]> git.proxmox.com Git - mirror_qemu.git/blob - include/exec/memory.h
Merge tag 'qga-pull-2023-03-22' of github.com:kostyanf14/qemu into staging
[mirror_qemu.git] / include / exec / memory.h
1 /*
2 * Physical memory management API
3 *
4 * Copyright 2011 Red Hat, Inc. and/or its affiliates
5 *
6 * Authors:
7 * Avi Kivity <avi@redhat.com>
8 *
9 * This work is licensed under the terms of the GNU GPL, version 2. See
10 * the COPYING file in the top-level directory.
11 *
12 */
13
14 #ifndef MEMORY_H
15 #define MEMORY_H
16
17 #ifndef CONFIG_USER_ONLY
18
19 #include "exec/cpu-common.h"
20 #include "exec/hwaddr.h"
21 #include "exec/memattrs.h"
22 #include "exec/memop.h"
23 #include "exec/ramlist.h"
24 #include "qemu/bswap.h"
25 #include "qemu/queue.h"
26 #include "qemu/int128.h"
27 #include "qemu/notify.h"
28 #include "qom/object.h"
29 #include "qemu/rcu.h"
30
31 #define RAM_ADDR_INVALID (~(ram_addr_t)0)
32
33 #define MAX_PHYS_ADDR_SPACE_BITS 62
34 #define MAX_PHYS_ADDR (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1)
35
36 #define TYPE_MEMORY_REGION "memory-region"
37 DECLARE_INSTANCE_CHECKER(MemoryRegion, MEMORY_REGION,
38 TYPE_MEMORY_REGION)
39
40 #define TYPE_IOMMU_MEMORY_REGION "iommu-memory-region"
41 typedef struct IOMMUMemoryRegionClass IOMMUMemoryRegionClass;
42 DECLARE_OBJ_CHECKERS(IOMMUMemoryRegion, IOMMUMemoryRegionClass,
43 IOMMU_MEMORY_REGION, TYPE_IOMMU_MEMORY_REGION)
44
45 #define TYPE_RAM_DISCARD_MANAGER "qemu:ram-discard-manager"
46 typedef struct RamDiscardManagerClass RamDiscardManagerClass;
47 typedef struct RamDiscardManager RamDiscardManager;
48 DECLARE_OBJ_CHECKERS(RamDiscardManager, RamDiscardManagerClass,
49 RAM_DISCARD_MANAGER, TYPE_RAM_DISCARD_MANAGER);
50
51 #ifdef CONFIG_FUZZ
52 void fuzz_dma_read_cb(size_t addr,
53 size_t len,
54 MemoryRegion *mr);
55 #else
56 static inline void fuzz_dma_read_cb(size_t addr,
57 size_t len,
58 MemoryRegion *mr)
59 {
60 /* Do Nothing */
61 }
62 #endif
63
64 /* Possible bits for global_dirty_log_{start|stop} */
65
66 /* Dirty tracking enabled because migration is running */
67 #define GLOBAL_DIRTY_MIGRATION (1U << 0)
68
69 /* Dirty tracking enabled because measuring dirty rate */
70 #define GLOBAL_DIRTY_DIRTY_RATE (1U << 1)
71
72 /* Dirty tracking enabled because dirty limit */
73 #define GLOBAL_DIRTY_LIMIT (1U << 2)
74
75 #define GLOBAL_DIRTY_MASK (0x7)
76
77 extern unsigned int global_dirty_tracking;
78
79 typedef struct MemoryRegionOps MemoryRegionOps;
80
81 struct ReservedRegion {
82 hwaddr low;
83 hwaddr high;
84 unsigned type;
85 };
86
87 /**
88 * struct MemoryRegionSection: describes a fragment of a #MemoryRegion
89 *
90 * @mr: the region, or %NULL if empty
91 * @fv: the flat view of the address space the region is mapped in
92 * @offset_within_region: the beginning of the section, relative to @mr's start
93 * @size: the size of the section; will not exceed @mr's boundaries
94 * @offset_within_address_space: the address of the first byte of the section
95 * relative to the region's address space
96 * @readonly: writes to this section are ignored
97 * @nonvolatile: this section is non-volatile
98 */
99 struct MemoryRegionSection {
100 Int128 size;
101 MemoryRegion *mr;
102 FlatView *fv;
103 hwaddr offset_within_region;
104 hwaddr offset_within_address_space;
105 bool readonly;
106 bool nonvolatile;
107 };
108
109 typedef struct IOMMUTLBEntry IOMMUTLBEntry;
110
111 /* See address_space_translate: bit 0 is read, bit 1 is write. */
112 typedef enum {
113 IOMMU_NONE = 0,
114 IOMMU_RO = 1,
115 IOMMU_WO = 2,
116 IOMMU_RW = 3,
117 } IOMMUAccessFlags;
118
119 #define IOMMU_ACCESS_FLAG(r, w) (((r) ? IOMMU_RO : 0) | ((w) ? IOMMU_WO : 0))
120
121 struct IOMMUTLBEntry {
122 AddressSpace *target_as;
123 hwaddr iova;
124 hwaddr translated_addr;
125 hwaddr addr_mask; /* 0xfff = 4k translation */
126 IOMMUAccessFlags perm;
127 };
128
129 /*
130 * Bitmap for different IOMMUNotifier capabilities. Each notifier can
131 * register with one or multiple IOMMU Notifier capability bit(s).
132 *
133 * Normally there're two use cases for the notifiers:
134 *
135 * (1) When the device needs accurate synchronizations of the vIOMMU page
136 * tables, it needs to register with both MAP|UNMAP notifies (which
137 * is defined as IOMMU_NOTIFIER_IOTLB_EVENTS below).
138 *
139 * Regarding to accurate synchronization, it's when the notified
140 * device maintains a shadow page table and must be notified on each
141 * guest MAP (page table entry creation) and UNMAP (invalidation)
142 * events (e.g. VFIO). Both notifications must be accurate so that
143 * the shadow page table is fully in sync with the guest view.
144 *
145 * (2) When the device doesn't need accurate synchronizations of the
146 * vIOMMU page tables, it needs to register only with UNMAP or
147 * DEVIOTLB_UNMAP notifies.
148 *
149 * It's when the device maintains a cache of IOMMU translations
150 * (IOTLB) and is able to fill that cache by requesting translations
151 * from the vIOMMU through a protocol similar to ATS (Address
152 * Translation Service).
153 *
154 * Note that in this mode the vIOMMU will not maintain a shadowed
155 * page table for the address space, and the UNMAP messages can cover
156 * more than the pages that used to get mapped. The IOMMU notifiee
157 * should be able to take care of over-sized invalidations.
158 */
159 typedef enum {
160 IOMMU_NOTIFIER_NONE = 0,
161 /* Notify cache invalidations */
162 IOMMU_NOTIFIER_UNMAP = 0x1,
163 /* Notify entry changes (newly created entries) */
164 IOMMU_NOTIFIER_MAP = 0x2,
165 /* Notify changes on device IOTLB entries */
166 IOMMU_NOTIFIER_DEVIOTLB_UNMAP = 0x04,
167 } IOMMUNotifierFlag;
168
169 #define IOMMU_NOTIFIER_IOTLB_EVENTS (IOMMU_NOTIFIER_MAP | IOMMU_NOTIFIER_UNMAP)
170 #define IOMMU_NOTIFIER_DEVIOTLB_EVENTS IOMMU_NOTIFIER_DEVIOTLB_UNMAP
171 #define IOMMU_NOTIFIER_ALL (IOMMU_NOTIFIER_IOTLB_EVENTS | \
172 IOMMU_NOTIFIER_DEVIOTLB_EVENTS)
173
174 struct IOMMUNotifier;
175 typedef void (*IOMMUNotify)(struct IOMMUNotifier *notifier,
176 IOMMUTLBEntry *data);
177
178 struct IOMMUNotifier {
179 IOMMUNotify notify;
180 IOMMUNotifierFlag notifier_flags;
181 /* Notify for address space range start <= addr <= end */
182 hwaddr start;
183 hwaddr end;
184 int iommu_idx;
185 QLIST_ENTRY(IOMMUNotifier) node;
186 };
187 typedef struct IOMMUNotifier IOMMUNotifier;
188
189 typedef struct IOMMUTLBEvent {
190 IOMMUNotifierFlag type;
191 IOMMUTLBEntry entry;
192 } IOMMUTLBEvent;
193
194 /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
195 #define RAM_PREALLOC (1 << 0)
196
197 /* RAM is mmap-ed with MAP_SHARED */
198 #define RAM_SHARED (1 << 1)
199
200 /* Only a portion of RAM (used_length) is actually used, and migrated.
201 * Resizing RAM while migrating can result in the migration being canceled.
202 */
203 #define RAM_RESIZEABLE (1 << 2)
204
205 /* UFFDIO_ZEROPAGE is available on this RAMBlock to atomically
206 * zero the page and wake waiting processes.
207 * (Set during postcopy)
208 */
209 #define RAM_UF_ZEROPAGE (1 << 3)
210
211 /* RAM can be migrated */
212 #define RAM_MIGRATABLE (1 << 4)
213
214 /* RAM is a persistent kind memory */
215 #define RAM_PMEM (1 << 5)
216
217
218 /*
219 * UFFDIO_WRITEPROTECT is used on this RAMBlock to
220 * support 'write-tracking' migration type.
221 * Implies ram_state->ram_wt_enabled.
222 */
223 #define RAM_UF_WRITEPROTECT (1 << 6)
224
225 /*
226 * RAM is mmap-ed with MAP_NORESERVE. When set, reserving swap space (or huge
227 * pages if applicable) is skipped: will bail out if not supported. When not
228 * set, the OS will do the reservation, if supported for the memory type.
229 */
230 #define RAM_NORESERVE (1 << 7)
231
232 /* RAM that isn't accessible through normal means. */
233 #define RAM_PROTECTED (1 << 8)
234
235 static inline void iommu_notifier_init(IOMMUNotifier *n, IOMMUNotify fn,
236 IOMMUNotifierFlag flags,
237 hwaddr start, hwaddr end,
238 int iommu_idx)
239 {
240 n->notify = fn;
241 n->notifier_flags = flags;
242 n->start = start;
243 n->end = end;
244 n->iommu_idx = iommu_idx;
245 }
246
247 /*
248 * Memory region callbacks
249 */
250 struct MemoryRegionOps {
251 /* Read from the memory region. @addr is relative to @mr; @size is
252 * in bytes. */
253 uint64_t (*read)(void *opaque,
254 hwaddr addr,
255 unsigned size);
256 /* Write to the memory region. @addr is relative to @mr; @size is
257 * in bytes. */
258 void (*write)(void *opaque,
259 hwaddr addr,
260 uint64_t data,
261 unsigned size);
262
263 MemTxResult (*read_with_attrs)(void *opaque,
264 hwaddr addr,
265 uint64_t *data,
266 unsigned size,
267 MemTxAttrs attrs);
268 MemTxResult (*write_with_attrs)(void *opaque,
269 hwaddr addr,
270 uint64_t data,
271 unsigned size,
272 MemTxAttrs attrs);
273
274 enum device_endian endianness;
275 /* Guest-visible constraints: */
276 struct {
277 /* If nonzero, specify bounds on access sizes beyond which a machine
278 * check is thrown.
279 */
280 unsigned min_access_size;
281 unsigned max_access_size;
282 /* If true, unaligned accesses are supported. Otherwise unaligned
283 * accesses throw machine checks.
284 */
285 bool unaligned;
286 /*
287 * If present, and returns #false, the transaction is not accepted
288 * by the device (and results in machine dependent behaviour such
289 * as a machine check exception).
290 */
291 bool (*accepts)(void *opaque, hwaddr addr,
292 unsigned size, bool is_write,
293 MemTxAttrs attrs);
294 } valid;
295 /* Internal implementation constraints: */
296 struct {
297 /* If nonzero, specifies the minimum size implemented. Smaller sizes
298 * will be rounded upwards and a partial result will be returned.
299 */
300 unsigned min_access_size;
301 /* If nonzero, specifies the maximum size implemented. Larger sizes
302 * will be done as a series of accesses with smaller sizes.
303 */
304 unsigned max_access_size;
305 /* If true, unaligned accesses are supported. Otherwise all accesses
306 * are converted to (possibly multiple) naturally aligned accesses.
307 */
308 bool unaligned;
309 } impl;
310 };
311
312 typedef struct MemoryRegionClass {
313 /* private */
314 ObjectClass parent_class;
315 } MemoryRegionClass;
316
317
318 enum IOMMUMemoryRegionAttr {
319 IOMMU_ATTR_SPAPR_TCE_FD
320 };
321
322 /*
323 * IOMMUMemoryRegionClass:
324 *
325 * All IOMMU implementations need to subclass TYPE_IOMMU_MEMORY_REGION
326 * and provide an implementation of at least the @translate method here
327 * to handle requests to the memory region. Other methods are optional.
328 *
329 * The IOMMU implementation must use the IOMMU notifier infrastructure
330 * to report whenever mappings are changed, by calling
331 * memory_region_notify_iommu() (or, if necessary, by calling
332 * memory_region_notify_iommu_one() for each registered notifier).
333 *
334 * Conceptually an IOMMU provides a mapping from input address
335 * to an output TLB entry. If the IOMMU is aware of memory transaction
336 * attributes and the output TLB entry depends on the transaction
337 * attributes, we represent this using IOMMU indexes. Each index
338 * selects a particular translation table that the IOMMU has:
339 *
340 * @attrs_to_index returns the IOMMU index for a set of transaction attributes
341 *
342 * @translate takes an input address and an IOMMU index
343 *
344 * and the mapping returned can only depend on the input address and the
345 * IOMMU index.
346 *
347 * Most IOMMUs don't care about the transaction attributes and support
348 * only a single IOMMU index. A more complex IOMMU might have one index
349 * for secure transactions and one for non-secure transactions.
350 */
351 struct IOMMUMemoryRegionClass {
352 /* private: */
353 MemoryRegionClass parent_class;
354
355 /* public: */
356 /**
357 * @translate:
358 *
359 * Return a TLB entry that contains a given address.
360 *
361 * The IOMMUAccessFlags indicated via @flag are optional and may
362 * be specified as IOMMU_NONE to indicate that the caller needs
363 * the full translation information for both reads and writes. If
364 * the access flags are specified then the IOMMU implementation
365 * may use this as an optimization, to stop doing a page table
366 * walk as soon as it knows that the requested permissions are not
367 * allowed. If IOMMU_NONE is passed then the IOMMU must do the
368 * full page table walk and report the permissions in the returned
369 * IOMMUTLBEntry. (Note that this implies that an IOMMU may not
370 * return different mappings for reads and writes.)
371 *
372 * The returned information remains valid while the caller is
373 * holding the big QEMU lock or is inside an RCU critical section;
374 * if the caller wishes to cache the mapping beyond that it must
375 * register an IOMMU notifier so it can invalidate its cached
376 * information when the IOMMU mapping changes.
377 *
378 * @iommu: the IOMMUMemoryRegion
379 *
380 * @hwaddr: address to be translated within the memory region
381 *
382 * @flag: requested access permission
383 *
384 * @iommu_idx: IOMMU index for the translation
385 */
386 IOMMUTLBEntry (*translate)(IOMMUMemoryRegion *iommu, hwaddr addr,
387 IOMMUAccessFlags flag, int iommu_idx);
388 /**
389 * @get_min_page_size:
390 *
391 * Returns minimum supported page size in bytes.
392 *
393 * If this method is not provided then the minimum is assumed to
394 * be TARGET_PAGE_SIZE.
395 *
396 * @iommu: the IOMMUMemoryRegion
397 */
398 uint64_t (*get_min_page_size)(IOMMUMemoryRegion *iommu);
399 /**
400 * @notify_flag_changed:
401 *
402 * Called when IOMMU Notifier flag changes (ie when the set of
403 * events which IOMMU users are requesting notification for changes).
404 * Optional method -- need not be provided if the IOMMU does not
405 * need to know exactly which events must be notified.
406 *
407 * @iommu: the IOMMUMemoryRegion
408 *
409 * @old_flags: events which previously needed to be notified
410 *
411 * @new_flags: events which now need to be notified
412 *
413 * Returns 0 on success, or a negative errno; in particular
414 * returns -EINVAL if the new flag bitmap is not supported by the
415 * IOMMU memory region. In case of failure, the error object
416 * must be created
417 */
418 int (*notify_flag_changed)(IOMMUMemoryRegion *iommu,
419 IOMMUNotifierFlag old_flags,
420 IOMMUNotifierFlag new_flags,
421 Error **errp);
422 /**
423 * @replay:
424 *
425 * Called to handle memory_region_iommu_replay().
426 *
427 * The default implementation of memory_region_iommu_replay() is to
428 * call the IOMMU translate method for every page in the address space
429 * with flag == IOMMU_NONE and then call the notifier if translate
430 * returns a valid mapping. If this method is implemented then it
431 * overrides the default behaviour, and must provide the full semantics
432 * of memory_region_iommu_replay(), by calling @notifier for every
433 * translation present in the IOMMU.
434 *
435 * Optional method -- an IOMMU only needs to provide this method
436 * if the default is inefficient or produces undesirable side effects.
437 *
438 * Note: this is not related to record-and-replay functionality.
439 */
440 void (*replay)(IOMMUMemoryRegion *iommu, IOMMUNotifier *notifier);
441
442 /**
443 * @get_attr:
444 *
445 * Get IOMMU misc attributes. This is an optional method that
446 * can be used to allow users of the IOMMU to get implementation-specific
447 * information. The IOMMU implements this method to handle calls
448 * by IOMMU users to memory_region_iommu_get_attr() by filling in
449 * the arbitrary data pointer for any IOMMUMemoryRegionAttr values that
450 * the IOMMU supports. If the method is unimplemented then
451 * memory_region_iommu_get_attr() will always return -EINVAL.
452 *
453 * @iommu: the IOMMUMemoryRegion
454 *
455 * @attr: attribute being queried
456 *
457 * @data: memory to fill in with the attribute data
458 *
459 * Returns 0 on success, or a negative errno; in particular
460 * returns -EINVAL for unrecognized or unimplemented attribute types.
461 */
462 int (*get_attr)(IOMMUMemoryRegion *iommu, enum IOMMUMemoryRegionAttr attr,
463 void *data);
464
465 /**
466 * @attrs_to_index:
467 *
468 * Return the IOMMU index to use for a given set of transaction attributes.
469 *
470 * Optional method: if an IOMMU only supports a single IOMMU index then
471 * the default implementation of memory_region_iommu_attrs_to_index()
472 * will return 0.
473 *
474 * The indexes supported by an IOMMU must be contiguous, starting at 0.
475 *
476 * @iommu: the IOMMUMemoryRegion
477 * @attrs: memory transaction attributes
478 */
479 int (*attrs_to_index)(IOMMUMemoryRegion *iommu, MemTxAttrs attrs);
480
481 /**
482 * @num_indexes:
483 *
484 * Return the number of IOMMU indexes this IOMMU supports.
485 *
486 * Optional method: if this method is not provided, then
487 * memory_region_iommu_num_indexes() will return 1, indicating that
488 * only a single IOMMU index is supported.
489 *
490 * @iommu: the IOMMUMemoryRegion
491 */
492 int (*num_indexes)(IOMMUMemoryRegion *iommu);
493
494 /**
495 * @iommu_set_page_size_mask:
496 *
497 * Restrict the page size mask that can be supported with a given IOMMU
498 * memory region. Used for example to propagate host physical IOMMU page
499 * size mask limitations to the virtual IOMMU.
500 *
501 * Optional method: if this method is not provided, then the default global
502 * page mask is used.
503 *
504 * @iommu: the IOMMUMemoryRegion
505 *
506 * @page_size_mask: a bitmask of supported page sizes. At least one bit,
507 * representing the smallest page size, must be set. Additional set bits
508 * represent supported block sizes. For example a host physical IOMMU that
509 * uses page tables with a page size of 4kB, and supports 2MB and 4GB
510 * blocks, will set mask 0x40201000. A granule of 4kB with indiscriminate
511 * block sizes is specified with mask 0xfffffffffffff000.
512 *
513 * Returns 0 on success, or a negative error. In case of failure, the error
514 * object must be created.
515 */
516 int (*iommu_set_page_size_mask)(IOMMUMemoryRegion *iommu,
517 uint64_t page_size_mask,
518 Error **errp);
519 };
520
521 typedef struct RamDiscardListener RamDiscardListener;
522 typedef int (*NotifyRamPopulate)(RamDiscardListener *rdl,
523 MemoryRegionSection *section);
524 typedef void (*NotifyRamDiscard)(RamDiscardListener *rdl,
525 MemoryRegionSection *section);
526
527 struct RamDiscardListener {
528 /*
529 * @notify_populate:
530 *
531 * Notification that previously discarded memory is about to get populated.
532 * Listeners are able to object. If any listener objects, already
533 * successfully notified listeners are notified about a discard again.
534 *
535 * @rdl: the #RamDiscardListener getting notified
536 * @section: the #MemoryRegionSection to get populated. The section
537 * is aligned within the memory region to the minimum granularity
538 * unless it would exceed the registered section.
539 *
540 * Returns 0 on success. If the notification is rejected by the listener,
541 * an error is returned.
542 */
543 NotifyRamPopulate notify_populate;
544
545 /*
546 * @notify_discard:
547 *
548 * Notification that previously populated memory was discarded successfully
549 * and listeners should drop all references to such memory and prevent
550 * new population (e.g., unmap).
551 *
552 * @rdl: the #RamDiscardListener getting notified
553 * @section: the #MemoryRegionSection to get populated. The section
554 * is aligned within the memory region to the minimum granularity
555 * unless it would exceed the registered section.
556 */
557 NotifyRamDiscard notify_discard;
558
559 /*
560 * @double_discard_supported:
561 *
562 * The listener suppors getting @notify_discard notifications that span
563 * already discarded parts.
564 */
565 bool double_discard_supported;
566
567 MemoryRegionSection *section;
568 QLIST_ENTRY(RamDiscardListener) next;
569 };
570
571 static inline void ram_discard_listener_init(RamDiscardListener *rdl,
572 NotifyRamPopulate populate_fn,
573 NotifyRamDiscard discard_fn,
574 bool double_discard_supported)
575 {
576 rdl->notify_populate = populate_fn;
577 rdl->notify_discard = discard_fn;
578 rdl->double_discard_supported = double_discard_supported;
579 }
580
581 typedef int (*ReplayRamPopulate)(MemoryRegionSection *section, void *opaque);
582 typedef void (*ReplayRamDiscard)(MemoryRegionSection *section, void *opaque);
583
584 /*
585 * RamDiscardManagerClass:
586 *
587 * A #RamDiscardManager coordinates which parts of specific RAM #MemoryRegion
588 * regions are currently populated to be used/accessed by the VM, notifying
589 * after parts were discarded (freeing up memory) and before parts will be
590 * populated (consuming memory), to be used/accessed by the VM.
591 *
592 * A #RamDiscardManager can only be set for a RAM #MemoryRegion while the
593 * #MemoryRegion isn't mapped yet; it cannot change while the #MemoryRegion is
594 * mapped.
595 *
596 * The #RamDiscardManager is intended to be used by technologies that are
597 * incompatible with discarding of RAM (e.g., VFIO, which may pin all
598 * memory inside a #MemoryRegion), and require proper coordination to only
599 * map the currently populated parts, to hinder parts that are expected to
600 * remain discarded from silently getting populated and consuming memory.
601 * Technologies that support discarding of RAM don't have to bother and can
602 * simply map the whole #MemoryRegion.
603 *
604 * An example #RamDiscardManager is virtio-mem, which logically (un)plugs
605 * memory within an assigned RAM #MemoryRegion, coordinated with the VM.
606 * Logically unplugging memory consists of discarding RAM. The VM agreed to not
607 * access unplugged (discarded) memory - especially via DMA. virtio-mem will
608 * properly coordinate with listeners before memory is plugged (populated),
609 * and after memory is unplugged (discarded).
610 *
611 * Listeners are called in multiples of the minimum granularity (unless it
612 * would exceed the registered range) and changes are aligned to the minimum
613 * granularity within the #MemoryRegion. Listeners have to prepare for memory
614 * becoming discarded in a different granularity than it was populated and the
615 * other way around.
616 */
617 struct RamDiscardManagerClass {
618 /* private */
619 InterfaceClass parent_class;
620
621 /* public */
622
623 /**
624 * @get_min_granularity:
625 *
626 * Get the minimum granularity in which listeners will get notified
627 * about changes within the #MemoryRegion via the #RamDiscardManager.
628 *
629 * @rdm: the #RamDiscardManager
630 * @mr: the #MemoryRegion
631 *
632 * Returns the minimum granularity.
633 */
634 uint64_t (*get_min_granularity)(const RamDiscardManager *rdm,
635 const MemoryRegion *mr);
636
637 /**
638 * @is_populated:
639 *
640 * Check whether the given #MemoryRegionSection is completely populated
641 * (i.e., no parts are currently discarded) via the #RamDiscardManager.
642 * There are no alignment requirements.
643 *
644 * @rdm: the #RamDiscardManager
645 * @section: the #MemoryRegionSection
646 *
647 * Returns whether the given range is completely populated.
648 */
649 bool (*is_populated)(const RamDiscardManager *rdm,
650 const MemoryRegionSection *section);
651
652 /**
653 * @replay_populated:
654 *
655 * Call the #ReplayRamPopulate callback for all populated parts within the
656 * #MemoryRegionSection via the #RamDiscardManager.
657 *
658 * In case any call fails, no further calls are made.
659 *
660 * @rdm: the #RamDiscardManager
661 * @section: the #MemoryRegionSection
662 * @replay_fn: the #ReplayRamPopulate callback
663 * @opaque: pointer to forward to the callback
664 *
665 * Returns 0 on success, or a negative error if any notification failed.
666 */
667 int (*replay_populated)(const RamDiscardManager *rdm,
668 MemoryRegionSection *section,
669 ReplayRamPopulate replay_fn, void *opaque);
670
671 /**
672 * @replay_discarded:
673 *
674 * Call the #ReplayRamDiscard callback for all discarded parts within the
675 * #MemoryRegionSection via the #RamDiscardManager.
676 *
677 * @rdm: the #RamDiscardManager
678 * @section: the #MemoryRegionSection
679 * @replay_fn: the #ReplayRamDiscard callback
680 * @opaque: pointer to forward to the callback
681 */
682 void (*replay_discarded)(const RamDiscardManager *rdm,
683 MemoryRegionSection *section,
684 ReplayRamDiscard replay_fn, void *opaque);
685
686 /**
687 * @register_listener:
688 *
689 * Register a #RamDiscardListener for the given #MemoryRegionSection and
690 * immediately notify the #RamDiscardListener about all populated parts
691 * within the #MemoryRegionSection via the #RamDiscardManager.
692 *
693 * In case any notification fails, no further notifications are triggered
694 * and an error is logged.
695 *
696 * @rdm: the #RamDiscardManager
697 * @rdl: the #RamDiscardListener
698 * @section: the #MemoryRegionSection
699 */
700 void (*register_listener)(RamDiscardManager *rdm,
701 RamDiscardListener *rdl,
702 MemoryRegionSection *section);
703
704 /**
705 * @unregister_listener:
706 *
707 * Unregister a previously registered #RamDiscardListener via the
708 * #RamDiscardManager after notifying the #RamDiscardListener about all
709 * populated parts becoming unpopulated within the registered
710 * #MemoryRegionSection.
711 *
712 * @rdm: the #RamDiscardManager
713 * @rdl: the #RamDiscardListener
714 */
715 void (*unregister_listener)(RamDiscardManager *rdm,
716 RamDiscardListener *rdl);
717 };
718
719 uint64_t ram_discard_manager_get_min_granularity(const RamDiscardManager *rdm,
720 const MemoryRegion *mr);
721
722 bool ram_discard_manager_is_populated(const RamDiscardManager *rdm,
723 const MemoryRegionSection *section);
724
725 int ram_discard_manager_replay_populated(const RamDiscardManager *rdm,
726 MemoryRegionSection *section,
727 ReplayRamPopulate replay_fn,
728 void *opaque);
729
730 void ram_discard_manager_replay_discarded(const RamDiscardManager *rdm,
731 MemoryRegionSection *section,
732 ReplayRamDiscard replay_fn,
733 void *opaque);
734
735 void ram_discard_manager_register_listener(RamDiscardManager *rdm,
736 RamDiscardListener *rdl,
737 MemoryRegionSection *section);
738
739 void ram_discard_manager_unregister_listener(RamDiscardManager *rdm,
740 RamDiscardListener *rdl);
741
742 bool memory_get_xlat_addr(IOMMUTLBEntry *iotlb, void **vaddr,
743 ram_addr_t *ram_addr, bool *read_only,
744 bool *mr_has_discard_manager);
745
746 typedef struct CoalescedMemoryRange CoalescedMemoryRange;
747 typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd;
748
749 /** MemoryRegion:
750 *
751 * A struct representing a memory region.
752 */
753 struct MemoryRegion {
754 Object parent_obj;
755
756 /* private: */
757
758 /* The following fields should fit in a cache line */
759 bool romd_mode;
760 bool ram;
761 bool subpage;
762 bool readonly; /* For RAM regions */
763 bool nonvolatile;
764 bool rom_device;
765 bool flush_coalesced_mmio;
766 uint8_t dirty_log_mask;
767 bool is_iommu;
768 RAMBlock *ram_block;
769 Object *owner;
770
771 const MemoryRegionOps *ops;
772 void *opaque;
773 MemoryRegion *container;
774 int mapped_via_alias; /* Mapped via an alias, container might be NULL */
775 Int128 size;
776 hwaddr addr;
777 void (*destructor)(MemoryRegion *mr);
778 uint64_t align;
779 bool terminates;
780 bool ram_device;
781 bool enabled;
782 bool warning_printed; /* For reservations */
783 uint8_t vga_logging_count;
784 MemoryRegion *alias;
785 hwaddr alias_offset;
786 int32_t priority;
787 QTAILQ_HEAD(, MemoryRegion) subregions;
788 QTAILQ_ENTRY(MemoryRegion) subregions_link;
789 QTAILQ_HEAD(, CoalescedMemoryRange) coalesced;
790 const char *name;
791 unsigned ioeventfd_nb;
792 MemoryRegionIoeventfd *ioeventfds;
793 RamDiscardManager *rdm; /* Only for RAM */
794 };
795
796 struct IOMMUMemoryRegion {
797 MemoryRegion parent_obj;
798
799 QLIST_HEAD(, IOMMUNotifier) iommu_notify;
800 IOMMUNotifierFlag iommu_notify_flags;
801 };
802
803 #define IOMMU_NOTIFIER_FOREACH(n, mr) \
804 QLIST_FOREACH((n), &(mr)->iommu_notify, node)
805
806 /**
807 * struct MemoryListener: callbacks structure for updates to the physical memory map
808 *
809 * Allows a component to adjust to changes in the guest-visible memory map.
810 * Use with memory_listener_register() and memory_listener_unregister().
811 */
812 struct MemoryListener {
813 /**
814 * @begin:
815 *
816 * Called at the beginning of an address space update transaction.
817 * Followed by calls to #MemoryListener.region_add(),
818 * #MemoryListener.region_del(), #MemoryListener.region_nop(),
819 * #MemoryListener.log_start() and #MemoryListener.log_stop() in
820 * increasing address order.
821 *
822 * @listener: The #MemoryListener.
823 */
824 void (*begin)(MemoryListener *listener);
825
826 /**
827 * @commit:
828 *
829 * Called at the end of an address space update transaction,
830 * after the last call to #MemoryListener.region_add(),
831 * #MemoryListener.region_del() or #MemoryListener.region_nop(),
832 * #MemoryListener.log_start() and #MemoryListener.log_stop().
833 *
834 * @listener: The #MemoryListener.
835 */
836 void (*commit)(MemoryListener *listener);
837
838 /**
839 * @region_add:
840 *
841 * Called during an address space update transaction,
842 * for a section of the address space that is new in this address space
843 * space since the last transaction.
844 *
845 * @listener: The #MemoryListener.
846 * @section: The new #MemoryRegionSection.
847 */
848 void (*region_add)(MemoryListener *listener, MemoryRegionSection *section);
849
850 /**
851 * @region_del:
852 *
853 * Called during an address space update transaction,
854 * for a section of the address space that has disappeared in the address
855 * space since the last transaction.
856 *
857 * @listener: The #MemoryListener.
858 * @section: The old #MemoryRegionSection.
859 */
860 void (*region_del)(MemoryListener *listener, MemoryRegionSection *section);
861
862 /**
863 * @region_nop:
864 *
865 * Called during an address space update transaction,
866 * for a section of the address space that is in the same place in the address
867 * space as in the last transaction.
868 *
869 * @listener: The #MemoryListener.
870 * @section: The #MemoryRegionSection.
871 */
872 void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section);
873
874 /**
875 * @log_start:
876 *
877 * Called during an address space update transaction, after
878 * one of #MemoryListener.region_add(), #MemoryListener.region_del() or
879 * #MemoryListener.region_nop(), if dirty memory logging clients have
880 * become active since the last transaction.
881 *
882 * @listener: The #MemoryListener.
883 * @section: The #MemoryRegionSection.
884 * @old: A bitmap of dirty memory logging clients that were active in
885 * the previous transaction.
886 * @new: A bitmap of dirty memory logging clients that are active in
887 * the current transaction.
888 */
889 void (*log_start)(MemoryListener *listener, MemoryRegionSection *section,
890 int old, int new);
891
892 /**
893 * @log_stop:
894 *
895 * Called during an address space update transaction, after
896 * one of #MemoryListener.region_add(), #MemoryListener.region_del() or
897 * #MemoryListener.region_nop() and possibly after
898 * #MemoryListener.log_start(), if dirty memory logging clients have
899 * become inactive since the last transaction.
900 *
901 * @listener: The #MemoryListener.
902 * @section: The #MemoryRegionSection.
903 * @old: A bitmap of dirty memory logging clients that were active in
904 * the previous transaction.
905 * @new: A bitmap of dirty memory logging clients that are active in
906 * the current transaction.
907 */
908 void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section,
909 int old, int new);
910
911 /**
912 * @log_sync:
913 *
914 * Called by memory_region_snapshot_and_clear_dirty() and
915 * memory_global_dirty_log_sync(), before accessing QEMU's "official"
916 * copy of the dirty memory bitmap for a #MemoryRegionSection.
917 *
918 * @listener: The #MemoryListener.
919 * @section: The #MemoryRegionSection.
920 */
921 void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section);
922
923 /**
924 * @log_sync_global:
925 *
926 * This is the global version of @log_sync when the listener does
927 * not have a way to synchronize the log with finer granularity.
928 * When the listener registers with @log_sync_global defined, then
929 * its @log_sync must be NULL. Vice versa.
930 *
931 * @listener: The #MemoryListener.
932 */
933 void (*log_sync_global)(MemoryListener *listener);
934
935 /**
936 * @log_clear:
937 *
938 * Called before reading the dirty memory bitmap for a
939 * #MemoryRegionSection.
940 *
941 * @listener: The #MemoryListener.
942 * @section: The #MemoryRegionSection.
943 */
944 void (*log_clear)(MemoryListener *listener, MemoryRegionSection *section);
945
946 /**
947 * @log_global_start:
948 *
949 * Called by memory_global_dirty_log_start(), which
950 * enables the %DIRTY_LOG_MIGRATION client on all memory regions in
951 * the address space. #MemoryListener.log_global_start() is also
952 * called when a #MemoryListener is added, if global dirty logging is
953 * active at that time.
954 *
955 * @listener: The #MemoryListener.
956 */
957 void (*log_global_start)(MemoryListener *listener);
958
959 /**
960 * @log_global_stop:
961 *
962 * Called by memory_global_dirty_log_stop(), which
963 * disables the %DIRTY_LOG_MIGRATION client on all memory regions in
964 * the address space.
965 *
966 * @listener: The #MemoryListener.
967 */
968 void (*log_global_stop)(MemoryListener *listener);
969
970 /**
971 * @log_global_after_sync:
972 *
973 * Called after reading the dirty memory bitmap
974 * for any #MemoryRegionSection.
975 *
976 * @listener: The #MemoryListener.
977 */
978 void (*log_global_after_sync)(MemoryListener *listener);
979
980 /**
981 * @eventfd_add:
982 *
983 * Called during an address space update transaction,
984 * for a section of the address space that has had a new ioeventfd
985 * registration since the last transaction.
986 *
987 * @listener: The #MemoryListener.
988 * @section: The new #MemoryRegionSection.
989 * @match_data: The @match_data parameter for the new ioeventfd.
990 * @data: The @data parameter for the new ioeventfd.
991 * @e: The #EventNotifier parameter for the new ioeventfd.
992 */
993 void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section,
994 bool match_data, uint64_t data, EventNotifier *e);
995
996 /**
997 * @eventfd_del:
998 *
999 * Called during an address space update transaction,
1000 * for a section of the address space that has dropped an ioeventfd
1001 * registration since the last transaction.
1002 *
1003 * @listener: The #MemoryListener.
1004 * @section: The new #MemoryRegionSection.
1005 * @match_data: The @match_data parameter for the dropped ioeventfd.
1006 * @data: The @data parameter for the dropped ioeventfd.
1007 * @e: The #EventNotifier parameter for the dropped ioeventfd.
1008 */
1009 void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section,
1010 bool match_data, uint64_t data, EventNotifier *e);
1011
1012 /**
1013 * @coalesced_io_add:
1014 *
1015 * Called during an address space update transaction,
1016 * for a section of the address space that has had a new coalesced
1017 * MMIO range registration since the last transaction.
1018 *
1019 * @listener: The #MemoryListener.
1020 * @section: The new #MemoryRegionSection.
1021 * @addr: The starting address for the coalesced MMIO range.
1022 * @len: The length of the coalesced MMIO range.
1023 */
1024 void (*coalesced_io_add)(MemoryListener *listener, MemoryRegionSection *section,
1025 hwaddr addr, hwaddr len);
1026
1027 /**
1028 * @coalesced_io_del:
1029 *
1030 * Called during an address space update transaction,
1031 * for a section of the address space that has dropped a coalesced
1032 * MMIO range since the last transaction.
1033 *
1034 * @listener: The #MemoryListener.
1035 * @section: The new #MemoryRegionSection.
1036 * @addr: The starting address for the coalesced MMIO range.
1037 * @len: The length of the coalesced MMIO range.
1038 */
1039 void (*coalesced_io_del)(MemoryListener *listener, MemoryRegionSection *section,
1040 hwaddr addr, hwaddr len);
1041 /**
1042 * @priority:
1043 *
1044 * Govern the order in which memory listeners are invoked. Lower priorities
1045 * are invoked earlier for "add" or "start" callbacks, and later for "delete"
1046 * or "stop" callbacks.
1047 */
1048 unsigned priority;
1049
1050 /**
1051 * @name:
1052 *
1053 * Name of the listener. It can be used in contexts where we'd like to
1054 * identify one memory listener with the rest.
1055 */
1056 const char *name;
1057
1058 /* private: */
1059 AddressSpace *address_space;
1060 QTAILQ_ENTRY(MemoryListener) link;
1061 QTAILQ_ENTRY(MemoryListener) link_as;
1062 };
1063
1064 /**
1065 * struct AddressSpace: describes a mapping of addresses to #MemoryRegion objects
1066 */
1067 struct AddressSpace {
1068 /* private: */
1069 struct rcu_head rcu;
1070 char *name;
1071 MemoryRegion *root;
1072
1073 /* Accessed via RCU. */
1074 struct FlatView *current_map;
1075
1076 int ioeventfd_nb;
1077 struct MemoryRegionIoeventfd *ioeventfds;
1078 QTAILQ_HEAD(, MemoryListener) listeners;
1079 QTAILQ_ENTRY(AddressSpace) address_spaces_link;
1080 };
1081
1082 typedef struct AddressSpaceDispatch AddressSpaceDispatch;
1083 typedef struct FlatRange FlatRange;
1084
1085 /* Flattened global view of current active memory hierarchy. Kept in sorted
1086 * order.
1087 */
1088 struct FlatView {
1089 struct rcu_head rcu;
1090 unsigned ref;
1091 FlatRange *ranges;
1092 unsigned nr;
1093 unsigned nr_allocated;
1094 struct AddressSpaceDispatch *dispatch;
1095 MemoryRegion *root;
1096 };
1097
1098 static inline FlatView *address_space_to_flatview(AddressSpace *as)
1099 {
1100 return qatomic_rcu_read(&as->current_map);
1101 }
1102
1103 /**
1104 * typedef flatview_cb: callback for flatview_for_each_range()
1105 *
1106 * @start: start address of the range within the FlatView
1107 * @len: length of the range in bytes
1108 * @mr: MemoryRegion covering this range
1109 * @offset_in_region: offset of the first byte of the range within @mr
1110 * @opaque: data pointer passed to flatview_for_each_range()
1111 *
1112 * Returns: true to stop the iteration, false to keep going.
1113 */
1114 typedef bool (*flatview_cb)(Int128 start,
1115 Int128 len,
1116 const MemoryRegion *mr,
1117 hwaddr offset_in_region,
1118 void *opaque);
1119
1120 /**
1121 * flatview_for_each_range: Iterate through a FlatView
1122 * @fv: the FlatView to iterate through
1123 * @cb: function to call for each range
1124 * @opaque: opaque data pointer to pass to @cb
1125 *
1126 * A FlatView is made up of a list of non-overlapping ranges, each of
1127 * which is a slice of a MemoryRegion. This function iterates through
1128 * each range in @fv, calling @cb. The callback function can terminate
1129 * iteration early by returning 'true'.
1130 */
1131 void flatview_for_each_range(FlatView *fv, flatview_cb cb, void *opaque);
1132
1133 static inline bool MemoryRegionSection_eq(MemoryRegionSection *a,
1134 MemoryRegionSection *b)
1135 {
1136 return a->mr == b->mr &&
1137 a->fv == b->fv &&
1138 a->offset_within_region == b->offset_within_region &&
1139 a->offset_within_address_space == b->offset_within_address_space &&
1140 int128_eq(a->size, b->size) &&
1141 a->readonly == b->readonly &&
1142 a->nonvolatile == b->nonvolatile;
1143 }
1144
1145 /**
1146 * memory_region_section_new_copy: Copy a memory region section
1147 *
1148 * Allocate memory for a new copy, copy the memory region section, and
1149 * properly take a reference on all relevant members.
1150 *
1151 * @s: the #MemoryRegionSection to copy
1152 */
1153 MemoryRegionSection *memory_region_section_new_copy(MemoryRegionSection *s);
1154
1155 /**
1156 * memory_region_section_new_copy: Free a copied memory region section
1157 *
1158 * Free a copy of a memory section created via memory_region_section_new_copy().
1159 * properly dropping references on all relevant members.
1160 *
1161 * @s: the #MemoryRegionSection to copy
1162 */
1163 void memory_region_section_free_copy(MemoryRegionSection *s);
1164
1165 /**
1166 * memory_region_init: Initialize a memory region
1167 *
1168 * The region typically acts as a container for other memory regions. Use
1169 * memory_region_add_subregion() to add subregions.
1170 *
1171 * @mr: the #MemoryRegion to be initialized
1172 * @owner: the object that tracks the region's reference count
1173 * @name: used for debugging; not visible to the user or ABI
1174 * @size: size of the region; any subregions beyond this size will be clipped
1175 */
1176 void memory_region_init(MemoryRegion *mr,
1177 Object *owner,
1178 const char *name,
1179 uint64_t size);
1180
1181 /**
1182 * memory_region_ref: Add 1 to a memory region's reference count
1183 *
1184 * Whenever memory regions are accessed outside the BQL, they need to be
1185 * preserved against hot-unplug. MemoryRegions actually do not have their
1186 * own reference count; they piggyback on a QOM object, their "owner".
1187 * This function adds a reference to the owner.
1188 *
1189 * All MemoryRegions must have an owner if they can disappear, even if the
1190 * device they belong to operates exclusively under the BQL. This is because
1191 * the region could be returned at any time by memory_region_find, and this
1192 * is usually under guest control.
1193 *
1194 * @mr: the #MemoryRegion
1195 */
1196 void memory_region_ref(MemoryRegion *mr);
1197
1198 /**
1199 * memory_region_unref: Remove 1 to a memory region's reference count
1200 *
1201 * Whenever memory regions are accessed outside the BQL, they need to be
1202 * preserved against hot-unplug. MemoryRegions actually do not have their
1203 * own reference count; they piggyback on a QOM object, their "owner".
1204 * This function removes a reference to the owner and possibly destroys it.
1205 *
1206 * @mr: the #MemoryRegion
1207 */
1208 void memory_region_unref(MemoryRegion *mr);
1209
1210 /**
1211 * memory_region_init_io: Initialize an I/O memory region.
1212 *
1213 * Accesses into the region will cause the callbacks in @ops to be called.
1214 * if @size is nonzero, subregions will be clipped to @size.
1215 *
1216 * @mr: the #MemoryRegion to be initialized.
1217 * @owner: the object that tracks the region's reference count
1218 * @ops: a structure containing read and write callbacks to be used when
1219 * I/O is performed on the region.
1220 * @opaque: passed to the read and write callbacks of the @ops structure.
1221 * @name: used for debugging; not visible to the user or ABI
1222 * @size: size of the region.
1223 */
1224 void memory_region_init_io(MemoryRegion *mr,
1225 Object *owner,
1226 const MemoryRegionOps *ops,
1227 void *opaque,
1228 const char *name,
1229 uint64_t size);
1230
1231 /**
1232 * memory_region_init_ram_nomigrate: Initialize RAM memory region. Accesses
1233 * into the region will modify memory
1234 * directly.
1235 *
1236 * @mr: the #MemoryRegion to be initialized.
1237 * @owner: the object that tracks the region's reference count
1238 * @name: Region name, becomes part of RAMBlock name used in migration stream
1239 * must be unique within any device
1240 * @size: size of the region.
1241 * @errp: pointer to Error*, to store an error if it happens.
1242 *
1243 * Note that this function does not do anything to cause the data in the
1244 * RAM memory region to be migrated; that is the responsibility of the caller.
1245 */
1246 void memory_region_init_ram_nomigrate(MemoryRegion *mr,
1247 Object *owner,
1248 const char *name,
1249 uint64_t size,
1250 Error **errp);
1251
1252 /**
1253 * memory_region_init_ram_flags_nomigrate: Initialize RAM memory region.
1254 * Accesses into the region will
1255 * modify memory directly.
1256 *
1257 * @mr: the #MemoryRegion to be initialized.
1258 * @owner: the object that tracks the region's reference count
1259 * @name: Region name, becomes part of RAMBlock name used in migration stream
1260 * must be unique within any device
1261 * @size: size of the region.
1262 * @ram_flags: RamBlock flags. Supported flags: RAM_SHARED, RAM_NORESERVE.
1263 * @errp: pointer to Error*, to store an error if it happens.
1264 *
1265 * Note that this function does not do anything to cause the data in the
1266 * RAM memory region to be migrated; that is the responsibility of the caller.
1267 */
1268 void memory_region_init_ram_flags_nomigrate(MemoryRegion *mr,
1269 Object *owner,
1270 const char *name,
1271 uint64_t size,
1272 uint32_t ram_flags,
1273 Error **errp);
1274
1275 /**
1276 * memory_region_init_resizeable_ram: Initialize memory region with resizable
1277 * RAM. Accesses into the region will
1278 * modify memory directly. Only an initial
1279 * portion of this RAM is actually used.
1280 * Changing the size while migrating
1281 * can result in the migration being
1282 * canceled.
1283 *
1284 * @mr: the #MemoryRegion to be initialized.
1285 * @owner: the object that tracks the region's reference count
1286 * @name: Region name, becomes part of RAMBlock name used in migration stream
1287 * must be unique within any device
1288 * @size: used size of the region.
1289 * @max_size: max size of the region.
1290 * @resized: callback to notify owner about used size change.
1291 * @errp: pointer to Error*, to store an error if it happens.
1292 *
1293 * Note that this function does not do anything to cause the data in the
1294 * RAM memory region to be migrated; that is the responsibility of the caller.
1295 */
1296 void memory_region_init_resizeable_ram(MemoryRegion *mr,
1297 Object *owner,
1298 const char *name,
1299 uint64_t size,
1300 uint64_t max_size,
1301 void (*resized)(const char*,
1302 uint64_t length,
1303 void *host),
1304 Error **errp);
1305 #ifdef CONFIG_POSIX
1306
1307 /**
1308 * memory_region_init_ram_from_file: Initialize RAM memory region with a
1309 * mmap-ed backend.
1310 *
1311 * @mr: the #MemoryRegion to be initialized.
1312 * @owner: the object that tracks the region's reference count
1313 * @name: Region name, becomes part of RAMBlock name used in migration stream
1314 * must be unique within any device
1315 * @size: size of the region.
1316 * @align: alignment of the region base address; if 0, the default alignment
1317 * (getpagesize()) will be used.
1318 * @ram_flags: RamBlock flags. Supported flags: RAM_SHARED, RAM_PMEM,
1319 * RAM_NORESERVE,
1320 * @path: the path in which to allocate the RAM.
1321 * @readonly: true to open @path for reading, false for read/write.
1322 * @errp: pointer to Error*, to store an error if it happens.
1323 *
1324 * Note that this function does not do anything to cause the data in the
1325 * RAM memory region to be migrated; that is the responsibility of the caller.
1326 */
1327 void memory_region_init_ram_from_file(MemoryRegion *mr,
1328 Object *owner,
1329 const char *name,
1330 uint64_t size,
1331 uint64_t align,
1332 uint32_t ram_flags,
1333 const char *path,
1334 bool readonly,
1335 Error **errp);
1336
1337 /**
1338 * memory_region_init_ram_from_fd: Initialize RAM memory region with a
1339 * mmap-ed backend.
1340 *
1341 * @mr: the #MemoryRegion to be initialized.
1342 * @owner: the object that tracks the region's reference count
1343 * @name: the name of the region.
1344 * @size: size of the region.
1345 * @ram_flags: RamBlock flags. Supported flags: RAM_SHARED, RAM_PMEM,
1346 * RAM_NORESERVE, RAM_PROTECTED.
1347 * @fd: the fd to mmap.
1348 * @offset: offset within the file referenced by fd
1349 * @errp: pointer to Error*, to store an error if it happens.
1350 *
1351 * Note that this function does not do anything to cause the data in the
1352 * RAM memory region to be migrated; that is the responsibility of the caller.
1353 */
1354 void memory_region_init_ram_from_fd(MemoryRegion *mr,
1355 Object *owner,
1356 const char *name,
1357 uint64_t size,
1358 uint32_t ram_flags,
1359 int fd,
1360 ram_addr_t offset,
1361 Error **errp);
1362 #endif
1363
1364 /**
1365 * memory_region_init_ram_ptr: Initialize RAM memory region from a
1366 * user-provided pointer. Accesses into the
1367 * region will modify memory directly.
1368 *
1369 * @mr: the #MemoryRegion to be initialized.
1370 * @owner: the object that tracks the region's reference count
1371 * @name: Region name, becomes part of RAMBlock name used in migration stream
1372 * must be unique within any device
1373 * @size: size of the region.
1374 * @ptr: memory to be mapped; must contain at least @size bytes.
1375 *
1376 * Note that this function does not do anything to cause the data in the
1377 * RAM memory region to be migrated; that is the responsibility of the caller.
1378 */
1379 void memory_region_init_ram_ptr(MemoryRegion *mr,
1380 Object *owner,
1381 const char *name,
1382 uint64_t size,
1383 void *ptr);
1384
1385 /**
1386 * memory_region_init_ram_device_ptr: Initialize RAM device memory region from
1387 * a user-provided pointer.
1388 *
1389 * A RAM device represents a mapping to a physical device, such as to a PCI
1390 * MMIO BAR of an vfio-pci assigned device. The memory region may be mapped
1391 * into the VM address space and access to the region will modify memory
1392 * directly. However, the memory region should not be included in a memory
1393 * dump (device may not be enabled/mapped at the time of the dump), and
1394 * operations incompatible with manipulating MMIO should be avoided. Replaces
1395 * skip_dump flag.
1396 *
1397 * @mr: the #MemoryRegion to be initialized.
1398 * @owner: the object that tracks the region's reference count
1399 * @name: the name of the region.
1400 * @size: size of the region.
1401 * @ptr: memory to be mapped; must contain at least @size bytes.
1402 *
1403 * Note that this function does not do anything to cause the data in the
1404 * RAM memory region to be migrated; that is the responsibility of the caller.
1405 * (For RAM device memory regions, migrating the contents rarely makes sense.)
1406 */
1407 void memory_region_init_ram_device_ptr(MemoryRegion *mr,
1408 Object *owner,
1409 const char *name,
1410 uint64_t size,
1411 void *ptr);
1412
1413 /**
1414 * memory_region_init_alias: Initialize a memory region that aliases all or a
1415 * part of another memory region.
1416 *
1417 * @mr: the #MemoryRegion to be initialized.
1418 * @owner: the object that tracks the region's reference count
1419 * @name: used for debugging; not visible to the user or ABI
1420 * @orig: the region to be referenced; @mr will be equivalent to
1421 * @orig between @offset and @offset + @size - 1.
1422 * @offset: start of the section in @orig to be referenced.
1423 * @size: size of the region.
1424 */
1425 void memory_region_init_alias(MemoryRegion *mr,
1426 Object *owner,
1427 const char *name,
1428 MemoryRegion *orig,
1429 hwaddr offset,
1430 uint64_t size);
1431
1432 /**
1433 * memory_region_init_rom_nomigrate: Initialize a ROM memory region.
1434 *
1435 * This has the same effect as calling memory_region_init_ram_nomigrate()
1436 * and then marking the resulting region read-only with
1437 * memory_region_set_readonly().
1438 *
1439 * Note that this function does not do anything to cause the data in the
1440 * RAM side of the memory region to be migrated; that is the responsibility
1441 * of the caller.
1442 *
1443 * @mr: the #MemoryRegion to be initialized.
1444 * @owner: the object that tracks the region's reference count
1445 * @name: Region name, becomes part of RAMBlock name used in migration stream
1446 * must be unique within any device
1447 * @size: size of the region.
1448 * @errp: pointer to Error*, to store an error if it happens.
1449 */
1450 void memory_region_init_rom_nomigrate(MemoryRegion *mr,
1451 Object *owner,
1452 const char *name,
1453 uint64_t size,
1454 Error **errp);
1455
1456 /**
1457 * memory_region_init_rom_device_nomigrate: Initialize a ROM memory region.
1458 * Writes are handled via callbacks.
1459 *
1460 * Note that this function does not do anything to cause the data in the
1461 * RAM side of the memory region to be migrated; that is the responsibility
1462 * of the caller.
1463 *
1464 * @mr: the #MemoryRegion to be initialized.
1465 * @owner: the object that tracks the region's reference count
1466 * @ops: callbacks for write access handling (must not be NULL).
1467 * @opaque: passed to the read and write callbacks of the @ops structure.
1468 * @name: Region name, becomes part of RAMBlock name used in migration stream
1469 * must be unique within any device
1470 * @size: size of the region.
1471 * @errp: pointer to Error*, to store an error if it happens.
1472 */
1473 void memory_region_init_rom_device_nomigrate(MemoryRegion *mr,
1474 Object *owner,
1475 const MemoryRegionOps *ops,
1476 void *opaque,
1477 const char *name,
1478 uint64_t size,
1479 Error **errp);
1480
1481 /**
1482 * memory_region_init_iommu: Initialize a memory region of a custom type
1483 * that translates addresses
1484 *
1485 * An IOMMU region translates addresses and forwards accesses to a target
1486 * memory region.
1487 *
1488 * The IOMMU implementation must define a subclass of TYPE_IOMMU_MEMORY_REGION.
1489 * @_iommu_mr should be a pointer to enough memory for an instance of
1490 * that subclass, @instance_size is the size of that subclass, and
1491 * @mrtypename is its name. This function will initialize @_iommu_mr as an
1492 * instance of the subclass, and its methods will then be called to handle
1493 * accesses to the memory region. See the documentation of
1494 * #IOMMUMemoryRegionClass for further details.
1495 *
1496 * @_iommu_mr: the #IOMMUMemoryRegion to be initialized
1497 * @instance_size: the IOMMUMemoryRegion subclass instance size
1498 * @mrtypename: the type name of the #IOMMUMemoryRegion
1499 * @owner: the object that tracks the region's reference count
1500 * @name: used for debugging; not visible to the user or ABI
1501 * @size: size of the region.
1502 */
1503 void memory_region_init_iommu(void *_iommu_mr,
1504 size_t instance_size,
1505 const char *mrtypename,
1506 Object *owner,
1507 const char *name,
1508 uint64_t size);
1509
1510 /**
1511 * memory_region_init_ram - Initialize RAM memory region. Accesses into the
1512 * region will modify memory directly.
1513 *
1514 * @mr: the #MemoryRegion to be initialized
1515 * @owner: the object that tracks the region's reference count (must be
1516 * TYPE_DEVICE or a subclass of TYPE_DEVICE, or NULL)
1517 * @name: name of the memory region
1518 * @size: size of the region in bytes
1519 * @errp: pointer to Error*, to store an error if it happens.
1520 *
1521 * This function allocates RAM for a board model or device, and
1522 * arranges for it to be migrated (by calling vmstate_register_ram()
1523 * if @owner is a DeviceState, or vmstate_register_ram_global() if
1524 * @owner is NULL).
1525 *
1526 * TODO: Currently we restrict @owner to being either NULL (for
1527 * global RAM regions with no owner) or devices, so that we can
1528 * give the RAM block a unique name for migration purposes.
1529 * We should lift this restriction and allow arbitrary Objects.
1530 * If you pass a non-NULL non-device @owner then we will assert.
1531 */
1532 void memory_region_init_ram(MemoryRegion *mr,
1533 Object *owner,
1534 const char *name,
1535 uint64_t size,
1536 Error **errp);
1537
1538 /**
1539 * memory_region_init_rom: Initialize a ROM memory region.
1540 *
1541 * This has the same effect as calling memory_region_init_ram()
1542 * and then marking the resulting region read-only with
1543 * memory_region_set_readonly(). This includes arranging for the
1544 * contents to be migrated.
1545 *
1546 * TODO: Currently we restrict @owner to being either NULL (for
1547 * global RAM regions with no owner) or devices, so that we can
1548 * give the RAM block a unique name for migration purposes.
1549 * We should lift this restriction and allow arbitrary Objects.
1550 * If you pass a non-NULL non-device @owner then we will assert.
1551 *
1552 * @mr: the #MemoryRegion to be initialized.
1553 * @owner: the object that tracks the region's reference count
1554 * @name: Region name, becomes part of RAMBlock name used in migration stream
1555 * must be unique within any device
1556 * @size: size of the region.
1557 * @errp: pointer to Error*, to store an error if it happens.
1558 */
1559 void memory_region_init_rom(MemoryRegion *mr,
1560 Object *owner,
1561 const char *name,
1562 uint64_t size,
1563 Error **errp);
1564
1565 /**
1566 * memory_region_init_rom_device: Initialize a ROM memory region.
1567 * Writes are handled via callbacks.
1568 *
1569 * This function initializes a memory region backed by RAM for reads
1570 * and callbacks for writes, and arranges for the RAM backing to
1571 * be migrated (by calling vmstate_register_ram()
1572 * if @owner is a DeviceState, or vmstate_register_ram_global() if
1573 * @owner is NULL).
1574 *
1575 * TODO: Currently we restrict @owner to being either NULL (for
1576 * global RAM regions with no owner) or devices, so that we can
1577 * give the RAM block a unique name for migration purposes.
1578 * We should lift this restriction and allow arbitrary Objects.
1579 * If you pass a non-NULL non-device @owner then we will assert.
1580 *
1581 * @mr: the #MemoryRegion to be initialized.
1582 * @owner: the object that tracks the region's reference count
1583 * @ops: callbacks for write access handling (must not be NULL).
1584 * @opaque: passed to the read and write callbacks of the @ops structure.
1585 * @name: Region name, becomes part of RAMBlock name used in migration stream
1586 * must be unique within any device
1587 * @size: size of the region.
1588 * @errp: pointer to Error*, to store an error if it happens.
1589 */
1590 void memory_region_init_rom_device(MemoryRegion *mr,
1591 Object *owner,
1592 const MemoryRegionOps *ops,
1593 void *opaque,
1594 const char *name,
1595 uint64_t size,
1596 Error **errp);
1597
1598
1599 /**
1600 * memory_region_owner: get a memory region's owner.
1601 *
1602 * @mr: the memory region being queried.
1603 */
1604 Object *memory_region_owner(MemoryRegion *mr);
1605
1606 /**
1607 * memory_region_size: get a memory region's size.
1608 *
1609 * @mr: the memory region being queried.
1610 */
1611 uint64_t memory_region_size(MemoryRegion *mr);
1612
1613 /**
1614 * memory_region_is_ram: check whether a memory region is random access
1615 *
1616 * Returns %true if a memory region is random access.
1617 *
1618 * @mr: the memory region being queried
1619 */
1620 static inline bool memory_region_is_ram(MemoryRegion *mr)
1621 {
1622 return mr->ram;
1623 }
1624
1625 /**
1626 * memory_region_is_ram_device: check whether a memory region is a ram device
1627 *
1628 * Returns %true if a memory region is a device backed ram region
1629 *
1630 * @mr: the memory region being queried
1631 */
1632 bool memory_region_is_ram_device(MemoryRegion *mr);
1633
1634 /**
1635 * memory_region_is_romd: check whether a memory region is in ROMD mode
1636 *
1637 * Returns %true if a memory region is a ROM device and currently set to allow
1638 * direct reads.
1639 *
1640 * @mr: the memory region being queried
1641 */
1642 static inline bool memory_region_is_romd(MemoryRegion *mr)
1643 {
1644 return mr->rom_device && mr->romd_mode;
1645 }
1646
1647 /**
1648 * memory_region_is_protected: check whether a memory region is protected
1649 *
1650 * Returns %true if a memory region is protected RAM and cannot be accessed
1651 * via standard mechanisms, e.g. DMA.
1652 *
1653 * @mr: the memory region being queried
1654 */
1655 bool memory_region_is_protected(MemoryRegion *mr);
1656
1657 /**
1658 * memory_region_get_iommu: check whether a memory region is an iommu
1659 *
1660 * Returns pointer to IOMMUMemoryRegion if a memory region is an iommu,
1661 * otherwise NULL.
1662 *
1663 * @mr: the memory region being queried
1664 */
1665 static inline IOMMUMemoryRegion *memory_region_get_iommu(MemoryRegion *mr)
1666 {
1667 if (mr->alias) {
1668 return memory_region_get_iommu(mr->alias);
1669 }
1670 if (mr->is_iommu) {
1671 return (IOMMUMemoryRegion *) mr;
1672 }
1673 return NULL;
1674 }
1675
1676 /**
1677 * memory_region_get_iommu_class_nocheck: returns iommu memory region class
1678 * if an iommu or NULL if not
1679 *
1680 * Returns pointer to IOMMUMemoryRegionClass if a memory region is an iommu,
1681 * otherwise NULL. This is fast path avoiding QOM checking, use with caution.
1682 *
1683 * @iommu_mr: the memory region being queried
1684 */
1685 static inline IOMMUMemoryRegionClass *memory_region_get_iommu_class_nocheck(
1686 IOMMUMemoryRegion *iommu_mr)
1687 {
1688 return (IOMMUMemoryRegionClass *) (((Object *)iommu_mr)->class);
1689 }
1690
1691 #define memory_region_is_iommu(mr) (memory_region_get_iommu(mr) != NULL)
1692
1693 /**
1694 * memory_region_iommu_get_min_page_size: get minimum supported page size
1695 * for an iommu
1696 *
1697 * Returns minimum supported page size for an iommu.
1698 *
1699 * @iommu_mr: the memory region being queried
1700 */
1701 uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion *iommu_mr);
1702
1703 /**
1704 * memory_region_notify_iommu: notify a change in an IOMMU translation entry.
1705 *
1706 * Note: for any IOMMU implementation, an in-place mapping change
1707 * should be notified with an UNMAP followed by a MAP.
1708 *
1709 * @iommu_mr: the memory region that was changed
1710 * @iommu_idx: the IOMMU index for the translation table which has changed
1711 * @event: TLB event with the new entry in the IOMMU translation table.
1712 * The entry replaces all old entries for the same virtual I/O address
1713 * range.
1714 */
1715 void memory_region_notify_iommu(IOMMUMemoryRegion *iommu_mr,
1716 int iommu_idx,
1717 IOMMUTLBEvent event);
1718
1719 /**
1720 * memory_region_notify_iommu_one: notify a change in an IOMMU translation
1721 * entry to a single notifier
1722 *
1723 * This works just like memory_region_notify_iommu(), but it only
1724 * notifies a specific notifier, not all of them.
1725 *
1726 * @notifier: the notifier to be notified
1727 * @event: TLB event with the new entry in the IOMMU translation table.
1728 * The entry replaces all old entries for the same virtual I/O address
1729 * range.
1730 */
1731 void memory_region_notify_iommu_one(IOMMUNotifier *notifier,
1732 IOMMUTLBEvent *event);
1733
1734 /**
1735 * memory_region_unmap_iommu_notifier_range: notify a unmap for an IOMMU
1736 * translation that covers the
1737 * range of a notifier
1738 *
1739 * @notifier: the notifier to be notified
1740 */
1741 void memory_region_unmap_iommu_notifier_range(IOMMUNotifier *notifier);
1742
1743
1744 /**
1745 * memory_region_register_iommu_notifier: register a notifier for changes to
1746 * IOMMU translation entries.
1747 *
1748 * Returns 0 on success, or a negative errno otherwise. In particular,
1749 * -EINVAL indicates that at least one of the attributes of the notifier
1750 * is not supported (flag/range) by the IOMMU memory region. In case of error
1751 * the error object must be created.
1752 *
1753 * @mr: the memory region to observe
1754 * @n: the IOMMUNotifier to be added; the notify callback receives a
1755 * pointer to an #IOMMUTLBEntry as the opaque value; the pointer
1756 * ceases to be valid on exit from the notifier.
1757 * @errp: pointer to Error*, to store an error if it happens.
1758 */
1759 int memory_region_register_iommu_notifier(MemoryRegion *mr,
1760 IOMMUNotifier *n, Error **errp);
1761
1762 /**
1763 * memory_region_iommu_replay: replay existing IOMMU translations to
1764 * a notifier with the minimum page granularity returned by
1765 * mr->iommu_ops->get_page_size().
1766 *
1767 * Note: this is not related to record-and-replay functionality.
1768 *
1769 * @iommu_mr: the memory region to observe
1770 * @n: the notifier to which to replay iommu mappings
1771 */
1772 void memory_region_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n);
1773
1774 /**
1775 * memory_region_unregister_iommu_notifier: unregister a notifier for
1776 * changes to IOMMU translation entries.
1777 *
1778 * @mr: the memory region which was observed and for which notity_stopped()
1779 * needs to be called
1780 * @n: the notifier to be removed.
1781 */
1782 void memory_region_unregister_iommu_notifier(MemoryRegion *mr,
1783 IOMMUNotifier *n);
1784
1785 /**
1786 * memory_region_iommu_get_attr: return an IOMMU attr if get_attr() is
1787 * defined on the IOMMU.
1788 *
1789 * Returns 0 on success, or a negative errno otherwise. In particular,
1790 * -EINVAL indicates that the IOMMU does not support the requested
1791 * attribute.
1792 *
1793 * @iommu_mr: the memory region
1794 * @attr: the requested attribute
1795 * @data: a pointer to the requested attribute data
1796 */
1797 int memory_region_iommu_get_attr(IOMMUMemoryRegion *iommu_mr,
1798 enum IOMMUMemoryRegionAttr attr,
1799 void *data);
1800
1801 /**
1802 * memory_region_iommu_attrs_to_index: return the IOMMU index to
1803 * use for translations with the given memory transaction attributes.
1804 *
1805 * @iommu_mr: the memory region
1806 * @attrs: the memory transaction attributes
1807 */
1808 int memory_region_iommu_attrs_to_index(IOMMUMemoryRegion *iommu_mr,
1809 MemTxAttrs attrs);
1810
1811 /**
1812 * memory_region_iommu_num_indexes: return the total number of IOMMU
1813 * indexes that this IOMMU supports.
1814 *
1815 * @iommu_mr: the memory region
1816 */
1817 int memory_region_iommu_num_indexes(IOMMUMemoryRegion *iommu_mr);
1818
1819 /**
1820 * memory_region_iommu_set_page_size_mask: set the supported page
1821 * sizes for a given IOMMU memory region
1822 *
1823 * @iommu_mr: IOMMU memory region
1824 * @page_size_mask: supported page size mask
1825 * @errp: pointer to Error*, to store an error if it happens.
1826 */
1827 int memory_region_iommu_set_page_size_mask(IOMMUMemoryRegion *iommu_mr,
1828 uint64_t page_size_mask,
1829 Error **errp);
1830
1831 /**
1832 * memory_region_name: get a memory region's name
1833 *
1834 * Returns the string that was used to initialize the memory region.
1835 *
1836 * @mr: the memory region being queried
1837 */
1838 const char *memory_region_name(const MemoryRegion *mr);
1839
1840 /**
1841 * memory_region_is_logging: return whether a memory region is logging writes
1842 *
1843 * Returns %true if the memory region is logging writes for the given client
1844 *
1845 * @mr: the memory region being queried
1846 * @client: the client being queried
1847 */
1848 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client);
1849
1850 /**
1851 * memory_region_get_dirty_log_mask: return the clients for which a
1852 * memory region is logging writes.
1853 *
1854 * Returns a bitmap of clients, in which the DIRTY_MEMORY_* constants
1855 * are the bit indices.
1856 *
1857 * @mr: the memory region being queried
1858 */
1859 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr);
1860
1861 /**
1862 * memory_region_is_rom: check whether a memory region is ROM
1863 *
1864 * Returns %true if a memory region is read-only memory.
1865 *
1866 * @mr: the memory region being queried
1867 */
1868 static inline bool memory_region_is_rom(MemoryRegion *mr)
1869 {
1870 return mr->ram && mr->readonly;
1871 }
1872
1873 /**
1874 * memory_region_is_nonvolatile: check whether a memory region is non-volatile
1875 *
1876 * Returns %true is a memory region is non-volatile memory.
1877 *
1878 * @mr: the memory region being queried
1879 */
1880 static inline bool memory_region_is_nonvolatile(MemoryRegion *mr)
1881 {
1882 return mr->nonvolatile;
1883 }
1884
1885 /**
1886 * memory_region_get_fd: Get a file descriptor backing a RAM memory region.
1887 *
1888 * Returns a file descriptor backing a file-based RAM memory region,
1889 * or -1 if the region is not a file-based RAM memory region.
1890 *
1891 * @mr: the RAM or alias memory region being queried.
1892 */
1893 int memory_region_get_fd(MemoryRegion *mr);
1894
1895 /**
1896 * memory_region_from_host: Convert a pointer into a RAM memory region
1897 * and an offset within it.
1898 *
1899 * Given a host pointer inside a RAM memory region (created with
1900 * memory_region_init_ram() or memory_region_init_ram_ptr()), return
1901 * the MemoryRegion and the offset within it.
1902 *
1903 * Use with care; by the time this function returns, the returned pointer is
1904 * not protected by RCU anymore. If the caller is not within an RCU critical
1905 * section and does not hold the iothread lock, it must have other means of
1906 * protecting the pointer, such as a reference to the region that includes
1907 * the incoming ram_addr_t.
1908 *
1909 * @ptr: the host pointer to be converted
1910 * @offset: the offset within memory region
1911 */
1912 MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset);
1913
1914 /**
1915 * memory_region_get_ram_ptr: Get a pointer into a RAM memory region.
1916 *
1917 * Returns a host pointer to a RAM memory region (created with
1918 * memory_region_init_ram() or memory_region_init_ram_ptr()).
1919 *
1920 * Use with care; by the time this function returns, the returned pointer is
1921 * not protected by RCU anymore. If the caller is not within an RCU critical
1922 * section and does not hold the iothread lock, it must have other means of
1923 * protecting the pointer, such as a reference to the region that includes
1924 * the incoming ram_addr_t.
1925 *
1926 * @mr: the memory region being queried.
1927 */
1928 void *memory_region_get_ram_ptr(MemoryRegion *mr);
1929
1930 /* memory_region_ram_resize: Resize a RAM region.
1931 *
1932 * Resizing RAM while migrating can result in the migration being canceled.
1933 * Care has to be taken if the guest might have already detected the memory.
1934 *
1935 * @mr: a memory region created with @memory_region_init_resizeable_ram.
1936 * @newsize: the new size the region
1937 * @errp: pointer to Error*, to store an error if it happens.
1938 */
1939 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize,
1940 Error **errp);
1941
1942 /**
1943 * memory_region_msync: Synchronize selected address range of
1944 * a memory mapped region
1945 *
1946 * @mr: the memory region to be msync
1947 * @addr: the initial address of the range to be sync
1948 * @size: the size of the range to be sync
1949 */
1950 void memory_region_msync(MemoryRegion *mr, hwaddr addr, hwaddr size);
1951
1952 /**
1953 * memory_region_writeback: Trigger cache writeback for
1954 * selected address range
1955 *
1956 * @mr: the memory region to be updated
1957 * @addr: the initial address of the range to be written back
1958 * @size: the size of the range to be written back
1959 */
1960 void memory_region_writeback(MemoryRegion *mr, hwaddr addr, hwaddr size);
1961
1962 /**
1963 * memory_region_set_log: Turn dirty logging on or off for a region.
1964 *
1965 * Turns dirty logging on or off for a specified client (display, migration).
1966 * Only meaningful for RAM regions.
1967 *
1968 * @mr: the memory region being updated.
1969 * @log: whether dirty logging is to be enabled or disabled.
1970 * @client: the user of the logging information; %DIRTY_MEMORY_VGA only.
1971 */
1972 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client);
1973
1974 /**
1975 * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region.
1976 *
1977 * Marks a range of bytes as dirty, after it has been dirtied outside
1978 * guest code.
1979 *
1980 * @mr: the memory region being dirtied.
1981 * @addr: the address (relative to the start of the region) being dirtied.
1982 * @size: size of the range being dirtied.
1983 */
1984 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
1985 hwaddr size);
1986
1987 /**
1988 * memory_region_clear_dirty_bitmap - clear dirty bitmap for memory range
1989 *
1990 * This function is called when the caller wants to clear the remote
1991 * dirty bitmap of a memory range within the memory region. This can
1992 * be used by e.g. KVM to manually clear dirty log when
1993 * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT is declared support by the host
1994 * kernel.
1995 *
1996 * @mr: the memory region to clear the dirty log upon
1997 * @start: start address offset within the memory region
1998 * @len: length of the memory region to clear dirty bitmap
1999 */
2000 void memory_region_clear_dirty_bitmap(MemoryRegion *mr, hwaddr start,
2001 hwaddr len);
2002
2003 /**
2004 * memory_region_snapshot_and_clear_dirty: Get a snapshot of the dirty
2005 * bitmap and clear it.
2006 *
2007 * Creates a snapshot of the dirty bitmap, clears the dirty bitmap and
2008 * returns the snapshot. The snapshot can then be used to query dirty
2009 * status, using memory_region_snapshot_get_dirty. Snapshotting allows
2010 * querying the same page multiple times, which is especially useful for
2011 * display updates where the scanlines often are not page aligned.
2012 *
2013 * The dirty bitmap region which gets copied into the snapshot (and
2014 * cleared afterwards) can be larger than requested. The boundaries
2015 * are rounded up/down so complete bitmap longs (covering 64 pages on
2016 * 64bit hosts) can be copied over into the bitmap snapshot. Which
2017 * isn't a problem for display updates as the extra pages are outside
2018 * the visible area, and in case the visible area changes a full
2019 * display redraw is due anyway. Should other use cases for this
2020 * function emerge we might have to revisit this implementation
2021 * detail.
2022 *
2023 * Use g_free to release DirtyBitmapSnapshot.
2024 *
2025 * @mr: the memory region being queried.
2026 * @addr: the address (relative to the start of the region) being queried.
2027 * @size: the size of the range being queried.
2028 * @client: the user of the logging information; typically %DIRTY_MEMORY_VGA.
2029 */
2030 DirtyBitmapSnapshot *memory_region_snapshot_and_clear_dirty(MemoryRegion *mr,
2031 hwaddr addr,
2032 hwaddr size,
2033 unsigned client);
2034
2035 /**
2036 * memory_region_snapshot_get_dirty: Check whether a range of bytes is dirty
2037 * in the specified dirty bitmap snapshot.
2038 *
2039 * @mr: the memory region being queried.
2040 * @snap: the dirty bitmap snapshot
2041 * @addr: the address (relative to the start of the region) being queried.
2042 * @size: the size of the range being queried.
2043 */
2044 bool memory_region_snapshot_get_dirty(MemoryRegion *mr,
2045 DirtyBitmapSnapshot *snap,
2046 hwaddr addr, hwaddr size);
2047
2048 /**
2049 * memory_region_reset_dirty: Mark a range of pages as clean, for a specified
2050 * client.
2051 *
2052 * Marks a range of pages as no longer dirty.
2053 *
2054 * @mr: the region being updated.
2055 * @addr: the start of the subrange being cleaned.
2056 * @size: the size of the subrange being cleaned.
2057 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
2058 * %DIRTY_MEMORY_VGA.
2059 */
2060 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
2061 hwaddr size, unsigned client);
2062
2063 /**
2064 * memory_region_flush_rom_device: Mark a range of pages dirty and invalidate
2065 * TBs (for self-modifying code).
2066 *
2067 * The MemoryRegionOps->write() callback of a ROM device must use this function
2068 * to mark byte ranges that have been modified internally, such as by directly
2069 * accessing the memory returned by memory_region_get_ram_ptr().
2070 *
2071 * This function marks the range dirty and invalidates TBs so that TCG can
2072 * detect self-modifying code.
2073 *
2074 * @mr: the region being flushed.
2075 * @addr: the start, relative to the start of the region, of the range being
2076 * flushed.
2077 * @size: the size, in bytes, of the range being flushed.
2078 */
2079 void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size);
2080
2081 /**
2082 * memory_region_set_readonly: Turn a memory region read-only (or read-write)
2083 *
2084 * Allows a memory region to be marked as read-only (turning it into a ROM).
2085 * only useful on RAM regions.
2086 *
2087 * @mr: the region being updated.
2088 * @readonly: whether rhe region is to be ROM or RAM.
2089 */
2090 void memory_region_set_readonly(MemoryRegion *mr, bool readonly);
2091
2092 /**
2093 * memory_region_set_nonvolatile: Turn a memory region non-volatile
2094 *
2095 * Allows a memory region to be marked as non-volatile.
2096 * only useful on RAM regions.
2097 *
2098 * @mr: the region being updated.
2099 * @nonvolatile: whether rhe region is to be non-volatile.
2100 */
2101 void memory_region_set_nonvolatile(MemoryRegion *mr, bool nonvolatile);
2102
2103 /**
2104 * memory_region_rom_device_set_romd: enable/disable ROMD mode
2105 *
2106 * Allows a ROM device (initialized with memory_region_init_rom_device() to
2107 * set to ROMD mode (default) or MMIO mode. When it is in ROMD mode, the
2108 * device is mapped to guest memory and satisfies read access directly.
2109 * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function.
2110 * Writes are always handled by the #MemoryRegion.write function.
2111 *
2112 * @mr: the memory region to be updated
2113 * @romd_mode: %true to put the region into ROMD mode
2114 */
2115 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode);
2116
2117 /**
2118 * memory_region_set_coalescing: Enable memory coalescing for the region.
2119 *
2120 * Enabled writes to a region to be queued for later processing. MMIO ->write
2121 * callbacks may be delayed until a non-coalesced MMIO is issued.
2122 * Only useful for IO regions. Roughly similar to write-combining hardware.
2123 *
2124 * @mr: the memory region to be write coalesced
2125 */
2126 void memory_region_set_coalescing(MemoryRegion *mr);
2127
2128 /**
2129 * memory_region_add_coalescing: Enable memory coalescing for a sub-range of
2130 * a region.
2131 *
2132 * Like memory_region_set_coalescing(), but works on a sub-range of a region.
2133 * Multiple calls can be issued coalesced disjoint ranges.
2134 *
2135 * @mr: the memory region to be updated.
2136 * @offset: the start of the range within the region to be coalesced.
2137 * @size: the size of the subrange to be coalesced.
2138 */
2139 void memory_region_add_coalescing(MemoryRegion *mr,
2140 hwaddr offset,
2141 uint64_t size);
2142
2143 /**
2144 * memory_region_clear_coalescing: Disable MMIO coalescing for the region.
2145 *
2146 * Disables any coalescing caused by memory_region_set_coalescing() or
2147 * memory_region_add_coalescing(). Roughly equivalent to uncacheble memory
2148 * hardware.
2149 *
2150 * @mr: the memory region to be updated.
2151 */
2152 void memory_region_clear_coalescing(MemoryRegion *mr);
2153
2154 /**
2155 * memory_region_set_flush_coalesced: Enforce memory coalescing flush before
2156 * accesses.
2157 *
2158 * Ensure that pending coalesced MMIO request are flushed before the memory
2159 * region is accessed. This property is automatically enabled for all regions
2160 * passed to memory_region_set_coalescing() and memory_region_add_coalescing().
2161 *
2162 * @mr: the memory region to be updated.
2163 */
2164 void memory_region_set_flush_coalesced(MemoryRegion *mr);
2165
2166 /**
2167 * memory_region_clear_flush_coalesced: Disable memory coalescing flush before
2168 * accesses.
2169 *
2170 * Clear the automatic coalesced MMIO flushing enabled via
2171 * memory_region_set_flush_coalesced. Note that this service has no effect on
2172 * memory regions that have MMIO coalescing enabled for themselves. For them,
2173 * automatic flushing will stop once coalescing is disabled.
2174 *
2175 * @mr: the memory region to be updated.
2176 */
2177 void memory_region_clear_flush_coalesced(MemoryRegion *mr);
2178
2179 /**
2180 * memory_region_add_eventfd: Request an eventfd to be triggered when a word
2181 * is written to a location.
2182 *
2183 * Marks a word in an IO region (initialized with memory_region_init_io())
2184 * as a trigger for an eventfd event. The I/O callback will not be called.
2185 * The caller must be prepared to handle failure (that is, take the required
2186 * action if the callback _is_ called).
2187 *
2188 * @mr: the memory region being updated.
2189 * @addr: the address within @mr that is to be monitored
2190 * @size: the size of the access to trigger the eventfd
2191 * @match_data: whether to match against @data, instead of just @addr
2192 * @data: the data to match against the guest write
2193 * @e: event notifier to be triggered when @addr, @size, and @data all match.
2194 **/
2195 void memory_region_add_eventfd(MemoryRegion *mr,
2196 hwaddr addr,
2197 unsigned size,
2198 bool match_data,
2199 uint64_t data,
2200 EventNotifier *e);
2201
2202 /**
2203 * memory_region_del_eventfd: Cancel an eventfd.
2204 *
2205 * Cancels an eventfd trigger requested by a previous
2206 * memory_region_add_eventfd() call.
2207 *
2208 * @mr: the memory region being updated.
2209 * @addr: the address within @mr that is to be monitored
2210 * @size: the size of the access to trigger the eventfd
2211 * @match_data: whether to match against @data, instead of just @addr
2212 * @data: the data to match against the guest write
2213 * @e: event notifier to be triggered when @addr, @size, and @data all match.
2214 */
2215 void memory_region_del_eventfd(MemoryRegion *mr,
2216 hwaddr addr,
2217 unsigned size,
2218 bool match_data,
2219 uint64_t data,
2220 EventNotifier *e);
2221
2222 /**
2223 * memory_region_add_subregion: Add a subregion to a container.
2224 *
2225 * Adds a subregion at @offset. The subregion may not overlap with other
2226 * subregions (except for those explicitly marked as overlapping). A region
2227 * may only be added once as a subregion (unless removed with
2228 * memory_region_del_subregion()); use memory_region_init_alias() if you
2229 * want a region to be a subregion in multiple locations.
2230 *
2231 * @mr: the region to contain the new subregion; must be a container
2232 * initialized with memory_region_init().
2233 * @offset: the offset relative to @mr where @subregion is added.
2234 * @subregion: the subregion to be added.
2235 */
2236 void memory_region_add_subregion(MemoryRegion *mr,
2237 hwaddr offset,
2238 MemoryRegion *subregion);
2239 /**
2240 * memory_region_add_subregion_overlap: Add a subregion to a container
2241 * with overlap.
2242 *
2243 * Adds a subregion at @offset. The subregion may overlap with other
2244 * subregions. Conflicts are resolved by having a higher @priority hide a
2245 * lower @priority. Subregions without priority are taken as @priority 0.
2246 * A region may only be added once as a subregion (unless removed with
2247 * memory_region_del_subregion()); use memory_region_init_alias() if you
2248 * want a region to be a subregion in multiple locations.
2249 *
2250 * @mr: the region to contain the new subregion; must be a container
2251 * initialized with memory_region_init().
2252 * @offset: the offset relative to @mr where @subregion is added.
2253 * @subregion: the subregion to be added.
2254 * @priority: used for resolving overlaps; highest priority wins.
2255 */
2256 void memory_region_add_subregion_overlap(MemoryRegion *mr,
2257 hwaddr offset,
2258 MemoryRegion *subregion,
2259 int priority);
2260
2261 /**
2262 * memory_region_get_ram_addr: Get the ram address associated with a memory
2263 * region
2264 *
2265 * @mr: the region to be queried
2266 */
2267 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr);
2268
2269 uint64_t memory_region_get_alignment(const MemoryRegion *mr);
2270 /**
2271 * memory_region_del_subregion: Remove a subregion.
2272 *
2273 * Removes a subregion from its container.
2274 *
2275 * @mr: the container to be updated.
2276 * @subregion: the region being removed; must be a current subregion of @mr.
2277 */
2278 void memory_region_del_subregion(MemoryRegion *mr,
2279 MemoryRegion *subregion);
2280
2281 /*
2282 * memory_region_set_enabled: dynamically enable or disable a region
2283 *
2284 * Enables or disables a memory region. A disabled memory region
2285 * ignores all accesses to itself and its subregions. It does not
2286 * obscure sibling subregions with lower priority - it simply behaves as
2287 * if it was removed from the hierarchy.
2288 *
2289 * Regions default to being enabled.
2290 *
2291 * @mr: the region to be updated
2292 * @enabled: whether to enable or disable the region
2293 */
2294 void memory_region_set_enabled(MemoryRegion *mr, bool enabled);
2295
2296 /*
2297 * memory_region_set_address: dynamically update the address of a region
2298 *
2299 * Dynamically updates the address of a region, relative to its container.
2300 * May be used on regions are currently part of a memory hierarchy.
2301 *
2302 * @mr: the region to be updated
2303 * @addr: new address, relative to container region
2304 */
2305 void memory_region_set_address(MemoryRegion *mr, hwaddr addr);
2306
2307 /*
2308 * memory_region_set_size: dynamically update the size of a region.
2309 *
2310 * Dynamically updates the size of a region.
2311 *
2312 * @mr: the region to be updated
2313 * @size: used size of the region.
2314 */
2315 void memory_region_set_size(MemoryRegion *mr, uint64_t size);
2316
2317 /*
2318 * memory_region_set_alias_offset: dynamically update a memory alias's offset
2319 *
2320 * Dynamically updates the offset into the target region that an alias points
2321 * to, as if the fourth argument to memory_region_init_alias() has changed.
2322 *
2323 * @mr: the #MemoryRegion to be updated; should be an alias.
2324 * @offset: the new offset into the target memory region
2325 */
2326 void memory_region_set_alias_offset(MemoryRegion *mr,
2327 hwaddr offset);
2328
2329 /**
2330 * memory_region_present: checks if an address relative to a @container
2331 * translates into #MemoryRegion within @container
2332 *
2333 * Answer whether a #MemoryRegion within @container covers the address
2334 * @addr.
2335 *
2336 * @container: a #MemoryRegion within which @addr is a relative address
2337 * @addr: the area within @container to be searched
2338 */
2339 bool memory_region_present(MemoryRegion *container, hwaddr addr);
2340
2341 /**
2342 * memory_region_is_mapped: returns true if #MemoryRegion is mapped
2343 * into another memory region, which does not necessarily imply that it is
2344 * mapped into an address space.
2345 *
2346 * @mr: a #MemoryRegion which should be checked if it's mapped
2347 */
2348 bool memory_region_is_mapped(MemoryRegion *mr);
2349
2350 /**
2351 * memory_region_get_ram_discard_manager: get the #RamDiscardManager for a
2352 * #MemoryRegion
2353 *
2354 * The #RamDiscardManager cannot change while a memory region is mapped.
2355 *
2356 * @mr: the #MemoryRegion
2357 */
2358 RamDiscardManager *memory_region_get_ram_discard_manager(MemoryRegion *mr);
2359
2360 /**
2361 * memory_region_has_ram_discard_manager: check whether a #MemoryRegion has a
2362 * #RamDiscardManager assigned
2363 *
2364 * @mr: the #MemoryRegion
2365 */
2366 static inline bool memory_region_has_ram_discard_manager(MemoryRegion *mr)
2367 {
2368 return !!memory_region_get_ram_discard_manager(mr);
2369 }
2370
2371 /**
2372 * memory_region_set_ram_discard_manager: set the #RamDiscardManager for a
2373 * #MemoryRegion
2374 *
2375 * This function must not be called for a mapped #MemoryRegion, a #MemoryRegion
2376 * that does not cover RAM, or a #MemoryRegion that already has a
2377 * #RamDiscardManager assigned.
2378 *
2379 * @mr: the #MemoryRegion
2380 * @rdm: #RamDiscardManager to set
2381 */
2382 void memory_region_set_ram_discard_manager(MemoryRegion *mr,
2383 RamDiscardManager *rdm);
2384
2385 /**
2386 * memory_region_find: translate an address/size relative to a
2387 * MemoryRegion into a #MemoryRegionSection.
2388 *
2389 * Locates the first #MemoryRegion within @mr that overlaps the range
2390 * given by @addr and @size.
2391 *
2392 * Returns a #MemoryRegionSection that describes a contiguous overlap.
2393 * It will have the following characteristics:
2394 * - @size = 0 iff no overlap was found
2395 * - @mr is non-%NULL iff an overlap was found
2396 *
2397 * Remember that in the return value the @offset_within_region is
2398 * relative to the returned region (in the .@mr field), not to the
2399 * @mr argument.
2400 *
2401 * Similarly, the .@offset_within_address_space is relative to the
2402 * address space that contains both regions, the passed and the
2403 * returned one. However, in the special case where the @mr argument
2404 * has no container (and thus is the root of the address space), the
2405 * following will hold:
2406 * - @offset_within_address_space >= @addr
2407 * - @offset_within_address_space + .@size <= @addr + @size
2408 *
2409 * @mr: a MemoryRegion within which @addr is a relative address
2410 * @addr: start of the area within @as to be searched
2411 * @size: size of the area to be searched
2412 */
2413 MemoryRegionSection memory_region_find(MemoryRegion *mr,
2414 hwaddr addr, uint64_t size);
2415
2416 /**
2417 * memory_global_dirty_log_sync: synchronize the dirty log for all memory
2418 *
2419 * Synchronizes the dirty page log for all address spaces.
2420 */
2421 void memory_global_dirty_log_sync(void);
2422
2423 /**
2424 * memory_global_dirty_log_sync: synchronize the dirty log for all memory
2425 *
2426 * Synchronizes the vCPUs with a thread that is reading the dirty bitmap.
2427 * This function must be called after the dirty log bitmap is cleared, and
2428 * before dirty guest memory pages are read. If you are using
2429 * #DirtyBitmapSnapshot, memory_region_snapshot_and_clear_dirty() takes
2430 * care of doing this.
2431 */
2432 void memory_global_after_dirty_log_sync(void);
2433
2434 /**
2435 * memory_region_transaction_begin: Start a transaction.
2436 *
2437 * During a transaction, changes will be accumulated and made visible
2438 * only when the transaction ends (is committed).
2439 */
2440 void memory_region_transaction_begin(void);
2441
2442 /**
2443 * memory_region_transaction_commit: Commit a transaction and make changes
2444 * visible to the guest.
2445 */
2446 void memory_region_transaction_commit(void);
2447
2448 /**
2449 * memory_listener_register: register callbacks to be called when memory
2450 * sections are mapped or unmapped into an address
2451 * space
2452 *
2453 * @listener: an object containing the callbacks to be called
2454 * @filter: if non-%NULL, only regions in this address space will be observed
2455 */
2456 void memory_listener_register(MemoryListener *listener, AddressSpace *filter);
2457
2458 /**
2459 * memory_listener_unregister: undo the effect of memory_listener_register()
2460 *
2461 * @listener: an object containing the callbacks to be removed
2462 */
2463 void memory_listener_unregister(MemoryListener *listener);
2464
2465 /**
2466 * memory_global_dirty_log_start: begin dirty logging for all regions
2467 *
2468 * @flags: purpose of starting dirty log, migration or dirty rate
2469 */
2470 void memory_global_dirty_log_start(unsigned int flags);
2471
2472 /**
2473 * memory_global_dirty_log_stop: end dirty logging for all regions
2474 *
2475 * @flags: purpose of stopping dirty log, migration or dirty rate
2476 */
2477 void memory_global_dirty_log_stop(unsigned int flags);
2478
2479 void mtree_info(bool flatview, bool dispatch_tree, bool owner, bool disabled);
2480
2481 bool memory_region_access_valid(MemoryRegion *mr, hwaddr addr,
2482 unsigned size, bool is_write,
2483 MemTxAttrs attrs);
2484
2485 /**
2486 * memory_region_dispatch_read: perform a read directly to the specified
2487 * MemoryRegion.
2488 *
2489 * @mr: #MemoryRegion to access
2490 * @addr: address within that region
2491 * @pval: pointer to uint64_t which the data is written to
2492 * @op: size, sign, and endianness of the memory operation
2493 * @attrs: memory transaction attributes to use for the access
2494 */
2495 MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
2496 hwaddr addr,
2497 uint64_t *pval,
2498 MemOp op,
2499 MemTxAttrs attrs);
2500 /**
2501 * memory_region_dispatch_write: perform a write directly to the specified
2502 * MemoryRegion.
2503 *
2504 * @mr: #MemoryRegion to access
2505 * @addr: address within that region
2506 * @data: data to write
2507 * @op: size, sign, and endianness of the memory operation
2508 * @attrs: memory transaction attributes to use for the access
2509 */
2510 MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
2511 hwaddr addr,
2512 uint64_t data,
2513 MemOp op,
2514 MemTxAttrs attrs);
2515
2516 /**
2517 * address_space_init: initializes an address space
2518 *
2519 * @as: an uninitialized #AddressSpace
2520 * @root: a #MemoryRegion that routes addresses for the address space
2521 * @name: an address space name. The name is only used for debugging
2522 * output.
2523 */
2524 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name);
2525
2526 /**
2527 * address_space_destroy: destroy an address space
2528 *
2529 * Releases all resources associated with an address space. After an address space
2530 * is destroyed, its root memory region (given by address_space_init()) may be destroyed
2531 * as well.
2532 *
2533 * @as: address space to be destroyed
2534 */
2535 void address_space_destroy(AddressSpace *as);
2536
2537 /**
2538 * address_space_remove_listeners: unregister all listeners of an address space
2539 *
2540 * Removes all callbacks previously registered with memory_listener_register()
2541 * for @as.
2542 *
2543 * @as: an initialized #AddressSpace
2544 */
2545 void address_space_remove_listeners(AddressSpace *as);
2546
2547 /**
2548 * address_space_rw: read from or write to an address space.
2549 *
2550 * Return a MemTxResult indicating whether the operation succeeded
2551 * or failed (eg unassigned memory, device rejected the transaction,
2552 * IOMMU fault).
2553 *
2554 * @as: #AddressSpace to be accessed
2555 * @addr: address within that address space
2556 * @attrs: memory transaction attributes
2557 * @buf: buffer with the data transferred
2558 * @len: the number of bytes to read or write
2559 * @is_write: indicates the transfer direction
2560 */
2561 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr,
2562 MemTxAttrs attrs, void *buf,
2563 hwaddr len, bool is_write);
2564
2565 /**
2566 * address_space_write: write to address space.
2567 *
2568 * Return a MemTxResult indicating whether the operation succeeded
2569 * or failed (eg unassigned memory, device rejected the transaction,
2570 * IOMMU fault).
2571 *
2572 * @as: #AddressSpace to be accessed
2573 * @addr: address within that address space
2574 * @attrs: memory transaction attributes
2575 * @buf: buffer with the data transferred
2576 * @len: the number of bytes to write
2577 */
2578 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
2579 MemTxAttrs attrs,
2580 const void *buf, hwaddr len);
2581
2582 /**
2583 * address_space_write_rom: write to address space, including ROM.
2584 *
2585 * This function writes to the specified address space, but will
2586 * write data to both ROM and RAM. This is used for non-guest
2587 * writes like writes from the gdb debug stub or initial loading
2588 * of ROM contents.
2589 *
2590 * Note that portions of the write which attempt to write data to
2591 * a device will be silently ignored -- only real RAM and ROM will
2592 * be written to.
2593 *
2594 * Return a MemTxResult indicating whether the operation succeeded
2595 * or failed (eg unassigned memory, device rejected the transaction,
2596 * IOMMU fault).
2597 *
2598 * @as: #AddressSpace to be accessed
2599 * @addr: address within that address space
2600 * @attrs: memory transaction attributes
2601 * @buf: buffer with the data transferred
2602 * @len: the number of bytes to write
2603 */
2604 MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
2605 MemTxAttrs attrs,
2606 const void *buf, hwaddr len);
2607
2608 /* address_space_ld*: load from an address space
2609 * address_space_st*: store to an address space
2610 *
2611 * These functions perform a load or store of the byte, word,
2612 * longword or quad to the specified address within the AddressSpace.
2613 * The _le suffixed functions treat the data as little endian;
2614 * _be indicates big endian; no suffix indicates "same endianness
2615 * as guest CPU".
2616 *
2617 * The "guest CPU endianness" accessors are deprecated for use outside
2618 * target-* code; devices should be CPU-agnostic and use either the LE
2619 * or the BE accessors.
2620 *
2621 * @as #AddressSpace to be accessed
2622 * @addr: address within that address space
2623 * @val: data value, for stores
2624 * @attrs: memory transaction attributes
2625 * @result: location to write the success/failure of the transaction;
2626 * if NULL, this information is discarded
2627 */
2628
2629 #define SUFFIX
2630 #define ARG1 as
2631 #define ARG1_DECL AddressSpace *as
2632 #include "exec/memory_ldst.h.inc"
2633
2634 #define SUFFIX
2635 #define ARG1 as
2636 #define ARG1_DECL AddressSpace *as
2637 #include "exec/memory_ldst_phys.h.inc"
2638
2639 struct MemoryRegionCache {
2640 void *ptr;
2641 hwaddr xlat;
2642 hwaddr len;
2643 FlatView *fv;
2644 MemoryRegionSection mrs;
2645 bool is_write;
2646 };
2647
2648 #define MEMORY_REGION_CACHE_INVALID ((MemoryRegionCache) { .mrs.mr = NULL })
2649
2650
2651 /* address_space_ld*_cached: load from a cached #MemoryRegion
2652 * address_space_st*_cached: store into a cached #MemoryRegion
2653 *
2654 * These functions perform a load or store of the byte, word,
2655 * longword or quad to the specified address. The address is
2656 * a physical address in the AddressSpace, but it must lie within
2657 * a #MemoryRegion that was mapped with address_space_cache_init.
2658 *
2659 * The _le suffixed functions treat the data as little endian;
2660 * _be indicates big endian; no suffix indicates "same endianness
2661 * as guest CPU".
2662 *
2663 * The "guest CPU endianness" accessors are deprecated for use outside
2664 * target-* code; devices should be CPU-agnostic and use either the LE
2665 * or the BE accessors.
2666 *
2667 * @cache: previously initialized #MemoryRegionCache to be accessed
2668 * @addr: address within the address space
2669 * @val: data value, for stores
2670 * @attrs: memory transaction attributes
2671 * @result: location to write the success/failure of the transaction;
2672 * if NULL, this information is discarded
2673 */
2674
2675 #define SUFFIX _cached_slow
2676 #define ARG1 cache
2677 #define ARG1_DECL MemoryRegionCache *cache
2678 #include "exec/memory_ldst.h.inc"
2679
2680 /* Inline fast path for direct RAM access. */
2681 static inline uint8_t address_space_ldub_cached(MemoryRegionCache *cache,
2682 hwaddr addr, MemTxAttrs attrs, MemTxResult *result)
2683 {
2684 assert(addr < cache->len);
2685 if (likely(cache->ptr)) {
2686 return ldub_p(cache->ptr + addr);
2687 } else {
2688 return address_space_ldub_cached_slow(cache, addr, attrs, result);
2689 }
2690 }
2691
2692 static inline void address_space_stb_cached(MemoryRegionCache *cache,
2693 hwaddr addr, uint8_t val, MemTxAttrs attrs, MemTxResult *result)
2694 {
2695 assert(addr < cache->len);
2696 if (likely(cache->ptr)) {
2697 stb_p(cache->ptr + addr, val);
2698 } else {
2699 address_space_stb_cached_slow(cache, addr, val, attrs, result);
2700 }
2701 }
2702
2703 #define ENDIANNESS _le
2704 #include "exec/memory_ldst_cached.h.inc"
2705
2706 #define ENDIANNESS _be
2707 #include "exec/memory_ldst_cached.h.inc"
2708
2709 #define SUFFIX _cached
2710 #define ARG1 cache
2711 #define ARG1_DECL MemoryRegionCache *cache
2712 #include "exec/memory_ldst_phys.h.inc"
2713
2714 /* address_space_cache_init: prepare for repeated access to a physical
2715 * memory region
2716 *
2717 * @cache: #MemoryRegionCache to be filled
2718 * @as: #AddressSpace to be accessed
2719 * @addr: address within that address space
2720 * @len: length of buffer
2721 * @is_write: indicates the transfer direction
2722 *
2723 * Will only work with RAM, and may map a subset of the requested range by
2724 * returning a value that is less than @len. On failure, return a negative
2725 * errno value.
2726 *
2727 * Because it only works with RAM, this function can be used for
2728 * read-modify-write operations. In this case, is_write should be %true.
2729 *
2730 * Note that addresses passed to the address_space_*_cached functions
2731 * are relative to @addr.
2732 */
2733 int64_t address_space_cache_init(MemoryRegionCache *cache,
2734 AddressSpace *as,
2735 hwaddr addr,
2736 hwaddr len,
2737 bool is_write);
2738
2739 /**
2740 * address_space_cache_invalidate: complete a write to a #MemoryRegionCache
2741 *
2742 * @cache: The #MemoryRegionCache to operate on.
2743 * @addr: The first physical address that was written, relative to the
2744 * address that was passed to @address_space_cache_init.
2745 * @access_len: The number of bytes that were written starting at @addr.
2746 */
2747 void address_space_cache_invalidate(MemoryRegionCache *cache,
2748 hwaddr addr,
2749 hwaddr access_len);
2750
2751 /**
2752 * address_space_cache_destroy: free a #MemoryRegionCache
2753 *
2754 * @cache: The #MemoryRegionCache whose memory should be released.
2755 */
2756 void address_space_cache_destroy(MemoryRegionCache *cache);
2757
2758 /* address_space_get_iotlb_entry: translate an address into an IOTLB
2759 * entry. Should be called from an RCU critical section.
2760 */
2761 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
2762 bool is_write, MemTxAttrs attrs);
2763
2764 /* address_space_translate: translate an address range into an address space
2765 * into a MemoryRegion and an address range into that section. Should be
2766 * called from an RCU critical section, to avoid that the last reference
2767 * to the returned region disappears after address_space_translate returns.
2768 *
2769 * @fv: #FlatView to be accessed
2770 * @addr: address within that address space
2771 * @xlat: pointer to address within the returned memory region section's
2772 * #MemoryRegion.
2773 * @len: pointer to length
2774 * @is_write: indicates the transfer direction
2775 * @attrs: memory attributes
2776 */
2777 MemoryRegion *flatview_translate(FlatView *fv,
2778 hwaddr addr, hwaddr *xlat,
2779 hwaddr *len, bool is_write,
2780 MemTxAttrs attrs);
2781
2782 static inline MemoryRegion *address_space_translate(AddressSpace *as,
2783 hwaddr addr, hwaddr *xlat,
2784 hwaddr *len, bool is_write,
2785 MemTxAttrs attrs)
2786 {
2787 return flatview_translate(address_space_to_flatview(as),
2788 addr, xlat, len, is_write, attrs);
2789 }
2790
2791 /* address_space_access_valid: check for validity of accessing an address
2792 * space range
2793 *
2794 * Check whether memory is assigned to the given address space range, and
2795 * access is permitted by any IOMMU regions that are active for the address
2796 * space.
2797 *
2798 * For now, addr and len should be aligned to a page size. This limitation
2799 * will be lifted in the future.
2800 *
2801 * @as: #AddressSpace to be accessed
2802 * @addr: address within that address space
2803 * @len: length of the area to be checked
2804 * @is_write: indicates the transfer direction
2805 * @attrs: memory attributes
2806 */
2807 bool address_space_access_valid(AddressSpace *as, hwaddr addr, hwaddr len,
2808 bool is_write, MemTxAttrs attrs);
2809
2810 /* address_space_map: map a physical memory region into a host virtual address
2811 *
2812 * May map a subset of the requested range, given by and returned in @plen.
2813 * May return %NULL and set *@plen to zero(0), if resources needed to perform
2814 * the mapping are exhausted.
2815 * Use only for reads OR writes - not for read-modify-write operations.
2816 * Use cpu_register_map_client() to know when retrying the map operation is
2817 * likely to succeed.
2818 *
2819 * @as: #AddressSpace to be accessed
2820 * @addr: address within that address space
2821 * @plen: pointer to length of buffer; updated on return
2822 * @is_write: indicates the transfer direction
2823 * @attrs: memory attributes
2824 */
2825 void *address_space_map(AddressSpace *as, hwaddr addr,
2826 hwaddr *plen, bool is_write, MemTxAttrs attrs);
2827
2828 /* address_space_unmap: Unmaps a memory region previously mapped by address_space_map()
2829 *
2830 * Will also mark the memory as dirty if @is_write == %true. @access_len gives
2831 * the amount of memory that was actually read or written by the caller.
2832 *
2833 * @as: #AddressSpace used
2834 * @buffer: host pointer as returned by address_space_map()
2835 * @len: buffer length as returned by address_space_map()
2836 * @access_len: amount of data actually transferred
2837 * @is_write: indicates the transfer direction
2838 */
2839 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
2840 bool is_write, hwaddr access_len);
2841
2842
2843 /* Internal functions, part of the implementation of address_space_read. */
2844 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
2845 MemTxAttrs attrs, void *buf, hwaddr len);
2846 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
2847 MemTxAttrs attrs, void *buf,
2848 hwaddr len, hwaddr addr1, hwaddr l,
2849 MemoryRegion *mr);
2850 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr);
2851
2852 /* Internal functions, part of the implementation of address_space_read_cached
2853 * and address_space_write_cached. */
2854 MemTxResult address_space_read_cached_slow(MemoryRegionCache *cache,
2855 hwaddr addr, void *buf, hwaddr len);
2856 MemTxResult address_space_write_cached_slow(MemoryRegionCache *cache,
2857 hwaddr addr, const void *buf,
2858 hwaddr len);
2859
2860 int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr);
2861 bool prepare_mmio_access(MemoryRegion *mr);
2862
2863 static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write)
2864 {
2865 if (is_write) {
2866 return memory_region_is_ram(mr) && !mr->readonly &&
2867 !mr->rom_device && !memory_region_is_ram_device(mr);
2868 } else {
2869 return (memory_region_is_ram(mr) && !memory_region_is_ram_device(mr)) ||
2870 memory_region_is_romd(mr);
2871 }
2872 }
2873
2874 /**
2875 * address_space_read: read from an address space.
2876 *
2877 * Return a MemTxResult indicating whether the operation succeeded
2878 * or failed (eg unassigned memory, device rejected the transaction,
2879 * IOMMU fault). Called within RCU critical section.
2880 *
2881 * @as: #AddressSpace to be accessed
2882 * @addr: address within that address space
2883 * @attrs: memory transaction attributes
2884 * @buf: buffer with the data transferred
2885 * @len: length of the data transferred
2886 */
2887 static inline __attribute__((__always_inline__))
2888 MemTxResult address_space_read(AddressSpace *as, hwaddr addr,
2889 MemTxAttrs attrs, void *buf,
2890 hwaddr len)
2891 {
2892 MemTxResult result = MEMTX_OK;
2893 hwaddr l, addr1;
2894 void *ptr;
2895 MemoryRegion *mr;
2896 FlatView *fv;
2897
2898 if (__builtin_constant_p(len)) {
2899 if (len) {
2900 RCU_READ_LOCK_GUARD();
2901 fv = address_space_to_flatview(as);
2902 l = len;
2903 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
2904 if (len == l && memory_access_is_direct(mr, false)) {
2905 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
2906 memcpy(buf, ptr, len);
2907 } else {
2908 result = flatview_read_continue(fv, addr, attrs, buf, len,
2909 addr1, l, mr);
2910 }
2911 }
2912 } else {
2913 result = address_space_read_full(as, addr, attrs, buf, len);
2914 }
2915 return result;
2916 }
2917
2918 /**
2919 * address_space_read_cached: read from a cached RAM region
2920 *
2921 * @cache: Cached region to be addressed
2922 * @addr: address relative to the base of the RAM region
2923 * @buf: buffer with the data transferred
2924 * @len: length of the data transferred
2925 */
2926 static inline MemTxResult
2927 address_space_read_cached(MemoryRegionCache *cache, hwaddr addr,
2928 void *buf, hwaddr len)
2929 {
2930 assert(addr < cache->len && len <= cache->len - addr);
2931 fuzz_dma_read_cb(cache->xlat + addr, len, cache->mrs.mr);
2932 if (likely(cache->ptr)) {
2933 memcpy(buf, cache->ptr + addr, len);
2934 return MEMTX_OK;
2935 } else {
2936 return address_space_read_cached_slow(cache, addr, buf, len);
2937 }
2938 }
2939
2940 /**
2941 * address_space_write_cached: write to a cached RAM region
2942 *
2943 * @cache: Cached region to be addressed
2944 * @addr: address relative to the base of the RAM region
2945 * @buf: buffer with the data transferred
2946 * @len: length of the data transferred
2947 */
2948 static inline MemTxResult
2949 address_space_write_cached(MemoryRegionCache *cache, hwaddr addr,
2950 const void *buf, hwaddr len)
2951 {
2952 assert(addr < cache->len && len <= cache->len - addr);
2953 if (likely(cache->ptr)) {
2954 memcpy(cache->ptr + addr, buf, len);
2955 return MEMTX_OK;
2956 } else {
2957 return address_space_write_cached_slow(cache, addr, buf, len);
2958 }
2959 }
2960
2961 /**
2962 * address_space_set: Fill address space with a constant byte.
2963 *
2964 * Return a MemTxResult indicating whether the operation succeeded
2965 * or failed (eg unassigned memory, device rejected the transaction,
2966 * IOMMU fault).
2967 *
2968 * @as: #AddressSpace to be accessed
2969 * @addr: address within that address space
2970 * @c: constant byte to fill the memory
2971 * @len: the number of bytes to fill with the constant byte
2972 * @attrs: memory transaction attributes
2973 */
2974 MemTxResult address_space_set(AddressSpace *as, hwaddr addr,
2975 uint8_t c, hwaddr len, MemTxAttrs attrs);
2976
2977 #ifdef NEED_CPU_H
2978 /* enum device_endian to MemOp. */
2979 static inline MemOp devend_memop(enum device_endian end)
2980 {
2981 QEMU_BUILD_BUG_ON(DEVICE_HOST_ENDIAN != DEVICE_LITTLE_ENDIAN &&
2982 DEVICE_HOST_ENDIAN != DEVICE_BIG_ENDIAN);
2983
2984 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN
2985 /* Swap if non-host endianness or native (target) endianness */
2986 return (end == DEVICE_HOST_ENDIAN) ? 0 : MO_BSWAP;
2987 #else
2988 const int non_host_endianness =
2989 DEVICE_LITTLE_ENDIAN ^ DEVICE_BIG_ENDIAN ^ DEVICE_HOST_ENDIAN;
2990
2991 /* In this case, native (target) endianness needs no swap. */
2992 return (end == non_host_endianness) ? MO_BSWAP : 0;
2993 #endif
2994 }
2995 #endif
2996
2997 /*
2998 * Inhibit technologies that require discarding of pages in RAM blocks, e.g.,
2999 * to manage the actual amount of memory consumed by the VM (then, the memory
3000 * provided by RAM blocks might be bigger than the desired memory consumption).
3001 * This *must* be set if:
3002 * - Discarding parts of a RAM blocks does not result in the change being
3003 * reflected in the VM and the pages getting freed.
3004 * - All memory in RAM blocks is pinned or duplicated, invaldiating any previous
3005 * discards blindly.
3006 * - Discarding parts of a RAM blocks will result in integrity issues (e.g.,
3007 * encrypted VMs).
3008 * Technologies that only temporarily pin the current working set of a
3009 * driver are fine, because we don't expect such pages to be discarded
3010 * (esp. based on guest action like balloon inflation).
3011 *
3012 * This is *not* to be used to protect from concurrent discards (esp.,
3013 * postcopy).
3014 *
3015 * Returns 0 if successful. Returns -EBUSY if a technology that relies on
3016 * discards to work reliably is active.
3017 */
3018 int ram_block_discard_disable(bool state);
3019
3020 /*
3021 * See ram_block_discard_disable(): only disable uncoordinated discards,
3022 * keeping coordinated discards (via the RamDiscardManager) enabled.
3023 */
3024 int ram_block_uncoordinated_discard_disable(bool state);
3025
3026 /*
3027 * Inhibit technologies that disable discarding of pages in RAM blocks.
3028 *
3029 * Returns 0 if successful. Returns -EBUSY if discards are already set to
3030 * broken.
3031 */
3032 int ram_block_discard_require(bool state);
3033
3034 /*
3035 * See ram_block_discard_require(): only inhibit technologies that disable
3036 * uncoordinated discarding of pages in RAM blocks, allowing co-existance with
3037 * technologies that only inhibit uncoordinated discards (via the
3038 * RamDiscardManager).
3039 */
3040 int ram_block_coordinated_discard_require(bool state);
3041
3042 /*
3043 * Test if any discarding of memory in ram blocks is disabled.
3044 */
3045 bool ram_block_discard_is_disabled(void);
3046
3047 /*
3048 * Test if any discarding of memory in ram blocks is required to work reliably.
3049 */
3050 bool ram_block_discard_is_required(void);
3051
3052 #endif
3053
3054 #endif