]> git.proxmox.com Git - mirror_qemu.git/blob - include/exec/memory.h
memory: Rename memory_region_init_rom() and _rom_device() to _nomigrate()
[mirror_qemu.git] / include / exec / memory.h
1 /*
2 * Physical memory management API
3 *
4 * Copyright 2011 Red Hat, Inc. and/or its affiliates
5 *
6 * Authors:
7 * Avi Kivity <avi@redhat.com>
8 *
9 * This work is licensed under the terms of the GNU GPL, version 2. See
10 * the COPYING file in the top-level directory.
11 *
12 */
13
14 #ifndef MEMORY_H
15 #define MEMORY_H
16
17 #ifndef CONFIG_USER_ONLY
18
19 #include "exec/cpu-common.h"
20 #include "exec/hwaddr.h"
21 #include "exec/memattrs.h"
22 #include "exec/ramlist.h"
23 #include "qemu/queue.h"
24 #include "qemu/int128.h"
25 #include "qemu/notify.h"
26 #include "qom/object.h"
27 #include "qemu/rcu.h"
28 #include "hw/qdev-core.h"
29
30 #define RAM_ADDR_INVALID (~(ram_addr_t)0)
31
32 #define MAX_PHYS_ADDR_SPACE_BITS 62
33 #define MAX_PHYS_ADDR (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1)
34
35 #define TYPE_MEMORY_REGION "qemu:memory-region"
36 #define MEMORY_REGION(obj) \
37 OBJECT_CHECK(MemoryRegion, (obj), TYPE_MEMORY_REGION)
38
39 #define TYPE_IOMMU_MEMORY_REGION "qemu:iommu-memory-region"
40 #define IOMMU_MEMORY_REGION(obj) \
41 OBJECT_CHECK(IOMMUMemoryRegion, (obj), TYPE_IOMMU_MEMORY_REGION)
42 #define IOMMU_MEMORY_REGION_CLASS(klass) \
43 OBJECT_CLASS_CHECK(IOMMUMemoryRegionClass, (klass), \
44 TYPE_IOMMU_MEMORY_REGION)
45 #define IOMMU_MEMORY_REGION_GET_CLASS(obj) \
46 OBJECT_GET_CLASS(IOMMUMemoryRegionClass, (obj), \
47 TYPE_IOMMU_MEMORY_REGION)
48
49 typedef struct MemoryRegionOps MemoryRegionOps;
50 typedef struct MemoryRegionMmio MemoryRegionMmio;
51
52 struct MemoryRegionMmio {
53 CPUReadMemoryFunc *read[3];
54 CPUWriteMemoryFunc *write[3];
55 };
56
57 typedef struct IOMMUTLBEntry IOMMUTLBEntry;
58
59 /* See address_space_translate: bit 0 is read, bit 1 is write. */
60 typedef enum {
61 IOMMU_NONE = 0,
62 IOMMU_RO = 1,
63 IOMMU_WO = 2,
64 IOMMU_RW = 3,
65 } IOMMUAccessFlags;
66
67 #define IOMMU_ACCESS_FLAG(r, w) (((r) ? IOMMU_RO : 0) | ((w) ? IOMMU_WO : 0))
68
69 struct IOMMUTLBEntry {
70 AddressSpace *target_as;
71 hwaddr iova;
72 hwaddr translated_addr;
73 hwaddr addr_mask; /* 0xfff = 4k translation */
74 IOMMUAccessFlags perm;
75 };
76
77 /*
78 * Bitmap for different IOMMUNotifier capabilities. Each notifier can
79 * register with one or multiple IOMMU Notifier capability bit(s).
80 */
81 typedef enum {
82 IOMMU_NOTIFIER_NONE = 0,
83 /* Notify cache invalidations */
84 IOMMU_NOTIFIER_UNMAP = 0x1,
85 /* Notify entry changes (newly created entries) */
86 IOMMU_NOTIFIER_MAP = 0x2,
87 } IOMMUNotifierFlag;
88
89 #define IOMMU_NOTIFIER_ALL (IOMMU_NOTIFIER_MAP | IOMMU_NOTIFIER_UNMAP)
90
91 struct IOMMUNotifier;
92 typedef void (*IOMMUNotify)(struct IOMMUNotifier *notifier,
93 IOMMUTLBEntry *data);
94
95 struct IOMMUNotifier {
96 IOMMUNotify notify;
97 IOMMUNotifierFlag notifier_flags;
98 /* Notify for address space range start <= addr <= end */
99 hwaddr start;
100 hwaddr end;
101 QLIST_ENTRY(IOMMUNotifier) node;
102 };
103 typedef struct IOMMUNotifier IOMMUNotifier;
104
105 static inline void iommu_notifier_init(IOMMUNotifier *n, IOMMUNotify fn,
106 IOMMUNotifierFlag flags,
107 hwaddr start, hwaddr end)
108 {
109 n->notify = fn;
110 n->notifier_flags = flags;
111 n->start = start;
112 n->end = end;
113 }
114
115 /* New-style MMIO accessors can indicate that the transaction failed.
116 * A zero (MEMTX_OK) response means success; anything else is a failure
117 * of some kind. The memory subsystem will bitwise-OR together results
118 * if it is synthesizing an operation from multiple smaller accesses.
119 */
120 #define MEMTX_OK 0
121 #define MEMTX_ERROR (1U << 0) /* device returned an error */
122 #define MEMTX_DECODE_ERROR (1U << 1) /* nothing at that address */
123 typedef uint32_t MemTxResult;
124
125 /*
126 * Memory region callbacks
127 */
128 struct MemoryRegionOps {
129 /* Read from the memory region. @addr is relative to @mr; @size is
130 * in bytes. */
131 uint64_t (*read)(void *opaque,
132 hwaddr addr,
133 unsigned size);
134 /* Write to the memory region. @addr is relative to @mr; @size is
135 * in bytes. */
136 void (*write)(void *opaque,
137 hwaddr addr,
138 uint64_t data,
139 unsigned size);
140
141 MemTxResult (*read_with_attrs)(void *opaque,
142 hwaddr addr,
143 uint64_t *data,
144 unsigned size,
145 MemTxAttrs attrs);
146 MemTxResult (*write_with_attrs)(void *opaque,
147 hwaddr addr,
148 uint64_t data,
149 unsigned size,
150 MemTxAttrs attrs);
151 /* Instruction execution pre-callback:
152 * @addr is the address of the access relative to the @mr.
153 * @size is the size of the area returned by the callback.
154 * @offset is the location of the pointer inside @mr.
155 *
156 * Returns a pointer to a location which contains guest code.
157 */
158 void *(*request_ptr)(void *opaque, hwaddr addr, unsigned *size,
159 unsigned *offset);
160
161 enum device_endian endianness;
162 /* Guest-visible constraints: */
163 struct {
164 /* If nonzero, specify bounds on access sizes beyond which a machine
165 * check is thrown.
166 */
167 unsigned min_access_size;
168 unsigned max_access_size;
169 /* If true, unaligned accesses are supported. Otherwise unaligned
170 * accesses throw machine checks.
171 */
172 bool unaligned;
173 /*
174 * If present, and returns #false, the transaction is not accepted
175 * by the device (and results in machine dependent behaviour such
176 * as a machine check exception).
177 */
178 bool (*accepts)(void *opaque, hwaddr addr,
179 unsigned size, bool is_write);
180 } valid;
181 /* Internal implementation constraints: */
182 struct {
183 /* If nonzero, specifies the minimum size implemented. Smaller sizes
184 * will be rounded upwards and a partial result will be returned.
185 */
186 unsigned min_access_size;
187 /* If nonzero, specifies the maximum size implemented. Larger sizes
188 * will be done as a series of accesses with smaller sizes.
189 */
190 unsigned max_access_size;
191 /* If true, unaligned accesses are supported. Otherwise all accesses
192 * are converted to (possibly multiple) naturally aligned accesses.
193 */
194 bool unaligned;
195 } impl;
196
197 /* If .read and .write are not present, old_mmio may be used for
198 * backwards compatibility with old mmio registration
199 */
200 const MemoryRegionMmio old_mmio;
201 };
202
203 typedef struct IOMMUMemoryRegionClass {
204 /* private */
205 struct DeviceClass parent_class;
206
207 /*
208 * Return a TLB entry that contains a given address. Flag should
209 * be the access permission of this translation operation. We can
210 * set flag to IOMMU_NONE to mean that we don't need any
211 * read/write permission checks, like, when for region replay.
212 */
213 IOMMUTLBEntry (*translate)(IOMMUMemoryRegion *iommu, hwaddr addr,
214 IOMMUAccessFlags flag);
215 /* Returns minimum supported page size */
216 uint64_t (*get_min_page_size)(IOMMUMemoryRegion *iommu);
217 /* Called when IOMMU Notifier flag changed */
218 void (*notify_flag_changed)(IOMMUMemoryRegion *iommu,
219 IOMMUNotifierFlag old_flags,
220 IOMMUNotifierFlag new_flags);
221 /* Set this up to provide customized IOMMU replay function */
222 void (*replay)(IOMMUMemoryRegion *iommu, IOMMUNotifier *notifier);
223 } IOMMUMemoryRegionClass;
224
225 typedef struct CoalescedMemoryRange CoalescedMemoryRange;
226 typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd;
227
228 struct MemoryRegion {
229 Object parent_obj;
230
231 /* All fields are private - violators will be prosecuted */
232
233 /* The following fields should fit in a cache line */
234 bool romd_mode;
235 bool ram;
236 bool subpage;
237 bool readonly; /* For RAM regions */
238 bool rom_device;
239 bool flush_coalesced_mmio;
240 bool global_locking;
241 uint8_t dirty_log_mask;
242 bool is_iommu;
243 RAMBlock *ram_block;
244 Object *owner;
245
246 const MemoryRegionOps *ops;
247 void *opaque;
248 MemoryRegion *container;
249 Int128 size;
250 hwaddr addr;
251 void (*destructor)(MemoryRegion *mr);
252 uint64_t align;
253 bool terminates;
254 bool ram_device;
255 bool enabled;
256 bool warning_printed; /* For reservations */
257 uint8_t vga_logging_count;
258 MemoryRegion *alias;
259 hwaddr alias_offset;
260 int32_t priority;
261 QTAILQ_HEAD(subregions, MemoryRegion) subregions;
262 QTAILQ_ENTRY(MemoryRegion) subregions_link;
263 QTAILQ_HEAD(coalesced_ranges, CoalescedMemoryRange) coalesced;
264 const char *name;
265 unsigned ioeventfd_nb;
266 MemoryRegionIoeventfd *ioeventfds;
267 };
268
269 struct IOMMUMemoryRegion {
270 MemoryRegion parent_obj;
271
272 QLIST_HEAD(, IOMMUNotifier) iommu_notify;
273 IOMMUNotifierFlag iommu_notify_flags;
274 };
275
276 #define IOMMU_NOTIFIER_FOREACH(n, mr) \
277 QLIST_FOREACH((n), &(mr)->iommu_notify, node)
278
279 /**
280 * MemoryListener: callbacks structure for updates to the physical memory map
281 *
282 * Allows a component to adjust to changes in the guest-visible memory map.
283 * Use with memory_listener_register() and memory_listener_unregister().
284 */
285 struct MemoryListener {
286 void (*begin)(MemoryListener *listener);
287 void (*commit)(MemoryListener *listener);
288 void (*region_add)(MemoryListener *listener, MemoryRegionSection *section);
289 void (*region_del)(MemoryListener *listener, MemoryRegionSection *section);
290 void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section);
291 void (*log_start)(MemoryListener *listener, MemoryRegionSection *section,
292 int old, int new);
293 void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section,
294 int old, int new);
295 void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section);
296 void (*log_global_start)(MemoryListener *listener);
297 void (*log_global_stop)(MemoryListener *listener);
298 void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section,
299 bool match_data, uint64_t data, EventNotifier *e);
300 void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section,
301 bool match_data, uint64_t data, EventNotifier *e);
302 void (*coalesced_mmio_add)(MemoryListener *listener, MemoryRegionSection *section,
303 hwaddr addr, hwaddr len);
304 void (*coalesced_mmio_del)(MemoryListener *listener, MemoryRegionSection *section,
305 hwaddr addr, hwaddr len);
306 /* Lower = earlier (during add), later (during del) */
307 unsigned priority;
308 AddressSpace *address_space;
309 QTAILQ_ENTRY(MemoryListener) link;
310 QTAILQ_ENTRY(MemoryListener) link_as;
311 };
312
313 /**
314 * AddressSpace: describes a mapping of addresses to #MemoryRegion objects
315 */
316 struct AddressSpace {
317 /* All fields are private. */
318 struct rcu_head rcu;
319 char *name;
320 MemoryRegion *root;
321 int ref_count;
322 bool malloced;
323
324 /* Accessed via RCU. */
325 struct FlatView *current_map;
326
327 int ioeventfd_nb;
328 struct MemoryRegionIoeventfd *ioeventfds;
329 struct AddressSpaceDispatch *dispatch;
330 struct AddressSpaceDispatch *next_dispatch;
331 MemoryListener dispatch_listener;
332 QTAILQ_HEAD(memory_listeners_as, MemoryListener) listeners;
333 QTAILQ_ENTRY(AddressSpace) address_spaces_link;
334 };
335
336 /**
337 * MemoryRegionSection: describes a fragment of a #MemoryRegion
338 *
339 * @mr: the region, or %NULL if empty
340 * @address_space: the address space the region is mapped in
341 * @offset_within_region: the beginning of the section, relative to @mr's start
342 * @size: the size of the section; will not exceed @mr's boundaries
343 * @offset_within_address_space: the address of the first byte of the section
344 * relative to the region's address space
345 * @readonly: writes to this section are ignored
346 */
347 struct MemoryRegionSection {
348 MemoryRegion *mr;
349 AddressSpace *address_space;
350 hwaddr offset_within_region;
351 Int128 size;
352 hwaddr offset_within_address_space;
353 bool readonly;
354 };
355
356 /**
357 * memory_region_init: Initialize a memory region
358 *
359 * The region typically acts as a container for other memory regions. Use
360 * memory_region_add_subregion() to add subregions.
361 *
362 * @mr: the #MemoryRegion to be initialized
363 * @owner: the object that tracks the region's reference count
364 * @name: used for debugging; not visible to the user or ABI
365 * @size: size of the region; any subregions beyond this size will be clipped
366 */
367 void memory_region_init(MemoryRegion *mr,
368 struct Object *owner,
369 const char *name,
370 uint64_t size);
371
372 /**
373 * memory_region_ref: Add 1 to a memory region's reference count
374 *
375 * Whenever memory regions are accessed outside the BQL, they need to be
376 * preserved against hot-unplug. MemoryRegions actually do not have their
377 * own reference count; they piggyback on a QOM object, their "owner".
378 * This function adds a reference to the owner.
379 *
380 * All MemoryRegions must have an owner if they can disappear, even if the
381 * device they belong to operates exclusively under the BQL. This is because
382 * the region could be returned at any time by memory_region_find, and this
383 * is usually under guest control.
384 *
385 * @mr: the #MemoryRegion
386 */
387 void memory_region_ref(MemoryRegion *mr);
388
389 /**
390 * memory_region_unref: Remove 1 to a memory region's reference count
391 *
392 * Whenever memory regions are accessed outside the BQL, they need to be
393 * preserved against hot-unplug. MemoryRegions actually do not have their
394 * own reference count; they piggyback on a QOM object, their "owner".
395 * This function removes a reference to the owner and possibly destroys it.
396 *
397 * @mr: the #MemoryRegion
398 */
399 void memory_region_unref(MemoryRegion *mr);
400
401 /**
402 * memory_region_init_io: Initialize an I/O memory region.
403 *
404 * Accesses into the region will cause the callbacks in @ops to be called.
405 * if @size is nonzero, subregions will be clipped to @size.
406 *
407 * @mr: the #MemoryRegion to be initialized.
408 * @owner: the object that tracks the region's reference count
409 * @ops: a structure containing read and write callbacks to be used when
410 * I/O is performed on the region.
411 * @opaque: passed to the read and write callbacks of the @ops structure.
412 * @name: used for debugging; not visible to the user or ABI
413 * @size: size of the region.
414 */
415 void memory_region_init_io(MemoryRegion *mr,
416 struct Object *owner,
417 const MemoryRegionOps *ops,
418 void *opaque,
419 const char *name,
420 uint64_t size);
421
422 /**
423 * memory_region_init_ram_nomigrate: Initialize RAM memory region. Accesses
424 * into the region will modify memory
425 * directly.
426 *
427 * @mr: the #MemoryRegion to be initialized.
428 * @owner: the object that tracks the region's reference count
429 * @name: Region name, becomes part of RAMBlock name used in migration stream
430 * must be unique within any device
431 * @size: size of the region.
432 * @errp: pointer to Error*, to store an error if it happens.
433 *
434 * Note that this function does not do anything to cause the data in the
435 * RAM memory region to be migrated; that is the responsibility of the caller.
436 */
437 void memory_region_init_ram_nomigrate(MemoryRegion *mr,
438 struct Object *owner,
439 const char *name,
440 uint64_t size,
441 Error **errp);
442
443 /**
444 * memory_region_init_resizeable_ram: Initialize memory region with resizeable
445 * RAM. Accesses into the region will
446 * modify memory directly. Only an initial
447 * portion of this RAM is actually used.
448 * The used size can change across reboots.
449 *
450 * @mr: the #MemoryRegion to be initialized.
451 * @owner: the object that tracks the region's reference count
452 * @name: Region name, becomes part of RAMBlock name used in migration stream
453 * must be unique within any device
454 * @size: used size of the region.
455 * @max_size: max size of the region.
456 * @resized: callback to notify owner about used size change.
457 * @errp: pointer to Error*, to store an error if it happens.
458 *
459 * Note that this function does not do anything to cause the data in the
460 * RAM memory region to be migrated; that is the responsibility of the caller.
461 */
462 void memory_region_init_resizeable_ram(MemoryRegion *mr,
463 struct Object *owner,
464 const char *name,
465 uint64_t size,
466 uint64_t max_size,
467 void (*resized)(const char*,
468 uint64_t length,
469 void *host),
470 Error **errp);
471 #ifdef __linux__
472 /**
473 * memory_region_init_ram_from_file: Initialize RAM memory region with a
474 * mmap-ed backend.
475 *
476 * @mr: the #MemoryRegion to be initialized.
477 * @owner: the object that tracks the region's reference count
478 * @name: Region name, becomes part of RAMBlock name used in migration stream
479 * must be unique within any device
480 * @size: size of the region.
481 * @share: %true if memory must be mmaped with the MAP_SHARED flag
482 * @path: the path in which to allocate the RAM.
483 * @errp: pointer to Error*, to store an error if it happens.
484 *
485 * Note that this function does not do anything to cause the data in the
486 * RAM memory region to be migrated; that is the responsibility of the caller.
487 */
488 void memory_region_init_ram_from_file(MemoryRegion *mr,
489 struct Object *owner,
490 const char *name,
491 uint64_t size,
492 bool share,
493 const char *path,
494 Error **errp);
495
496 /**
497 * memory_region_init_ram_from_fd: Initialize RAM memory region with a
498 * mmap-ed backend.
499 *
500 * @mr: the #MemoryRegion to be initialized.
501 * @owner: the object that tracks the region's reference count
502 * @name: the name of the region.
503 * @size: size of the region.
504 * @share: %true if memory must be mmaped with the MAP_SHARED flag
505 * @fd: the fd to mmap.
506 * @errp: pointer to Error*, to store an error if it happens.
507 *
508 * Note that this function does not do anything to cause the data in the
509 * RAM memory region to be migrated; that is the responsibility of the caller.
510 */
511 void memory_region_init_ram_from_fd(MemoryRegion *mr,
512 struct Object *owner,
513 const char *name,
514 uint64_t size,
515 bool share,
516 int fd,
517 Error **errp);
518 #endif
519
520 /**
521 * memory_region_init_ram_ptr: Initialize RAM memory region from a
522 * user-provided pointer. Accesses into the
523 * region will modify memory directly.
524 *
525 * @mr: the #MemoryRegion to be initialized.
526 * @owner: the object that tracks the region's reference count
527 * @name: Region name, becomes part of RAMBlock name used in migration stream
528 * must be unique within any device
529 * @size: size of the region.
530 * @ptr: memory to be mapped; must contain at least @size bytes.
531 *
532 * Note that this function does not do anything to cause the data in the
533 * RAM memory region to be migrated; that is the responsibility of the caller.
534 */
535 void memory_region_init_ram_ptr(MemoryRegion *mr,
536 struct Object *owner,
537 const char *name,
538 uint64_t size,
539 void *ptr);
540
541 /**
542 * memory_region_init_ram_device_ptr: Initialize RAM device memory region from
543 * a user-provided pointer.
544 *
545 * A RAM device represents a mapping to a physical device, such as to a PCI
546 * MMIO BAR of an vfio-pci assigned device. The memory region may be mapped
547 * into the VM address space and access to the region will modify memory
548 * directly. However, the memory region should not be included in a memory
549 * dump (device may not be enabled/mapped at the time of the dump), and
550 * operations incompatible with manipulating MMIO should be avoided. Replaces
551 * skip_dump flag.
552 *
553 * @mr: the #MemoryRegion to be initialized.
554 * @owner: the object that tracks the region's reference count
555 * @name: the name of the region.
556 * @size: size of the region.
557 * @ptr: memory to be mapped; must contain at least @size bytes.
558 *
559 * Note that this function does not do anything to cause the data in the
560 * RAM memory region to be migrated; that is the responsibility of the caller.
561 * (For RAM device memory regions, migrating the contents rarely makes sense.)
562 */
563 void memory_region_init_ram_device_ptr(MemoryRegion *mr,
564 struct Object *owner,
565 const char *name,
566 uint64_t size,
567 void *ptr);
568
569 /**
570 * memory_region_init_alias: Initialize a memory region that aliases all or a
571 * part of another memory region.
572 *
573 * @mr: the #MemoryRegion to be initialized.
574 * @owner: the object that tracks the region's reference count
575 * @name: used for debugging; not visible to the user or ABI
576 * @orig: the region to be referenced; @mr will be equivalent to
577 * @orig between @offset and @offset + @size - 1.
578 * @offset: start of the section in @orig to be referenced.
579 * @size: size of the region.
580 */
581 void memory_region_init_alias(MemoryRegion *mr,
582 struct Object *owner,
583 const char *name,
584 MemoryRegion *orig,
585 hwaddr offset,
586 uint64_t size);
587
588 /**
589 * memory_region_init_rom_nomigrate: Initialize a ROM memory region.
590 *
591 * This has the same effect as calling memory_region_init_ram_nomigrate()
592 * and then marking the resulting region read-only with
593 * memory_region_set_readonly().
594 *
595 * Note that this function does not do anything to cause the data in the
596 * RAM side of the memory region to be migrated; that is the responsibility
597 * of the caller.
598 *
599 * @mr: the #MemoryRegion to be initialized.
600 * @owner: the object that tracks the region's reference count
601 * @name: Region name, becomes part of RAMBlock name used in migration stream
602 * must be unique within any device
603 * @size: size of the region.
604 * @errp: pointer to Error*, to store an error if it happens.
605 */
606 void memory_region_init_rom_nomigrate(MemoryRegion *mr,
607 struct Object *owner,
608 const char *name,
609 uint64_t size,
610 Error **errp);
611
612 /**
613 * memory_region_init_rom_device_nomigrate: Initialize a ROM memory region.
614 * Writes are handled via callbacks.
615 *
616 * Note that this function does not do anything to cause the data in the
617 * RAM side of the memory region to be migrated; that is the responsibility
618 * of the caller.
619 *
620 * @mr: the #MemoryRegion to be initialized.
621 * @owner: the object that tracks the region's reference count
622 * @ops: callbacks for write access handling (must not be NULL).
623 * @name: Region name, becomes part of RAMBlock name used in migration stream
624 * must be unique within any device
625 * @size: size of the region.
626 * @errp: pointer to Error*, to store an error if it happens.
627 */
628 void memory_region_init_rom_device_nomigrate(MemoryRegion *mr,
629 struct Object *owner,
630 const MemoryRegionOps *ops,
631 void *opaque,
632 const char *name,
633 uint64_t size,
634 Error **errp);
635
636 /**
637 * memory_region_init_reservation: Initialize a memory region that reserves
638 * I/O space.
639 *
640 * A reservation region primariy serves debugging purposes. It claims I/O
641 * space that is not supposed to be handled by QEMU itself. Any access via
642 * the memory API will cause an abort().
643 * This function is deprecated. Use memory_region_init_io() with NULL
644 * callbacks instead.
645 *
646 * @mr: the #MemoryRegion to be initialized
647 * @owner: the object that tracks the region's reference count
648 * @name: used for debugging; not visible to the user or ABI
649 * @size: size of the region.
650 */
651 static inline void memory_region_init_reservation(MemoryRegion *mr,
652 Object *owner,
653 const char *name,
654 uint64_t size)
655 {
656 memory_region_init_io(mr, owner, NULL, mr, name, size);
657 }
658
659 /**
660 * memory_region_init_iommu: Initialize a memory region of a custom type
661 * that translates addresses
662 *
663 * An IOMMU region translates addresses and forwards accesses to a target
664 * memory region.
665 *
666 * @typename: QOM class name
667 * @_iommu_mr: the #IOMMUMemoryRegion to be initialized
668 * @instance_size: the IOMMUMemoryRegion subclass instance size
669 * @owner: the object that tracks the region's reference count
670 * @ops: a function that translates addresses into the @target region
671 * @name: used for debugging; not visible to the user or ABI
672 * @size: size of the region.
673 */
674 void memory_region_init_iommu(void *_iommu_mr,
675 size_t instance_size,
676 const char *mrtypename,
677 Object *owner,
678 const char *name,
679 uint64_t size);
680
681 /**
682 * memory_region_owner: get a memory region's owner.
683 *
684 * @mr: the memory region being queried.
685 */
686 struct Object *memory_region_owner(MemoryRegion *mr);
687
688 /**
689 * memory_region_size: get a memory region's size.
690 *
691 * @mr: the memory region being queried.
692 */
693 uint64_t memory_region_size(MemoryRegion *mr);
694
695 /**
696 * memory_region_is_ram: check whether a memory region is random access
697 *
698 * Returns %true is a memory region is random access.
699 *
700 * @mr: the memory region being queried
701 */
702 static inline bool memory_region_is_ram(MemoryRegion *mr)
703 {
704 return mr->ram;
705 }
706
707 /**
708 * memory_region_is_ram_device: check whether a memory region is a ram device
709 *
710 * Returns %true is a memory region is a device backed ram region
711 *
712 * @mr: the memory region being queried
713 */
714 bool memory_region_is_ram_device(MemoryRegion *mr);
715
716 /**
717 * memory_region_is_romd: check whether a memory region is in ROMD mode
718 *
719 * Returns %true if a memory region is a ROM device and currently set to allow
720 * direct reads.
721 *
722 * @mr: the memory region being queried
723 */
724 static inline bool memory_region_is_romd(MemoryRegion *mr)
725 {
726 return mr->rom_device && mr->romd_mode;
727 }
728
729 /**
730 * memory_region_get_iommu: check whether a memory region is an iommu
731 *
732 * Returns pointer to IOMMUMemoryRegion if a memory region is an iommu,
733 * otherwise NULL.
734 *
735 * @mr: the memory region being queried
736 */
737 static inline IOMMUMemoryRegion *memory_region_get_iommu(MemoryRegion *mr)
738 {
739 if (mr->alias) {
740 return memory_region_get_iommu(mr->alias);
741 }
742 if (mr->is_iommu) {
743 return (IOMMUMemoryRegion *) mr;
744 }
745 return NULL;
746 }
747
748 /**
749 * memory_region_get_iommu_class_nocheck: returns iommu memory region class
750 * if an iommu or NULL if not
751 *
752 * Returns pointer to IOMMUMemoryRegioniClass if a memory region is an iommu,
753 * otherwise NULL. This is fast path avoinding QOM checking, use with caution.
754 *
755 * @mr: the memory region being queried
756 */
757 static inline IOMMUMemoryRegionClass *memory_region_get_iommu_class_nocheck(
758 IOMMUMemoryRegion *iommu_mr)
759 {
760 return (IOMMUMemoryRegionClass *) (((Object *)iommu_mr)->class);
761 }
762
763 #define memory_region_is_iommu(mr) (memory_region_get_iommu(mr) != NULL)
764
765 /**
766 * memory_region_iommu_get_min_page_size: get minimum supported page size
767 * for an iommu
768 *
769 * Returns minimum supported page size for an iommu.
770 *
771 * @iommu_mr: the memory region being queried
772 */
773 uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion *iommu_mr);
774
775 /**
776 * memory_region_notify_iommu: notify a change in an IOMMU translation entry.
777 *
778 * The notification type will be decided by entry.perm bits:
779 *
780 * - For UNMAP (cache invalidation) notifies: set entry.perm to IOMMU_NONE.
781 * - For MAP (newly added entry) notifies: set entry.perm to the
782 * permission of the page (which is definitely !IOMMU_NONE).
783 *
784 * Note: for any IOMMU implementation, an in-place mapping change
785 * should be notified with an UNMAP followed by a MAP.
786 *
787 * @iommu_mr: the memory region that was changed
788 * @entry: the new entry in the IOMMU translation table. The entry
789 * replaces all old entries for the same virtual I/O address range.
790 * Deleted entries have .@perm == 0.
791 */
792 void memory_region_notify_iommu(IOMMUMemoryRegion *iommu_mr,
793 IOMMUTLBEntry entry);
794
795 /**
796 * memory_region_notify_one: notify a change in an IOMMU translation
797 * entry to a single notifier
798 *
799 * This works just like memory_region_notify_iommu(), but it only
800 * notifies a specific notifier, not all of them.
801 *
802 * @notifier: the notifier to be notified
803 * @entry: the new entry in the IOMMU translation table. The entry
804 * replaces all old entries for the same virtual I/O address range.
805 * Deleted entries have .@perm == 0.
806 */
807 void memory_region_notify_one(IOMMUNotifier *notifier,
808 IOMMUTLBEntry *entry);
809
810 /**
811 * memory_region_register_iommu_notifier: register a notifier for changes to
812 * IOMMU translation entries.
813 *
814 * @mr: the memory region to observe
815 * @n: the IOMMUNotifier to be added; the notify callback receives a
816 * pointer to an #IOMMUTLBEntry as the opaque value; the pointer
817 * ceases to be valid on exit from the notifier.
818 */
819 void memory_region_register_iommu_notifier(MemoryRegion *mr,
820 IOMMUNotifier *n);
821
822 /**
823 * memory_region_iommu_replay: replay existing IOMMU translations to
824 * a notifier with the minimum page granularity returned by
825 * mr->iommu_ops->get_page_size().
826 *
827 * @iommu_mr: the memory region to observe
828 * @n: the notifier to which to replay iommu mappings
829 */
830 void memory_region_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n);
831
832 /**
833 * memory_region_iommu_replay_all: replay existing IOMMU translations
834 * to all the notifiers registered.
835 *
836 * @iommu_mr: the memory region to observe
837 */
838 void memory_region_iommu_replay_all(IOMMUMemoryRegion *iommu_mr);
839
840 /**
841 * memory_region_unregister_iommu_notifier: unregister a notifier for
842 * changes to IOMMU translation entries.
843 *
844 * @mr: the memory region which was observed and for which notity_stopped()
845 * needs to be called
846 * @n: the notifier to be removed.
847 */
848 void memory_region_unregister_iommu_notifier(MemoryRegion *mr,
849 IOMMUNotifier *n);
850
851 /**
852 * memory_region_name: get a memory region's name
853 *
854 * Returns the string that was used to initialize the memory region.
855 *
856 * @mr: the memory region being queried
857 */
858 const char *memory_region_name(const MemoryRegion *mr);
859
860 /**
861 * memory_region_is_logging: return whether a memory region is logging writes
862 *
863 * Returns %true if the memory region is logging writes for the given client
864 *
865 * @mr: the memory region being queried
866 * @client: the client being queried
867 */
868 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client);
869
870 /**
871 * memory_region_get_dirty_log_mask: return the clients for which a
872 * memory region is logging writes.
873 *
874 * Returns a bitmap of clients, in which the DIRTY_MEMORY_* constants
875 * are the bit indices.
876 *
877 * @mr: the memory region being queried
878 */
879 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr);
880
881 /**
882 * memory_region_is_rom: check whether a memory region is ROM
883 *
884 * Returns %true is a memory region is read-only memory.
885 *
886 * @mr: the memory region being queried
887 */
888 static inline bool memory_region_is_rom(MemoryRegion *mr)
889 {
890 return mr->ram && mr->readonly;
891 }
892
893
894 /**
895 * memory_region_get_fd: Get a file descriptor backing a RAM memory region.
896 *
897 * Returns a file descriptor backing a file-based RAM memory region,
898 * or -1 if the region is not a file-based RAM memory region.
899 *
900 * @mr: the RAM or alias memory region being queried.
901 */
902 int memory_region_get_fd(MemoryRegion *mr);
903
904 /**
905 * memory_region_from_host: Convert a pointer into a RAM memory region
906 * and an offset within it.
907 *
908 * Given a host pointer inside a RAM memory region (created with
909 * memory_region_init_ram() or memory_region_init_ram_ptr()), return
910 * the MemoryRegion and the offset within it.
911 *
912 * Use with care; by the time this function returns, the returned pointer is
913 * not protected by RCU anymore. If the caller is not within an RCU critical
914 * section and does not hold the iothread lock, it must have other means of
915 * protecting the pointer, such as a reference to the region that includes
916 * the incoming ram_addr_t.
917 *
918 * @mr: the memory region being queried.
919 */
920 MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset);
921
922 /**
923 * memory_region_get_ram_ptr: Get a pointer into a RAM memory region.
924 *
925 * Returns a host pointer to a RAM memory region (created with
926 * memory_region_init_ram() or memory_region_init_ram_ptr()).
927 *
928 * Use with care; by the time this function returns, the returned pointer is
929 * not protected by RCU anymore. If the caller is not within an RCU critical
930 * section and does not hold the iothread lock, it must have other means of
931 * protecting the pointer, such as a reference to the region that includes
932 * the incoming ram_addr_t.
933 *
934 * @mr: the memory region being queried.
935 */
936 void *memory_region_get_ram_ptr(MemoryRegion *mr);
937
938 /* memory_region_ram_resize: Resize a RAM region.
939 *
940 * Only legal before guest might have detected the memory size: e.g. on
941 * incoming migration, or right after reset.
942 *
943 * @mr: a memory region created with @memory_region_init_resizeable_ram.
944 * @newsize: the new size the region
945 * @errp: pointer to Error*, to store an error if it happens.
946 */
947 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize,
948 Error **errp);
949
950 /**
951 * memory_region_set_log: Turn dirty logging on or off for a region.
952 *
953 * Turns dirty logging on or off for a specified client (display, migration).
954 * Only meaningful for RAM regions.
955 *
956 * @mr: the memory region being updated.
957 * @log: whether dirty logging is to be enabled or disabled.
958 * @client: the user of the logging information; %DIRTY_MEMORY_VGA only.
959 */
960 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client);
961
962 /**
963 * memory_region_get_dirty: Check whether a range of bytes is dirty
964 * for a specified client.
965 *
966 * Checks whether a range of bytes has been written to since the last
967 * call to memory_region_reset_dirty() with the same @client. Dirty logging
968 * must be enabled.
969 *
970 * @mr: the memory region being queried.
971 * @addr: the address (relative to the start of the region) being queried.
972 * @size: the size of the range being queried.
973 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
974 * %DIRTY_MEMORY_VGA.
975 */
976 bool memory_region_get_dirty(MemoryRegion *mr, hwaddr addr,
977 hwaddr size, unsigned client);
978
979 /**
980 * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region.
981 *
982 * Marks a range of bytes as dirty, after it has been dirtied outside
983 * guest code.
984 *
985 * @mr: the memory region being dirtied.
986 * @addr: the address (relative to the start of the region) being dirtied.
987 * @size: size of the range being dirtied.
988 */
989 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
990 hwaddr size);
991
992 /**
993 * memory_region_test_and_clear_dirty: Check whether a range of bytes is dirty
994 * for a specified client. It clears them.
995 *
996 * Checks whether a range of bytes has been written to since the last
997 * call to memory_region_reset_dirty() with the same @client. Dirty logging
998 * must be enabled.
999 *
1000 * @mr: the memory region being queried.
1001 * @addr: the address (relative to the start of the region) being queried.
1002 * @size: the size of the range being queried.
1003 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
1004 * %DIRTY_MEMORY_VGA.
1005 */
1006 bool memory_region_test_and_clear_dirty(MemoryRegion *mr, hwaddr addr,
1007 hwaddr size, unsigned client);
1008
1009 /**
1010 * memory_region_snapshot_and_clear_dirty: Get a snapshot of the dirty
1011 * bitmap and clear it.
1012 *
1013 * Creates a snapshot of the dirty bitmap, clears the dirty bitmap and
1014 * returns the snapshot. The snapshot can then be used to query dirty
1015 * status, using memory_region_snapshot_get_dirty. Unlike
1016 * memory_region_test_and_clear_dirty this allows to query the same
1017 * page multiple times, which is especially useful for display updates
1018 * where the scanlines often are not page aligned.
1019 *
1020 * The dirty bitmap region which gets copyed into the snapshot (and
1021 * cleared afterwards) can be larger than requested. The boundaries
1022 * are rounded up/down so complete bitmap longs (covering 64 pages on
1023 * 64bit hosts) can be copied over into the bitmap snapshot. Which
1024 * isn't a problem for display updates as the extra pages are outside
1025 * the visible area, and in case the visible area changes a full
1026 * display redraw is due anyway. Should other use cases for this
1027 * function emerge we might have to revisit this implementation
1028 * detail.
1029 *
1030 * Use g_free to release DirtyBitmapSnapshot.
1031 *
1032 * @mr: the memory region being queried.
1033 * @addr: the address (relative to the start of the region) being queried.
1034 * @size: the size of the range being queried.
1035 * @client: the user of the logging information; typically %DIRTY_MEMORY_VGA.
1036 */
1037 DirtyBitmapSnapshot *memory_region_snapshot_and_clear_dirty(MemoryRegion *mr,
1038 hwaddr addr,
1039 hwaddr size,
1040 unsigned client);
1041
1042 /**
1043 * memory_region_snapshot_get_dirty: Check whether a range of bytes is dirty
1044 * in the specified dirty bitmap snapshot.
1045 *
1046 * @mr: the memory region being queried.
1047 * @snap: the dirty bitmap snapshot
1048 * @addr: the address (relative to the start of the region) being queried.
1049 * @size: the size of the range being queried.
1050 */
1051 bool memory_region_snapshot_get_dirty(MemoryRegion *mr,
1052 DirtyBitmapSnapshot *snap,
1053 hwaddr addr, hwaddr size);
1054
1055 /**
1056 * memory_region_sync_dirty_bitmap: Synchronize a region's dirty bitmap with
1057 * any external TLBs (e.g. kvm)
1058 *
1059 * Flushes dirty information from accelerators such as kvm and vhost-net
1060 * and makes it available to users of the memory API.
1061 *
1062 * @mr: the region being flushed.
1063 */
1064 void memory_region_sync_dirty_bitmap(MemoryRegion *mr);
1065
1066 /**
1067 * memory_region_reset_dirty: Mark a range of pages as clean, for a specified
1068 * client.
1069 *
1070 * Marks a range of pages as no longer dirty.
1071 *
1072 * @mr: the region being updated.
1073 * @addr: the start of the subrange being cleaned.
1074 * @size: the size of the subrange being cleaned.
1075 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
1076 * %DIRTY_MEMORY_VGA.
1077 */
1078 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
1079 hwaddr size, unsigned client);
1080
1081 /**
1082 * memory_region_set_readonly: Turn a memory region read-only (or read-write)
1083 *
1084 * Allows a memory region to be marked as read-only (turning it into a ROM).
1085 * only useful on RAM regions.
1086 *
1087 * @mr: the region being updated.
1088 * @readonly: whether rhe region is to be ROM or RAM.
1089 */
1090 void memory_region_set_readonly(MemoryRegion *mr, bool readonly);
1091
1092 /**
1093 * memory_region_rom_device_set_romd: enable/disable ROMD mode
1094 *
1095 * Allows a ROM device (initialized with memory_region_init_rom_device() to
1096 * set to ROMD mode (default) or MMIO mode. When it is in ROMD mode, the
1097 * device is mapped to guest memory and satisfies read access directly.
1098 * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function.
1099 * Writes are always handled by the #MemoryRegion.write function.
1100 *
1101 * @mr: the memory region to be updated
1102 * @romd_mode: %true to put the region into ROMD mode
1103 */
1104 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode);
1105
1106 /**
1107 * memory_region_set_coalescing: Enable memory coalescing for the region.
1108 *
1109 * Enabled writes to a region to be queued for later processing. MMIO ->write
1110 * callbacks may be delayed until a non-coalesced MMIO is issued.
1111 * Only useful for IO regions. Roughly similar to write-combining hardware.
1112 *
1113 * @mr: the memory region to be write coalesced
1114 */
1115 void memory_region_set_coalescing(MemoryRegion *mr);
1116
1117 /**
1118 * memory_region_add_coalescing: Enable memory coalescing for a sub-range of
1119 * a region.
1120 *
1121 * Like memory_region_set_coalescing(), but works on a sub-range of a region.
1122 * Multiple calls can be issued coalesced disjoint ranges.
1123 *
1124 * @mr: the memory region to be updated.
1125 * @offset: the start of the range within the region to be coalesced.
1126 * @size: the size of the subrange to be coalesced.
1127 */
1128 void memory_region_add_coalescing(MemoryRegion *mr,
1129 hwaddr offset,
1130 uint64_t size);
1131
1132 /**
1133 * memory_region_clear_coalescing: Disable MMIO coalescing for the region.
1134 *
1135 * Disables any coalescing caused by memory_region_set_coalescing() or
1136 * memory_region_add_coalescing(). Roughly equivalent to uncacheble memory
1137 * hardware.
1138 *
1139 * @mr: the memory region to be updated.
1140 */
1141 void memory_region_clear_coalescing(MemoryRegion *mr);
1142
1143 /**
1144 * memory_region_set_flush_coalesced: Enforce memory coalescing flush before
1145 * accesses.
1146 *
1147 * Ensure that pending coalesced MMIO request are flushed before the memory
1148 * region is accessed. This property is automatically enabled for all regions
1149 * passed to memory_region_set_coalescing() and memory_region_add_coalescing().
1150 *
1151 * @mr: the memory region to be updated.
1152 */
1153 void memory_region_set_flush_coalesced(MemoryRegion *mr);
1154
1155 /**
1156 * memory_region_clear_flush_coalesced: Disable memory coalescing flush before
1157 * accesses.
1158 *
1159 * Clear the automatic coalesced MMIO flushing enabled via
1160 * memory_region_set_flush_coalesced. Note that this service has no effect on
1161 * memory regions that have MMIO coalescing enabled for themselves. For them,
1162 * automatic flushing will stop once coalescing is disabled.
1163 *
1164 * @mr: the memory region to be updated.
1165 */
1166 void memory_region_clear_flush_coalesced(MemoryRegion *mr);
1167
1168 /**
1169 * memory_region_set_global_locking: Declares the access processing requires
1170 * QEMU's global lock.
1171 *
1172 * When this is invoked, accesses to the memory region will be processed while
1173 * holding the global lock of QEMU. This is the default behavior of memory
1174 * regions.
1175 *
1176 * @mr: the memory region to be updated.
1177 */
1178 void memory_region_set_global_locking(MemoryRegion *mr);
1179
1180 /**
1181 * memory_region_clear_global_locking: Declares that access processing does
1182 * not depend on the QEMU global lock.
1183 *
1184 * By clearing this property, accesses to the memory region will be processed
1185 * outside of QEMU's global lock (unless the lock is held on when issuing the
1186 * access request). In this case, the device model implementing the access
1187 * handlers is responsible for synchronization of concurrency.
1188 *
1189 * @mr: the memory region to be updated.
1190 */
1191 void memory_region_clear_global_locking(MemoryRegion *mr);
1192
1193 /**
1194 * memory_region_add_eventfd: Request an eventfd to be triggered when a word
1195 * is written to a location.
1196 *
1197 * Marks a word in an IO region (initialized with memory_region_init_io())
1198 * as a trigger for an eventfd event. The I/O callback will not be called.
1199 * The caller must be prepared to handle failure (that is, take the required
1200 * action if the callback _is_ called).
1201 *
1202 * @mr: the memory region being updated.
1203 * @addr: the address within @mr that is to be monitored
1204 * @size: the size of the access to trigger the eventfd
1205 * @match_data: whether to match against @data, instead of just @addr
1206 * @data: the data to match against the guest write
1207 * @fd: the eventfd to be triggered when @addr, @size, and @data all match.
1208 **/
1209 void memory_region_add_eventfd(MemoryRegion *mr,
1210 hwaddr addr,
1211 unsigned size,
1212 bool match_data,
1213 uint64_t data,
1214 EventNotifier *e);
1215
1216 /**
1217 * memory_region_del_eventfd: Cancel an eventfd.
1218 *
1219 * Cancels an eventfd trigger requested by a previous
1220 * memory_region_add_eventfd() call.
1221 *
1222 * @mr: the memory region being updated.
1223 * @addr: the address within @mr that is to be monitored
1224 * @size: the size of the access to trigger the eventfd
1225 * @match_data: whether to match against @data, instead of just @addr
1226 * @data: the data to match against the guest write
1227 * @fd: the eventfd to be triggered when @addr, @size, and @data all match.
1228 */
1229 void memory_region_del_eventfd(MemoryRegion *mr,
1230 hwaddr addr,
1231 unsigned size,
1232 bool match_data,
1233 uint64_t data,
1234 EventNotifier *e);
1235
1236 /**
1237 * memory_region_add_subregion: Add a subregion to a container.
1238 *
1239 * Adds a subregion at @offset. The subregion may not overlap with other
1240 * subregions (except for those explicitly marked as overlapping). A region
1241 * may only be added once as a subregion (unless removed with
1242 * memory_region_del_subregion()); use memory_region_init_alias() if you
1243 * want a region to be a subregion in multiple locations.
1244 *
1245 * @mr: the region to contain the new subregion; must be a container
1246 * initialized with memory_region_init().
1247 * @offset: the offset relative to @mr where @subregion is added.
1248 * @subregion: the subregion to be added.
1249 */
1250 void memory_region_add_subregion(MemoryRegion *mr,
1251 hwaddr offset,
1252 MemoryRegion *subregion);
1253 /**
1254 * memory_region_add_subregion_overlap: Add a subregion to a container
1255 * with overlap.
1256 *
1257 * Adds a subregion at @offset. The subregion may overlap with other
1258 * subregions. Conflicts are resolved by having a higher @priority hide a
1259 * lower @priority. Subregions without priority are taken as @priority 0.
1260 * A region may only be added once as a subregion (unless removed with
1261 * memory_region_del_subregion()); use memory_region_init_alias() if you
1262 * want a region to be a subregion in multiple locations.
1263 *
1264 * @mr: the region to contain the new subregion; must be a container
1265 * initialized with memory_region_init().
1266 * @offset: the offset relative to @mr where @subregion is added.
1267 * @subregion: the subregion to be added.
1268 * @priority: used for resolving overlaps; highest priority wins.
1269 */
1270 void memory_region_add_subregion_overlap(MemoryRegion *mr,
1271 hwaddr offset,
1272 MemoryRegion *subregion,
1273 int priority);
1274
1275 /**
1276 * memory_region_get_ram_addr: Get the ram address associated with a memory
1277 * region
1278 */
1279 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr);
1280
1281 uint64_t memory_region_get_alignment(const MemoryRegion *mr);
1282 /**
1283 * memory_region_del_subregion: Remove a subregion.
1284 *
1285 * Removes a subregion from its container.
1286 *
1287 * @mr: the container to be updated.
1288 * @subregion: the region being removed; must be a current subregion of @mr.
1289 */
1290 void memory_region_del_subregion(MemoryRegion *mr,
1291 MemoryRegion *subregion);
1292
1293 /*
1294 * memory_region_set_enabled: dynamically enable or disable a region
1295 *
1296 * Enables or disables a memory region. A disabled memory region
1297 * ignores all accesses to itself and its subregions. It does not
1298 * obscure sibling subregions with lower priority - it simply behaves as
1299 * if it was removed from the hierarchy.
1300 *
1301 * Regions default to being enabled.
1302 *
1303 * @mr: the region to be updated
1304 * @enabled: whether to enable or disable the region
1305 */
1306 void memory_region_set_enabled(MemoryRegion *mr, bool enabled);
1307
1308 /*
1309 * memory_region_set_address: dynamically update the address of a region
1310 *
1311 * Dynamically updates the address of a region, relative to its container.
1312 * May be used on regions are currently part of a memory hierarchy.
1313 *
1314 * @mr: the region to be updated
1315 * @addr: new address, relative to container region
1316 */
1317 void memory_region_set_address(MemoryRegion *mr, hwaddr addr);
1318
1319 /*
1320 * memory_region_set_size: dynamically update the size of a region.
1321 *
1322 * Dynamically updates the size of a region.
1323 *
1324 * @mr: the region to be updated
1325 * @size: used size of the region.
1326 */
1327 void memory_region_set_size(MemoryRegion *mr, uint64_t size);
1328
1329 /*
1330 * memory_region_set_alias_offset: dynamically update a memory alias's offset
1331 *
1332 * Dynamically updates the offset into the target region that an alias points
1333 * to, as if the fourth argument to memory_region_init_alias() has changed.
1334 *
1335 * @mr: the #MemoryRegion to be updated; should be an alias.
1336 * @offset: the new offset into the target memory region
1337 */
1338 void memory_region_set_alias_offset(MemoryRegion *mr,
1339 hwaddr offset);
1340
1341 /**
1342 * memory_region_present: checks if an address relative to a @container
1343 * translates into #MemoryRegion within @container
1344 *
1345 * Answer whether a #MemoryRegion within @container covers the address
1346 * @addr.
1347 *
1348 * @container: a #MemoryRegion within which @addr is a relative address
1349 * @addr: the area within @container to be searched
1350 */
1351 bool memory_region_present(MemoryRegion *container, hwaddr addr);
1352
1353 /**
1354 * memory_region_is_mapped: returns true if #MemoryRegion is mapped
1355 * into any address space.
1356 *
1357 * @mr: a #MemoryRegion which should be checked if it's mapped
1358 */
1359 bool memory_region_is_mapped(MemoryRegion *mr);
1360
1361 /**
1362 * memory_region_find: translate an address/size relative to a
1363 * MemoryRegion into a #MemoryRegionSection.
1364 *
1365 * Locates the first #MemoryRegion within @mr that overlaps the range
1366 * given by @addr and @size.
1367 *
1368 * Returns a #MemoryRegionSection that describes a contiguous overlap.
1369 * It will have the following characteristics:
1370 * .@size = 0 iff no overlap was found
1371 * .@mr is non-%NULL iff an overlap was found
1372 *
1373 * Remember that in the return value the @offset_within_region is
1374 * relative to the returned region (in the .@mr field), not to the
1375 * @mr argument.
1376 *
1377 * Similarly, the .@offset_within_address_space is relative to the
1378 * address space that contains both regions, the passed and the
1379 * returned one. However, in the special case where the @mr argument
1380 * has no container (and thus is the root of the address space), the
1381 * following will hold:
1382 * .@offset_within_address_space >= @addr
1383 * .@offset_within_address_space + .@size <= @addr + @size
1384 *
1385 * @mr: a MemoryRegion within which @addr is a relative address
1386 * @addr: start of the area within @as to be searched
1387 * @size: size of the area to be searched
1388 */
1389 MemoryRegionSection memory_region_find(MemoryRegion *mr,
1390 hwaddr addr, uint64_t size);
1391
1392 /**
1393 * memory_global_dirty_log_sync: synchronize the dirty log for all memory
1394 *
1395 * Synchronizes the dirty page log for all address spaces.
1396 */
1397 void memory_global_dirty_log_sync(void);
1398
1399 /**
1400 * memory_region_transaction_begin: Start a transaction.
1401 *
1402 * During a transaction, changes will be accumulated and made visible
1403 * only when the transaction ends (is committed).
1404 */
1405 void memory_region_transaction_begin(void);
1406
1407 /**
1408 * memory_region_transaction_commit: Commit a transaction and make changes
1409 * visible to the guest.
1410 */
1411 void memory_region_transaction_commit(void);
1412
1413 /**
1414 * memory_listener_register: register callbacks to be called when memory
1415 * sections are mapped or unmapped into an address
1416 * space
1417 *
1418 * @listener: an object containing the callbacks to be called
1419 * @filter: if non-%NULL, only regions in this address space will be observed
1420 */
1421 void memory_listener_register(MemoryListener *listener, AddressSpace *filter);
1422
1423 /**
1424 * memory_listener_unregister: undo the effect of memory_listener_register()
1425 *
1426 * @listener: an object containing the callbacks to be removed
1427 */
1428 void memory_listener_unregister(MemoryListener *listener);
1429
1430 /**
1431 * memory_global_dirty_log_start: begin dirty logging for all regions
1432 */
1433 void memory_global_dirty_log_start(void);
1434
1435 /**
1436 * memory_global_dirty_log_stop: end dirty logging for all regions
1437 */
1438 void memory_global_dirty_log_stop(void);
1439
1440 void mtree_info(fprintf_function mon_printf, void *f, bool flatview);
1441
1442 /**
1443 * memory_region_request_mmio_ptr: request a pointer to an mmio
1444 * MemoryRegion. If it is possible map a RAM MemoryRegion with this pointer.
1445 * When the device wants to invalidate the pointer it will call
1446 * memory_region_invalidate_mmio_ptr.
1447 *
1448 * @mr: #MemoryRegion to check
1449 * @addr: address within that region
1450 *
1451 * Returns true on success, false otherwise.
1452 */
1453 bool memory_region_request_mmio_ptr(MemoryRegion *mr, hwaddr addr);
1454
1455 /**
1456 * memory_region_invalidate_mmio_ptr: invalidate the pointer to an mmio
1457 * previously requested.
1458 * In the end that means that if something wants to execute from this area it
1459 * will need to request the pointer again.
1460 *
1461 * @mr: #MemoryRegion associated to the pointer.
1462 * @addr: address within that region
1463 * @size: size of that area.
1464 */
1465 void memory_region_invalidate_mmio_ptr(MemoryRegion *mr, hwaddr offset,
1466 unsigned size);
1467
1468 /**
1469 * memory_region_dispatch_read: perform a read directly to the specified
1470 * MemoryRegion.
1471 *
1472 * @mr: #MemoryRegion to access
1473 * @addr: address within that region
1474 * @pval: pointer to uint64_t which the data is written to
1475 * @size: size of the access in bytes
1476 * @attrs: memory transaction attributes to use for the access
1477 */
1478 MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
1479 hwaddr addr,
1480 uint64_t *pval,
1481 unsigned size,
1482 MemTxAttrs attrs);
1483 /**
1484 * memory_region_dispatch_write: perform a write directly to the specified
1485 * MemoryRegion.
1486 *
1487 * @mr: #MemoryRegion to access
1488 * @addr: address within that region
1489 * @data: data to write
1490 * @size: size of the access in bytes
1491 * @attrs: memory transaction attributes to use for the access
1492 */
1493 MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
1494 hwaddr addr,
1495 uint64_t data,
1496 unsigned size,
1497 MemTxAttrs attrs);
1498
1499 /**
1500 * address_space_init: initializes an address space
1501 *
1502 * @as: an uninitialized #AddressSpace
1503 * @root: a #MemoryRegion that routes addresses for the address space
1504 * @name: an address space name. The name is only used for debugging
1505 * output.
1506 */
1507 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name);
1508
1509 /**
1510 * address_space_init_shareable: return an address space for a memory region,
1511 * creating it if it does not already exist
1512 *
1513 * @root: a #MemoryRegion that routes addresses for the address space
1514 * @name: an address space name. The name is only used for debugging
1515 * output.
1516 *
1517 * This function will return a pointer to an existing AddressSpace
1518 * which was initialized with the specified MemoryRegion, or it will
1519 * create and initialize one if it does not already exist. The ASes
1520 * are reference-counted, so the memory will be freed automatically
1521 * when the AddressSpace is destroyed via address_space_destroy.
1522 */
1523 AddressSpace *address_space_init_shareable(MemoryRegion *root,
1524 const char *name);
1525
1526 /**
1527 * address_space_destroy: destroy an address space
1528 *
1529 * Releases all resources associated with an address space. After an address space
1530 * is destroyed, its root memory region (given by address_space_init()) may be destroyed
1531 * as well.
1532 *
1533 * @as: address space to be destroyed
1534 */
1535 void address_space_destroy(AddressSpace *as);
1536
1537 /**
1538 * address_space_rw: read from or write to an address space.
1539 *
1540 * Return a MemTxResult indicating whether the operation succeeded
1541 * or failed (eg unassigned memory, device rejected the transaction,
1542 * IOMMU fault).
1543 *
1544 * @as: #AddressSpace to be accessed
1545 * @addr: address within that address space
1546 * @attrs: memory transaction attributes
1547 * @buf: buffer with the data transferred
1548 * @is_write: indicates the transfer direction
1549 */
1550 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr,
1551 MemTxAttrs attrs, uint8_t *buf,
1552 int len, bool is_write);
1553
1554 /**
1555 * address_space_write: write to address space.
1556 *
1557 * Return a MemTxResult indicating whether the operation succeeded
1558 * or failed (eg unassigned memory, device rejected the transaction,
1559 * IOMMU fault).
1560 *
1561 * @as: #AddressSpace to be accessed
1562 * @addr: address within that address space
1563 * @attrs: memory transaction attributes
1564 * @buf: buffer with the data transferred
1565 */
1566 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
1567 MemTxAttrs attrs,
1568 const uint8_t *buf, int len);
1569
1570 /* address_space_ld*: load from an address space
1571 * address_space_st*: store to an address space
1572 *
1573 * These functions perform a load or store of the byte, word,
1574 * longword or quad to the specified address within the AddressSpace.
1575 * The _le suffixed functions treat the data as little endian;
1576 * _be indicates big endian; no suffix indicates "same endianness
1577 * as guest CPU".
1578 *
1579 * The "guest CPU endianness" accessors are deprecated for use outside
1580 * target-* code; devices should be CPU-agnostic and use either the LE
1581 * or the BE accessors.
1582 *
1583 * @as #AddressSpace to be accessed
1584 * @addr: address within that address space
1585 * @val: data value, for stores
1586 * @attrs: memory transaction attributes
1587 * @result: location to write the success/failure of the transaction;
1588 * if NULL, this information is discarded
1589 */
1590 uint32_t address_space_ldub(AddressSpace *as, hwaddr addr,
1591 MemTxAttrs attrs, MemTxResult *result);
1592 uint32_t address_space_lduw_le(AddressSpace *as, hwaddr addr,
1593 MemTxAttrs attrs, MemTxResult *result);
1594 uint32_t address_space_lduw_be(AddressSpace *as, hwaddr addr,
1595 MemTxAttrs attrs, MemTxResult *result);
1596 uint32_t address_space_ldl_le(AddressSpace *as, hwaddr addr,
1597 MemTxAttrs attrs, MemTxResult *result);
1598 uint32_t address_space_ldl_be(AddressSpace *as, hwaddr addr,
1599 MemTxAttrs attrs, MemTxResult *result);
1600 uint64_t address_space_ldq_le(AddressSpace *as, hwaddr addr,
1601 MemTxAttrs attrs, MemTxResult *result);
1602 uint64_t address_space_ldq_be(AddressSpace *as, hwaddr addr,
1603 MemTxAttrs attrs, MemTxResult *result);
1604 void address_space_stb(AddressSpace *as, hwaddr addr, uint32_t val,
1605 MemTxAttrs attrs, MemTxResult *result);
1606 void address_space_stw_le(AddressSpace *as, hwaddr addr, uint32_t val,
1607 MemTxAttrs attrs, MemTxResult *result);
1608 void address_space_stw_be(AddressSpace *as, hwaddr addr, uint32_t val,
1609 MemTxAttrs attrs, MemTxResult *result);
1610 void address_space_stl_le(AddressSpace *as, hwaddr addr, uint32_t val,
1611 MemTxAttrs attrs, MemTxResult *result);
1612 void address_space_stl_be(AddressSpace *as, hwaddr addr, uint32_t val,
1613 MemTxAttrs attrs, MemTxResult *result);
1614 void address_space_stq_le(AddressSpace *as, hwaddr addr, uint64_t val,
1615 MemTxAttrs attrs, MemTxResult *result);
1616 void address_space_stq_be(AddressSpace *as, hwaddr addr, uint64_t val,
1617 MemTxAttrs attrs, MemTxResult *result);
1618
1619 uint32_t ldub_phys(AddressSpace *as, hwaddr addr);
1620 uint32_t lduw_le_phys(AddressSpace *as, hwaddr addr);
1621 uint32_t lduw_be_phys(AddressSpace *as, hwaddr addr);
1622 uint32_t ldl_le_phys(AddressSpace *as, hwaddr addr);
1623 uint32_t ldl_be_phys(AddressSpace *as, hwaddr addr);
1624 uint64_t ldq_le_phys(AddressSpace *as, hwaddr addr);
1625 uint64_t ldq_be_phys(AddressSpace *as, hwaddr addr);
1626 void stb_phys(AddressSpace *as, hwaddr addr, uint32_t val);
1627 void stw_le_phys(AddressSpace *as, hwaddr addr, uint32_t val);
1628 void stw_be_phys(AddressSpace *as, hwaddr addr, uint32_t val);
1629 void stl_le_phys(AddressSpace *as, hwaddr addr, uint32_t val);
1630 void stl_be_phys(AddressSpace *as, hwaddr addr, uint32_t val);
1631 void stq_le_phys(AddressSpace *as, hwaddr addr, uint64_t val);
1632 void stq_be_phys(AddressSpace *as, hwaddr addr, uint64_t val);
1633
1634 struct MemoryRegionCache {
1635 hwaddr xlat;
1636 hwaddr len;
1637 AddressSpace *as;
1638 };
1639
1640 #define MEMORY_REGION_CACHE_INVALID ((MemoryRegionCache) { .as = NULL })
1641
1642 /* address_space_cache_init: prepare for repeated access to a physical
1643 * memory region
1644 *
1645 * @cache: #MemoryRegionCache to be filled
1646 * @as: #AddressSpace to be accessed
1647 * @addr: address within that address space
1648 * @len: length of buffer
1649 * @is_write: indicates the transfer direction
1650 *
1651 * Will only work with RAM, and may map a subset of the requested range by
1652 * returning a value that is less than @len. On failure, return a negative
1653 * errno value.
1654 *
1655 * Because it only works with RAM, this function can be used for
1656 * read-modify-write operations. In this case, is_write should be %true.
1657 *
1658 * Note that addresses passed to the address_space_*_cached functions
1659 * are relative to @addr.
1660 */
1661 int64_t address_space_cache_init(MemoryRegionCache *cache,
1662 AddressSpace *as,
1663 hwaddr addr,
1664 hwaddr len,
1665 bool is_write);
1666
1667 /**
1668 * address_space_cache_invalidate: complete a write to a #MemoryRegionCache
1669 *
1670 * @cache: The #MemoryRegionCache to operate on.
1671 * @addr: The first physical address that was written, relative to the
1672 * address that was passed to @address_space_cache_init.
1673 * @access_len: The number of bytes that were written starting at @addr.
1674 */
1675 void address_space_cache_invalidate(MemoryRegionCache *cache,
1676 hwaddr addr,
1677 hwaddr access_len);
1678
1679 /**
1680 * address_space_cache_destroy: free a #MemoryRegionCache
1681 *
1682 * @cache: The #MemoryRegionCache whose memory should be released.
1683 */
1684 void address_space_cache_destroy(MemoryRegionCache *cache);
1685
1686 /* address_space_ld*_cached: load from a cached #MemoryRegion
1687 * address_space_st*_cached: store into a cached #MemoryRegion
1688 *
1689 * These functions perform a load or store of the byte, word,
1690 * longword or quad to the specified address. The address is
1691 * a physical address in the AddressSpace, but it must lie within
1692 * a #MemoryRegion that was mapped with address_space_cache_init.
1693 *
1694 * The _le suffixed functions treat the data as little endian;
1695 * _be indicates big endian; no suffix indicates "same endianness
1696 * as guest CPU".
1697 *
1698 * The "guest CPU endianness" accessors are deprecated for use outside
1699 * target-* code; devices should be CPU-agnostic and use either the LE
1700 * or the BE accessors.
1701 *
1702 * @cache: previously initialized #MemoryRegionCache to be accessed
1703 * @addr: address within the address space
1704 * @val: data value, for stores
1705 * @attrs: memory transaction attributes
1706 * @result: location to write the success/failure of the transaction;
1707 * if NULL, this information is discarded
1708 */
1709 uint32_t address_space_ldub_cached(MemoryRegionCache *cache, hwaddr addr,
1710 MemTxAttrs attrs, MemTxResult *result);
1711 uint32_t address_space_lduw_le_cached(MemoryRegionCache *cache, hwaddr addr,
1712 MemTxAttrs attrs, MemTxResult *result);
1713 uint32_t address_space_lduw_be_cached(MemoryRegionCache *cache, hwaddr addr,
1714 MemTxAttrs attrs, MemTxResult *result);
1715 uint32_t address_space_ldl_le_cached(MemoryRegionCache *cache, hwaddr addr,
1716 MemTxAttrs attrs, MemTxResult *result);
1717 uint32_t address_space_ldl_be_cached(MemoryRegionCache *cache, hwaddr addr,
1718 MemTxAttrs attrs, MemTxResult *result);
1719 uint64_t address_space_ldq_le_cached(MemoryRegionCache *cache, hwaddr addr,
1720 MemTxAttrs attrs, MemTxResult *result);
1721 uint64_t address_space_ldq_be_cached(MemoryRegionCache *cache, hwaddr addr,
1722 MemTxAttrs attrs, MemTxResult *result);
1723 void address_space_stb_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val,
1724 MemTxAttrs attrs, MemTxResult *result);
1725 void address_space_stw_le_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val,
1726 MemTxAttrs attrs, MemTxResult *result);
1727 void address_space_stw_be_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val,
1728 MemTxAttrs attrs, MemTxResult *result);
1729 void address_space_stl_le_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val,
1730 MemTxAttrs attrs, MemTxResult *result);
1731 void address_space_stl_be_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val,
1732 MemTxAttrs attrs, MemTxResult *result);
1733 void address_space_stq_le_cached(MemoryRegionCache *cache, hwaddr addr, uint64_t val,
1734 MemTxAttrs attrs, MemTxResult *result);
1735 void address_space_stq_be_cached(MemoryRegionCache *cache, hwaddr addr, uint64_t val,
1736 MemTxAttrs attrs, MemTxResult *result);
1737
1738 uint32_t ldub_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1739 uint32_t lduw_le_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1740 uint32_t lduw_be_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1741 uint32_t ldl_le_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1742 uint32_t ldl_be_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1743 uint64_t ldq_le_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1744 uint64_t ldq_be_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1745 void stb_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val);
1746 void stw_le_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val);
1747 void stw_be_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val);
1748 void stl_le_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val);
1749 void stl_be_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val);
1750 void stq_le_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint64_t val);
1751 void stq_be_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint64_t val);
1752 /* address_space_get_iotlb_entry: translate an address into an IOTLB
1753 * entry. Should be called from an RCU critical section.
1754 */
1755 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
1756 bool is_write);
1757
1758 /* address_space_translate: translate an address range into an address space
1759 * into a MemoryRegion and an address range into that section. Should be
1760 * called from an RCU critical section, to avoid that the last reference
1761 * to the returned region disappears after address_space_translate returns.
1762 *
1763 * @as: #AddressSpace to be accessed
1764 * @addr: address within that address space
1765 * @xlat: pointer to address within the returned memory region section's
1766 * #MemoryRegion.
1767 * @len: pointer to length
1768 * @is_write: indicates the transfer direction
1769 */
1770 MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr,
1771 hwaddr *xlat, hwaddr *len,
1772 bool is_write);
1773
1774 /* address_space_access_valid: check for validity of accessing an address
1775 * space range
1776 *
1777 * Check whether memory is assigned to the given address space range, and
1778 * access is permitted by any IOMMU regions that are active for the address
1779 * space.
1780 *
1781 * For now, addr and len should be aligned to a page size. This limitation
1782 * will be lifted in the future.
1783 *
1784 * @as: #AddressSpace to be accessed
1785 * @addr: address within that address space
1786 * @len: length of the area to be checked
1787 * @is_write: indicates the transfer direction
1788 */
1789 bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write);
1790
1791 /* address_space_map: map a physical memory region into a host virtual address
1792 *
1793 * May map a subset of the requested range, given by and returned in @plen.
1794 * May return %NULL if resources needed to perform the mapping are exhausted.
1795 * Use only for reads OR writes - not for read-modify-write operations.
1796 * Use cpu_register_map_client() to know when retrying the map operation is
1797 * likely to succeed.
1798 *
1799 * @as: #AddressSpace to be accessed
1800 * @addr: address within that address space
1801 * @plen: pointer to length of buffer; updated on return
1802 * @is_write: indicates the transfer direction
1803 */
1804 void *address_space_map(AddressSpace *as, hwaddr addr,
1805 hwaddr *plen, bool is_write);
1806
1807 /* address_space_unmap: Unmaps a memory region previously mapped by address_space_map()
1808 *
1809 * Will also mark the memory as dirty if @is_write == %true. @access_len gives
1810 * the amount of memory that was actually read or written by the caller.
1811 *
1812 * @as: #AddressSpace used
1813 * @addr: address within that address space
1814 * @len: buffer length as returned by address_space_map()
1815 * @access_len: amount of data actually transferred
1816 * @is_write: indicates the transfer direction
1817 */
1818 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
1819 int is_write, hwaddr access_len);
1820
1821
1822 /* Internal functions, part of the implementation of address_space_read. */
1823 MemTxResult address_space_read_continue(AddressSpace *as, hwaddr addr,
1824 MemTxAttrs attrs, uint8_t *buf,
1825 int len, hwaddr addr1, hwaddr l,
1826 MemoryRegion *mr);
1827 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
1828 MemTxAttrs attrs, uint8_t *buf, int len);
1829 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr);
1830
1831 static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write)
1832 {
1833 if (is_write) {
1834 return memory_region_is_ram(mr) &&
1835 !mr->readonly && !memory_region_is_ram_device(mr);
1836 } else {
1837 return (memory_region_is_ram(mr) && !memory_region_is_ram_device(mr)) ||
1838 memory_region_is_romd(mr);
1839 }
1840 }
1841
1842 /**
1843 * address_space_read: read from an address space.
1844 *
1845 * Return a MemTxResult indicating whether the operation succeeded
1846 * or failed (eg unassigned memory, device rejected the transaction,
1847 * IOMMU fault).
1848 *
1849 * @as: #AddressSpace to be accessed
1850 * @addr: address within that address space
1851 * @attrs: memory transaction attributes
1852 * @buf: buffer with the data transferred
1853 */
1854 static inline __attribute__((__always_inline__))
1855 MemTxResult address_space_read(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
1856 uint8_t *buf, int len)
1857 {
1858 MemTxResult result = MEMTX_OK;
1859 hwaddr l, addr1;
1860 void *ptr;
1861 MemoryRegion *mr;
1862
1863 if (__builtin_constant_p(len)) {
1864 if (len) {
1865 rcu_read_lock();
1866 l = len;
1867 mr = address_space_translate(as, addr, &addr1, &l, false);
1868 if (len == l && memory_access_is_direct(mr, false)) {
1869 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
1870 memcpy(buf, ptr, len);
1871 } else {
1872 result = address_space_read_continue(as, addr, attrs, buf, len,
1873 addr1, l, mr);
1874 }
1875 rcu_read_unlock();
1876 }
1877 } else {
1878 result = address_space_read_full(as, addr, attrs, buf, len);
1879 }
1880 return result;
1881 }
1882
1883 /**
1884 * address_space_read_cached: read from a cached RAM region
1885 *
1886 * @cache: Cached region to be addressed
1887 * @addr: address relative to the base of the RAM region
1888 * @buf: buffer with the data transferred
1889 * @len: length of the data transferred
1890 */
1891 static inline void
1892 address_space_read_cached(MemoryRegionCache *cache, hwaddr addr,
1893 void *buf, int len)
1894 {
1895 assert(addr < cache->len && len <= cache->len - addr);
1896 address_space_read(cache->as, cache->xlat + addr, MEMTXATTRS_UNSPECIFIED, buf, len);
1897 }
1898
1899 /**
1900 * address_space_write_cached: write to a cached RAM region
1901 *
1902 * @cache: Cached region to be addressed
1903 * @addr: address relative to the base of the RAM region
1904 * @buf: buffer with the data transferred
1905 * @len: length of the data transferred
1906 */
1907 static inline void
1908 address_space_write_cached(MemoryRegionCache *cache, hwaddr addr,
1909 void *buf, int len)
1910 {
1911 assert(addr < cache->len && len <= cache->len - addr);
1912 address_space_write(cache->as, cache->xlat + addr, MEMTXATTRS_UNSPECIFIED, buf, len);
1913 }
1914
1915 #endif
1916
1917 #endif