]> git.proxmox.com Git - mirror_qemu.git/blob - include/exec/memory.h
Merge remote-tracking branch 'remotes/bonzini/memory' into staging
[mirror_qemu.git] / include / exec / memory.h
1 /*
2 * Physical memory management API
3 *
4 * Copyright 2011 Red Hat, Inc. and/or its affiliates
5 *
6 * Authors:
7 * Avi Kivity <avi@redhat.com>
8 *
9 * This work is licensed under the terms of the GNU GPL, version 2. See
10 * the COPYING file in the top-level directory.
11 *
12 */
13
14 #ifndef MEMORY_H
15 #define MEMORY_H
16
17 #ifndef CONFIG_USER_ONLY
18
19 #define DIRTY_MEMORY_VGA 0
20 #define DIRTY_MEMORY_CODE 1
21 #define DIRTY_MEMORY_MIGRATION 2
22 #define DIRTY_MEMORY_NUM 3 /* num of dirty bits */
23
24 #include <stdint.h>
25 #include <stdbool.h>
26 #include "qemu-common.h"
27 #include "exec/cpu-common.h"
28 #ifndef CONFIG_USER_ONLY
29 #include "exec/hwaddr.h"
30 #endif
31 #include "qemu/queue.h"
32 #include "qemu/int128.h"
33 #include "qemu/notify.h"
34 #include "qapi/error.h"
35 #include "qom/object.h"
36
37 #define MAX_PHYS_ADDR_SPACE_BITS 62
38 #define MAX_PHYS_ADDR (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1)
39
40 #define TYPE_MEMORY_REGION "qemu:memory-region"
41 #define MEMORY_REGION(obj) \
42 OBJECT_CHECK(MemoryRegion, (obj), TYPE_MEMORY_REGION)
43
44 typedef struct MemoryRegionOps MemoryRegionOps;
45 typedef struct MemoryRegionMmio MemoryRegionMmio;
46
47 struct MemoryRegionMmio {
48 CPUReadMemoryFunc *read[3];
49 CPUWriteMemoryFunc *write[3];
50 };
51
52 typedef struct IOMMUTLBEntry IOMMUTLBEntry;
53
54 /* See address_space_translate: bit 0 is read, bit 1 is write. */
55 typedef enum {
56 IOMMU_NONE = 0,
57 IOMMU_RO = 1,
58 IOMMU_WO = 2,
59 IOMMU_RW = 3,
60 } IOMMUAccessFlags;
61
62 struct IOMMUTLBEntry {
63 AddressSpace *target_as;
64 hwaddr iova;
65 hwaddr translated_addr;
66 hwaddr addr_mask; /* 0xfff = 4k translation */
67 IOMMUAccessFlags perm;
68 };
69
70 /*
71 * Memory region callbacks
72 */
73 struct MemoryRegionOps {
74 /* Read from the memory region. @addr is relative to @mr; @size is
75 * in bytes. */
76 uint64_t (*read)(void *opaque,
77 hwaddr addr,
78 unsigned size);
79 /* Write to the memory region. @addr is relative to @mr; @size is
80 * in bytes. */
81 void (*write)(void *opaque,
82 hwaddr addr,
83 uint64_t data,
84 unsigned size);
85
86 enum device_endian endianness;
87 /* Guest-visible constraints: */
88 struct {
89 /* If nonzero, specify bounds on access sizes beyond which a machine
90 * check is thrown.
91 */
92 unsigned min_access_size;
93 unsigned max_access_size;
94 /* If true, unaligned accesses are supported. Otherwise unaligned
95 * accesses throw machine checks.
96 */
97 bool unaligned;
98 /*
99 * If present, and returns #false, the transaction is not accepted
100 * by the device (and results in machine dependent behaviour such
101 * as a machine check exception).
102 */
103 bool (*accepts)(void *opaque, hwaddr addr,
104 unsigned size, bool is_write);
105 } valid;
106 /* Internal implementation constraints: */
107 struct {
108 /* If nonzero, specifies the minimum size implemented. Smaller sizes
109 * will be rounded upwards and a partial result will be returned.
110 */
111 unsigned min_access_size;
112 /* If nonzero, specifies the maximum size implemented. Larger sizes
113 * will be done as a series of accesses with smaller sizes.
114 */
115 unsigned max_access_size;
116 /* If true, unaligned accesses are supported. Otherwise all accesses
117 * are converted to (possibly multiple) naturally aligned accesses.
118 */
119 bool unaligned;
120 } impl;
121
122 /* If .read and .write are not present, old_mmio may be used for
123 * backwards compatibility with old mmio registration
124 */
125 const MemoryRegionMmio old_mmio;
126 };
127
128 typedef struct MemoryRegionIOMMUOps MemoryRegionIOMMUOps;
129
130 struct MemoryRegionIOMMUOps {
131 /* Return a TLB entry that contains a given address. */
132 IOMMUTLBEntry (*translate)(MemoryRegion *iommu, hwaddr addr);
133 };
134
135 typedef struct CoalescedMemoryRange CoalescedMemoryRange;
136 typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd;
137
138 struct MemoryRegion {
139 Object parent_obj;
140 /* All fields are private - violators will be prosecuted */
141 const MemoryRegionOps *ops;
142 const MemoryRegionIOMMUOps *iommu_ops;
143 void *opaque;
144 MemoryRegion *container;
145 Int128 size;
146 hwaddr addr;
147 void (*destructor)(MemoryRegion *mr);
148 ram_addr_t ram_addr;
149 bool subpage;
150 bool terminates;
151 bool romd_mode;
152 bool ram;
153 bool readonly; /* For RAM regions */
154 bool enabled;
155 bool rom_device;
156 bool warning_printed; /* For reservations */
157 bool flush_coalesced_mmio;
158 MemoryRegion *alias;
159 hwaddr alias_offset;
160 int32_t priority;
161 bool may_overlap;
162 QTAILQ_HEAD(subregions, MemoryRegion) subregions;
163 QTAILQ_ENTRY(MemoryRegion) subregions_link;
164 QTAILQ_HEAD(coalesced_ranges, CoalescedMemoryRange) coalesced;
165 const char *name;
166 uint8_t dirty_log_mask;
167 unsigned ioeventfd_nb;
168 MemoryRegionIoeventfd *ioeventfds;
169 NotifierList iommu_notify;
170 };
171
172 /**
173 * MemoryListener: callbacks structure for updates to the physical memory map
174 *
175 * Allows a component to adjust to changes in the guest-visible memory map.
176 * Use with memory_listener_register() and memory_listener_unregister().
177 */
178 struct MemoryListener {
179 void (*begin)(MemoryListener *listener);
180 void (*commit)(MemoryListener *listener);
181 void (*region_add)(MemoryListener *listener, MemoryRegionSection *section);
182 void (*region_del)(MemoryListener *listener, MemoryRegionSection *section);
183 void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section);
184 void (*log_start)(MemoryListener *listener, MemoryRegionSection *section);
185 void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section);
186 void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section);
187 void (*log_global_start)(MemoryListener *listener);
188 void (*log_global_stop)(MemoryListener *listener);
189 void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section,
190 bool match_data, uint64_t data, EventNotifier *e);
191 void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section,
192 bool match_data, uint64_t data, EventNotifier *e);
193 void (*coalesced_mmio_add)(MemoryListener *listener, MemoryRegionSection *section,
194 hwaddr addr, hwaddr len);
195 void (*coalesced_mmio_del)(MemoryListener *listener, MemoryRegionSection *section,
196 hwaddr addr, hwaddr len);
197 /* Lower = earlier (during add), later (during del) */
198 unsigned priority;
199 AddressSpace *address_space_filter;
200 QTAILQ_ENTRY(MemoryListener) link;
201 };
202
203 /**
204 * AddressSpace: describes a mapping of addresses to #MemoryRegion objects
205 */
206 struct AddressSpace {
207 /* All fields are private. */
208 char *name;
209 MemoryRegion *root;
210 struct FlatView *current_map;
211 int ioeventfd_nb;
212 struct MemoryRegionIoeventfd *ioeventfds;
213 struct AddressSpaceDispatch *dispatch;
214 struct AddressSpaceDispatch *next_dispatch;
215 MemoryListener dispatch_listener;
216
217 QTAILQ_ENTRY(AddressSpace) address_spaces_link;
218 };
219
220 /**
221 * MemoryRegionSection: describes a fragment of a #MemoryRegion
222 *
223 * @mr: the region, or %NULL if empty
224 * @address_space: the address space the region is mapped in
225 * @offset_within_region: the beginning of the section, relative to @mr's start
226 * @size: the size of the section; will not exceed @mr's boundaries
227 * @offset_within_address_space: the address of the first byte of the section
228 * relative to the region's address space
229 * @readonly: writes to this section are ignored
230 */
231 struct MemoryRegionSection {
232 MemoryRegion *mr;
233 AddressSpace *address_space;
234 hwaddr offset_within_region;
235 Int128 size;
236 hwaddr offset_within_address_space;
237 bool readonly;
238 };
239
240 /**
241 * memory_region_init: Initialize a memory region
242 *
243 * The region typically acts as a container for other memory regions. Use
244 * memory_region_add_subregion() to add subregions.
245 *
246 * @mr: the #MemoryRegion to be initialized
247 * @owner: the object that tracks the region's reference count
248 * @name: used for debugging; not visible to the user or ABI
249 * @size: size of the region; any subregions beyond this size will be clipped
250 */
251 void memory_region_init(MemoryRegion *mr,
252 struct Object *owner,
253 const char *name,
254 uint64_t size);
255
256 /**
257 * memory_region_ref: Add 1 to a memory region's reference count
258 *
259 * Whenever memory regions are accessed outside the BQL, they need to be
260 * preserved against hot-unplug. MemoryRegions actually do not have their
261 * own reference count; they piggyback on a QOM object, their "owner".
262 * This function adds a reference to the owner.
263 *
264 * All MemoryRegions must have an owner if they can disappear, even if the
265 * device they belong to operates exclusively under the BQL. This is because
266 * the region could be returned at any time by memory_region_find, and this
267 * is usually under guest control.
268 *
269 * @mr: the #MemoryRegion
270 */
271 void memory_region_ref(MemoryRegion *mr);
272
273 /**
274 * memory_region_unref: Remove 1 to a memory region's reference count
275 *
276 * Whenever memory regions are accessed outside the BQL, they need to be
277 * preserved against hot-unplug. MemoryRegions actually do not have their
278 * own reference count; they piggyback on a QOM object, their "owner".
279 * This function removes a reference to the owner and possibly destroys it.
280 *
281 * @mr: the #MemoryRegion
282 */
283 void memory_region_unref(MemoryRegion *mr);
284
285 /**
286 * memory_region_init_io: Initialize an I/O memory region.
287 *
288 * Accesses into the region will cause the callbacks in @ops to be called.
289 * if @size is nonzero, subregions will be clipped to @size.
290 *
291 * @mr: the #MemoryRegion to be initialized.
292 * @owner: the object that tracks the region's reference count
293 * @ops: a structure containing read and write callbacks to be used when
294 * I/O is performed on the region.
295 * @opaque: passed to to the read and write callbacks of the @ops structure.
296 * @name: used for debugging; not visible to the user or ABI
297 * @size: size of the region.
298 */
299 void memory_region_init_io(MemoryRegion *mr,
300 struct Object *owner,
301 const MemoryRegionOps *ops,
302 void *opaque,
303 const char *name,
304 uint64_t size);
305
306 /**
307 * memory_region_init_ram: Initialize RAM memory region. Accesses into the
308 * region will modify memory directly.
309 *
310 * @mr: the #MemoryRegion to be initialized.
311 * @owner: the object that tracks the region's reference count
312 * @name: the name of the region.
313 * @size: size of the region.
314 */
315 void memory_region_init_ram(MemoryRegion *mr,
316 struct Object *owner,
317 const char *name,
318 uint64_t size);
319
320 #ifdef __linux__
321 /**
322 * memory_region_init_ram_from_file: Initialize RAM memory region with a
323 * mmap-ed backend.
324 *
325 * @mr: the #MemoryRegion to be initialized.
326 * @owner: the object that tracks the region's reference count
327 * @name: the name of the region.
328 * @size: size of the region.
329 * @share: %true if memory must be mmaped with the MAP_SHARED flag
330 * @path: the path in which to allocate the RAM.
331 * @errp: pointer to Error*, to store an error if it happens.
332 */
333 void memory_region_init_ram_from_file(MemoryRegion *mr,
334 struct Object *owner,
335 const char *name,
336 uint64_t size,
337 bool share,
338 const char *path,
339 Error **errp);
340 #endif
341
342 /**
343 * memory_region_init_ram_ptr: Initialize RAM memory region from a
344 * user-provided pointer. Accesses into the
345 * region will modify memory directly.
346 *
347 * @mr: the #MemoryRegion to be initialized.
348 * @owner: the object that tracks the region's reference count
349 * @name: the name of the region.
350 * @size: size of the region.
351 * @ptr: memory to be mapped; must contain at least @size bytes.
352 */
353 void memory_region_init_ram_ptr(MemoryRegion *mr,
354 struct Object *owner,
355 const char *name,
356 uint64_t size,
357 void *ptr);
358
359 /**
360 * memory_region_init_alias: Initialize a memory region that aliases all or a
361 * part of another memory region.
362 *
363 * @mr: the #MemoryRegion to be initialized.
364 * @owner: the object that tracks the region's reference count
365 * @name: used for debugging; not visible to the user or ABI
366 * @orig: the region to be referenced; @mr will be equivalent to
367 * @orig between @offset and @offset + @size - 1.
368 * @offset: start of the section in @orig to be referenced.
369 * @size: size of the region.
370 */
371 void memory_region_init_alias(MemoryRegion *mr,
372 struct Object *owner,
373 const char *name,
374 MemoryRegion *orig,
375 hwaddr offset,
376 uint64_t size);
377
378 /**
379 * memory_region_init_rom_device: Initialize a ROM memory region. Writes are
380 * handled via callbacks.
381 *
382 * @mr: the #MemoryRegion to be initialized.
383 * @owner: the object that tracks the region's reference count
384 * @ops: callbacks for write access handling.
385 * @name: the name of the region.
386 * @size: size of the region.
387 */
388 void memory_region_init_rom_device(MemoryRegion *mr,
389 struct Object *owner,
390 const MemoryRegionOps *ops,
391 void *opaque,
392 const char *name,
393 uint64_t size);
394
395 /**
396 * memory_region_init_reservation: Initialize a memory region that reserves
397 * I/O space.
398 *
399 * A reservation region primariy serves debugging purposes. It claims I/O
400 * space that is not supposed to be handled by QEMU itself. Any access via
401 * the memory API will cause an abort().
402 *
403 * @mr: the #MemoryRegion to be initialized
404 * @owner: the object that tracks the region's reference count
405 * @name: used for debugging; not visible to the user or ABI
406 * @size: size of the region.
407 */
408 void memory_region_init_reservation(MemoryRegion *mr,
409 struct Object *owner,
410 const char *name,
411 uint64_t size);
412
413 /**
414 * memory_region_init_iommu: Initialize a memory region that translates
415 * addresses
416 *
417 * An IOMMU region translates addresses and forwards accesses to a target
418 * memory region.
419 *
420 * @mr: the #MemoryRegion to be initialized
421 * @owner: the object that tracks the region's reference count
422 * @ops: a function that translates addresses into the @target region
423 * @name: used for debugging; not visible to the user or ABI
424 * @size: size of the region.
425 */
426 void memory_region_init_iommu(MemoryRegion *mr,
427 struct Object *owner,
428 const MemoryRegionIOMMUOps *ops,
429 const char *name,
430 uint64_t size);
431
432 /**
433 * memory_region_destroy: Destroy a memory region and reclaim all resources.
434 *
435 * @mr: the region to be destroyed. May not currently be a subregion
436 * (see memory_region_add_subregion()) or referenced in an alias
437 * (see memory_region_init_alias()).
438 */
439 void memory_region_destroy(MemoryRegion *mr);
440
441 /**
442 * memory_region_owner: get a memory region's owner.
443 *
444 * @mr: the memory region being queried.
445 */
446 struct Object *memory_region_owner(MemoryRegion *mr);
447
448 /**
449 * memory_region_size: get a memory region's size.
450 *
451 * @mr: the memory region being queried.
452 */
453 uint64_t memory_region_size(MemoryRegion *mr);
454
455 /**
456 * memory_region_is_ram: check whether a memory region is random access
457 *
458 * Returns %true is a memory region is random access.
459 *
460 * @mr: the memory region being queried
461 */
462 bool memory_region_is_ram(MemoryRegion *mr);
463
464 /**
465 * memory_region_is_romd: check whether a memory region is in ROMD mode
466 *
467 * Returns %true if a memory region is a ROM device and currently set to allow
468 * direct reads.
469 *
470 * @mr: the memory region being queried
471 */
472 static inline bool memory_region_is_romd(MemoryRegion *mr)
473 {
474 return mr->rom_device && mr->romd_mode;
475 }
476
477 /**
478 * memory_region_is_iommu: check whether a memory region is an iommu
479 *
480 * Returns %true is a memory region is an iommu.
481 *
482 * @mr: the memory region being queried
483 */
484 bool memory_region_is_iommu(MemoryRegion *mr);
485
486 /**
487 * memory_region_notify_iommu: notify a change in an IOMMU translation entry.
488 *
489 * @mr: the memory region that was changed
490 * @entry: the new entry in the IOMMU translation table. The entry
491 * replaces all old entries for the same virtual I/O address range.
492 * Deleted entries have .@perm == 0.
493 */
494 void memory_region_notify_iommu(MemoryRegion *mr,
495 IOMMUTLBEntry entry);
496
497 /**
498 * memory_region_register_iommu_notifier: register a notifier for changes to
499 * IOMMU translation entries.
500 *
501 * @mr: the memory region to observe
502 * @n: the notifier to be added; the notifier receives a pointer to an
503 * #IOMMUTLBEntry as the opaque value; the pointer ceases to be
504 * valid on exit from the notifier.
505 */
506 void memory_region_register_iommu_notifier(MemoryRegion *mr, Notifier *n);
507
508 /**
509 * memory_region_unregister_iommu_notifier: unregister a notifier for
510 * changes to IOMMU translation entries.
511 *
512 * @n: the notifier to be removed.
513 */
514 void memory_region_unregister_iommu_notifier(Notifier *n);
515
516 /**
517 * memory_region_name: get a memory region's name
518 *
519 * Returns the string that was used to initialize the memory region.
520 *
521 * @mr: the memory region being queried
522 */
523 const char *memory_region_name(MemoryRegion *mr);
524
525 /**
526 * memory_region_is_logging: return whether a memory region is logging writes
527 *
528 * Returns %true if the memory region is logging writes
529 *
530 * @mr: the memory region being queried
531 */
532 bool memory_region_is_logging(MemoryRegion *mr);
533
534 /**
535 * memory_region_is_rom: check whether a memory region is ROM
536 *
537 * Returns %true is a memory region is read-only memory.
538 *
539 * @mr: the memory region being queried
540 */
541 bool memory_region_is_rom(MemoryRegion *mr);
542
543 /**
544 * memory_region_get_fd: Get a file descriptor backing a RAM memory region.
545 *
546 * Returns a file descriptor backing a file-based RAM memory region,
547 * or -1 if the region is not a file-based RAM memory region.
548 *
549 * @mr: the RAM or alias memory region being queried.
550 */
551 int memory_region_get_fd(MemoryRegion *mr);
552
553 /**
554 * memory_region_get_ram_ptr: Get a pointer into a RAM memory region.
555 *
556 * Returns a host pointer to a RAM memory region (created with
557 * memory_region_init_ram() or memory_region_init_ram_ptr()). Use with
558 * care.
559 *
560 * @mr: the memory region being queried.
561 */
562 void *memory_region_get_ram_ptr(MemoryRegion *mr);
563
564 /**
565 * memory_region_set_log: Turn dirty logging on or off for a region.
566 *
567 * Turns dirty logging on or off for a specified client (display, migration).
568 * Only meaningful for RAM regions.
569 *
570 * @mr: the memory region being updated.
571 * @log: whether dirty logging is to be enabled or disabled.
572 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
573 * %DIRTY_MEMORY_VGA.
574 */
575 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client);
576
577 /**
578 * memory_region_get_dirty: Check whether a range of bytes is dirty
579 * for a specified client.
580 *
581 * Checks whether a range of bytes has been written to since the last
582 * call to memory_region_reset_dirty() with the same @client. Dirty logging
583 * must be enabled.
584 *
585 * @mr: the memory region being queried.
586 * @addr: the address (relative to the start of the region) being queried.
587 * @size: the size of the range being queried.
588 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
589 * %DIRTY_MEMORY_VGA.
590 */
591 bool memory_region_get_dirty(MemoryRegion *mr, hwaddr addr,
592 hwaddr size, unsigned client);
593
594 /**
595 * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region.
596 *
597 * Marks a range of bytes as dirty, after it has been dirtied outside
598 * guest code.
599 *
600 * @mr: the memory region being dirtied.
601 * @addr: the address (relative to the start of the region) being dirtied.
602 * @size: size of the range being dirtied.
603 */
604 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
605 hwaddr size);
606
607 /**
608 * memory_region_test_and_clear_dirty: Check whether a range of bytes is dirty
609 * for a specified client. It clears them.
610 *
611 * Checks whether a range of bytes has been written to since the last
612 * call to memory_region_reset_dirty() with the same @client. Dirty logging
613 * must be enabled.
614 *
615 * @mr: the memory region being queried.
616 * @addr: the address (relative to the start of the region) being queried.
617 * @size: the size of the range being queried.
618 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
619 * %DIRTY_MEMORY_VGA.
620 */
621 bool memory_region_test_and_clear_dirty(MemoryRegion *mr, hwaddr addr,
622 hwaddr size, unsigned client);
623 /**
624 * memory_region_sync_dirty_bitmap: Synchronize a region's dirty bitmap with
625 * any external TLBs (e.g. kvm)
626 *
627 * Flushes dirty information from accelerators such as kvm and vhost-net
628 * and makes it available to users of the memory API.
629 *
630 * @mr: the region being flushed.
631 */
632 void memory_region_sync_dirty_bitmap(MemoryRegion *mr);
633
634 /**
635 * memory_region_reset_dirty: Mark a range of pages as clean, for a specified
636 * client.
637 *
638 * Marks a range of pages as no longer dirty.
639 *
640 * @mr: the region being updated.
641 * @addr: the start of the subrange being cleaned.
642 * @size: the size of the subrange being cleaned.
643 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
644 * %DIRTY_MEMORY_VGA.
645 */
646 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
647 hwaddr size, unsigned client);
648
649 /**
650 * memory_region_set_readonly: Turn a memory region read-only (or read-write)
651 *
652 * Allows a memory region to be marked as read-only (turning it into a ROM).
653 * only useful on RAM regions.
654 *
655 * @mr: the region being updated.
656 * @readonly: whether rhe region is to be ROM or RAM.
657 */
658 void memory_region_set_readonly(MemoryRegion *mr, bool readonly);
659
660 /**
661 * memory_region_rom_device_set_romd: enable/disable ROMD mode
662 *
663 * Allows a ROM device (initialized with memory_region_init_rom_device() to
664 * set to ROMD mode (default) or MMIO mode. When it is in ROMD mode, the
665 * device is mapped to guest memory and satisfies read access directly.
666 * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function.
667 * Writes are always handled by the #MemoryRegion.write function.
668 *
669 * @mr: the memory region to be updated
670 * @romd_mode: %true to put the region into ROMD mode
671 */
672 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode);
673
674 /**
675 * memory_region_set_coalescing: Enable memory coalescing for the region.
676 *
677 * Enabled writes to a region to be queued for later processing. MMIO ->write
678 * callbacks may be delayed until a non-coalesced MMIO is issued.
679 * Only useful for IO regions. Roughly similar to write-combining hardware.
680 *
681 * @mr: the memory region to be write coalesced
682 */
683 void memory_region_set_coalescing(MemoryRegion *mr);
684
685 /**
686 * memory_region_add_coalescing: Enable memory coalescing for a sub-range of
687 * a region.
688 *
689 * Like memory_region_set_coalescing(), but works on a sub-range of a region.
690 * Multiple calls can be issued coalesced disjoint ranges.
691 *
692 * @mr: the memory region to be updated.
693 * @offset: the start of the range within the region to be coalesced.
694 * @size: the size of the subrange to be coalesced.
695 */
696 void memory_region_add_coalescing(MemoryRegion *mr,
697 hwaddr offset,
698 uint64_t size);
699
700 /**
701 * memory_region_clear_coalescing: Disable MMIO coalescing for the region.
702 *
703 * Disables any coalescing caused by memory_region_set_coalescing() or
704 * memory_region_add_coalescing(). Roughly equivalent to uncacheble memory
705 * hardware.
706 *
707 * @mr: the memory region to be updated.
708 */
709 void memory_region_clear_coalescing(MemoryRegion *mr);
710
711 /**
712 * memory_region_set_flush_coalesced: Enforce memory coalescing flush before
713 * accesses.
714 *
715 * Ensure that pending coalesced MMIO request are flushed before the memory
716 * region is accessed. This property is automatically enabled for all regions
717 * passed to memory_region_set_coalescing() and memory_region_add_coalescing().
718 *
719 * @mr: the memory region to be updated.
720 */
721 void memory_region_set_flush_coalesced(MemoryRegion *mr);
722
723 /**
724 * memory_region_clear_flush_coalesced: Disable memory coalescing flush before
725 * accesses.
726 *
727 * Clear the automatic coalesced MMIO flushing enabled via
728 * memory_region_set_flush_coalesced. Note that this service has no effect on
729 * memory regions that have MMIO coalescing enabled for themselves. For them,
730 * automatic flushing will stop once coalescing is disabled.
731 *
732 * @mr: the memory region to be updated.
733 */
734 void memory_region_clear_flush_coalesced(MemoryRegion *mr);
735
736 /**
737 * memory_region_add_eventfd: Request an eventfd to be triggered when a word
738 * is written to a location.
739 *
740 * Marks a word in an IO region (initialized with memory_region_init_io())
741 * as a trigger for an eventfd event. The I/O callback will not be called.
742 * The caller must be prepared to handle failure (that is, take the required
743 * action if the callback _is_ called).
744 *
745 * @mr: the memory region being updated.
746 * @addr: the address within @mr that is to be monitored
747 * @size: the size of the access to trigger the eventfd
748 * @match_data: whether to match against @data, instead of just @addr
749 * @data: the data to match against the guest write
750 * @fd: the eventfd to be triggered when @addr, @size, and @data all match.
751 **/
752 void memory_region_add_eventfd(MemoryRegion *mr,
753 hwaddr addr,
754 unsigned size,
755 bool match_data,
756 uint64_t data,
757 EventNotifier *e);
758
759 /**
760 * memory_region_del_eventfd: Cancel an eventfd.
761 *
762 * Cancels an eventfd trigger requested by a previous
763 * memory_region_add_eventfd() call.
764 *
765 * @mr: the memory region being updated.
766 * @addr: the address within @mr that is to be monitored
767 * @size: the size of the access to trigger the eventfd
768 * @match_data: whether to match against @data, instead of just @addr
769 * @data: the data to match against the guest write
770 * @fd: the eventfd to be triggered when @addr, @size, and @data all match.
771 */
772 void memory_region_del_eventfd(MemoryRegion *mr,
773 hwaddr addr,
774 unsigned size,
775 bool match_data,
776 uint64_t data,
777 EventNotifier *e);
778
779 /**
780 * memory_region_add_subregion: Add a subregion to a container.
781 *
782 * Adds a subregion at @offset. The subregion may not overlap with other
783 * subregions (except for those explicitly marked as overlapping). A region
784 * may only be added once as a subregion (unless removed with
785 * memory_region_del_subregion()); use memory_region_init_alias() if you
786 * want a region to be a subregion in multiple locations.
787 *
788 * @mr: the region to contain the new subregion; must be a container
789 * initialized with memory_region_init().
790 * @offset: the offset relative to @mr where @subregion is added.
791 * @subregion: the subregion to be added.
792 */
793 void memory_region_add_subregion(MemoryRegion *mr,
794 hwaddr offset,
795 MemoryRegion *subregion);
796 /**
797 * memory_region_add_subregion_overlap: Add a subregion to a container
798 * with overlap.
799 *
800 * Adds a subregion at @offset. The subregion may overlap with other
801 * subregions. Conflicts are resolved by having a higher @priority hide a
802 * lower @priority. Subregions without priority are taken as @priority 0.
803 * A region may only be added once as a subregion (unless removed with
804 * memory_region_del_subregion()); use memory_region_init_alias() if you
805 * want a region to be a subregion in multiple locations.
806 *
807 * @mr: the region to contain the new subregion; must be a container
808 * initialized with memory_region_init().
809 * @offset: the offset relative to @mr where @subregion is added.
810 * @subregion: the subregion to be added.
811 * @priority: used for resolving overlaps; highest priority wins.
812 */
813 void memory_region_add_subregion_overlap(MemoryRegion *mr,
814 hwaddr offset,
815 MemoryRegion *subregion,
816 int priority);
817
818 /**
819 * memory_region_get_ram_addr: Get the ram address associated with a memory
820 * region
821 *
822 * DO NOT USE THIS FUNCTION. This is a temporary workaround while the Xen
823 * code is being reworked.
824 */
825 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr);
826
827 /**
828 * memory_region_del_subregion: Remove a subregion.
829 *
830 * Removes a subregion from its container.
831 *
832 * @mr: the container to be updated.
833 * @subregion: the region being removed; must be a current subregion of @mr.
834 */
835 void memory_region_del_subregion(MemoryRegion *mr,
836 MemoryRegion *subregion);
837
838 /*
839 * memory_region_set_enabled: dynamically enable or disable a region
840 *
841 * Enables or disables a memory region. A disabled memory region
842 * ignores all accesses to itself and its subregions. It does not
843 * obscure sibling subregions with lower priority - it simply behaves as
844 * if it was removed from the hierarchy.
845 *
846 * Regions default to being enabled.
847 *
848 * @mr: the region to be updated
849 * @enabled: whether to enable or disable the region
850 */
851 void memory_region_set_enabled(MemoryRegion *mr, bool enabled);
852
853 /*
854 * memory_region_set_address: dynamically update the address of a region
855 *
856 * Dynamically updates the address of a region, relative to its container.
857 * May be used on regions are currently part of a memory hierarchy.
858 *
859 * @mr: the region to be updated
860 * @addr: new address, relative to container region
861 */
862 void memory_region_set_address(MemoryRegion *mr, hwaddr addr);
863
864 /*
865 * memory_region_set_alias_offset: dynamically update a memory alias's offset
866 *
867 * Dynamically updates the offset into the target region that an alias points
868 * to, as if the fourth argument to memory_region_init_alias() has changed.
869 *
870 * @mr: the #MemoryRegion to be updated; should be an alias.
871 * @offset: the new offset into the target memory region
872 */
873 void memory_region_set_alias_offset(MemoryRegion *mr,
874 hwaddr offset);
875
876 /**
877 * memory_region_present: checks if an address relative to a @container
878 * translates into #MemoryRegion within @container
879 *
880 * Answer whether a #MemoryRegion within @container covers the address
881 * @addr.
882 *
883 * @container: a #MemoryRegion within which @addr is a relative address
884 * @addr: the area within @container to be searched
885 */
886 bool memory_region_present(MemoryRegion *container, hwaddr addr);
887
888 /**
889 * memory_region_is_mapped: returns true if #MemoryRegion is mapped
890 * into any address space.
891 *
892 * @mr: a #MemoryRegion which should be checked if it's mapped
893 */
894 bool memory_region_is_mapped(MemoryRegion *mr);
895
896 /**
897 * memory_region_find: translate an address/size relative to a
898 * MemoryRegion into a #MemoryRegionSection.
899 *
900 * Locates the first #MemoryRegion within @mr that overlaps the range
901 * given by @addr and @size.
902 *
903 * Returns a #MemoryRegionSection that describes a contiguous overlap.
904 * It will have the following characteristics:
905 * .@size = 0 iff no overlap was found
906 * .@mr is non-%NULL iff an overlap was found
907 *
908 * Remember that in the return value the @offset_within_region is
909 * relative to the returned region (in the .@mr field), not to the
910 * @mr argument.
911 *
912 * Similarly, the .@offset_within_address_space is relative to the
913 * address space that contains both regions, the passed and the
914 * returned one. However, in the special case where the @mr argument
915 * has no container (and thus is the root of the address space), the
916 * following will hold:
917 * .@offset_within_address_space >= @addr
918 * .@offset_within_address_space + .@size <= @addr + @size
919 *
920 * @mr: a MemoryRegion within which @addr is a relative address
921 * @addr: start of the area within @as to be searched
922 * @size: size of the area to be searched
923 */
924 MemoryRegionSection memory_region_find(MemoryRegion *mr,
925 hwaddr addr, uint64_t size);
926
927 /**
928 * address_space_sync_dirty_bitmap: synchronize the dirty log for all memory
929 *
930 * Synchronizes the dirty page log for an entire address space.
931 * @as: the address space that contains the memory being synchronized
932 */
933 void address_space_sync_dirty_bitmap(AddressSpace *as);
934
935 /**
936 * memory_region_transaction_begin: Start a transaction.
937 *
938 * During a transaction, changes will be accumulated and made visible
939 * only when the transaction ends (is committed).
940 */
941 void memory_region_transaction_begin(void);
942
943 /**
944 * memory_region_transaction_commit: Commit a transaction and make changes
945 * visible to the guest.
946 */
947 void memory_region_transaction_commit(void);
948
949 /**
950 * memory_listener_register: register callbacks to be called when memory
951 * sections are mapped or unmapped into an address
952 * space
953 *
954 * @listener: an object containing the callbacks to be called
955 * @filter: if non-%NULL, only regions in this address space will be observed
956 */
957 void memory_listener_register(MemoryListener *listener, AddressSpace *filter);
958
959 /**
960 * memory_listener_unregister: undo the effect of memory_listener_register()
961 *
962 * @listener: an object containing the callbacks to be removed
963 */
964 void memory_listener_unregister(MemoryListener *listener);
965
966 /**
967 * memory_global_dirty_log_start: begin dirty logging for all regions
968 */
969 void memory_global_dirty_log_start(void);
970
971 /**
972 * memory_global_dirty_log_stop: end dirty logging for all regions
973 */
974 void memory_global_dirty_log_stop(void);
975
976 void mtree_info(fprintf_function mon_printf, void *f);
977
978 /**
979 * address_space_init: initializes an address space
980 *
981 * @as: an uninitialized #AddressSpace
982 * @root: a #MemoryRegion that routes addesses for the address space
983 * @name: an address space name. The name is only used for debugging
984 * output.
985 */
986 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name);
987
988
989 /**
990 * address_space_destroy: destroy an address space
991 *
992 * Releases all resources associated with an address space. After an address space
993 * is destroyed, its root memory region (given by address_space_init()) may be destroyed
994 * as well.
995 *
996 * @as: address space to be destroyed
997 */
998 void address_space_destroy(AddressSpace *as);
999
1000 /**
1001 * address_space_rw: read from or write to an address space.
1002 *
1003 * Return true if the operation hit any unassigned memory or encountered an
1004 * IOMMU fault.
1005 *
1006 * @as: #AddressSpace to be accessed
1007 * @addr: address within that address space
1008 * @buf: buffer with the data transferred
1009 * @is_write: indicates the transfer direction
1010 */
1011 bool address_space_rw(AddressSpace *as, hwaddr addr, uint8_t *buf,
1012 int len, bool is_write);
1013
1014 /**
1015 * address_space_write: write to address space.
1016 *
1017 * Return true if the operation hit any unassigned memory or encountered an
1018 * IOMMU fault.
1019 *
1020 * @as: #AddressSpace to be accessed
1021 * @addr: address within that address space
1022 * @buf: buffer with the data transferred
1023 */
1024 bool address_space_write(AddressSpace *as, hwaddr addr,
1025 const uint8_t *buf, int len);
1026
1027 /**
1028 * address_space_read: read from an address space.
1029 *
1030 * Return true if the operation hit any unassigned memory or encountered an
1031 * IOMMU fault.
1032 *
1033 * @as: #AddressSpace to be accessed
1034 * @addr: address within that address space
1035 * @buf: buffer with the data transferred
1036 */
1037 bool address_space_read(AddressSpace *as, hwaddr addr, uint8_t *buf, int len);
1038
1039 /* address_space_translate: translate an address range into an address space
1040 * into a MemoryRegion and an address range into that section
1041 *
1042 * @as: #AddressSpace to be accessed
1043 * @addr: address within that address space
1044 * @xlat: pointer to address within the returned memory region section's
1045 * #MemoryRegion.
1046 * @len: pointer to length
1047 * @is_write: indicates the transfer direction
1048 */
1049 MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr,
1050 hwaddr *xlat, hwaddr *len,
1051 bool is_write);
1052
1053 /* address_space_access_valid: check for validity of accessing an address
1054 * space range
1055 *
1056 * Check whether memory is assigned to the given address space range, and
1057 * access is permitted by any IOMMU regions that are active for the address
1058 * space.
1059 *
1060 * For now, addr and len should be aligned to a page size. This limitation
1061 * will be lifted in the future.
1062 *
1063 * @as: #AddressSpace to be accessed
1064 * @addr: address within that address space
1065 * @len: length of the area to be checked
1066 * @is_write: indicates the transfer direction
1067 */
1068 bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write);
1069
1070 /* address_space_map: map a physical memory region into a host virtual address
1071 *
1072 * May map a subset of the requested range, given by and returned in @plen.
1073 * May return %NULL if resources needed to perform the mapping are exhausted.
1074 * Use only for reads OR writes - not for read-modify-write operations.
1075 * Use cpu_register_map_client() to know when retrying the map operation is
1076 * likely to succeed.
1077 *
1078 * @as: #AddressSpace to be accessed
1079 * @addr: address within that address space
1080 * @plen: pointer to length of buffer; updated on return
1081 * @is_write: indicates the transfer direction
1082 */
1083 void *address_space_map(AddressSpace *as, hwaddr addr,
1084 hwaddr *plen, bool is_write);
1085
1086 /* address_space_unmap: Unmaps a memory region previously mapped by address_space_map()
1087 *
1088 * Will also mark the memory as dirty if @is_write == %true. @access_len gives
1089 * the amount of memory that was actually read or written by the caller.
1090 *
1091 * @as: #AddressSpace used
1092 * @addr: address within that address space
1093 * @len: buffer length as returned by address_space_map()
1094 * @access_len: amount of data actually transferred
1095 * @is_write: indicates the transfer direction
1096 */
1097 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
1098 int is_write, hwaddr access_len);
1099
1100
1101 #endif
1102
1103 #endif