]> git.proxmox.com Git - mirror_qemu.git/blob - include/exec/memory.h
memory: extract first iteration of address_space_read and address_space_write
[mirror_qemu.git] / include / exec / memory.h
1 /*
2 * Physical memory management API
3 *
4 * Copyright 2011 Red Hat, Inc. and/or its affiliates
5 *
6 * Authors:
7 * Avi Kivity <avi@redhat.com>
8 *
9 * This work is licensed under the terms of the GNU GPL, version 2. See
10 * the COPYING file in the top-level directory.
11 *
12 */
13
14 #ifndef MEMORY_H
15 #define MEMORY_H
16
17 #ifndef CONFIG_USER_ONLY
18
19 #define DIRTY_MEMORY_VGA 0
20 #define DIRTY_MEMORY_CODE 1
21 #define DIRTY_MEMORY_MIGRATION 2
22 #define DIRTY_MEMORY_NUM 3 /* num of dirty bits */
23
24 #include <stdint.h>
25 #include <stdbool.h>
26 #include "exec/cpu-common.h"
27 #ifndef CONFIG_USER_ONLY
28 #include "exec/hwaddr.h"
29 #endif
30 #include "exec/memattrs.h"
31 #include "qemu/queue.h"
32 #include "qemu/int128.h"
33 #include "qemu/notify.h"
34 #include "qapi/error.h"
35 #include "qom/object.h"
36 #include "qemu/rcu.h"
37
38 #define MAX_PHYS_ADDR_SPACE_BITS 62
39 #define MAX_PHYS_ADDR (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1)
40
41 #define TYPE_MEMORY_REGION "qemu:memory-region"
42 #define MEMORY_REGION(obj) \
43 OBJECT_CHECK(MemoryRegion, (obj), TYPE_MEMORY_REGION)
44
45 typedef struct MemoryRegionOps MemoryRegionOps;
46 typedef struct MemoryRegionMmio MemoryRegionMmio;
47
48 struct MemoryRegionMmio {
49 CPUReadMemoryFunc *read[3];
50 CPUWriteMemoryFunc *write[3];
51 };
52
53 typedef struct IOMMUTLBEntry IOMMUTLBEntry;
54
55 /* See address_space_translate: bit 0 is read, bit 1 is write. */
56 typedef enum {
57 IOMMU_NONE = 0,
58 IOMMU_RO = 1,
59 IOMMU_WO = 2,
60 IOMMU_RW = 3,
61 } IOMMUAccessFlags;
62
63 struct IOMMUTLBEntry {
64 AddressSpace *target_as;
65 hwaddr iova;
66 hwaddr translated_addr;
67 hwaddr addr_mask; /* 0xfff = 4k translation */
68 IOMMUAccessFlags perm;
69 };
70
71 /* New-style MMIO accessors can indicate that the transaction failed.
72 * A zero (MEMTX_OK) response means success; anything else is a failure
73 * of some kind. The memory subsystem will bitwise-OR together results
74 * if it is synthesizing an operation from multiple smaller accesses.
75 */
76 #define MEMTX_OK 0
77 #define MEMTX_ERROR (1U << 0) /* device returned an error */
78 #define MEMTX_DECODE_ERROR (1U << 1) /* nothing at that address */
79 typedef uint32_t MemTxResult;
80
81 /*
82 * Memory region callbacks
83 */
84 struct MemoryRegionOps {
85 /* Read from the memory region. @addr is relative to @mr; @size is
86 * in bytes. */
87 uint64_t (*read)(void *opaque,
88 hwaddr addr,
89 unsigned size);
90 /* Write to the memory region. @addr is relative to @mr; @size is
91 * in bytes. */
92 void (*write)(void *opaque,
93 hwaddr addr,
94 uint64_t data,
95 unsigned size);
96
97 MemTxResult (*read_with_attrs)(void *opaque,
98 hwaddr addr,
99 uint64_t *data,
100 unsigned size,
101 MemTxAttrs attrs);
102 MemTxResult (*write_with_attrs)(void *opaque,
103 hwaddr addr,
104 uint64_t data,
105 unsigned size,
106 MemTxAttrs attrs);
107
108 enum device_endian endianness;
109 /* Guest-visible constraints: */
110 struct {
111 /* If nonzero, specify bounds on access sizes beyond which a machine
112 * check is thrown.
113 */
114 unsigned min_access_size;
115 unsigned max_access_size;
116 /* If true, unaligned accesses are supported. Otherwise unaligned
117 * accesses throw machine checks.
118 */
119 bool unaligned;
120 /*
121 * If present, and returns #false, the transaction is not accepted
122 * by the device (and results in machine dependent behaviour such
123 * as a machine check exception).
124 */
125 bool (*accepts)(void *opaque, hwaddr addr,
126 unsigned size, bool is_write);
127 } valid;
128 /* Internal implementation constraints: */
129 struct {
130 /* If nonzero, specifies the minimum size implemented. Smaller sizes
131 * will be rounded upwards and a partial result will be returned.
132 */
133 unsigned min_access_size;
134 /* If nonzero, specifies the maximum size implemented. Larger sizes
135 * will be done as a series of accesses with smaller sizes.
136 */
137 unsigned max_access_size;
138 /* If true, unaligned accesses are supported. Otherwise all accesses
139 * are converted to (possibly multiple) naturally aligned accesses.
140 */
141 bool unaligned;
142 } impl;
143
144 /* If .read and .write are not present, old_mmio may be used for
145 * backwards compatibility with old mmio registration
146 */
147 const MemoryRegionMmio old_mmio;
148 };
149
150 typedef struct MemoryRegionIOMMUOps MemoryRegionIOMMUOps;
151
152 struct MemoryRegionIOMMUOps {
153 /* Return a TLB entry that contains a given address. */
154 IOMMUTLBEntry (*translate)(MemoryRegion *iommu, hwaddr addr, bool is_write);
155 };
156
157 typedef struct CoalescedMemoryRange CoalescedMemoryRange;
158 typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd;
159
160 struct MemoryRegion {
161 Object parent_obj;
162
163 /* All fields are private - violators will be prosecuted */
164
165 /* The following fields should fit in a cache line */
166 bool romd_mode;
167 bool ram;
168 bool subpage;
169 bool readonly; /* For RAM regions */
170 bool rom_device;
171 bool flush_coalesced_mmio;
172 bool global_locking;
173 uint8_t dirty_log_mask;
174 ram_addr_t ram_addr;
175 Object *owner;
176 const MemoryRegionIOMMUOps *iommu_ops;
177
178 const MemoryRegionOps *ops;
179 void *opaque;
180 MemoryRegion *container;
181 Int128 size;
182 hwaddr addr;
183 void (*destructor)(MemoryRegion *mr);
184 uint64_t align;
185 bool terminates;
186 bool skip_dump;
187 bool enabled;
188 bool warning_printed; /* For reservations */
189 uint8_t vga_logging_count;
190 MemoryRegion *alias;
191 hwaddr alias_offset;
192 int32_t priority;
193 bool may_overlap;
194 QTAILQ_HEAD(subregions, MemoryRegion) subregions;
195 QTAILQ_ENTRY(MemoryRegion) subregions_link;
196 QTAILQ_HEAD(coalesced_ranges, CoalescedMemoryRange) coalesced;
197 const char *name;
198 unsigned ioeventfd_nb;
199 MemoryRegionIoeventfd *ioeventfds;
200 NotifierList iommu_notify;
201 };
202
203 /**
204 * MemoryListener: callbacks structure for updates to the physical memory map
205 *
206 * Allows a component to adjust to changes in the guest-visible memory map.
207 * Use with memory_listener_register() and memory_listener_unregister().
208 */
209 struct MemoryListener {
210 void (*begin)(MemoryListener *listener);
211 void (*commit)(MemoryListener *listener);
212 void (*region_add)(MemoryListener *listener, MemoryRegionSection *section);
213 void (*region_del)(MemoryListener *listener, MemoryRegionSection *section);
214 void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section);
215 void (*log_start)(MemoryListener *listener, MemoryRegionSection *section,
216 int old, int new);
217 void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section,
218 int old, int new);
219 void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section);
220 void (*log_global_start)(MemoryListener *listener);
221 void (*log_global_stop)(MemoryListener *listener);
222 void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section,
223 bool match_data, uint64_t data, EventNotifier *e);
224 void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section,
225 bool match_data, uint64_t data, EventNotifier *e);
226 void (*coalesced_mmio_add)(MemoryListener *listener, MemoryRegionSection *section,
227 hwaddr addr, hwaddr len);
228 void (*coalesced_mmio_del)(MemoryListener *listener, MemoryRegionSection *section,
229 hwaddr addr, hwaddr len);
230 /* Lower = earlier (during add), later (during del) */
231 unsigned priority;
232 AddressSpace *address_space_filter;
233 QTAILQ_ENTRY(MemoryListener) link;
234 };
235
236 /**
237 * AddressSpace: describes a mapping of addresses to #MemoryRegion objects
238 */
239 struct AddressSpace {
240 /* All fields are private. */
241 struct rcu_head rcu;
242 char *name;
243 MemoryRegion *root;
244
245 /* Accessed via RCU. */
246 struct FlatView *current_map;
247
248 int ioeventfd_nb;
249 struct MemoryRegionIoeventfd *ioeventfds;
250 struct AddressSpaceDispatch *dispatch;
251 struct AddressSpaceDispatch *next_dispatch;
252 MemoryListener dispatch_listener;
253
254 QTAILQ_ENTRY(AddressSpace) address_spaces_link;
255 };
256
257 /**
258 * MemoryRegionSection: describes a fragment of a #MemoryRegion
259 *
260 * @mr: the region, or %NULL if empty
261 * @address_space: the address space the region is mapped in
262 * @offset_within_region: the beginning of the section, relative to @mr's start
263 * @size: the size of the section; will not exceed @mr's boundaries
264 * @offset_within_address_space: the address of the first byte of the section
265 * relative to the region's address space
266 * @readonly: writes to this section are ignored
267 */
268 struct MemoryRegionSection {
269 MemoryRegion *mr;
270 AddressSpace *address_space;
271 hwaddr offset_within_region;
272 Int128 size;
273 hwaddr offset_within_address_space;
274 bool readonly;
275 };
276
277 /**
278 * memory_region_init: Initialize a memory region
279 *
280 * The region typically acts as a container for other memory regions. Use
281 * memory_region_add_subregion() to add subregions.
282 *
283 * @mr: the #MemoryRegion to be initialized
284 * @owner: the object that tracks the region's reference count
285 * @name: used for debugging; not visible to the user or ABI
286 * @size: size of the region; any subregions beyond this size will be clipped
287 */
288 void memory_region_init(MemoryRegion *mr,
289 struct Object *owner,
290 const char *name,
291 uint64_t size);
292
293 /**
294 * memory_region_ref: Add 1 to a memory region's reference count
295 *
296 * Whenever memory regions are accessed outside the BQL, they need to be
297 * preserved against hot-unplug. MemoryRegions actually do not have their
298 * own reference count; they piggyback on a QOM object, their "owner".
299 * This function adds a reference to the owner.
300 *
301 * All MemoryRegions must have an owner if they can disappear, even if the
302 * device they belong to operates exclusively under the BQL. This is because
303 * the region could be returned at any time by memory_region_find, and this
304 * is usually under guest control.
305 *
306 * @mr: the #MemoryRegion
307 */
308 void memory_region_ref(MemoryRegion *mr);
309
310 /**
311 * memory_region_unref: Remove 1 to a memory region's reference count
312 *
313 * Whenever memory regions are accessed outside the BQL, they need to be
314 * preserved against hot-unplug. MemoryRegions actually do not have their
315 * own reference count; they piggyback on a QOM object, their "owner".
316 * This function removes a reference to the owner and possibly destroys it.
317 *
318 * @mr: the #MemoryRegion
319 */
320 void memory_region_unref(MemoryRegion *mr);
321
322 /**
323 * memory_region_init_io: Initialize an I/O memory region.
324 *
325 * Accesses into the region will cause the callbacks in @ops to be called.
326 * if @size is nonzero, subregions will be clipped to @size.
327 *
328 * @mr: the #MemoryRegion to be initialized.
329 * @owner: the object that tracks the region's reference count
330 * @ops: a structure containing read and write callbacks to be used when
331 * I/O is performed on the region.
332 * @opaque: passed to the read and write callbacks of the @ops structure.
333 * @name: used for debugging; not visible to the user or ABI
334 * @size: size of the region.
335 */
336 void memory_region_init_io(MemoryRegion *mr,
337 struct Object *owner,
338 const MemoryRegionOps *ops,
339 void *opaque,
340 const char *name,
341 uint64_t size);
342
343 /**
344 * memory_region_init_ram: Initialize RAM memory region. Accesses into the
345 * region will modify memory directly.
346 *
347 * @mr: the #MemoryRegion to be initialized.
348 * @owner: the object that tracks the region's reference count
349 * @name: the name of the region.
350 * @size: size of the region.
351 * @errp: pointer to Error*, to store an error if it happens.
352 */
353 void memory_region_init_ram(MemoryRegion *mr,
354 struct Object *owner,
355 const char *name,
356 uint64_t size,
357 Error **errp);
358
359 /**
360 * memory_region_init_resizeable_ram: Initialize memory region with resizeable
361 * RAM. Accesses into the region will
362 * modify memory directly. Only an initial
363 * portion of this RAM is actually used.
364 * The used size can change across reboots.
365 *
366 * @mr: the #MemoryRegion to be initialized.
367 * @owner: the object that tracks the region's reference count
368 * @name: the name of the region.
369 * @size: used size of the region.
370 * @max_size: max size of the region.
371 * @resized: callback to notify owner about used size change.
372 * @errp: pointer to Error*, to store an error if it happens.
373 */
374 void memory_region_init_resizeable_ram(MemoryRegion *mr,
375 struct Object *owner,
376 const char *name,
377 uint64_t size,
378 uint64_t max_size,
379 void (*resized)(const char*,
380 uint64_t length,
381 void *host),
382 Error **errp);
383 #ifdef __linux__
384 /**
385 * memory_region_init_ram_from_file: Initialize RAM memory region with a
386 * mmap-ed backend.
387 *
388 * @mr: the #MemoryRegion to be initialized.
389 * @owner: the object that tracks the region's reference count
390 * @name: the name of the region.
391 * @size: size of the region.
392 * @share: %true if memory must be mmaped with the MAP_SHARED flag
393 * @path: the path in which to allocate the RAM.
394 * @errp: pointer to Error*, to store an error if it happens.
395 */
396 void memory_region_init_ram_from_file(MemoryRegion *mr,
397 struct Object *owner,
398 const char *name,
399 uint64_t size,
400 bool share,
401 const char *path,
402 Error **errp);
403 #endif
404
405 /**
406 * memory_region_init_ram_ptr: Initialize RAM memory region from a
407 * user-provided pointer. Accesses into the
408 * region will modify memory directly.
409 *
410 * @mr: the #MemoryRegion to be initialized.
411 * @owner: the object that tracks the region's reference count
412 * @name: the name of the region.
413 * @size: size of the region.
414 * @ptr: memory to be mapped; must contain at least @size bytes.
415 */
416 void memory_region_init_ram_ptr(MemoryRegion *mr,
417 struct Object *owner,
418 const char *name,
419 uint64_t size,
420 void *ptr);
421
422 /**
423 * memory_region_init_alias: Initialize a memory region that aliases all or a
424 * part of another memory region.
425 *
426 * @mr: the #MemoryRegion to be initialized.
427 * @owner: the object that tracks the region's reference count
428 * @name: used for debugging; not visible to the user or ABI
429 * @orig: the region to be referenced; @mr will be equivalent to
430 * @orig between @offset and @offset + @size - 1.
431 * @offset: start of the section in @orig to be referenced.
432 * @size: size of the region.
433 */
434 void memory_region_init_alias(MemoryRegion *mr,
435 struct Object *owner,
436 const char *name,
437 MemoryRegion *orig,
438 hwaddr offset,
439 uint64_t size);
440
441 /**
442 * memory_region_init_rom_device: Initialize a ROM memory region. Writes are
443 * handled via callbacks.
444 *
445 * If NULL callbacks pointer is given, then I/O space is not supposed to be
446 * handled by QEMU itself. Any access via the memory API will cause an abort().
447 *
448 * @mr: the #MemoryRegion to be initialized.
449 * @owner: the object that tracks the region's reference count
450 * @ops: callbacks for write access handling.
451 * @name: the name of the region.
452 * @size: size of the region.
453 * @errp: pointer to Error*, to store an error if it happens.
454 */
455 void memory_region_init_rom_device(MemoryRegion *mr,
456 struct Object *owner,
457 const MemoryRegionOps *ops,
458 void *opaque,
459 const char *name,
460 uint64_t size,
461 Error **errp);
462
463 /**
464 * memory_region_init_reservation: Initialize a memory region that reserves
465 * I/O space.
466 *
467 * A reservation region primariy serves debugging purposes. It claims I/O
468 * space that is not supposed to be handled by QEMU itself. Any access via
469 * the memory API will cause an abort().
470 * This function is deprecated. Use memory_region_init_io() with NULL
471 * callbacks instead.
472 *
473 * @mr: the #MemoryRegion to be initialized
474 * @owner: the object that tracks the region's reference count
475 * @name: used for debugging; not visible to the user or ABI
476 * @size: size of the region.
477 */
478 static inline void memory_region_init_reservation(MemoryRegion *mr,
479 Object *owner,
480 const char *name,
481 uint64_t size)
482 {
483 memory_region_init_io(mr, owner, NULL, mr, name, size);
484 }
485
486 /**
487 * memory_region_init_iommu: Initialize a memory region that translates
488 * addresses
489 *
490 * An IOMMU region translates addresses and forwards accesses to a target
491 * memory region.
492 *
493 * @mr: the #MemoryRegion to be initialized
494 * @owner: the object that tracks the region's reference count
495 * @ops: a function that translates addresses into the @target region
496 * @name: used for debugging; not visible to the user or ABI
497 * @size: size of the region.
498 */
499 void memory_region_init_iommu(MemoryRegion *mr,
500 struct Object *owner,
501 const MemoryRegionIOMMUOps *ops,
502 const char *name,
503 uint64_t size);
504
505 /**
506 * memory_region_owner: get a memory region's owner.
507 *
508 * @mr: the memory region being queried.
509 */
510 struct Object *memory_region_owner(MemoryRegion *mr);
511
512 /**
513 * memory_region_size: get a memory region's size.
514 *
515 * @mr: the memory region being queried.
516 */
517 uint64_t memory_region_size(MemoryRegion *mr);
518
519 /**
520 * memory_region_is_ram: check whether a memory region is random access
521 *
522 * Returns %true is a memory region is random access.
523 *
524 * @mr: the memory region being queried
525 */
526 bool memory_region_is_ram(MemoryRegion *mr);
527
528 /**
529 * memory_region_is_skip_dump: check whether a memory region should not be
530 * dumped
531 *
532 * Returns %true is a memory region should not be dumped(e.g. VFIO BAR MMAP).
533 *
534 * @mr: the memory region being queried
535 */
536 bool memory_region_is_skip_dump(MemoryRegion *mr);
537
538 /**
539 * memory_region_set_skip_dump: Set skip_dump flag, dump will ignore this memory
540 * region
541 *
542 * @mr: the memory region being queried
543 */
544 void memory_region_set_skip_dump(MemoryRegion *mr);
545
546 /**
547 * memory_region_is_romd: check whether a memory region is in ROMD mode
548 *
549 * Returns %true if a memory region is a ROM device and currently set to allow
550 * direct reads.
551 *
552 * @mr: the memory region being queried
553 */
554 static inline bool memory_region_is_romd(MemoryRegion *mr)
555 {
556 return mr->rom_device && mr->romd_mode;
557 }
558
559 /**
560 * memory_region_is_iommu: check whether a memory region is an iommu
561 *
562 * Returns %true is a memory region is an iommu.
563 *
564 * @mr: the memory region being queried
565 */
566 bool memory_region_is_iommu(MemoryRegion *mr);
567
568 /**
569 * memory_region_notify_iommu: notify a change in an IOMMU translation entry.
570 *
571 * @mr: the memory region that was changed
572 * @entry: the new entry in the IOMMU translation table. The entry
573 * replaces all old entries for the same virtual I/O address range.
574 * Deleted entries have .@perm == 0.
575 */
576 void memory_region_notify_iommu(MemoryRegion *mr,
577 IOMMUTLBEntry entry);
578
579 /**
580 * memory_region_register_iommu_notifier: register a notifier for changes to
581 * IOMMU translation entries.
582 *
583 * @mr: the memory region to observe
584 * @n: the notifier to be added; the notifier receives a pointer to an
585 * #IOMMUTLBEntry as the opaque value; the pointer ceases to be
586 * valid on exit from the notifier.
587 */
588 void memory_region_register_iommu_notifier(MemoryRegion *mr, Notifier *n);
589
590 /**
591 * memory_region_iommu_replay: replay existing IOMMU translations to
592 * a notifier
593 *
594 * @mr: the memory region to observe
595 * @n: the notifier to which to replay iommu mappings
596 * @granularity: Minimum page granularity to replay notifications for
597 * @is_write: Whether to treat the replay as a translate "write"
598 * through the iommu
599 */
600 void memory_region_iommu_replay(MemoryRegion *mr, Notifier *n,
601 hwaddr granularity, bool is_write);
602
603 /**
604 * memory_region_unregister_iommu_notifier: unregister a notifier for
605 * changes to IOMMU translation entries.
606 *
607 * @n: the notifier to be removed.
608 */
609 void memory_region_unregister_iommu_notifier(Notifier *n);
610
611 /**
612 * memory_region_name: get a memory region's name
613 *
614 * Returns the string that was used to initialize the memory region.
615 *
616 * @mr: the memory region being queried
617 */
618 const char *memory_region_name(const MemoryRegion *mr);
619
620 /**
621 * memory_region_is_logging: return whether a memory region is logging writes
622 *
623 * Returns %true if the memory region is logging writes for the given client
624 *
625 * @mr: the memory region being queried
626 * @client: the client being queried
627 */
628 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client);
629
630 /**
631 * memory_region_get_dirty_log_mask: return the clients for which a
632 * memory region is logging writes.
633 *
634 * Returns a bitmap of clients, in which the DIRTY_MEMORY_* constants
635 * are the bit indices.
636 *
637 * @mr: the memory region being queried
638 */
639 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr);
640
641 /**
642 * memory_region_is_rom: check whether a memory region is ROM
643 *
644 * Returns %true is a memory region is read-only memory.
645 *
646 * @mr: the memory region being queried
647 */
648 bool memory_region_is_rom(MemoryRegion *mr);
649
650 /**
651 * memory_region_get_fd: Get a file descriptor backing a RAM memory region.
652 *
653 * Returns a file descriptor backing a file-based RAM memory region,
654 * or -1 if the region is not a file-based RAM memory region.
655 *
656 * @mr: the RAM or alias memory region being queried.
657 */
658 int memory_region_get_fd(MemoryRegion *mr);
659
660 /**
661 * memory_region_get_ram_ptr: Get a pointer into a RAM memory region.
662 *
663 * Returns a host pointer to a RAM memory region (created with
664 * memory_region_init_ram() or memory_region_init_ram_ptr()).
665 *
666 * Use with care; by the time this function returns, the returned pointer is
667 * not protected by RCU anymore. If the caller is not within an RCU critical
668 * section and does not hold the iothread lock, it must have other means of
669 * protecting the pointer, such as a reference to the region that includes
670 * the incoming ram_addr_t.
671 *
672 * @mr: the memory region being queried.
673 */
674 void *memory_region_get_ram_ptr(MemoryRegion *mr);
675
676 /* memory_region_ram_resize: Resize a RAM region.
677 *
678 * Only legal before guest might have detected the memory size: e.g. on
679 * incoming migration, or right after reset.
680 *
681 * @mr: a memory region created with @memory_region_init_resizeable_ram.
682 * @newsize: the new size the region
683 * @errp: pointer to Error*, to store an error if it happens.
684 */
685 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize,
686 Error **errp);
687
688 /**
689 * memory_region_set_log: Turn dirty logging on or off for a region.
690 *
691 * Turns dirty logging on or off for a specified client (display, migration).
692 * Only meaningful for RAM regions.
693 *
694 * @mr: the memory region being updated.
695 * @log: whether dirty logging is to be enabled or disabled.
696 * @client: the user of the logging information; %DIRTY_MEMORY_VGA only.
697 */
698 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client);
699
700 /**
701 * memory_region_get_dirty: Check whether a range of bytes is dirty
702 * for a specified client.
703 *
704 * Checks whether a range of bytes has been written to since the last
705 * call to memory_region_reset_dirty() with the same @client. Dirty logging
706 * must be enabled.
707 *
708 * @mr: the memory region being queried.
709 * @addr: the address (relative to the start of the region) being queried.
710 * @size: the size of the range being queried.
711 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
712 * %DIRTY_MEMORY_VGA.
713 */
714 bool memory_region_get_dirty(MemoryRegion *mr, hwaddr addr,
715 hwaddr size, unsigned client);
716
717 /**
718 * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region.
719 *
720 * Marks a range of bytes as dirty, after it has been dirtied outside
721 * guest code.
722 *
723 * @mr: the memory region being dirtied.
724 * @addr: the address (relative to the start of the region) being dirtied.
725 * @size: size of the range being dirtied.
726 */
727 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
728 hwaddr size);
729
730 /**
731 * memory_region_test_and_clear_dirty: Check whether a range of bytes is dirty
732 * for a specified client. It clears them.
733 *
734 * Checks whether a range of bytes has been written to since the last
735 * call to memory_region_reset_dirty() with the same @client. Dirty logging
736 * must be enabled.
737 *
738 * @mr: the memory region being queried.
739 * @addr: the address (relative to the start of the region) being queried.
740 * @size: the size of the range being queried.
741 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
742 * %DIRTY_MEMORY_VGA.
743 */
744 bool memory_region_test_and_clear_dirty(MemoryRegion *mr, hwaddr addr,
745 hwaddr size, unsigned client);
746 /**
747 * memory_region_sync_dirty_bitmap: Synchronize a region's dirty bitmap with
748 * any external TLBs (e.g. kvm)
749 *
750 * Flushes dirty information from accelerators such as kvm and vhost-net
751 * and makes it available to users of the memory API.
752 *
753 * @mr: the region being flushed.
754 */
755 void memory_region_sync_dirty_bitmap(MemoryRegion *mr);
756
757 /**
758 * memory_region_reset_dirty: Mark a range of pages as clean, for a specified
759 * client.
760 *
761 * Marks a range of pages as no longer dirty.
762 *
763 * @mr: the region being updated.
764 * @addr: the start of the subrange being cleaned.
765 * @size: the size of the subrange being cleaned.
766 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
767 * %DIRTY_MEMORY_VGA.
768 */
769 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
770 hwaddr size, unsigned client);
771
772 /**
773 * memory_region_set_readonly: Turn a memory region read-only (or read-write)
774 *
775 * Allows a memory region to be marked as read-only (turning it into a ROM).
776 * only useful on RAM regions.
777 *
778 * @mr: the region being updated.
779 * @readonly: whether rhe region is to be ROM or RAM.
780 */
781 void memory_region_set_readonly(MemoryRegion *mr, bool readonly);
782
783 /**
784 * memory_region_rom_device_set_romd: enable/disable ROMD mode
785 *
786 * Allows a ROM device (initialized with memory_region_init_rom_device() to
787 * set to ROMD mode (default) or MMIO mode. When it is in ROMD mode, the
788 * device is mapped to guest memory and satisfies read access directly.
789 * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function.
790 * Writes are always handled by the #MemoryRegion.write function.
791 *
792 * @mr: the memory region to be updated
793 * @romd_mode: %true to put the region into ROMD mode
794 */
795 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode);
796
797 /**
798 * memory_region_set_coalescing: Enable memory coalescing for the region.
799 *
800 * Enabled writes to a region to be queued for later processing. MMIO ->write
801 * callbacks may be delayed until a non-coalesced MMIO is issued.
802 * Only useful for IO regions. Roughly similar to write-combining hardware.
803 *
804 * @mr: the memory region to be write coalesced
805 */
806 void memory_region_set_coalescing(MemoryRegion *mr);
807
808 /**
809 * memory_region_add_coalescing: Enable memory coalescing for a sub-range of
810 * a region.
811 *
812 * Like memory_region_set_coalescing(), but works on a sub-range of a region.
813 * Multiple calls can be issued coalesced disjoint ranges.
814 *
815 * @mr: the memory region to be updated.
816 * @offset: the start of the range within the region to be coalesced.
817 * @size: the size of the subrange to be coalesced.
818 */
819 void memory_region_add_coalescing(MemoryRegion *mr,
820 hwaddr offset,
821 uint64_t size);
822
823 /**
824 * memory_region_clear_coalescing: Disable MMIO coalescing for the region.
825 *
826 * Disables any coalescing caused by memory_region_set_coalescing() or
827 * memory_region_add_coalescing(). Roughly equivalent to uncacheble memory
828 * hardware.
829 *
830 * @mr: the memory region to be updated.
831 */
832 void memory_region_clear_coalescing(MemoryRegion *mr);
833
834 /**
835 * memory_region_set_flush_coalesced: Enforce memory coalescing flush before
836 * accesses.
837 *
838 * Ensure that pending coalesced MMIO request are flushed before the memory
839 * region is accessed. This property is automatically enabled for all regions
840 * passed to memory_region_set_coalescing() and memory_region_add_coalescing().
841 *
842 * @mr: the memory region to be updated.
843 */
844 void memory_region_set_flush_coalesced(MemoryRegion *mr);
845
846 /**
847 * memory_region_clear_flush_coalesced: Disable memory coalescing flush before
848 * accesses.
849 *
850 * Clear the automatic coalesced MMIO flushing enabled via
851 * memory_region_set_flush_coalesced. Note that this service has no effect on
852 * memory regions that have MMIO coalescing enabled for themselves. For them,
853 * automatic flushing will stop once coalescing is disabled.
854 *
855 * @mr: the memory region to be updated.
856 */
857 void memory_region_clear_flush_coalesced(MemoryRegion *mr);
858
859 /**
860 * memory_region_set_global_locking: Declares the access processing requires
861 * QEMU's global lock.
862 *
863 * When this is invoked, accesses to the memory region will be processed while
864 * holding the global lock of QEMU. This is the default behavior of memory
865 * regions.
866 *
867 * @mr: the memory region to be updated.
868 */
869 void memory_region_set_global_locking(MemoryRegion *mr);
870
871 /**
872 * memory_region_clear_global_locking: Declares that access processing does
873 * not depend on the QEMU global lock.
874 *
875 * By clearing this property, accesses to the memory region will be processed
876 * outside of QEMU's global lock (unless the lock is held on when issuing the
877 * access request). In this case, the device model implementing the access
878 * handlers is responsible for synchronization of concurrency.
879 *
880 * @mr: the memory region to be updated.
881 */
882 void memory_region_clear_global_locking(MemoryRegion *mr);
883
884 /**
885 * memory_region_add_eventfd: Request an eventfd to be triggered when a word
886 * is written to a location.
887 *
888 * Marks a word in an IO region (initialized with memory_region_init_io())
889 * as a trigger for an eventfd event. The I/O callback will not be called.
890 * The caller must be prepared to handle failure (that is, take the required
891 * action if the callback _is_ called).
892 *
893 * @mr: the memory region being updated.
894 * @addr: the address within @mr that is to be monitored
895 * @size: the size of the access to trigger the eventfd
896 * @match_data: whether to match against @data, instead of just @addr
897 * @data: the data to match against the guest write
898 * @fd: the eventfd to be triggered when @addr, @size, and @data all match.
899 **/
900 void memory_region_add_eventfd(MemoryRegion *mr,
901 hwaddr addr,
902 unsigned size,
903 bool match_data,
904 uint64_t data,
905 EventNotifier *e);
906
907 /**
908 * memory_region_del_eventfd: Cancel an eventfd.
909 *
910 * Cancels an eventfd trigger requested by a previous
911 * memory_region_add_eventfd() call.
912 *
913 * @mr: the memory region being updated.
914 * @addr: the address within @mr that is to be monitored
915 * @size: the size of the access to trigger the eventfd
916 * @match_data: whether to match against @data, instead of just @addr
917 * @data: the data to match against the guest write
918 * @fd: the eventfd to be triggered when @addr, @size, and @data all match.
919 */
920 void memory_region_del_eventfd(MemoryRegion *mr,
921 hwaddr addr,
922 unsigned size,
923 bool match_data,
924 uint64_t data,
925 EventNotifier *e);
926
927 /**
928 * memory_region_add_subregion: Add a subregion to a container.
929 *
930 * Adds a subregion at @offset. The subregion may not overlap with other
931 * subregions (except for those explicitly marked as overlapping). A region
932 * may only be added once as a subregion (unless removed with
933 * memory_region_del_subregion()); use memory_region_init_alias() if you
934 * want a region to be a subregion in multiple locations.
935 *
936 * @mr: the region to contain the new subregion; must be a container
937 * initialized with memory_region_init().
938 * @offset: the offset relative to @mr where @subregion is added.
939 * @subregion: the subregion to be added.
940 */
941 void memory_region_add_subregion(MemoryRegion *mr,
942 hwaddr offset,
943 MemoryRegion *subregion);
944 /**
945 * memory_region_add_subregion_overlap: Add a subregion to a container
946 * with overlap.
947 *
948 * Adds a subregion at @offset. The subregion may overlap with other
949 * subregions. Conflicts are resolved by having a higher @priority hide a
950 * lower @priority. Subregions without priority are taken as @priority 0.
951 * A region may only be added once as a subregion (unless removed with
952 * memory_region_del_subregion()); use memory_region_init_alias() if you
953 * want a region to be a subregion in multiple locations.
954 *
955 * @mr: the region to contain the new subregion; must be a container
956 * initialized with memory_region_init().
957 * @offset: the offset relative to @mr where @subregion is added.
958 * @subregion: the subregion to be added.
959 * @priority: used for resolving overlaps; highest priority wins.
960 */
961 void memory_region_add_subregion_overlap(MemoryRegion *mr,
962 hwaddr offset,
963 MemoryRegion *subregion,
964 int priority);
965
966 /**
967 * memory_region_get_ram_addr: Get the ram address associated with a memory
968 * region
969 *
970 * DO NOT USE THIS FUNCTION. This is a temporary workaround while the Xen
971 * code is being reworked.
972 */
973 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr);
974
975 uint64_t memory_region_get_alignment(const MemoryRegion *mr);
976 /**
977 * memory_region_del_subregion: Remove a subregion.
978 *
979 * Removes a subregion from its container.
980 *
981 * @mr: the container to be updated.
982 * @subregion: the region being removed; must be a current subregion of @mr.
983 */
984 void memory_region_del_subregion(MemoryRegion *mr,
985 MemoryRegion *subregion);
986
987 /*
988 * memory_region_set_enabled: dynamically enable or disable a region
989 *
990 * Enables or disables a memory region. A disabled memory region
991 * ignores all accesses to itself and its subregions. It does not
992 * obscure sibling subregions with lower priority - it simply behaves as
993 * if it was removed from the hierarchy.
994 *
995 * Regions default to being enabled.
996 *
997 * @mr: the region to be updated
998 * @enabled: whether to enable or disable the region
999 */
1000 void memory_region_set_enabled(MemoryRegion *mr, bool enabled);
1001
1002 /*
1003 * memory_region_set_address: dynamically update the address of a region
1004 *
1005 * Dynamically updates the address of a region, relative to its container.
1006 * May be used on regions are currently part of a memory hierarchy.
1007 *
1008 * @mr: the region to be updated
1009 * @addr: new address, relative to container region
1010 */
1011 void memory_region_set_address(MemoryRegion *mr, hwaddr addr);
1012
1013 /*
1014 * memory_region_set_size: dynamically update the size of a region.
1015 *
1016 * Dynamically updates the size of a region.
1017 *
1018 * @mr: the region to be updated
1019 * @size: used size of the region.
1020 */
1021 void memory_region_set_size(MemoryRegion *mr, uint64_t size);
1022
1023 /*
1024 * memory_region_set_alias_offset: dynamically update a memory alias's offset
1025 *
1026 * Dynamically updates the offset into the target region that an alias points
1027 * to, as if the fourth argument to memory_region_init_alias() has changed.
1028 *
1029 * @mr: the #MemoryRegion to be updated; should be an alias.
1030 * @offset: the new offset into the target memory region
1031 */
1032 void memory_region_set_alias_offset(MemoryRegion *mr,
1033 hwaddr offset);
1034
1035 /**
1036 * memory_region_present: checks if an address relative to a @container
1037 * translates into #MemoryRegion within @container
1038 *
1039 * Answer whether a #MemoryRegion within @container covers the address
1040 * @addr.
1041 *
1042 * @container: a #MemoryRegion within which @addr is a relative address
1043 * @addr: the area within @container to be searched
1044 */
1045 bool memory_region_present(MemoryRegion *container, hwaddr addr);
1046
1047 /**
1048 * memory_region_is_mapped: returns true if #MemoryRegion is mapped
1049 * into any address space.
1050 *
1051 * @mr: a #MemoryRegion which should be checked if it's mapped
1052 */
1053 bool memory_region_is_mapped(MemoryRegion *mr);
1054
1055 /**
1056 * memory_region_find: translate an address/size relative to a
1057 * MemoryRegion into a #MemoryRegionSection.
1058 *
1059 * Locates the first #MemoryRegion within @mr that overlaps the range
1060 * given by @addr and @size.
1061 *
1062 * Returns a #MemoryRegionSection that describes a contiguous overlap.
1063 * It will have the following characteristics:
1064 * .@size = 0 iff no overlap was found
1065 * .@mr is non-%NULL iff an overlap was found
1066 *
1067 * Remember that in the return value the @offset_within_region is
1068 * relative to the returned region (in the .@mr field), not to the
1069 * @mr argument.
1070 *
1071 * Similarly, the .@offset_within_address_space is relative to the
1072 * address space that contains both regions, the passed and the
1073 * returned one. However, in the special case where the @mr argument
1074 * has no container (and thus is the root of the address space), the
1075 * following will hold:
1076 * .@offset_within_address_space >= @addr
1077 * .@offset_within_address_space + .@size <= @addr + @size
1078 *
1079 * @mr: a MemoryRegion within which @addr is a relative address
1080 * @addr: start of the area within @as to be searched
1081 * @size: size of the area to be searched
1082 */
1083 MemoryRegionSection memory_region_find(MemoryRegion *mr,
1084 hwaddr addr, uint64_t size);
1085
1086 /**
1087 * address_space_sync_dirty_bitmap: synchronize the dirty log for all memory
1088 *
1089 * Synchronizes the dirty page log for an entire address space.
1090 * @as: the address space that contains the memory being synchronized
1091 */
1092 void address_space_sync_dirty_bitmap(AddressSpace *as);
1093
1094 /**
1095 * memory_region_transaction_begin: Start a transaction.
1096 *
1097 * During a transaction, changes will be accumulated and made visible
1098 * only when the transaction ends (is committed).
1099 */
1100 void memory_region_transaction_begin(void);
1101
1102 /**
1103 * memory_region_transaction_commit: Commit a transaction and make changes
1104 * visible to the guest.
1105 */
1106 void memory_region_transaction_commit(void);
1107
1108 /**
1109 * memory_listener_register: register callbacks to be called when memory
1110 * sections are mapped or unmapped into an address
1111 * space
1112 *
1113 * @listener: an object containing the callbacks to be called
1114 * @filter: if non-%NULL, only regions in this address space will be observed
1115 */
1116 void memory_listener_register(MemoryListener *listener, AddressSpace *filter);
1117
1118 /**
1119 * memory_listener_unregister: undo the effect of memory_listener_register()
1120 *
1121 * @listener: an object containing the callbacks to be removed
1122 */
1123 void memory_listener_unregister(MemoryListener *listener);
1124
1125 /**
1126 * memory_global_dirty_log_start: begin dirty logging for all regions
1127 */
1128 void memory_global_dirty_log_start(void);
1129
1130 /**
1131 * memory_global_dirty_log_stop: end dirty logging for all regions
1132 */
1133 void memory_global_dirty_log_stop(void);
1134
1135 void mtree_info(fprintf_function mon_printf, void *f);
1136
1137 /**
1138 * memory_region_dispatch_read: perform a read directly to the specified
1139 * MemoryRegion.
1140 *
1141 * @mr: #MemoryRegion to access
1142 * @addr: address within that region
1143 * @pval: pointer to uint64_t which the data is written to
1144 * @size: size of the access in bytes
1145 * @attrs: memory transaction attributes to use for the access
1146 */
1147 MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
1148 hwaddr addr,
1149 uint64_t *pval,
1150 unsigned size,
1151 MemTxAttrs attrs);
1152 /**
1153 * memory_region_dispatch_write: perform a write directly to the specified
1154 * MemoryRegion.
1155 *
1156 * @mr: #MemoryRegion to access
1157 * @addr: address within that region
1158 * @data: data to write
1159 * @size: size of the access in bytes
1160 * @attrs: memory transaction attributes to use for the access
1161 */
1162 MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
1163 hwaddr addr,
1164 uint64_t data,
1165 unsigned size,
1166 MemTxAttrs attrs);
1167
1168 /**
1169 * address_space_init: initializes an address space
1170 *
1171 * @as: an uninitialized #AddressSpace
1172 * @root: a #MemoryRegion that routes addresses for the address space
1173 * @name: an address space name. The name is only used for debugging
1174 * output.
1175 */
1176 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name);
1177
1178
1179 /**
1180 * address_space_destroy: destroy an address space
1181 *
1182 * Releases all resources associated with an address space. After an address space
1183 * is destroyed, its root memory region (given by address_space_init()) may be destroyed
1184 * as well.
1185 *
1186 * @as: address space to be destroyed
1187 */
1188 void address_space_destroy(AddressSpace *as);
1189
1190 /**
1191 * address_space_rw: read from or write to an address space.
1192 *
1193 * Return a MemTxResult indicating whether the operation succeeded
1194 * or failed (eg unassigned memory, device rejected the transaction,
1195 * IOMMU fault).
1196 *
1197 * @as: #AddressSpace to be accessed
1198 * @addr: address within that address space
1199 * @attrs: memory transaction attributes
1200 * @buf: buffer with the data transferred
1201 * @is_write: indicates the transfer direction
1202 */
1203 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr,
1204 MemTxAttrs attrs, uint8_t *buf,
1205 int len, bool is_write);
1206
1207 /**
1208 * address_space_write: write to address space.
1209 *
1210 * Return a MemTxResult indicating whether the operation succeeded
1211 * or failed (eg unassigned memory, device rejected the transaction,
1212 * IOMMU fault).
1213 *
1214 * @as: #AddressSpace to be accessed
1215 * @addr: address within that address space
1216 * @attrs: memory transaction attributes
1217 * @buf: buffer with the data transferred
1218 */
1219 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
1220 MemTxAttrs attrs,
1221 const uint8_t *buf, int len);
1222
1223 /**
1224 * address_space_read: read from an address space.
1225 *
1226 * Return a MemTxResult indicating whether the operation succeeded
1227 * or failed (eg unassigned memory, device rejected the transaction,
1228 * IOMMU fault).
1229 *
1230 * @as: #AddressSpace to be accessed
1231 * @addr: address within that address space
1232 * @attrs: memory transaction attributes
1233 * @buf: buffer with the data transferred
1234 */
1235 MemTxResult address_space_read(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
1236 uint8_t *buf, int len);
1237
1238 /**
1239 * address_space_ld*: load from an address space
1240 * address_space_st*: store to an address space
1241 *
1242 * These functions perform a load or store of the byte, word,
1243 * longword or quad to the specified address within the AddressSpace.
1244 * The _le suffixed functions treat the data as little endian;
1245 * _be indicates big endian; no suffix indicates "same endianness
1246 * as guest CPU".
1247 *
1248 * The "guest CPU endianness" accessors are deprecated for use outside
1249 * target-* code; devices should be CPU-agnostic and use either the LE
1250 * or the BE accessors.
1251 *
1252 * @as #AddressSpace to be accessed
1253 * @addr: address within that address space
1254 * @val: data value, for stores
1255 * @attrs: memory transaction attributes
1256 * @result: location to write the success/failure of the transaction;
1257 * if NULL, this information is discarded
1258 */
1259 uint32_t address_space_ldub(AddressSpace *as, hwaddr addr,
1260 MemTxAttrs attrs, MemTxResult *result);
1261 uint32_t address_space_lduw_le(AddressSpace *as, hwaddr addr,
1262 MemTxAttrs attrs, MemTxResult *result);
1263 uint32_t address_space_lduw_be(AddressSpace *as, hwaddr addr,
1264 MemTxAttrs attrs, MemTxResult *result);
1265 uint32_t address_space_ldl_le(AddressSpace *as, hwaddr addr,
1266 MemTxAttrs attrs, MemTxResult *result);
1267 uint32_t address_space_ldl_be(AddressSpace *as, hwaddr addr,
1268 MemTxAttrs attrs, MemTxResult *result);
1269 uint64_t address_space_ldq_le(AddressSpace *as, hwaddr addr,
1270 MemTxAttrs attrs, MemTxResult *result);
1271 uint64_t address_space_ldq_be(AddressSpace *as, hwaddr addr,
1272 MemTxAttrs attrs, MemTxResult *result);
1273 void address_space_stb(AddressSpace *as, hwaddr addr, uint32_t val,
1274 MemTxAttrs attrs, MemTxResult *result);
1275 void address_space_stw_le(AddressSpace *as, hwaddr addr, uint32_t val,
1276 MemTxAttrs attrs, MemTxResult *result);
1277 void address_space_stw_be(AddressSpace *as, hwaddr addr, uint32_t val,
1278 MemTxAttrs attrs, MemTxResult *result);
1279 void address_space_stl_le(AddressSpace *as, hwaddr addr, uint32_t val,
1280 MemTxAttrs attrs, MemTxResult *result);
1281 void address_space_stl_be(AddressSpace *as, hwaddr addr, uint32_t val,
1282 MemTxAttrs attrs, MemTxResult *result);
1283 void address_space_stq_le(AddressSpace *as, hwaddr addr, uint64_t val,
1284 MemTxAttrs attrs, MemTxResult *result);
1285 void address_space_stq_be(AddressSpace *as, hwaddr addr, uint64_t val,
1286 MemTxAttrs attrs, MemTxResult *result);
1287
1288 #ifdef NEED_CPU_H
1289 uint32_t address_space_lduw(AddressSpace *as, hwaddr addr,
1290 MemTxAttrs attrs, MemTxResult *result);
1291 uint32_t address_space_ldl(AddressSpace *as, hwaddr addr,
1292 MemTxAttrs attrs, MemTxResult *result);
1293 uint64_t address_space_ldq(AddressSpace *as, hwaddr addr,
1294 MemTxAttrs attrs, MemTxResult *result);
1295 void address_space_stl_notdirty(AddressSpace *as, hwaddr addr, uint32_t val,
1296 MemTxAttrs attrs, MemTxResult *result);
1297 void address_space_stw(AddressSpace *as, hwaddr addr, uint32_t val,
1298 MemTxAttrs attrs, MemTxResult *result);
1299 void address_space_stl(AddressSpace *as, hwaddr addr, uint32_t val,
1300 MemTxAttrs attrs, MemTxResult *result);
1301 void address_space_stq(AddressSpace *as, hwaddr addr, uint64_t val,
1302 MemTxAttrs attrs, MemTxResult *result);
1303 #endif
1304
1305 /* address_space_translate: translate an address range into an address space
1306 * into a MemoryRegion and an address range into that section. Should be
1307 * called from an RCU critical section, to avoid that the last reference
1308 * to the returned region disappears after address_space_translate returns.
1309 *
1310 * @as: #AddressSpace to be accessed
1311 * @addr: address within that address space
1312 * @xlat: pointer to address within the returned memory region section's
1313 * #MemoryRegion.
1314 * @len: pointer to length
1315 * @is_write: indicates the transfer direction
1316 */
1317 MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr,
1318 hwaddr *xlat, hwaddr *len,
1319 bool is_write);
1320
1321 /* address_space_access_valid: check for validity of accessing an address
1322 * space range
1323 *
1324 * Check whether memory is assigned to the given address space range, and
1325 * access is permitted by any IOMMU regions that are active for the address
1326 * space.
1327 *
1328 * For now, addr and len should be aligned to a page size. This limitation
1329 * will be lifted in the future.
1330 *
1331 * @as: #AddressSpace to be accessed
1332 * @addr: address within that address space
1333 * @len: length of the area to be checked
1334 * @is_write: indicates the transfer direction
1335 */
1336 bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write);
1337
1338 /* address_space_map: map a physical memory region into a host virtual address
1339 *
1340 * May map a subset of the requested range, given by and returned in @plen.
1341 * May return %NULL if resources needed to perform the mapping are exhausted.
1342 * Use only for reads OR writes - not for read-modify-write operations.
1343 * Use cpu_register_map_client() to know when retrying the map operation is
1344 * likely to succeed.
1345 *
1346 * @as: #AddressSpace to be accessed
1347 * @addr: address within that address space
1348 * @plen: pointer to length of buffer; updated on return
1349 * @is_write: indicates the transfer direction
1350 */
1351 void *address_space_map(AddressSpace *as, hwaddr addr,
1352 hwaddr *plen, bool is_write);
1353
1354 /* address_space_unmap: Unmaps a memory region previously mapped by address_space_map()
1355 *
1356 * Will also mark the memory as dirty if @is_write == %true. @access_len gives
1357 * the amount of memory that was actually read or written by the caller.
1358 *
1359 * @as: #AddressSpace used
1360 * @addr: address within that address space
1361 * @len: buffer length as returned by address_space_map()
1362 * @access_len: amount of data actually transferred
1363 * @is_write: indicates the transfer direction
1364 */
1365 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
1366 int is_write, hwaddr access_len);
1367
1368
1369 /* Internal functions, part of the implementation of address_space_read. */
1370 MemTxResult address_space_read_continue(AddressSpace *as, hwaddr addr,
1371 MemTxAttrs attrs, uint8_t *buf,
1372 int len, hwaddr addr1, hwaddr l,
1373 MemoryRegion *mr);
1374
1375 #endif
1376
1377 #endif