * @mr: the memory region being queried
975 */
976 static inline bool memory_region_is_romd(MemoryRegion *mr)
977 {
978 return mr->rom_device && mr->romd_mode;
979 }
980
981 /**
982 * memory_region_get_iommu: check whether a memory region is an iommu
983 *
984 * Returns pointer to IOMMUMemoryRegion if a memory region is an iommu,
985 * otherwise NULL.
986 *
987 * @mr: the memory region being queried
988 */
989 static inline IOMMUMemoryRegion *memory_region_get_iommu(MemoryRegion *mr)
990 {
991 if (mr->alias) {
992 return memory_region_get_iommu(mr->alias);
993 }
994 if (mr->is_iommu) {
995 return (IOMMUMemoryRegion *) mr;
996 }
997 return NULL;
998 }
999
1000 /**
1001 * memory_region_get_iommu_class_nocheck: returns iommu memory region class
1002 * if an iommu or NULL if not
1003 *
1004 * Returns pointer to IOMMUMemoryRegionClass if a memory region is an iommu,
1005 * otherwise NULL. This is fast path avoiding QOM checking, use with caution.
1006 *
1007 * @mr: the memory region being queried
1008 */
1009 static inline IOMMUMemoryRegionClass *memory_region_get_iommu_class_nocheck(
1010 IOMMUMemoryRegion *iommu_mr)
1011 {
1012 return (IOMMUMemoryRegionClass *) (((Object *)iommu_mr)->class);
1013 }
1014
1015 #define memory_region_is_iommu(mr) (memory_region_get_iommu(mr) != NULL)
1016
1017 /**
1018 * memory_region_iommu_get_min_page_size: get minimum supported page size
1019 * for an iommu
1020 *
1021 * Returns minimum supported page size for an iommu.
1022 *
1023 * @iommu_mr: the memory region being queried
1024 */
1025 uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion *iommu_mr);
1026
1027 /**
1028 * memory_region_notify_iommu: notify a change in an IOMMU translation entry.
1029 *
1030 * The notification type will be decided by entry.perm bits:
1031 *
1032 * - For UNMAP (cache invalidation) notifies: set entry.perm to IOMMU_NONE.
1033 * - For MAP (newly added entry) notifies: set entry.perm to the
1034 * permission of the page (which is definitely !IOMMU_NONE).
1035 *
1036 * Note: for any IOMMU implementation, an in-place mapping change
1037 * should be notified with an UNMAP followed by a MAP.
1038 *
1039 * @iommu_mr: the memory region that was changed
1040 * @iommu_idx: the IOMMU index for the translation table which has changed
1041 * @entry: the new entry in the IOMMU translation table. The entry
1042 * replaces all old entries for the same virtual I/O address range.
1043 * Deleted entries have .@perm == 0.
1044 */
1045 void memory_region_notify_iommu(IOMMUMemoryRegion *iommu_mr,
1046 int iommu_idx,
1047 IOMMUTLBEntry entry);
1048
1049 /**
1050 * memory_region_notify_one: notify a change in an IOMMU translation
1051 * entry to a single notifier
1052 *
1053 * This works just like memory_region_notify_iommu(), but it only
1054 * notifies a specific notifier, not all of them.
1055 *
1056 * @notifier: the notifier to be notified
1057 * @entry: the new entry in the IOMMU translation table. The entry
1058 * replaces all old entries for the same virtual I/O address range.
1059 * Deleted entries have .@perm == 0.
1060 */
1061 void memory_region_notify_one(IOMMUNotifier *notifier,
1062 IOMMUTLBEntry *entry);
1063
1064 /**
1065 * memory_region_register_iommu_notifier: register a notifier for changes to
1066 * IOMMU translation entries.
1067 *
1068 * @mr: the memory region to observe
1069 * @n: the IOMMUNotifier to be added; the notify callback receives a
1070 * pointer to an #IOMMUTLBEntry as the opaque value; the pointer
1071 * ceases to be valid on exit from the notifier.
1072 */
1073 void memory_region_register_iommu_notifier(MemoryRegion *mr,
1074 IOMMUNotifier *n);
1075
1076 /**
1077 * memory_region_iommu_replay: replay existing IOMMU translations to
1078 * a notifier with the minimum page granularity returned by
1079 * mr->iommu_ops->get_page_size().
1080 *
1081 * Note: this is not related to record-and-replay functionality.
1082 *
1083 * @iommu_mr: the memory region to observe
1084 * @n: the notifier to which to replay iommu mappings
1085 */
1086 void memory_region_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n);
1087
1088 /**
1089 * memory_region_iommu_replay_all: replay existing IOMMU translations
1090 * to all the notifiers registered.
1091 *
1092 * Note: this is not related to record-and-replay functionality.
1093 *
1094 * @iommu_mr: the memory region to observe
1095 */
1096 void memory_region_iommu_replay_all(IOMMUMemoryRegion *iommu_mr);
1097
1098 /**
1099 * memory_region_unregister_iommu_notifier: unregister a notifier for
1100 * changes to IOMMU translation entries.
1101 *
1102 * @mr: the memory region which was observed and for which notity_stopped()
1103 * needs to be called
1104 * @n: the notifier to be removed.
1105 */
1106 void memory_region_unregister_iommu_notifier(MemoryRegion *mr,
1107 IOMMUNotifier *n);
1108
1109 /**
1110 * memory_region_iommu_get_attr: return an IOMMU attr if get_attr() is
1111 * defined on the IOMMU.
1112 *
1113 * Returns 0 on success, or a negative errno otherwise. In particular,
1114 * -EINVAL indicates that the IOMMU does not support the requested
1115 * attribute.
1116 *
1117 * @iommu_mr: the memory region
1118 * @attr: the requested attribute
1119 * @data: a pointer to the requested attribute data
1120 */
1121 int memory_region_iommu_get_attr(IOMMUMemoryRegion *iommu_mr,
1122 enum IOMMUMemoryRegionAttr attr,
1123 void *data);
1124
1125 /**
1126 * memory_region_iommu_attrs_to_index: return the IOMMU index to
1127 * use for translations with the given memory transaction attributes.
1128 *
1129 * @iommu_mr: the memory region
1130 * @attrs: the memory transaction attributes
1131 */
1132 int memory_region_iommu_attrs_to_index(IOMMUMemoryRegion *iommu_mr,
1133 MemTxAttrs attrs);
1134
1135 /**
1136 * memory_region_iommu_num_indexes: return the total number of IOMMU
1137 * indexes that this IOMMU supports.
1138 *
1139 * @iommu_mr: the memory region
1140 */
1141 int memory_region_iommu_num_indexes(IOMMUMemoryRegion *iommu_mr);
1142
1143 /**
1144 * memory_region_name: get a memory region's name
1145 *
1146 * Returns the string that was used to initialize the memory region.
1147 *
1148 * @mr: the memory region being queried
1149 */
1150 const char *memory_region_name(const MemoryRegion *mr);
1151
1152 /**
1153 * memory_region_is_logging: return whether a memory region is logging writes
1154 *
1155 * Returns %true if the memory region is logging writes for the given client
1156 *
1157 * @mr: the memory region being queried
1158 * @client: the client being queried
1159 */
1160 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client);
1161
1162 /**
1163 * memory_region_get_dirty_log_mask: return the clients for which a
1164 * memory region is logging writes.
1165 *
1166 * Returns a bitmap of clients, in which the DIRTY_MEMORY_* constants
1167 * are the bit indices.
1168 *
1169 * @mr: the memory region being queried
1170 */
1171 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr);
1172
1173 /**
1174 * memory_region_is_rom: check whether a memory region is ROM
1175 *
1176 * Returns %true if a memory region is read-only memory.
1177 *
1178 * @mr: the memory region being queried
1179 */
1180 static inline bool memory_region_is_rom(MemoryRegion *mr)
1181 {
1182 return mr->ram && mr->readonly;
1183 }
1184
1185 /**
1186 * memory_region_is_nonvolatile: check whether a memory region is non-volatile
1187 *
1188 * Returns %true is a memory region is non-volatile memory.
1189 *
1190 * @mr: the memory region being queried
1191 */
1192 static inline bool memory_region_is_nonvolatile(MemoryRegion *mr)
1193 {
1194 return mr->nonvolatile;
1195 }
1196
1197 /**
1198 * memory_region_get_fd: Get a file descriptor backing a RAM memory region.
1199 *
1200 * Returns a file descriptor backing a file-based RAM memory region,
1201 * or -1 if the region is not a file-based RAM memory region.
1202 *
1203 * @mr: the RAM or alias memory region being queried.
1204 */
1205 int memory_region_get_fd(MemoryRegion *mr);
1206
1207 /**
1208 * memory_region_from_host: Convert a pointer into a RAM memory region
1209 * and an offset within it.
1210 *
1211 * Given a host pointer inside a RAM memory region (created with
1212 * memory_region_init_ram() or memory_region_init_ram_ptr()), return
1213 * the MemoryRegion and the offset within it.
1214 *
1215 * Use with care; by the time this function returns, the returned pointer is
1216 * not protected by RCU anymore. If the caller is not within an RCU critical
1217 * section and does not hold the iothread lock, it must have other means of
1218 * protecting the pointer, such as a reference to the region that includes
1219 * the incoming ram_addr_t.
1220 *
1221 * @ptr: the host pointer to be converted
1222 * @offset: the offset within memory region
1223 */
1224 MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset);
1225
1226 /**
1227 * memory_region_get_ram_ptr: Get a pointer into a RAM memory region.
1228 *
1229 * Returns a host pointer to a RAM memory region (created with
1230 * memory_region_init_ram() or memory_region_init_ram_ptr()).
1231 *
1232 * Use with care; by the time this function returns, the returned pointer is
1233 * not protected by RCU anymore. If the caller is not within an RCU critical
1234 * section and does not hold the iothread lock, it must have other means of
1235 * protecting the pointer, such as a reference to the region that includes
1236 * the incoming ram_addr_t.
1237 *
1238 * @mr: the memory region being queried.
1239 */
1240 void *memory_region_get_ram_ptr(MemoryRegion *mr);
1241
1242 /* memory_region_ram_resize: Resize a RAM region.
1243 *
1244 * Only legal before guest might have detected the memory size: e.g. on
1245 * incoming migration, or right after reset.
1246 *
1247 * @mr: a memory region created with @memory_region_init_resizeable_ram.
1248 * @newsize: the new size the region
1249 * @errp: pointer to Error*, to store an error if it happens.
1250 */
1251 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize,
1252 Error **errp);
1253
1254 /**
1255 * memory_region_set_log: Turn dirty logging on or off for a region.
1256 *
1257 * Turns dirty logging on or off for a specified client (display, migration).
1258 * Only meaningful for RAM regions.
1259 *
1260 * @mr: the memory region being updated.
1261 * @log: whether dirty logging is to be enabled or disabled.
1262 * @client: the user of the logging information; %DIRTY_MEMORY_VGA only.
1263 */
1264 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client);
1265
1266 /**
1267 * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region.
1268 *
1269 * Marks a range of bytes as dirty, after it has been dirtied outside
1270 * guest code.
1271 *
1272 * @mr: the memory region being dirtied.
1273 * @addr: the address (relative to the start of the region) being dirtied.
1274 * @size: size of the range being dirtied.
1275 */
1276 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
1277 hwaddr size);
1278
1279 /**
1280 * memory_region_clear_dirty_bitmap - clear dirty bitmap for memory range
1281 *
1282 * This function is called when the caller wants to clear the remote
1283 * dirty bitmap of a memory range within the memory region. This can
1284 * be used by e.g. KVM to manually clear dirty log when
1285 * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT is declared support by the host
1286 * kernel.
1287 *
1288 * @mr: the memory region to clear the dirty log upon
1289 * @start: start address offset within the memory region
1290 * @len: length of the memory region to clear dirty bitmap
1291 */
1292 void memory_region_clear_dirty_bitmap(MemoryRegion *mr, hwaddr start,
1293 hwaddr len);
1294
1295 /**
1296 * memory_region_snapshot_and_clear_dirty: Get a snapshot of the dirty
1297 * bitmap and clear it.
1298 *
1299 * Creates a snapshot of the dirty bitmap, clears the dirty bitmap and
1300 * returns the snapshot. The snapshot can then be used to query dirty
1301 * status, using memory_region_snapshot_get_dirty. Snapshotting allows
1302 * querying the same page multiple times, which is especially useful for
1303 * display updates where the scanlines often are not page aligned.
1304 *
1305 * The dirty bitmap region which gets copyed into the snapshot (and
1306 * cleared afterwards) can be larger than requested. The boundaries
1307 * are rounded up/down so complete bitmap longs (covering 64 pages on
1308 * 64bit hosts) can be copied over into the bitmap snapshot. Which
1309 * isn't a problem for display updates as the extra pages are outside
1310 * the visible area, and in case the visible area changes a full
1311 * display redraw is due anyway. Should other use cases for this
1312 * function emerge we might have to revisit this implementation
1313 * detail.
1314 *
1315 * Use g_free to release DirtyBitmapSnapshot.
1316 *
1317 * @mr: the memory region being queried.
1318 * @addr: the address (relative to the start of the region) being queried.
1319 * @size: the size of the range being queried.
1320 * @client: the user of the logging information; typically %DIRTY_MEMORY_VGA.
1321 */
1322 DirtyBitmapSnapshot *memory_region_snapshot_and_clear_dirty(MemoryRegion *mr,
1323 hwaddr addr,
1324 hwaddr size,
1325 unsigned client);
1326
1327 /**
1328 * memory_region_snapshot_get_dirty: Check whether a range of bytes is dirty
1329 * in the specified dirty bitmap snapshot.
1330 *
1331 * @mr: the memory region being queried.
1332 * @snap: the dirty bitmap snapshot
1333 * @addr: the address (relative to the start of the region) being queried.
1334 * @size: the size of the range being queried.
1335 */
1336 bool memory_region_snapshot_get_dirty(MemoryRegion *mr,
1337 DirtyBitmapSnapshot *snap,
1338 hwaddr addr, hwaddr size);
1339
1340 /**
1341 * memory_region_reset_dirty: Mark a range of pages as clean, for a specified
1342 * client.
1343 *
1344 * Marks a range of pages as no longer dirty.
1345 *
1346 * @mr: the region being updated.
1347 * @addr: the start of the subrange being cleaned.
1348 * @size: the size of the subrange being cleaned.
1349 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
1350 * %DIRTY_MEMORY_VGA.
1351 */
1352 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
1353 hwaddr size, unsigned client);
1354
1355 /**
1356 * memory_region_flush_rom_device: Mark a range of pages dirty and invalidate
1357 * TBs (for self-modifying code).
1358 *
1359 * The MemoryRegionOps->write() callback of a ROM device must use this function
1360 * to mark byte ranges that have been modified internally, such as by directly
1361 * accessing the memory returned by memory_region_get_ram_ptr().
1362 *
1363 * This function marks the range dirty and invalidates TBs so that TCG can
1364 * detect self-modifying code.
1365 *
1366 * @mr: the region being flushed.
1367 * @addr: the start, relative to the start of the region, of the range being
1368 * flushed.
1369 * @size: the size, in bytes, of the range being flushed.
1370 */
1371 void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size);
1372
1373 /**
1374 * memory_region_set_readonly: Turn a memory region read-only (or read-write)
1375 *
1376 * Allows a memory region to be marked as read-only (turning it into a ROM).
1377 * only useful on RAM regions.
1378 *
1379 * @mr: the region being updated.
1380 * @readonly: whether rhe region is to be ROM or RAM.
1381 */
1382 void memory_region_set_readonly(MemoryRegion *mr, bool readonly);
1383
1384 /**
1385 * memory_region_set_nonvolatile: Turn a memory region non-volatile
1386 *
1387 * Allows a memory region to be marked as non-volatile.
1388 * only useful on RAM regions.
1389 *
1390 * @mr: the region being updated.
1391 * @nonvolatile: whether rhe region is to be non-volatile.
1392 */
1393 void memory_region_set_nonvolatile(MemoryRegion *mr, bool nonvolatile);
1394
1395 /**
1396 * memory_region_rom_device_set_romd: enable/disable ROMD mode
1397 *
1398 * Allows a ROM device (initialized with memory_region_init_rom_device() to
1399 * set to ROMD mode (default) or MMIO mode. When it is in ROMD mode, the
1400 * device is mapped to guest memory and satisfies read access directly.
1401 * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function.
1402 * Writes are always handled by the #MemoryRegion.write function.
1403 *
1404 * @mr: the memory region to be updated
1405 * @romd_mode: %true to put the region into ROMD mode
1406 */
1407 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode);
1408
1409 /**
1410 * memory_region_set_coalescing: Enable memory coalescing for the region.
1411 *
1412 * Enabled writes to a region to be queued for later processing. MMIO ->write
1413 * callbacks may be delayed until a non-coalesced MMIO is issued.
1414 * Only useful for IO regions. Roughly similar to write-combining hardware.
1415 *
1416 * @mr: the memory region to be write coalesced
1417 */
1418 void memory_region_set_coalescing(MemoryRegion *mr);
1419
1420 /**
1421 * memory_region_add_coalescing: Enable memory coalescing for a sub-range of
1422 * a region.
1423 *
1424 * Like memory_region_set_coalescing(), but works on a sub-range of a region.
1425 * Multiple calls can be issued coalesced disjoint ranges.
1426 *
1427 * @mr: the memory region to be updated.
1428 * @offset: the start of the range within the region to be coalesced.
1429 * @size: the size of the subrange to be coalesced.
1430 */
1431 void memory_region_add_coalescing(MemoryRegion *mr,
1432 hwaddr offset,
1433 uint64_t size);
1434
1435 /**
1436 * memory_region_clear_coalescing: Disable MMIO coalescing for the region.
1437 *
1438 * Disables any coalescing caused by memory_region_set_coalescing() or
1439 * memory_region_add_coalescing(). Roughly equivalent to uncacheble memory
1440 * hardware.
1441 *
1442 * @mr: the memory region to be updated.
1443 */
1444 void memory_region_clear_coalescing(MemoryRegion *mr);
1445
1446 /**
1447 * memory_region_set_flush_coalesced: Enforce memory coalescing flush before
1448 * accesses.
1449 *
1450 * Ensure that pending coalesced MMIO request are flushed before the memory
1451 * region is accessed. This property is automatically enabled for all regions
1452 * passed to memory_region_set_coalescing() and memory_region_add_coalescing().
1453 *
1454 * @mr: the memory region to be updated.
1455 */
1456 void memory_region_set_flush_coalesced(MemoryRegion *mr);
1457
1458 /**
1459 * memory_region_clear_flush_coalesced: Disable memory coalescing flush before
1460 * accesses.
1461 *
1462 * Clear the automatic coalesced MMIO flushing enabled via
1463 * memory_region_set_flush_coalesced. Note that this service has no effect on
1464 * memory regions that have MMIO coalescing enabled for themselves. For them,
1465 * automatic flushing will stop once coalescing is disabled.
1466 *
1467 * @mr: the memory region to be updated.
1468 */
1469 void memory_region_clear_flush_coalesced(MemoryRegion *mr);
1470
1471 /**
1472 * memory_region_clear_global_locking: Declares that access processing does
1473 * not depend on the QEMU global lock.
1474 *
1475 * By clearing this property, accesses to the memory region will be processed
1476 * outside of QEMU's global lock (unless the lock is held on when issuing the
1477 * access request). In this case, the device model implementing the access
1478 * handlers is responsible for synchronization of concurrency.
1479 *
1480 * @mr: the memory region to be updated.
1481 */
1482 void memory_region_clear_global_locking(MemoryRegion *mr);
1483
1484 /**
1485 * memory_region_add_eventfd: Request an eventfd to be triggered when a word
1486 * is written to a location.
1487 *
1488 * Marks a word in an IO region (initialized with memory_region_init_io())
1489 * as a trigger for an eventfd event. The I/O callback will not be called.
1490 * The caller must be prepared to handle failure (that is, take the required
1491 * action if the callback _is_ called).
1492 *
1493 * @mr: the memory region being updated.
1494 * @addr: the address within @mr that is to be monitored
1495 * @size: the size of the access to trigger the eventfd
1496 * @match_data: whether to match against @data, instead of just @addr
1497 * @data: the data to match against the guest write
1498 * @e: event notifier to be triggered when @addr, @size, and @data all match.
1499 **/
1500 void memory_region_add_eventfd(MemoryRegion *mr,
1501 hwaddr addr,
1502 unsigned size,
1503 bool match_data,
1504 uint64_t data,
1505 EventNotifier *e);
1506
1507 /**
1508 * memory_region_del_eventfd: Cancel an eventfd.
1509 *
1510 * Cancels an eventfd trigger requested by a previous
1511 * memory_region_add_eventfd() call.
1512 *
1513 * @mr: the memory region being updated.
1514 * @addr: the address within @mr that is to be monitored
1515 * @size: the size of the access to trigger the eventfd
1516 * @match_data: whether to match against @data, instead of just @addr
1517 * @data: the data to match against the guest write
1518 * @e: event notifier to be triggered when @addr, @size, and @data all match.
1519 */
1520 void memory_region_del_eventfd(MemoryRegion *mr,
1521 hwaddr addr,
1522 unsigned size,
1523 bool match_data,
1524 uint64_t data,
1525 EventNotifier *e);
1526
1527 /**
1528 * memory_region_add_subregion: Add a subregion to a container.
1529 *
1530 * Adds a subregion at @offset. The subregion may not overlap with other
1531 * subregions (except for those explicitly marked as overlapping). A region
1532 * may only be added once as a subregion (unless removed with
1533 * memory_region_del_subregion()); use memory_region_init_alias() if you
1534 * want a region to be a subregion in multiple locations.
1535 *
1536 * @mr: the region to contain the new subregion; must be a container
1537 * initialized with memory_region_init().
1538 * @offset: the offset relative to @mr where @subregion is added.
1539 * @subregion: the subregion to be added.
1540 */
1541 void memory_region_add_subregion(MemoryRegion *mr,
1542 hwaddr offset,
1543 MemoryRegion *subregion);
1544 /**
1545 * memory_region_add_subregion_overlap: Add a subregion to a container
1546 * with overlap.
1547 *
1548 * Adds a subregion at @offset. The subregion may overlap with other
1549 * subregions. Conflicts are resolved by having a higher @priority hide a
1550 * lower @priority. Subregions without priority are taken as @priority 0.
1551 * A region may only be added once as a subregion (unless removed with
1552 * memory_region_del_subregion()); use memory_region_init_alias() if you
1553 * want a region to be a subregion in multiple locations.
1554 *
1555 * @mr: the region to contain the new subregion; must be a container
1556 * initialized with memory_region_init().
1557 * @offset: the offset relative to @mr where @subregion is added.
1558 * @subregion: the subregion to be added.
1559 * @priority: used for resolving overlaps; highest priority wins.
1560 */
1561 void memory_region_add_subregion_overlap(MemoryRegion *mr,
1562 hwaddr offset,
1563 MemoryRegion *subregion,
1564 int priority);
1565
1566 /**
1567 * memory_region_get_ram_addr: Get the ram address associated with a memory
1568 * region
1569 */
1570 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr);
1571
1572 uint64_t memory_region_get_alignment(const MemoryRegion *mr);
1573 /**
1574 * memory_region_del_subregion: Remove a subregion.
1575 *
1576 * Removes a subregion from its container.
1577 *
1578 * @mr: the container to be updated.
1579 * @subregion: the region being removed; must be a current subregion of @mr.
1580 */
1581 void memory_region_del_subregion(MemoryRegion *mr,
1582 MemoryRegion *subregion);
1583
1584 /*
1585 * memory_region_set_enabled: dynamically enable or disable a region
1586 *
1587 * Enables or disables a memory region. A disabled memory region
1588 * ignores all accesses to itself and its subregions. It does not
1589 * obscure sibling subregions with lower priority - it simply behaves as
1590 * if it was removed from the hierarchy.
1591 *
1592 * Regions default to being enabled.
1593 *
1594 * @mr: the region to be updated
1595 * @enabled: whether to enable or disable the region
1596 */
1597 void memory_region_set_enabled(MemoryRegion *mr, bool enabled);
1598
1599 /*
1600 * memory_region_set_address: dynamically update the address of a region
1601 *
1602 * Dynamically updates the address of a region, relative to its container.
1603 * May be used on regions are currently part of a memory hierarchy.
1604 *
1605 * @mr: the region to be updated
1606 * @addr: new address, relative to container region
1607 */
1608 void memory_region_set_address(MemoryRegion *mr, hwaddr addr);
1609
1610 /*
1611 * memory_region_set_size: dynamically update the size of a region.
1612 *
1613 * Dynamically updates the size of a region.
1614 *
1615 * @mr: the region to be updated
1616 * @size: used size of the region.
1617 */
1618 void memory_region_set_size(MemoryRegion *mr, uint64_t size);
1619
1620 /*
1621 * memory_region_set_alias_offset: dynamically update a memory alias's offset
1622 *
1623 * Dynamically updates the offset into the target region that an alias points
1624 * to, as if the fourth argument to memory_region_init_alias() has changed.
1625 *
1626 * @mr: the #MemoryRegion to be updated; should be an alias.
1627 * @offset: the new offset into the target memory region
1628 */
1629 void memory_region_set_alias_offset(MemoryRegion *mr,
1630 hwaddr offset);
1631
1632 /**
1633 * memory_region_present: checks if an address relative to a @container
1634 * translates into #MemoryRegion within @container
1635 *
1636 * Answer whether a #MemoryRegion within @container covers the address
1637 * @addr.
1638 *
1639 * @container: a #MemoryRegion within which @addr is a relative address
1640 * @addr: the area within @container to be searched
1641 */
1642 bool memory_region_present(MemoryRegion *container, hwaddr addr);
1643
1644 /**
1645 * memory_region_is_mapped: returns true if #MemoryRegion is mapped
1646 * into any address space.
1647 *
1648 * @mr: a #MemoryRegion which should be checked if it's mapped
1649 */
1650 bool memory_region_is_mapped(MemoryRegion *mr);
1651
1652 /**
1653 * memory_region_find: translate an address/size relative to a
1654 * MemoryRegion into a #MemoryRegionSection.
1655 *
1656 * Locates the first #MemoryRegion within @mr that overlaps the range
1657 * given by @addr and @size.
1658 *
1659 * Returns a #MemoryRegionSection that describes a contiguous overlap.
1660 * It will have the following characteristics:
1661 * .@size = 0 iff no overlap was found
1662 * .@mr is non-%NULL iff an overlap was found
1663 *
1664 * Remember that in the return value the @offset_within_region is
1665 * relative to the returned region (in the .@mr field), not to the
1666 * @mr argument.
1667 *
1668 * Similarly, the .@offset_within_address_space is relative to the
1669 * address space that contains both regions, the passed and the
1670 * returned one. However, in the special case where the @mr argument
1671 * has no container (and thus is the root of the address space), the
1672 * following will hold:
1673 * .@offset_within_address_space >= @addr
1674 * .@offset_within_address_space + .@size <= @addr + @size
1675 *
1676 * @mr: a MemoryRegion within which @addr is a relative address
1677 * @addr: start of the area within @as to be searched
1678 * @size: size of the area to be searched
1679 */
1680 MemoryRegionSection memory_region_find(MemoryRegion *mr,
1681 hwaddr addr, uint64_t size);
1682
1683 /**
1684 * memory_global_dirty_log_sync: synchronize the dirty log for all memory
1685 *
1686 * Synchronizes the dirty page log for all address spaces.
1687 */
1688 void memory_global_dirty_log_sync(void);
1689
1690 /**
1691 * memory_region_transaction_begin: Start a transaction.
1692 *
1693 * During a transaction, changes will be accumulated and made visible
1694 * only when the transaction ends (is committed).
1695 */
1696 void memory_region_transaction_begin(void);
1697
1698 /**
1699 * memory_region_transaction_commit: Commit a transaction and make changes
1700 * visible to the guest.
1701 */
1702 void memory_region_transaction_commit(void);
1703
1704 /**
1705 * memory_listener_register: register callbacks to be called when memory
1706 * sections are mapped or unmapped into an address
1707 * space
1708 *
1709 * @listener: an object containing the callbacks to be called
1710 * @filter: if non-%NULL, only regions in this address space will be observed
1711 */
1712 void memory_listener_register(MemoryListener *listener, AddressSpace *filter);
1713
1714 /**
1715 * memory_listener_unregister: undo the effect of memory_listener_register()
1716 *
1717 * @listener: an object containing the callbacks to be removed
1718 */
1719 void memory_listener_unregister(MemoryListener *listener);
1720
1721 /**
1722 * memory_global_dirty_log_start: begin dirty logging for all regions
1723 */
1724 void memory_global_dirty_log_start(void);
1725
1726 /**
1727 * memory_global_dirty_log_stop: end dirty logging for all regions
1728 */
1729 void memory_global_dirty_log_stop(void);
1730
1731 void mtree_info(bool flatview, bool dispatch_tree, bool owner);
1732
1733 /**
1734 * memory_region_dispatch_read: perform a read directly to the specified
1735 * MemoryRegion.
1736 *
1737 * @mr: #MemoryRegion to access
1738 * @addr: address within that region
1739 * @pval: pointer to uint64_t which the data is written to
1740 * @size: size of the access in bytes
1741 * @attrs: memory transaction attributes to use for the access
1742 */
1743 MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
1744 hwaddr addr,
1745 uint64_t *pval,
1746 unsigned size,
1747 MemTxAttrs attrs);
1748 /**
1749 * memory_region_dispatch_write: perform a write directly to the specified
1750 * MemoryRegion.
1751 *
1752 * @mr: #MemoryRegion to access
1753 * @addr: address within that region
1754 * @data: data to write
1755 * @size: size of the access in bytes
1756 * @attrs: memory transaction attributes to use for the access
1757 */
1758 MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
1759 hwaddr addr,
1760 uint64_t data,
1761 unsigned size,
1762 MemTxAttrs attrs);
1763
1764 /**
1765 * address_space_init: initializes an address space
1766 *
1767 * @as: an uninitialized #AddressSpace
1768 * @root: a #MemoryRegion that routes addresses for the address space
1769 * @name: an address space name. The name is only used for debugging
1770 * output.
1771 */
1772 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name);
1773
1774 /**
1775 * address_space_destroy: destroy an address space
1776 *
1777 * Releases all resources associated with an address space. After an address space
1778 * is destroyed, its root memory region (given by address_space_init()) may be destroyed
1779 * as well.
1780 *
1781 * @as: address space to be destroyed
1782 */
1783 void address_space_destroy(AddressSpace *as);
1784
1785 /**
1786 * address_space_remove_listeners: unregister all listeners of an address space
1787 *
1788 * Removes all callbacks previously registered with memory_listener_register()
1789 * for @as.
1790 *
1791 * @as: an initialized #AddressSpace
1792 */
1793 void address_space_remove_listeners(AddressSpace *as);
1794
1795 /**
1796 * address_space_rw: read from or write to an address space.
1797 *
1798 * Return a MemTxResult indicating whether the operation succeeded
1799 * or failed (eg unassigned memory, device rejected the transaction,
1800 * IOMMU fault).
1801 *
1802 * @as: #AddressSpace to be accessed
1803 * @addr: address within that address space
1804 * @attrs: memory transaction attributes
1805 * @buf: buffer with the data transferred
1806 * @len: the number of bytes to read or write
1807 * @is_write: indicates the transfer direction
1808 */
1809 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr,
1810 MemTxAttrs attrs, uint8_t *buf,
1811 hwaddr len, bool is_write);
1812
1813 /**
1814 * address_space_write: write to address space.
1815 *
1816 * Return a MemTxResult indicating whether the operation succeeded
1817 * or failed (eg unassigned memory, device rejected the transaction,
1818 * IOMMU fault).
1819 *
1820 * @as: #AddressSpace to be accessed
1821 * @addr: address within that address space
1822 * @attrs: memory transaction attributes
1823 * @buf: buffer with the data transferred
1824 * @len: the number of bytes to write
1825 */
1826 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
1827 MemTxAttrs attrs,
1828 const uint8_t *buf, hwaddr len);
1829
1830 /**
1831 * address_space_write_rom: write to address space, including ROM.
1832 *
1833 * This function writes to the specified address space, but will
1834 * write data to both ROM and RAM. This is used for non-guest
1835 * writes like writes from the gdb debug stub or initial loading
1836 * of ROM contents.
1837 *
1838 * Note that portions of the write which attempt to write data to
1839 * a device will be silently ignored -- only real RAM and ROM will
1840 * be written to.
1841 *
1842 * Return a MemTxResult indicating whether the operation succeeded
1843 * or failed (eg unassigned memory, device rejected the transaction,
1844 * IOMMU fault).
1845 *
1846 * @as: #AddressSpace to be accessed
1847 * @addr: address within that address space
1848 * @attrs: memory transaction attributes
1849 * @buf: buffer with the data transferred
1850 * @len: the number of bytes to write
1851 */
1852 MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
1853 MemTxAttrs attrs,
1854 const uint8_t *buf, hwaddr len);
1855
1856 /* address_space_ld*: load from an address space
1857 * address_space_st*: store to an address space
1858 *
1859 * These functions perform a load or store of the byte, word,
1860 * longword or quad to the specified address within the AddressSpace.
1861 * The _le suffixed functions treat the data as little endian;
1862 * _be indicates big endian; no suffix indicates "same endianness
1863 * as guest CPU".
1864 *
1865 * The "guest CPU endianness" accessors are deprecated for use outside
1866 * target-* code; devices should be CPU-agnostic and use either the LE
1867 * or the BE accessors.
1868 *
1869 * @as #AddressSpace to be accessed
1870 * @addr: address within that address space
1871 * @val: data value, for stores
1872 * @attrs: memory transaction attributes
1873 * @result: location to write the success/failure of the transaction;
1874 * if NULL, this information is discarded
1875 */
1876
1877 #define SUFFIX
1878 #define ARG1 as
1879 #define ARG1_DECL AddressSpace *as
1880 #include "exec/memory_ldst.inc.h"
1881
1882 #define SUFFIX
1883 #define ARG1 as
1884 #define ARG1_DECL AddressSpace *as
1885 #include "exec/memory_ldst_phys.inc.h"
1886
1887 struct MemoryRegionCache {
1888 void *ptr;
1889 hwaddr xlat;
1890 hwaddr len;
1891 FlatView *fv;
1892 MemoryRegionSection mrs;
1893 bool is_write;
1894 };
1895
1896 #define MEMORY_REGION_CACHE_INVALID ((MemoryRegionCache) { .mrs.mr = NULL })
1897
1898
1899 /* address_space_ld*_cached: load from a cached #MemoryRegion
1900 * address_space_st*_cached: store into a cached #MemoryRegion
1901 *
1902 * These functions perform a load or store of the byte, word,
1903 * longword or quad to the specified address. The address is
1904 * a physical address in the AddressSpace, but it must lie within
1905 * a #MemoryRegion that was mapped with address_space_cache_init.
1906 *
1907 * The _le suffixed functions treat the data as little endian;
1908 * _be indicates big endian; no suffix indicates "same endianness
1909 * as guest CPU".
1910 *
1911 * The "guest CPU endianness" accessors are deprecated for use outside
1912 * target-* code; devices should be CPU-agnostic and use either the LE
1913 * or the BE accessors.
1914 *
1915 * @cache: previously initialized #MemoryRegionCache to be accessed
1916 * @addr: address within the address space
1917 * @val: data value, for stores
1918 * @attrs: memory transaction attributes
1919 * @result: location to write the success/failure of the transaction;
1920 * if NULL, this information is discarded
1921 */
1922
1923 #define SUFFIX _cached_slow
1924 #define ARG1 cache
1925 #define ARG1_DECL MemoryRegionCache *cache
1926 #include "exec/memory_ldst.inc.h"
1927
1928 /* Inline fast path for direct RAM access. */
1929 static inline uint8_t address_space_ldub_cached(MemoryRegionCache *cache,
1930 hwaddr addr, MemTxAttrs attrs, MemTxResult *result)
1931 {
1932 assert(addr < cache->len);
1933 if (likely(cache->ptr)) {
1934 return ldub_p(cache->ptr + addr);
1935 } else {
1936 return address_space_ldub_cached_slow(cache, addr, attrs, result);
1937 }
1938 }
1939
1940 static inline void address_space_stb_cached(MemoryRegionCache *cache,
1941 hwaddr addr, uint32_t val, MemTxAttrs attrs, MemTxResult *result)
1942 {
1943 assert(addr < cache->len);
1944 if (likely(cache->ptr)) {
1945 stb_p(cache->ptr + addr, val);
1946 } else {
1947 address_space_stb_cached_slow(cache, addr, val, attrs, result);
1948 }
1949 }
1950
1951 #define ENDIANNESS _le
1952 #include "exec/memory_ldst_cached.inc.h"
1953
1954 #define ENDIANNESS _be
1955 #include "exec/memory_ldst_cached.inc.h"
1956
1957 #define SUFFIX _cached
1958 #define ARG1 cache
1959 #define ARG1_DECL MemoryRegionCache *cache
1960 #include "exec/memory_ldst_phys.inc.h"
1961
1962 /* address_space_cache_init: prepare for repeated access to a physical
1963 * memory region
1964 *
1965 * @cache: #MemoryRegionCache to be filled
1966 * @as: #AddressSpace to be accessed
1967 * @addr: address within that address space
1968 * @len: length of buffer
1969 * @is_write: indicates the transfer direction
1970 *
1971 * Will only work with RAM, and may map a subset of the requested range by
1972 * returning a value that is less than @len. On failure, return a negative
1973 * errno value.
1974 *
1975 * Because it only works with RAM, this function can be used for
1976 * read-modify-write operations. In this case, is_write should be %true.
1977 *
1978 * Note that addresses passed to the address_space_*_cached functions
1979 * are relative to @addr.
1980 */
1981 int64_t address_space_cache_init(MemoryRegionCache *cache,
1982 AddressSpace *as,
1983 hwaddr addr,
1984 hwaddr len,
1985 bool is_write);
1986
1987 /**
1988 * address_space_cache_invalidate: complete a write to a #MemoryRegionCache
1989 *
1990 * @cache: The #MemoryRegionCache to operate on.
1991 * @addr: The first physical address that was written, relative to the
1992 * address that was passed to @address_space_cache_init.
1993 * @access_len: The number of bytes that were written starting at @addr.
1994 */
1995 void address_space_cache_invalidate(MemoryRegionCache *cache,
1996 hwaddr addr,
1997 hwaddr access_len);
1998
1999 /**
2000 * address_space_cache_destroy: free a #MemoryRegionCache
2001 *
2002 * @cache: The #MemoryRegionCache whose memory should be released.
2003 */
2004 void address_space_cache_destroy(MemoryRegionCache *cache);
2005
2006 /* address_space_get_iotlb_entry: translate an address into an IOTLB
2007 * entry. Should be called from an RCU critical section.
2008 */
2009 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
2010 bool is_write, MemTxAttrs attrs);
2011
2012 /* address_space_translate: translate an address range into an address space
2013 * into a MemoryRegion and an address range into that section. Should be
2014 * called from an RCU critical section, to avoid that the last reference
2015 * to the returned region disappears after address_space_translate returns.
2016 *
2017 * @fv: #FlatView to be accessed
2018 * @addr: address within that address space
2019 * @xlat: pointer to address within the returned memory region section's
2020 * #MemoryRegion.
2021 * @len: pointer to length
2022 * @is_write: indicates the transfer direction
2023 * @attrs: memory attributes
2024 */
2025 MemoryRegion *flatview_translate(FlatView *fv,
2026 hwaddr addr, hwaddr *xlat,
2027 hwaddr *len, bool is_write,
2028 MemTxAttrs attrs);
2029
2030 static inline MemoryRegion *address_space_translate(AddressSpace *as,
2031 hwaddr addr, hwaddr *xlat,
2032 hwaddr *len, bool is_write,
2033 MemTxAttrs attrs)
2034 {
2035 return flatview_translate(address_space_to_flatview(as),
2036 addr, xlat, len, is_write, attrs);
2037 }
2038
2039 /* address_space_access_valid: check for validity of accessing an address
2040 * space range
2041 *
2042 * Check whether memory is assigned to the given address space range, and
2043 * access is permitted by any IOMMU regions that are active for the address
2044 * space.
2045 *
2046 * For now, addr and len should be aligned to a page size. This limitation
2047 * will be lifted in the future.
2048 *
2049 * @as: #AddressSpace to be accessed
2050 * @addr: address within that address space
2051 * @len: length of the area to be checked
2052 * @is_write: indicates the transfer direction
2053 * @attrs: memory attributes
2054 */
2055 bool address_space_access_valid(AddressSpace *as, hwaddr addr, hwaddr len,
2056 bool is_write, MemTxAttrs attrs);
2057
2058 /* address_space_map: map a physical memory region into a host virtual address
2059 *
2060 * May map a subset of the requested range, given by and returned in @plen.
2061 * May return %NULL if resources needed to perform the mapping are exhausted.
2062 * Use only for reads OR writes - not for read-modify-write operations.
2063 * Use cpu_register_map_client() to know when retrying the map operation is
2064 * likely to succeed.
2065 *
2066 * @as: #AddressSpace to be accessed
2067 * @addr: address within that address space
2068 * @plen: pointer to length of buffer; updated on return
2069 * @is_write: indicates the transfer direction
2070 * @attrs: memory attributes
2071 */
2072 void *address_space_map(AddressSpace *as, hwaddr addr,
2073 hwaddr *plen, bool is_write, MemTxAttrs attrs);
2074
2075 /* address_space_unmap: Unmaps a memory region previously mapped by address_space_map()
2076 *
2077 * Will also mark the memory as dirty if @is_write == %true. @access_len gives
2078 * the amount of memory that was actually read or written by the caller.
2079 *
2080 * @as: #AddressSpace used
2081 * @buffer: host pointer as returned by address_space_map()
2082 * @len: buffer length as returned by address_space_map()
2083 * @access_len: amount of data actually transferred
2084 * @is_write: indicates the transfer direction
2085 */
2086 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
2087 int is_write, hwaddr access_len);
2088
2089
2090 /* Internal functions, part of the implementation of address_space_read. */
2091 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
2092 MemTxAttrs attrs, uint8_t *buf, hwaddr len);
2093 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
2094 MemTxAttrs attrs, uint8_t *buf,
2095 hwaddr len, hwaddr addr1, hwaddr l,
2096 MemoryRegion *mr);
2097 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr);
2098
2099 /* Internal functions, part of the implementation of address_space_read_cached
2100 * and address_space_write_cached. */
2101 void address_space_read_cached_slow(MemoryRegionCache *cache,
2102 hwaddr addr, void *buf, hwaddr len);
2103 void address_space_write_cached_slow(MemoryRegionCache *cache,
2104 hwaddr addr, const void *buf, hwaddr len);
2105
2106 static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write)
2107 {
2108 if (is_write) {
2109 return memory_region_is_ram(mr) &&
2110 !mr->readonly && !memory_region_is_ram_device(mr);
2111 } else {
2112 return (memory_region_is_ram(mr) && !memory_region_is_ram_device(mr)) ||
2113 memory_region_is_romd(mr);
2114 }
2115 }
2116
2117 /**
2118 * address_space_read: read from an address space.
2119 *
2120 * Return a MemTxResult indicating whether the operation succeeded
2121 * or failed (eg unassigned memory, device rejected the transaction,
2122 * IOMMU fault). Called within RCU critical section.
2123 *
2124 * @as: #AddressSpace to be accessed
2125 * @addr: address within that address space
2126 * @attrs: memory transaction attributes
2127 * @buf: buffer with the data transferred
2128 */
2129 static inline __attribute__((__always_inline__))
2130 MemTxResult address_space_read(AddressSpace *as, hwaddr addr,
2131 MemTxAttrs attrs, uint8_t *buf,
2132 hwaddr len)
2133 {
2134 MemTxResult result = MEMTX_OK;
2135 hwaddr l, addr1;
2136 void *ptr;
2137 MemoryRegion *mr;
2138 FlatView *fv;
2139
2140 if (__builtin_constant_p(len)) {
2141 if (len) {
2142 rcu_read_lock();
2143 fv = address_space_to_flatview(as);
2144 l = len;
2145 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
2146 if (len == l && memory_access_is_direct(mr, false)) {
2147 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
2148 memcpy(buf, ptr, len);
2149 } else {
2150 result = flatview_read_continue(fv, addr, attrs, buf, len,
2151 addr1, l, mr);
2152 }
2153 rcu_read_unlock();
2154 }
2155 } else {
2156 result = address_space_read_full(as, addr, attrs, buf, len);
2157 }
2158 return result;
2159 }
2160
2161 /**
2162 * address_space_read_cached: read from a cached RAM region
2163 *
2164 * @cache: Cached region to be addressed
2165 * @addr: address relative to the base of the RAM region
2166 * @buf: buffer with the data transferred
2167 * @len: length of the data transferred
2168 */
2169 static inline void
2170 address_space_read_cached(MemoryRegionCache *cache, hwaddr addr,
2171 void *buf, hwaddr len)
2172 {
2173 assert(addr < cache->len && len <= cache->len - addr);
2174 if (likely(cache->ptr)) {
2175 memcpy(buf, cache->ptr + addr, len);
2176 } else {
2177 address_space_read_cached_slow(cache, addr, buf, len);
2178 }
2179 }
2180
2181 /**
2182 * address_space_write_cached: write to a cached RAM region
2183 *
2184 * @cache: Cached region to be addressed
2185 * @addr: address relative to the base of the RAM region
2186 * @buf: buffer with the data transferred
2187 * @len: length of the data transferred
2188 */
2189 static inline void
2190 address_space_write_cached(MemoryRegionCache *cache, hwaddr addr,
2191 void *buf, hwaddr len)
2192 {
2193 assert(addr < cache->len && len <= cache->len - addr);
2194 if (likely(cache->ptr)) {
2195 memcpy(cache->ptr + addr, buf, len);
2196 } else {
2197 address_space_write_cached_slow(cache, addr, buf, len);
2198 }
2199 }
2200
2201 #endif
2202
2203 #endif