]> git.proxmox.com Git - mirror_qemu.git/blob - include/exec/memory.h
Merge remote-tracking branch 'remotes/stsquad/tags/pull-testing-next-260919-1' into...
[mirror_qemu.git] / include / exec / memory.h
1 /*
2 * Physical memory management API
3 *
4 * Copyright 2011 Red Hat, Inc. and/or its affiliates
5 *
6 * Authors:
7 * Avi Kivity <avi@redhat.com>
8 *
9 * This work is licensed under the terms of the GNU GPL, version 2. See
10 * the COPYING file in the top-level directory.
11 *
12 */
13
14 #ifndef MEMORY_H
15 #define MEMORY_H
16
17 #ifndef CONFIG_USER_ONLY
18
19 #include "exec/cpu-common.h"
20 #include "exec/hwaddr.h"
21 #include "exec/memattrs.h"
22 #include "exec/memop.h"
23 #include "exec/ramlist.h"
24 #include "qemu/bswap.h"
25 #include "qemu/queue.h"
26 #include "qemu/int128.h"
27 #include "qemu/notify.h"
28 #include "qom/object.h"
29 #include "qemu/rcu.h"
30
31 #define RAM_ADDR_INVALID (~(ram_addr_t)0)
32
33 #define MAX_PHYS_ADDR_SPACE_BITS 62
34 #define MAX_PHYS_ADDR (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1)
35
36 #define TYPE_MEMORY_REGION "qemu:memory-region"
37 #define MEMORY_REGION(obj) \
38 OBJECT_CHECK(MemoryRegion, (obj), TYPE_MEMORY_REGION)
39
40 #define TYPE_IOMMU_MEMORY_REGION "qemu:iommu-memory-region"
41 #define IOMMU_MEMORY_REGION(obj) \
42 OBJECT_CHECK(IOMMUMemoryRegion, (obj), TYPE_IOMMU_MEMORY_REGION)
43 #define IOMMU_MEMORY_REGION_CLASS(klass) \
44 OBJECT_CLASS_CHECK(IOMMUMemoryRegionClass, (klass), \
45 TYPE_IOMMU_MEMORY_REGION)
46 #define IOMMU_MEMORY_REGION_GET_CLASS(obj) \
47 OBJECT_GET_CLASS(IOMMUMemoryRegionClass, (obj), \
48 TYPE_IOMMU_MEMORY_REGION)
49
50 extern bool global_dirty_log;
51
52 typedef struct MemoryRegionOps MemoryRegionOps;
53 typedef struct MemoryRegionMmio MemoryRegionMmio;
54
55 struct MemoryRegionMmio {
56 CPUReadMemoryFunc *read[3];
57 CPUWriteMemoryFunc *write[3];
58 };
59
60 typedef struct IOMMUTLBEntry IOMMUTLBEntry;
61
62 /* See address_space_translate: bit 0 is read, bit 1 is write. */
63 typedef enum {
64 IOMMU_NONE = 0,
65 IOMMU_RO = 1,
66 IOMMU_WO = 2,
67 IOMMU_RW = 3,
68 } IOMMUAccessFlags;
69
70 #define IOMMU_ACCESS_FLAG(r, w) (((r) ? IOMMU_RO : 0) | ((w) ? IOMMU_WO : 0))
71
72 struct IOMMUTLBEntry {
73 AddressSpace *target_as;
74 hwaddr iova;
75 hwaddr translated_addr;
76 hwaddr addr_mask; /* 0xfff = 4k translation */
77 IOMMUAccessFlags perm;
78 };
79
80 /*
81 * Bitmap for different IOMMUNotifier capabilities. Each notifier can
82 * register with one or multiple IOMMU Notifier capability bit(s).
83 */
84 typedef enum {
85 IOMMU_NOTIFIER_NONE = 0,
86 /* Notify cache invalidations */
87 IOMMU_NOTIFIER_UNMAP = 0x1,
88 /* Notify entry changes (newly created entries) */
89 IOMMU_NOTIFIER_MAP = 0x2,
90 } IOMMUNotifierFlag;
91
92 #define IOMMU_NOTIFIER_ALL (IOMMU_NOTIFIER_MAP | IOMMU_NOTIFIER_UNMAP)
93
94 struct IOMMUNotifier;
95 typedef void (*IOMMUNotify)(struct IOMMUNotifier *notifier,
96 IOMMUTLBEntry *data);
97
98 struct IOMMUNotifier {
99 IOMMUNotify notify;
100 IOMMUNotifierFlag notifier_flags;
101 /* Notify for address space range start <= addr <= end */
102 hwaddr start;
103 hwaddr end;
104 int iommu_idx;
105 QLIST_ENTRY(IOMMUNotifier) node;
106 };
107 typedef struct IOMMUNotifier IOMMUNotifier;
108
109 /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
110 #define RAM_PREALLOC (1 << 0)
111
112 /* RAM is mmap-ed with MAP_SHARED */
113 #define RAM_SHARED (1 << 1)
114
115 /* Only a portion of RAM (used_length) is actually used, and migrated.
116 * This used_length size can change across reboots.
117 */
118 #define RAM_RESIZEABLE (1 << 2)
119
120 /* UFFDIO_ZEROPAGE is available on this RAMBlock to atomically
121 * zero the page and wake waiting processes.
122 * (Set during postcopy)
123 */
124 #define RAM_UF_ZEROPAGE (1 << 3)
125
126 /* RAM can be migrated */
127 #define RAM_MIGRATABLE (1 << 4)
128
129 /* RAM is a persistent kind memory */
130 #define RAM_PMEM (1 << 5)
131
132 static inline void iommu_notifier_init(IOMMUNotifier *n, IOMMUNotify fn,
133 IOMMUNotifierFlag flags,
134 hwaddr start, hwaddr end,
135 int iommu_idx)
136 {
137 n->notify = fn;
138 n->notifier_flags = flags;
139 n->start = start;
140 n->end = end;
141 n->iommu_idx = iommu_idx;
142 }
143
144 /*
145 * Memory region callbacks
146 */
147 struct MemoryRegionOps {
148 /* Read from the memory region. @addr is relative to @mr; @size is
149 * in bytes. */
150 uint64_t (*read)(void *opaque,
151 hwaddr addr,
152 unsigned size);
153 /* Write to the memory region. @addr is relative to @mr; @size is
154 * in bytes. */
155 void (*write)(void *opaque,
156 hwaddr addr,
157 uint64_t data,
158 unsigned size);
159
160 MemTxResult (*read_with_attrs)(void *opaque,
161 hwaddr addr,
162 uint64_t *data,
163 unsigned size,
164 MemTxAttrs attrs);
165 MemTxResult (*write_with_attrs)(void *opaque,
166 hwaddr addr,
167 uint64_t data,
168 unsigned size,
169 MemTxAttrs attrs);
170
171 enum device_endian endianness;
172 /* Guest-visible constraints: */
173 struct {
174 /* If nonzero, specify bounds on access sizes beyond which a machine
175 * check is thrown.
176 */
177 unsigned min_access_size;
178 unsigned max_access_size;
179 /* If true, unaligned accesses are supported. Otherwise unaligned
180 * accesses throw machine checks.
181 */
182 bool unaligned;
183 /*
184 * If present, and returns #false, the transaction is not accepted
185 * by the device (and results in machine dependent behaviour such
186 * as a machine check exception).
187 */
188 bool (*accepts)(void *opaque, hwaddr addr,
189 unsigned size, bool is_write,
190 MemTxAttrs attrs);
191 } valid;
192 /* Internal implementation constraints: */
193 struct {
194 /* If nonzero, specifies the minimum size implemented. Smaller sizes
195 * will be rounded upwards and a partial result will be returned.
196 */
197 unsigned min_access_size;
198 /* If nonzero, specifies the maximum size implemented. Larger sizes
199 * will be done as a series of accesses with smaller sizes.
200 */
201 unsigned max_access_size;
202 /* If true, unaligned accesses are supported. Otherwise all accesses
203 * are converted to (possibly multiple) naturally aligned accesses.
204 */
205 bool unaligned;
206 } impl;
207 };
208
209 typedef struct MemoryRegionClass {
210 /* private */
211 ObjectClass parent_class;
212 } MemoryRegionClass;
213
214
215 enum IOMMUMemoryRegionAttr {
216 IOMMU_ATTR_SPAPR_TCE_FD
217 };
218
219 /**
220 * IOMMUMemoryRegionClass:
221 *
222 * All IOMMU implementations need to subclass TYPE_IOMMU_MEMORY_REGION
223 * and provide an implementation of at least the @translate method here
224 * to handle requests to the memory region. Other methods are optional.
225 *
226 * The IOMMU implementation must use the IOMMU notifier infrastructure
227 * to report whenever mappings are changed, by calling
228 * memory_region_notify_iommu() (or, if necessary, by calling
229 * memory_region_notify_one() for each registered notifier).
230 *
231 * Conceptually an IOMMU provides a mapping from input address
232 * to an output TLB entry. If the IOMMU is aware of memory transaction
233 * attributes and the output TLB entry depends on the transaction
234 * attributes, we represent this using IOMMU indexes. Each index
235 * selects a particular translation table that the IOMMU has:
236 * @attrs_to_index returns the IOMMU index for a set of transaction attributes
237 * @translate takes an input address and an IOMMU index
238 * and the mapping returned can only depend on the input address and the
239 * IOMMU index.
240 *
241 * Most IOMMUs don't care about the transaction attributes and support
242 * only a single IOMMU index. A more complex IOMMU might have one index
243 * for secure transactions and one for non-secure transactions.
244 */
245 typedef struct IOMMUMemoryRegionClass {
246 /* private */
247 MemoryRegionClass parent_class;
248
249 /*
250 * Return a TLB entry that contains a given address.
251 *
252 * The IOMMUAccessFlags indicated via @flag are optional and may
253 * be specified as IOMMU_NONE to indicate that the caller needs
254 * the full translation information for both reads and writes. If
255 * the access flags are specified then the IOMMU implementation
256 * may use this as an optimization, to stop doing a page table
257 * walk as soon as it knows that the requested permissions are not
258 * allowed. If IOMMU_NONE is passed then the IOMMU must do the
259 * full page table walk and report the permissions in the returned
260 * IOMMUTLBEntry. (Note that this implies that an IOMMU may not
261 * return different mappings for reads and writes.)
262 *
263 * The returned information remains valid while the caller is
264 * holding the big QEMU lock or is inside an RCU critical section;
265 * if the caller wishes to cache the mapping beyond that it must
266 * register an IOMMU notifier so it can invalidate its cached
267 * information when the IOMMU mapping changes.
268 *
269 * @iommu: the IOMMUMemoryRegion
270 * @hwaddr: address to be translated within the memory region
271 * @flag: requested access permissions
272 * @iommu_idx: IOMMU index for the translation
273 */
274 IOMMUTLBEntry (*translate)(IOMMUMemoryRegion *iommu, hwaddr addr,
275 IOMMUAccessFlags flag, int iommu_idx);
276 /* Returns minimum supported page size in bytes.
277 * If this method is not provided then the minimum is assumed to
278 * be TARGET_PAGE_SIZE.
279 *
280 * @iommu: the IOMMUMemoryRegion
281 */
282 uint64_t (*get_min_page_size)(IOMMUMemoryRegion *iommu);
283 /* Called when IOMMU Notifier flag changes (ie when the set of
284 * events which IOMMU users are requesting notification for changes).
285 * Optional method -- need not be provided if the IOMMU does not
286 * need to know exactly which events must be notified.
287 *
288 * @iommu: the IOMMUMemoryRegion
289 * @old_flags: events which previously needed to be notified
290 * @new_flags: events which now need to be notified
291 */
292 void (*notify_flag_changed)(IOMMUMemoryRegion *iommu,
293 IOMMUNotifierFlag old_flags,
294 IOMMUNotifierFlag new_flags);
295 /* Called to handle memory_region_iommu_replay().
296 *
297 * The default implementation of memory_region_iommu_replay() is to
298 * call the IOMMU translate method for every page in the address space
299 * with flag == IOMMU_NONE and then call the notifier if translate
300 * returns a valid mapping. If this method is implemented then it
301 * overrides the default behaviour, and must provide the full semantics
302 * of memory_region_iommu_replay(), by calling @notifier for every
303 * translation present in the IOMMU.
304 *
305 * Optional method -- an IOMMU only needs to provide this method
306 * if the default is inefficient or produces undesirable side effects.
307 *
308 * Note: this is not related to record-and-replay functionality.
309 */
310 void (*replay)(IOMMUMemoryRegion *iommu, IOMMUNotifier *notifier);
311
312 /* Get IOMMU misc attributes. This is an optional method that
313 * can be used to allow users of the IOMMU to get implementation-specific
314 * information. The IOMMU implements this method to handle calls
315 * by IOMMU users to memory_region_iommu_get_attr() by filling in
316 * the arbitrary data pointer for any IOMMUMemoryRegionAttr values that
317 * the IOMMU supports. If the method is unimplemented then
318 * memory_region_iommu_get_attr() will always return -EINVAL.
319 *
320 * @iommu: the IOMMUMemoryRegion
321 * @attr: attribute being queried
322 * @data: memory to fill in with the attribute data
323 *
324 * Returns 0 on success, or a negative errno; in particular
325 * returns -EINVAL for unrecognized or unimplemented attribute types.
326 */
327 int (*get_attr)(IOMMUMemoryRegion *iommu, enum IOMMUMemoryRegionAttr attr,
328 void *data);
329
330 /* Return the IOMMU index to use for a given set of transaction attributes.
331 *
332 * Optional method: if an IOMMU only supports a single IOMMU index then
333 * the default implementation of memory_region_iommu_attrs_to_index()
334 * will return 0.
335 *
336 * The indexes supported by an IOMMU must be contiguous, starting at 0.
337 *
338 * @iommu: the IOMMUMemoryRegion
339 * @attrs: memory transaction attributes
340 */
341 int (*attrs_to_index)(IOMMUMemoryRegion *iommu, MemTxAttrs attrs);
342
343 /* Return the number of IOMMU indexes this IOMMU supports.
344 *
345 * Optional method: if this method is not provided, then
346 * memory_region_iommu_num_indexes() will return 1, indicating that
347 * only a single IOMMU index is supported.
348 *
349 * @iommu: the IOMMUMemoryRegion
350 */
351 int (*num_indexes)(IOMMUMemoryRegion *iommu);
352 } IOMMUMemoryRegionClass;
353
354 typedef struct CoalescedMemoryRange CoalescedMemoryRange;
355 typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd;
356
357 struct MemoryRegion {
358 Object parent_obj;
359
360 /* All fields are private - violators will be prosecuted */
361
362 /* The following fields should fit in a cache line */
363 bool romd_mode;
364 bool ram;
365 bool subpage;
366 bool readonly; /* For RAM regions */
367 bool nonvolatile;
368 bool rom_device;
369 bool flush_coalesced_mmio;
370 bool global_locking;
371 uint8_t dirty_log_mask;
372 bool is_iommu;
373 RAMBlock *ram_block;
374 Object *owner;
375
376 const MemoryRegionOps *ops;
377 void *opaque;
378 MemoryRegion *container;
379 Int128 size;
380 hwaddr addr;
381 void (*destructor)(MemoryRegion *mr);
382 uint64_t align;
383 bool terminates;
384 bool ram_device;
385 bool enabled;
386 bool warning_printed; /* For reservations */
387 uint8_t vga_logging_count;
388 MemoryRegion *alias;
389 hwaddr alias_offset;
390 int32_t priority;
391 QTAILQ_HEAD(, MemoryRegion) subregions;
392 QTAILQ_ENTRY(MemoryRegion) subregions_link;
393 QTAILQ_HEAD(, CoalescedMemoryRange) coalesced;
394 const char *name;
395 unsigned ioeventfd_nb;
396 MemoryRegionIoeventfd *ioeventfds;
397 };
398
399 struct IOMMUMemoryRegion {
400 MemoryRegion parent_obj;
401
402 QLIST_HEAD(, IOMMUNotifier) iommu_notify;
403 IOMMUNotifierFlag iommu_notify_flags;
404 };
405
406 #define IOMMU_NOTIFIER_FOREACH(n, mr) \
407 QLIST_FOREACH((n), &(mr)->iommu_notify, node)
408
409 /**
410 * MemoryListener: callbacks structure for updates to the physical memory map
411 *
412 * Allows a component to adjust to changes in the guest-visible memory map.
413 * Use with memory_listener_register() and memory_listener_unregister().
414 */
415 struct MemoryListener {
416 void (*begin)(MemoryListener *listener);
417 void (*commit)(MemoryListener *listener);
418 void (*region_add)(MemoryListener *listener, MemoryRegionSection *section);
419 void (*region_del)(MemoryListener *listener, MemoryRegionSection *section);
420 void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section);
421 void (*log_start)(MemoryListener *listener, MemoryRegionSection *section,
422 int old, int new);
423 void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section,
424 int old, int new);
425 void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section);
426 void (*log_clear)(MemoryListener *listener, MemoryRegionSection *section);
427 void (*log_global_start)(MemoryListener *listener);
428 void (*log_global_stop)(MemoryListener *listener);
429 void (*log_global_after_sync)(MemoryListener *listener);
430 void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section,
431 bool match_data, uint64_t data, EventNotifier *e);
432 void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section,
433 bool match_data, uint64_t data, EventNotifier *e);
434 void (*coalesced_io_add)(MemoryListener *listener, MemoryRegionSection *section,
435 hwaddr addr, hwaddr len);
436 void (*coalesced_io_del)(MemoryListener *listener, MemoryRegionSection *section,
437 hwaddr addr, hwaddr len);
438 /* Lower = earlier (during add), later (during del) */
439 unsigned priority;
440 AddressSpace *address_space;
441 QTAILQ_ENTRY(MemoryListener) link;
442 QTAILQ_ENTRY(MemoryListener) link_as;
443 };
444
445 /**
446 * AddressSpace: describes a mapping of addresses to #MemoryRegion objects
447 */
448 struct AddressSpace {
449 /* All fields are private. */
450 struct rcu_head rcu;
451 char *name;
452 MemoryRegion *root;
453
454 /* Accessed via RCU. */
455 struct FlatView *current_map;
456
457 int ioeventfd_nb;
458 struct MemoryRegionIoeventfd *ioeventfds;
459 QTAILQ_HEAD(, MemoryListener) listeners;
460 QTAILQ_ENTRY(AddressSpace) address_spaces_link;
461 };
462
463 typedef struct AddressSpaceDispatch AddressSpaceDispatch;
464 typedef struct FlatRange FlatRange;
465
466 /* Flattened global view of current active memory hierarchy. Kept in sorted
467 * order.
468 */
469 struct FlatView {
470 struct rcu_head rcu;
471 unsigned ref;
472 FlatRange *ranges;
473 unsigned nr;
474 unsigned nr_allocated;
475 struct AddressSpaceDispatch *dispatch;
476 MemoryRegion *root;
477 };
478
479 static inline FlatView *address_space_to_flatview(AddressSpace *as)
480 {
481 return atomic_rcu_read(&as->current_map);
482 }
483
484
485 /**
486 * MemoryRegionSection: describes a fragment of a #MemoryRegion
487 *
488 * @mr: the region, or %NULL if empty
489 * @fv: the flat view of the address space the region is mapped in
490 * @offset_within_region: the beginning of the section, relative to @mr's start
491 * @size: the size of the section; will not exceed @mr's boundaries
492 * @offset_within_address_space: the address of the first byte of the section
493 * relative to the region's address space
494 * @readonly: writes to this section are ignored
495 * @nonvolatile: this section is non-volatile
496 */
497 struct MemoryRegionSection {
498 Int128 size;
499 MemoryRegion *mr;
500 FlatView *fv;
501 hwaddr offset_within_region;
502 hwaddr offset_within_address_space;
503 bool readonly;
504 bool nonvolatile;
505 };
506
507 static inline bool MemoryRegionSection_eq(MemoryRegionSection *a,
508 MemoryRegionSection *b)
509 {
510 return a->mr == b->mr &&
511 a->fv == b->fv &&
512 a->offset_within_region == b->offset_within_region &&
513 a->offset_within_address_space == b->offset_within_address_space &&
514 int128_eq(a->size, b->size) &&
515 a->readonly == b->readonly &&
516 a->nonvolatile == b->nonvolatile;
517 }
518
519 /**
520 * memory_region_init: Initialize a memory region
521 *
522 * The region typically acts as a container for other memory regions. Use
523 * memory_region_add_subregion() to add subregions.
524 *
525 * @mr: the #MemoryRegion to be initialized
526 * @owner: the object that tracks the region's reference count
527 * @name: used for debugging; not visible to the user or ABI
528 * @size: size of the region; any subregions beyond this size will be clipped
529 */
530 void memory_region_init(MemoryRegion *mr,
531 struct Object *owner,
532 const char *name,
533 uint64_t size);
534
535 /**
536 * memory_region_ref: Add 1 to a memory region's reference count
537 *
538 * Whenever memory regions are accessed outside the BQL, they need to be
539 * preserved against hot-unplug. MemoryRegions actually do not have their
540 * own reference count; they piggyback on a QOM object, their "owner".
541 * This function adds a reference to the owner.
542 *
543 * All MemoryRegions must have an owner if they can disappear, even if the
544 * device they belong to operates exclusively under the BQL. This is because
545 * the region could be returned at any time by memory_region_find, and this
546 * is usually under guest control.
547 *
548 * @mr: the #MemoryRegion
549 */
550 void memory_region_ref(MemoryRegion *mr);
551
552 /**
553 * memory_region_unref: Remove 1 to a memory region's reference count
554 *
555 * Whenever memory regions are accessed outside the BQL, they need to be
556 * preserved against hot-unplug. MemoryRegions actually do not have their
557 * own reference count; they piggyback on a QOM object, their "owner".
558 * This function removes a reference to the owner and possibly destroys it.
559 *
560 * @mr: the #MemoryRegion
561 */
562 void memory_region_unref(MemoryRegion *mr);
563
564 /**
565 * memory_region_init_io: Initialize an I/O memory region.
566 *
567 * Accesses into the region will cause the callbacks in @ops to be called.
568 * if @size is nonzero, subregions will be clipped to @size.
569 *
570 * @mr: the #MemoryRegion to be initialized.
571 * @owner: the object that tracks the region's reference count
572 * @ops: a structure containing read and write callbacks to be used when
573 * I/O is performed on the region.
574 * @opaque: passed to the read and write callbacks of the @ops structure.
575 * @name: used for debugging; not visible to the user or ABI
576 * @size: size of the region.
577 */
578 void memory_region_init_io(MemoryRegion *mr,
579 struct Object *owner,
580 const MemoryRegionOps *ops,
581 void *opaque,
582 const char *name,
583 uint64_t size);
584
585 /**
586 * memory_region_init_ram_nomigrate: Initialize RAM memory region. Accesses
587 * into the region will modify memory
588 * directly.
589 *
590 * @mr: the #MemoryRegion to be initialized.
591 * @owner: the object that tracks the region's reference count
592 * @name: Region name, becomes part of RAMBlock name used in migration stream
593 * must be unique within any device
594 * @size: size of the region.
595 * @errp: pointer to Error*, to store an error if it happens.
596 *
597 * Note that this function does not do anything to cause the data in the
598 * RAM memory region to be migrated; that is the responsibility of the caller.
599 */
600 void memory_region_init_ram_nomigrate(MemoryRegion *mr,
601 struct Object *owner,
602 const char *name,
603 uint64_t size,
604 Error **errp);
605
606 /**
607 * memory_region_init_ram_shared_nomigrate: Initialize RAM memory region.
608 * Accesses into the region will
609 * modify memory directly.
610 *
611 * @mr: the #MemoryRegion to be initialized.
612 * @owner: the object that tracks the region's reference count
613 * @name: Region name, becomes part of RAMBlock name used in migration stream
614 * must be unique within any device
615 * @size: size of the region.
616 * @share: allow remapping RAM to different addresses
617 * @errp: pointer to Error*, to store an error if it happens.
618 *
619 * Note that this function is similar to memory_region_init_ram_nomigrate.
620 * The only difference is part of the RAM region can be remapped.
621 */
622 void memory_region_init_ram_shared_nomigrate(MemoryRegion *mr,
623 struct Object *owner,
624 const char *name,
625 uint64_t size,
626 bool share,
627 Error **errp);
628
629 /**
630 * memory_region_init_resizeable_ram: Initialize memory region with resizeable
631 * RAM. Accesses into the region will
632 * modify memory directly. Only an initial
633 * portion of this RAM is actually used.
634 * The used size can change across reboots.
635 *
636 * @mr: the #MemoryRegion to be initialized.
637 * @owner: the object that tracks the region's reference count
638 * @name: Region name, becomes part of RAMBlock name used in migration stream
639 * must be unique within any device
640 * @size: used size of the region.
641 * @max_size: max size of the region.
642 * @resized: callback to notify owner about used size change.
643 * @errp: pointer to Error*, to store an error if it happens.
644 *
645 * Note that this function does not do anything to cause the data in the
646 * RAM memory region to be migrated; that is the responsibility of the caller.
647 */
648 void memory_region_init_resizeable_ram(MemoryRegion *mr,
649 struct Object *owner,
650 const char *name,
651 uint64_t size,
652 uint64_t max_size,
653 void (*resized)(const char*,
654 uint64_t length,
655 void *host),
656 Error **errp);
657 #ifdef CONFIG_POSIX
658
659 /**
660 * memory_region_init_ram_from_file: Initialize RAM memory region with a
661 * mmap-ed backend.
662 *
663 * @mr: the #MemoryRegion to be initialized.
664 * @owner: the object that tracks the region's reference count
665 * @name: Region name, becomes part of RAMBlock name used in migration stream
666 * must be unique within any device
667 * @size: size of the region.
668 * @align: alignment of the region base address; if 0, the default alignment
669 * (getpagesize()) will be used.
670 * @ram_flags: Memory region features:
671 * - RAM_SHARED: memory must be mmaped with the MAP_SHARED flag
672 * - RAM_PMEM: the memory is persistent memory
673 * Other bits are ignored now.
674 * @path: the path in which to allocate the RAM.
675 * @errp: pointer to Error*, to store an error if it happens.
676 *
677 * Note that this function does not do anything to cause the data in the
678 * RAM memory region to be migrated; that is the responsibility of the caller.
679 */
680 void memory_region_init_ram_from_file(MemoryRegion *mr,
681 struct Object *owner,
682 const char *name,
683 uint64_t size,
684 uint64_t align,
685 uint32_t ram_flags,
686 const char *path,
687 Error **errp);
688
689 /**
690 * memory_region_init_ram_from_fd: Initialize RAM memory region with a
691 * mmap-ed backend.
692 *
693 * @mr: the #MemoryRegion to be initialized.
694 * @owner: the object that tracks the region's reference count
695 * @name: the name of the region.
696 * @size: size of the region.
697 * @share: %true if memory must be mmaped with the MAP_SHARED flag
698 * @fd: the fd to mmap.
699 * @errp: pointer to Error*, to store an error if it happens.
700 *
701 * Note that this function does not do anything to cause the data in the
702 * RAM memory region to be migrated; that is the responsibility of the caller.
703 */
704 void memory_region_init_ram_from_fd(MemoryRegion *mr,
705 struct Object *owner,
706 const char *name,
707 uint64_t size,
708 bool share,
709 int fd,
710 Error **errp);
711 #endif
712
713 /**
714 * memory_region_init_ram_ptr: Initialize RAM memory region from a
715 * user-provided pointer. Accesses into the
716 * region will modify memory directly.
717 *
718 * @mr: the #MemoryRegion to be initialized.
719 * @owner: the object that tracks the region's reference count
720 * @name: Region name, becomes part of RAMBlock name used in migration stream
721 * must be unique within any device
722 * @size: size of the region.
723 * @ptr: memory to be mapped; must contain at least @size bytes.
724 *
725 * Note that this function does not do anything to cause the data in the
726 * RAM memory region to be migrated; that is the responsibility of the caller.
727 */
728 void memory_region_init_ram_ptr(MemoryRegion *mr,
729 struct Object *owner,
730 const char *name,
731 uint64_t size,
732 void *ptr);
733
734 /**
735 * memory_region_init_ram_device_ptr: Initialize RAM device memory region from
736 * a user-provided pointer.
737 *
738 * A RAM device represents a mapping to a physical device, such as to a PCI
739 * MMIO BAR of an vfio-pci assigned device. The memory region may be mapped
740 * into the VM address space and access to the region will modify memory
741 * directly. However, the memory region should not be included in a memory
742 * dump (device may not be enabled/mapped at the time of the dump), and
743 * operations incompatible with manipulating MMIO should be avoided. Replaces
744 * skip_dump flag.
745 *
746 * @mr: the #MemoryRegion to be initialized.
747 * @owner: the object that tracks the region's reference count
748 * @name: the name of the region.
749 * @size: size of the region.
750 * @ptr: memory to be mapped; must contain at least @size bytes.
751 *
752 * Note that this function does not do anything to cause the data in the
753 * RAM memory region to be migrated; that is the responsibility of the caller.
754 * (For RAM device memory regions, migrating the contents rarely makes sense.)
755 */
756 void memory_region_init_ram_device_ptr(MemoryRegion *mr,
757 struct Object *owner,
758 const char *name,
759 uint64_t size,
760 void *ptr);
761
762 /**
763 * memory_region_init_alias: Initialize a memory region that aliases all or a
764 * part of another memory region.
765 *
766 * @mr: the #MemoryRegion to be initialized.
767 * @owner: the object that tracks the region's reference count
768 * @name: used for debugging; not visible to the user or ABI
769 * @orig: the region to be referenced; @mr will be equivalent to
770 * @orig between @offset and @offset + @size - 1.
771 * @offset: start of the section in @orig to be referenced.
772 * @size: size of the region.
773 */
774 void memory_region_init_alias(MemoryRegion *mr,
775 struct Object *owner,
776 const char *name,
777 MemoryRegion *orig,
778 hwaddr offset,
779 uint64_t size);
780
781 /**
782 * memory_region_init_rom_nomigrate: Initialize a ROM memory region.
783 *
784 * This has the same effect as calling memory_region_init_ram_nomigrate()
785 * and then marking the resulting region read-only with
786 * memory_region_set_readonly().
787 *
788 * Note that this function does not do anything to cause the data in the
789 * RAM side of the memory region to be migrated; that is the responsibility
790 * of the caller.
791 *
792 * @mr: the #MemoryRegion to be initialized.
793 * @owner: the object that tracks the region's reference count
794 * @name: Region name, becomes part of RAMBlock name used in migration stream
795 * must be unique within any device
796 * @size: size of the region.
797 * @errp: pointer to Error*, to store an error if it happens.
798 */
799 void memory_region_init_rom_nomigrate(MemoryRegion *mr,
800 struct Object *owner,
801 const char *name,
802 uint64_t size,
803 Error **errp);
804
805 /**
806 * memory_region_init_rom_device_nomigrate: Initialize a ROM memory region.
807 * Writes are handled via callbacks.
808 *
809 * Note that this function does not do anything to cause the data in the
810 * RAM side of the memory region to be migrated; that is the responsibility
811 * of the caller.
812 *
813 * @mr: the #MemoryRegion to be initialized.
814 * @owner: the object that tracks the region's reference count
815 * @ops: callbacks for write access handling (must not be NULL).
816 * @opaque: passed to the read and write callbacks of the @ops structure.
817 * @name: Region name, becomes part of RAMBlock name used in migration stream
818 * must be unique within any device
819 * @size: size of the region.
820 * @errp: pointer to Error*, to store an error if it happens.
821 */
822 void memory_region_init_rom_device_nomigrate(MemoryRegion *mr,
823 struct Object *owner,
824 const MemoryRegionOps *ops,
825 void *opaque,
826 const char *name,
827 uint64_t size,
828 Error **errp);
829
830 /**
831 * memory_region_init_iommu: Initialize a memory region of a custom type
832 * that translates addresses
833 *
834 * An IOMMU region translates addresses and forwards accesses to a target
835 * memory region.
836 *
837 * The IOMMU implementation must define a subclass of TYPE_IOMMU_MEMORY_REGION.
838 * @_iommu_mr should be a pointer to enough memory for an instance of
839 * that subclass, @instance_size is the size of that subclass, and
840 * @mrtypename is its name. This function will initialize @_iommu_mr as an
841 * instance of the subclass, and its methods will then be called to handle
842 * accesses to the memory region. See the documentation of
843 * #IOMMUMemoryRegionClass for further details.
844 *
845 * @_iommu_mr: the #IOMMUMemoryRegion to be initialized
846 * @instance_size: the IOMMUMemoryRegion subclass instance size
847 * @mrtypename: the type name of the #IOMMUMemoryRegion
848 * @owner: the object that tracks the region's reference count
849 * @name: used for debugging; not visible to the user or ABI
850 * @size: size of the region.
851 */
852 void memory_region_init_iommu(void *_iommu_mr,
853 size_t instance_size,
854 const char *mrtypename,
855 Object *owner,
856 const char *name,
857 uint64_t size);
858
859 /**
860 * memory_region_init_ram - Initialize RAM memory region. Accesses into the
861 * region will modify memory directly.
862 *
863 * @mr: the #MemoryRegion to be initialized
864 * @owner: the object that tracks the region's reference count (must be
865 * TYPE_DEVICE or a subclass of TYPE_DEVICE, or NULL)
866 * @name: name of the memory region
867 * @size: size of the region in bytes
868 * @errp: pointer to Error*, to store an error if it happens.
869 *
870 * This function allocates RAM for a board model or device, and
871 * arranges for it to be migrated (by calling vmstate_register_ram()
872 * if @owner is a DeviceState, or vmstate_register_ram_global() if
873 * @owner is NULL).
874 *
875 * TODO: Currently we restrict @owner to being either NULL (for
876 * global RAM regions with no owner) or devices, so that we can
877 * give the RAM block a unique name for migration purposes.
878 * We should lift this restriction and allow arbitrary Objects.
879 * If you pass a non-NULL non-device @owner then we will assert.
880 */
881 void memory_region_init_ram(MemoryRegion *mr,
882 struct Object *owner,
883 const char *name,
884 uint64_t size,
885 Error **errp);
886
887 /**
888 * memory_region_init_rom: Initialize a ROM memory region.
889 *
890 * This has the same effect as calling memory_region_init_ram()
891 * and then marking the resulting region read-only with
892 * memory_region_set_readonly(). This includes arranging for the
893 * contents to be migrated.
894 *
895 * TODO: Currently we restrict @owner to being either NULL (for
896 * global RAM regions with no owner) or devices, so that we can
897 * give the RAM block a unique name for migration purposes.
898 * We should lift this restriction and allow arbitrary Objects.
899 * If you pass a non-NULL non-device @owner then we will assert.
900 *
901 * @mr: the #MemoryRegion to be initialized.
902 * @owner: the object that tracks the region's reference count
903 * @name: Region name, becomes part of RAMBlock name used in migration stream
904 * must be unique within any device
905 * @size: size of the region.
906 * @errp: pointer to Error*, to store an error if it happens.
907 */
908 void memory_region_init_rom(MemoryRegion *mr,
909 struct Object *owner,
910 const char *name,
911 uint64_t size,
912 Error **errp);
913
914 /**
915 * memory_region_init_rom_device: Initialize a ROM memory region.
916 * Writes are handled via callbacks.
917 *
918 * This function initializes a memory region backed by RAM for reads
919 * and callbacks for writes, and arranges for the RAM backing to
920 * be migrated (by calling vmstate_register_ram()
921 * if @owner is a DeviceState, or vmstate_register_ram_global() if
922 * @owner is NULL).
923 *
924 * TODO: Currently we restrict @owner to being either NULL (for
925 * global RAM regions with no owner) or devices, so that we can
926 * give the RAM block a unique name for migration purposes.
927 * We should lift this restriction and allow arbitrary Objects.
928 * If you pass a non-NULL non-device @owner then we will assert.
929 *
930 * @mr: the #MemoryRegion to be initialized.
931 * @owner: the object that tracks the region's reference count
932 * @ops: callbacks for write access handling (must not be NULL).
933 * @name: Region name, becomes part of RAMBlock name used in migration stream
934 * must be unique within any device
935 * @size: size of the region.
936 * @errp: pointer to Error*, to store an error if it happens.
937 */
938 void memory_region_init_rom_device(MemoryRegion *mr,
939 struct Object *owner,
940 const MemoryRegionOps *ops,
941 void *opaque,
942 const char *name,
943 uint64_t size,
944 Error **errp);
945
946
947 /**
948 * memory_region_owner: get a memory region's owner.
949 *
950 * @mr: the memory region being queried.
951 */
952 struct Object *memory_region_owner(MemoryRegion *mr);
953
954 /**
955 * memory_region_size: get a memory region's size.
956 *
957 * @mr: the memory region being queried.
958 */
959 uint64_t memory_region_size(MemoryRegion *mr);
960
961 /**
962 * memory_region_is_ram: check whether a memory region is random access
963 *
964 * Returns %true if a memory region is random access.
965 *
966 * @mr: the memory region being queried
967 */
968 static inline bool memory_region_is_ram(MemoryRegion *mr)
969 {
970 return mr->ram;
971 }
972
973 /**
974 * memory_region_is_ram_device: check whether a memory region is a ram device
975 *
976 * Returns %true if a memory region is a device backed ram region
977 *
978 * @mr: the memory region being queried
979 */
980 bool memory_region_is_ram_device(MemoryRegion *mr);
981
982 /**
983 * memory_region_is_romd: check whether a memory region is in ROMD mode
984 *
985 * Returns %true if a memory region is a ROM device and currently set to allow
986 * direct reads.
987 *
988 * @mr: the memory region being queried
989 */
990 static inline bool memory_region_is_romd(MemoryRegion *mr)
991 {
992 return mr->rom_device && mr->romd_mode;
993 }
994
995 /**
996 * memory_region_get_iommu: check whether a memory region is an iommu
997 *
998 * Returns pointer to IOMMUMemoryRegion if a memory region is an iommu,
999 * otherwise NULL.
1000 *
1001 * @mr: the memory region being queried
1002 */
1003 static inline IOMMUMemoryRegion *memory_region_get_iommu(MemoryRegion *mr)
1004 {
1005 if (mr->alias) {
1006 return memory_region_get_iommu(mr->alias);
1007 }
1008 if (mr->is_iommu) {
1009 return (IOMMUMemoryRegion *) mr;
1010 }
1011 return NULL;
1012 }
1013
1014 /**
1015 * memory_region_get_iommu_class_nocheck: returns iommu memory region class
1016 * if an iommu or NULL if not
1017 *
1018 * Returns pointer to IOMMUMemoryRegionClass if a memory region is an iommu,
1019 * otherwise NULL. This is fast path avoiding QOM checking, use with caution.
1020 *
1021 * @mr: the memory region being queried
1022 */
1023 static inline IOMMUMemoryRegionClass *memory_region_get_iommu_class_nocheck(
1024 IOMMUMemoryRegion *iommu_mr)
1025 {
1026 return (IOMMUMemoryRegionClass *) (((Object *)iommu_mr)->class);
1027 }
1028
1029 #define memory_region_is_iommu(mr) (memory_region_get_iommu(mr) != NULL)
1030
1031 /**
1032 * memory_region_iommu_get_min_page_size: get minimum supported page size
1033 * for an iommu
1034 *
1035 * Returns minimum supported page size for an iommu.
1036 *
1037 * @iommu_mr: the memory region being queried
1038 */
1039 uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion *iommu_mr);
1040
1041 /**
1042 * memory_region_notify_iommu: notify a change in an IOMMU translation entry.
1043 *
1044 * The notification type will be decided by entry.perm bits:
1045 *
1046 * - For UNMAP (cache invalidation) notifies: set entry.perm to IOMMU_NONE.
1047 * - For MAP (newly added entry) notifies: set entry.perm to the
1048 * permission of the page (which is definitely !IOMMU_NONE).
1049 *
1050 * Note: for any IOMMU implementation, an in-place mapping change
1051 * should be notified with an UNMAP followed by a MAP.
1052 *
1053 * @iommu_mr: the memory region that was changed
1054 * @iommu_idx: the IOMMU index for the translation table which has changed
1055 * @entry: the new entry in the IOMMU translation table. The entry
1056 * replaces all old entries for the same virtual I/O address range.
1057 * Deleted entries have .@perm == 0.
1058 */
1059 void memory_region_notify_iommu(IOMMUMemoryRegion *iommu_mr,
1060 int iommu_idx,
1061 IOMMUTLBEntry entry);
1062
1063 /**
1064 * memory_region_notify_one: notify a change in an IOMMU translation
1065 * entry to a single notifier
1066 *
1067 * This works just like memory_region_notify_iommu(), but it only
1068 * notifies a specific notifier, not all of them.
1069 *
1070 * @notifier: the notifier to be notified
1071 * @entry: the new entry in the IOMMU translation table. The entry
1072 * replaces all old entries for the same virtual I/O address range.
1073 * Deleted entries have .@perm == 0.
1074 */
1075 void memory_region_notify_one(IOMMUNotifier *notifier,
1076 IOMMUTLBEntry *entry);
1077
1078 /**
1079 * memory_region_register_iommu_notifier: register a notifier for changes to
1080 * IOMMU translation entries.
1081 *
1082 * @mr: the memory region to observe
1083 * @n: the IOMMUNotifier to be added; the notify callback receives a
1084 * pointer to an #IOMMUTLBEntry as the opaque value; the pointer
1085 * ceases to be valid on exit from the notifier.
1086 */
1087 void memory_region_register_iommu_notifier(MemoryRegion *mr,
1088 IOMMUNotifier *n);
1089
1090 /**
1091 * memory_region_iommu_replay: replay existing IOMMU translations to
1092 * a notifier with the minimum page granularity returned by
1093 * mr->iommu_ops->get_page_size().
1094 *
1095 * Note: this is not related to record-and-replay functionality.
1096 *
1097 * @iommu_mr: the memory region to observe
1098 * @n: the notifier to which to replay iommu mappings
1099 */
1100 void memory_region_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n);
1101
1102 /**
1103 * memory_region_unregister_iommu_notifier: unregister a notifier for
1104 * changes to IOMMU translation entries.
1105 *
1106 * @mr: the memory region which was observed and for which notity_stopped()
1107 * needs to be called
1108 * @n: the notifier to be removed.
1109 */
1110 void memory_region_unregister_iommu_notifier(MemoryRegion *mr,
1111 IOMMUNotifier *n);
1112
1113 /**
1114 * memory_region_iommu_get_attr: return an IOMMU attr if get_attr() is
1115 * defined on the IOMMU.
1116 *
1117 * Returns 0 on success, or a negative errno otherwise. In particular,
1118 * -EINVAL indicates that the IOMMU does not support the requested
1119 * attribute.
1120 *
1121 * @iommu_mr: the memory region
1122 * @attr: the requested attribute
1123 * @data: a pointer to the requested attribute data
1124 */
1125 int memory_region_iommu_get_attr(IOMMUMemoryRegion *iommu_mr,
1126 enum IOMMUMemoryRegionAttr attr,
1127 void *data);
1128
1129 /**
1130 * memory_region_iommu_attrs_to_index: return the IOMMU index to
1131 * use for translations with the given memory transaction attributes.
1132 *
1133 * @iommu_mr: the memory region
1134 * @attrs: the memory transaction attributes
1135 */
1136 int memory_region_iommu_attrs_to_index(IOMMUMemoryRegion *iommu_mr,
1137 MemTxAttrs attrs);
1138
1139 /**
1140 * memory_region_iommu_num_indexes: return the total number of IOMMU
1141 * indexes that this IOMMU supports.
1142 *
1143 * @iommu_mr: the memory region
1144 */
1145 int memory_region_iommu_num_indexes(IOMMUMemoryRegion *iommu_mr);
1146
1147 /**
1148 * memory_region_name: get a memory region's name
1149 *
1150 * Returns the string that was used to initialize the memory region.
1151 *
1152 * @mr: the memory region being queried
1153 */
1154 const char *memory_region_name(const MemoryRegion *mr);
1155
1156 /**
1157 * memory_region_is_logging: return whether a memory region is logging writes
1158 *
1159 * Returns %true if the memory region is logging writes for the given client
1160 *
1161 * @mr: the memory region being queried
1162 * @client: the client being queried
1163 */
1164 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client);
1165
1166 /**
1167 * memory_region_get_dirty_log_mask: return the clients for which a
1168 * memory region is logging writes.
1169 *
1170 * Returns a bitmap of clients, in which the DIRTY_MEMORY_* constants
1171 * are the bit indices.
1172 *
1173 * @mr: the memory region being queried
1174 */
1175 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr);
1176
1177 /**
1178 * memory_region_is_rom: check whether a memory region is ROM
1179 *
1180 * Returns %true if a memory region is read-only memory.
1181 *
1182 * @mr: the memory region being queried
1183 */
1184 static inline bool memory_region_is_rom(MemoryRegion *mr)
1185 {
1186 return mr->ram && mr->readonly;
1187 }
1188
1189 /**
1190 * memory_region_is_nonvolatile: check whether a memory region is non-volatile
1191 *
1192 * Returns %true is a memory region is non-volatile memory.
1193 *
1194 * @mr: the memory region being queried
1195 */
1196 static inline bool memory_region_is_nonvolatile(MemoryRegion *mr)
1197 {
1198 return mr->nonvolatile;
1199 }
1200
1201 /**
1202 * memory_region_get_fd: Get a file descriptor backing a RAM memory region.
1203 *
1204 * Returns a file descriptor backing a file-based RAM memory region,
1205 * or -1 if the region is not a file-based RAM memory region.
1206 *
1207 * @mr: the RAM or alias memory region being queried.
1208 */
1209 int memory_region_get_fd(MemoryRegion *mr);
1210
1211 /**
1212 * memory_region_from_host: Convert a pointer into a RAM memory region
1213 * and an offset within it.
1214 *
1215 * Given a host pointer inside a RAM memory region (created with
1216 * memory_region_init_ram() or memory_region_init_ram_ptr()), return
1217 * the MemoryRegion and the offset within it.
1218 *
1219 * Use with care; by the time this function returns, the returned pointer is
1220 * not protected by RCU anymore. If the caller is not within an RCU critical
1221 * section and does not hold the iothread lock, it must have other means of
1222 * protecting the pointer, such as a reference to the region that includes
1223 * the incoming ram_addr_t.
1224 *
1225 * @ptr: the host pointer to be converted
1226 * @offset: the offset within memory region
1227 */
1228 MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset);
1229
1230 /**
1231 * memory_region_get_ram_ptr: Get a pointer into a RAM memory region.
1232 *
1233 * Returns a host pointer to a RAM memory region (created with
1234 * memory_region_init_ram() or memory_region_init_ram_ptr()).
1235 *
1236 * Use with care; by the time this function returns, the returned pointer is
1237 * not protected by RCU anymore. If the caller is not within an RCU critical
1238 * section and does not hold the iothread lock, it must have other means of
1239 * protecting the pointer, such as a reference to the region that includes
1240 * the incoming ram_addr_t.
1241 *
1242 * @mr: the memory region being queried.
1243 */
1244 void *memory_region_get_ram_ptr(MemoryRegion *mr);
1245
1246 /* memory_region_ram_resize: Resize a RAM region.
1247 *
1248 * Only legal before guest might have detected the memory size: e.g. on
1249 * incoming migration, or right after reset.
1250 *
1251 * @mr: a memory region created with @memory_region_init_resizeable_ram.
1252 * @newsize: the new size the region
1253 * @errp: pointer to Error*, to store an error if it happens.
1254 */
1255 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize,
1256 Error **errp);
1257
1258 /**
1259 * memory_region_set_log: Turn dirty logging on or off for a region.
1260 *
1261 * Turns dirty logging on or off for a specified client (display, migration).
1262 * Only meaningful for RAM regions.
1263 *
1264 * @mr: the memory region being updated.
1265 * @log: whether dirty logging is to be enabled or disabled.
1266 * @client: the user of the logging information; %DIRTY_MEMORY_VGA only.
1267 */
1268 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client);
1269
1270 /**
1271 * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region.
1272 *
1273 * Marks a range of bytes as dirty, after it has been dirtied outside
1274 * guest code.
1275 *
1276 * @mr: the memory region being dirtied.
1277 * @addr: the address (relative to the start of the region) being dirtied.
1278 * @size: size of the range being dirtied.
1279 */
1280 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
1281 hwaddr size);
1282
1283 /**
1284 * memory_region_clear_dirty_bitmap - clear dirty bitmap for memory range
1285 *
1286 * This function is called when the caller wants to clear the remote
1287 * dirty bitmap of a memory range within the memory region. This can
1288 * be used by e.g. KVM to manually clear dirty log when
1289 * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT is declared support by the host
1290 * kernel.
1291 *
1292 * @mr: the memory region to clear the dirty log upon
1293 * @start: start address offset within the memory region
1294 * @len: length of the memory region to clear dirty bitmap
1295 */
1296 void memory_region_clear_dirty_bitmap(MemoryRegion *mr, hwaddr start,
1297 hwaddr len);
1298
1299 /**
1300 * memory_region_snapshot_and_clear_dirty: Get a snapshot of the dirty
1301 * bitmap and clear it.
1302 *
1303 * Creates a snapshot of the dirty bitmap, clears the dirty bitmap and
1304 * returns the snapshot. The snapshot can then be used to query dirty
1305 * status, using memory_region_snapshot_get_dirty. Snapshotting allows
1306 * querying the same page multiple times, which is especially useful for
1307 * display updates where the scanlines often are not page aligned.
1308 *
1309 * The dirty bitmap region which gets copyed into the snapshot (and
1310 * cleared afterwards) can be larger than requested. The boundaries
1311 * are rounded up/down so complete bitmap longs (covering 64 pages on
1312 * 64bit hosts) can be copied over into the bitmap snapshot. Which
1313 * isn't a problem for display updates as the extra pages are outside
1314 * the visible area, and in case the visible area changes a full
1315 * display redraw is due anyway. Should other use cases for this
1316 * function emerge we might have to revisit this implementation
1317 * detail.
1318 *
1319 * Use g_free to release DirtyBitmapSnapshot.
1320 *
1321 * @mr: the memory region being queried.
1322 * @addr: the address (relative to the start of the region) being queried.
1323 * @size: the size of the range being queried.
1324 * @client: the user of the logging information; typically %DIRTY_MEMORY_VGA.
1325 */
1326 DirtyBitmapSnapshot *memory_region_snapshot_and_clear_dirty(MemoryRegion *mr,
1327 hwaddr addr,
1328 hwaddr size,
1329 unsigned client);
1330
1331 /**
1332 * memory_region_snapshot_get_dirty: Check whether a range of bytes is dirty
1333 * in the specified dirty bitmap snapshot.
1334 *
1335 * @mr: the memory region being queried.
1336 * @snap: the dirty bitmap snapshot
1337 * @addr: the address (relative to the start of the region) being queried.
1338 * @size: the size of the range being queried.
1339 */
1340 bool memory_region_snapshot_get_dirty(MemoryRegion *mr,
1341 DirtyBitmapSnapshot *snap,
1342 hwaddr addr, hwaddr size);
1343
1344 /**
1345 * memory_region_reset_dirty: Mark a range of pages as clean, for a specified
1346 * client.
1347 *
1348 * Marks a range of pages as no longer dirty.
1349 *
1350 * @mr: the region being updated.
1351 * @addr: the start of the subrange being cleaned.
1352 * @size: the size of the subrange being cleaned.
1353 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
1354 * %DIRTY_MEMORY_VGA.
1355 */
1356 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
1357 hwaddr size, unsigned client);
1358
1359 /**
1360 * memory_region_flush_rom_device: Mark a range of pages dirty and invalidate
1361 * TBs (for self-modifying code).
1362 *
1363 * The MemoryRegionOps->write() callback of a ROM device must use this function
1364 * to mark byte ranges that have been modified internally, such as by directly
1365 * accessing the memory returned by memory_region_get_ram_ptr().
1366 *
1367 * This function marks the range dirty and invalidates TBs so that TCG can
1368 * detect self-modifying code.
1369 *
1370 * @mr: the region being flushed.
1371 * @addr: the start, relative to the start of the region, of the range being
1372 * flushed.
1373 * @size: the size, in bytes, of the range being flushed.
1374 */
1375 void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size);
1376
1377 /**
1378 * memory_region_set_readonly: Turn a memory region read-only (or read-write)
1379 *
1380 * Allows a memory region to be marked as read-only (turning it into a ROM).
1381 * only useful on RAM regions.
1382 *
1383 * @mr: the region being updated.
1384 * @readonly: whether rhe region is to be ROM or RAM.
1385 */
1386 void memory_region_set_readonly(MemoryRegion *mr, bool readonly);
1387
1388 /**
1389 * memory_region_set_nonvolatile: Turn a memory region non-volatile
1390 *
1391 * Allows a memory region to be marked as non-volatile.
1392 * only useful on RAM regions.
1393 *
1394 * @mr: the region being updated.
1395 * @nonvolatile: whether rhe region is to be non-volatile.
1396 */
1397 void memory_region_set_nonvolatile(MemoryRegion *mr, bool nonvolatile);
1398
1399 /**
1400 * memory_region_rom_device_set_romd: enable/disable ROMD mode
1401 *
1402 * Allows a ROM device (initialized with memory_region_init_rom_device() to
1403 * set to ROMD mode (default) or MMIO mode. When it is in ROMD mode, the
1404 * device is mapped to guest memory and satisfies read access directly.
1405 * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function.
1406 * Writes are always handled by the #MemoryRegion.write function.
1407 *
1408 * @mr: the memory region to be updated
1409 * @romd_mode: %true to put the region into ROMD mode
1410 */
1411 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode);
1412
1413 /**
1414 * memory_region_set_coalescing: Enable memory coalescing for the region.
1415 *
1416 * Enabled writes to a region to be queued for later processing. MMIO ->write
1417 * callbacks may be delayed until a non-coalesced MMIO is issued.
1418 * Only useful for IO regions. Roughly similar to write-combining hardware.
1419 *
1420 * @mr: the memory region to be write coalesced
1421 */
1422 void memory_region_set_coalescing(MemoryRegion *mr);
1423
1424 /**
1425 * memory_region_add_coalescing: Enable memory coalescing for a sub-range of
1426 * a region.
1427 *
1428 * Like memory_region_set_coalescing(), but works on a sub-range of a region.
1429 * Multiple calls can be issued coalesced disjoint ranges.
1430 *
1431 * @mr: the memory region to be updated.
1432 * @offset: the start of the range within the region to be coalesced.
1433 * @size: the size of the subrange to be coalesced.
1434 */
1435 void memory_region_add_coalescing(MemoryRegion *mr,
1436 hwaddr offset,
1437 uint64_t size);
1438
1439 /**
1440 * memory_region_clear_coalescing: Disable MMIO coalescing for the region.
1441 *
1442 * Disables any coalescing caused by memory_region_set_coalescing() or
1443 * memory_region_add_coalescing(). Roughly equivalent to uncacheble memory
1444 * hardware.
1445 *
1446 * @mr: the memory region to be updated.
1447 */
1448 void memory_region_clear_coalescing(MemoryRegion *mr);
1449
1450 /**
1451 * memory_region_set_flush_coalesced: Enforce memory coalescing flush before
1452 * accesses.
1453 *
1454 * Ensure that pending coalesced MMIO request are flushed before the memory
1455 * region is accessed. This property is automatically enabled for all regions
1456 * passed to memory_region_set_coalescing() and memory_region_add_coalescing().
1457 *
1458 * @mr: the memory region to be updated.
1459 */
1460 void memory_region_set_flush_coalesced(MemoryRegion *mr);
1461
1462 /**
1463 * memory_region_clear_flush_coalesced: Disable memory coalescing flush before
1464 * accesses.
1465 *
1466 * Clear the automatic coalesced MMIO flushing enabled via
1467 * memory_region_set_flush_coalesced. Note that this service has no effect on
1468 * memory regions that have MMIO coalescing enabled for themselves. For them,
1469 * automatic flushing will stop once coalescing is disabled.
1470 *
1471 * @mr: the memory region to be updated.
1472 */
1473 void memory_region_clear_flush_coalesced(MemoryRegion *mr);
1474
1475 /**
1476 * memory_region_clear_global_locking: Declares that access processing does
1477 * not depend on the QEMU global lock.
1478 *
1479 * By clearing this property, accesses to the memory region will be processed
1480 * outside of QEMU's global lock (unless the lock is held on when issuing the
1481 * access request). In this case, the device model implementing the access
1482 * handlers is responsible for synchronization of concurrency.
1483 *
1484 * @mr: the memory region to be updated.
1485 */
1486 void memory_region_clear_global_locking(MemoryRegion *mr);
1487
1488 /**
1489 * memory_region_add_eventfd: Request an eventfd to be triggered when a word
1490 * is written to a location.
1491 *
1492 * Marks a word in an IO region (initialized with memory_region_init_io())
1493 * as a trigger for an eventfd event. The I/O callback will not be called.
1494 * The caller must be prepared to handle failure (that is, take the required
1495 * action if the callback _is_ called).
1496 *
1497 * @mr: the memory region being updated.
1498 * @addr: the address within @mr that is to be monitored
1499 * @size: the size of the access to trigger the eventfd
1500 * @match_data: whether to match against @data, instead of just @addr
1501 * @data: the data to match against the guest write
1502 * @e: event notifier to be triggered when @addr, @size, and @data all match.
1503 **/
1504 void memory_region_add_eventfd(MemoryRegion *mr,
1505 hwaddr addr,
1506 unsigned size,
1507 bool match_data,
1508 uint64_t data,
1509 EventNotifier *e);
1510
1511 /**
1512 * memory_region_del_eventfd: Cancel an eventfd.
1513 *
1514 * Cancels an eventfd trigger requested by a previous
1515 * memory_region_add_eventfd() call.
1516 *
1517 * @mr: the memory region being updated.
1518 * @addr: the address within @mr that is to be monitored
1519 * @size: the size of the access to trigger the eventfd
1520 * @match_data: whether to match against @data, instead of just @addr
1521 * @data: the data to match against the guest write
1522 * @e: event notifier to be triggered when @addr, @size, and @data all match.
1523 */
1524 void memory_region_del_eventfd(MemoryRegion *mr,
1525 hwaddr addr,
1526 unsigned size,
1527 bool match_data,
1528 uint64_t data,
1529 EventNotifier *e);
1530
1531 /**
1532 * memory_region_add_subregion: Add a subregion to a container.
1533 *
1534 * Adds a subregion at @offset. The subregion may not overlap with other
1535 * subregions (except for those explicitly marked as overlapping). A region
1536 * may only be added once as a subregion (unless removed with
1537 * memory_region_del_subregion()); use memory_region_init_alias() if you
1538 * want a region to be a subregion in multiple locations.
1539 *
1540 * @mr: the region to contain the new subregion; must be a container
1541 * initialized with memory_region_init().
1542 * @offset: the offset relative to @mr where @subregion is added.
1543 * @subregion: the subregion to be added.
1544 */
1545 void memory_region_add_subregion(MemoryRegion *mr,
1546 hwaddr offset,
1547 MemoryRegion *subregion);
1548 /**
1549 * memory_region_add_subregion_overlap: Add a subregion to a container
1550 * with overlap.
1551 *
1552 * Adds a subregion at @offset. The subregion may overlap with other
1553 * subregions. Conflicts are resolved by having a higher @priority hide a
1554 * lower @priority. Subregions without priority are taken as @priority 0.
1555 * A region may only be added once as a subregion (unless removed with
1556 * memory_region_del_subregion()); use memory_region_init_alias() if you
1557 * want a region to be a subregion in multiple locations.
1558 *
1559 * @mr: the region to contain the new subregion; must be a container
1560 * initialized with memory_region_init().
1561 * @offset: the offset relative to @mr where @subregion is added.
1562 * @subregion: the subregion to be added.
1563 * @priority: used for resolving overlaps; highest priority wins.
1564 */
1565 void memory_region_add_subregion_overlap(MemoryRegion *mr,
1566 hwaddr offset,
1567 MemoryRegion *subregion,
1568 int priority);
1569
1570 /**
1571 * memory_region_get_ram_addr: Get the ram address associated with a memory
1572 * region
1573 */
1574 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr);
1575
1576 uint64_t memory_region_get_alignment(const MemoryRegion *mr);
1577 /**
1578 * memory_region_del_subregion: Remove a subregion.
1579 *
1580 * Removes a subregion from its container.
1581 *
1582 * @mr: the container to be updated.
1583 * @subregion: the region being removed; must be a current subregion of @mr.
1584 */
1585 void memory_region_del_subregion(MemoryRegion *mr,
1586 MemoryRegion *subregion);
1587
1588 /*
1589 * memory_region_set_enabled: dynamically enable or disable a region
1590 *
1591 * Enables or disables a memory region. A disabled memory region
1592 * ignores all accesses to itself and its subregions. It does not
1593 * obscure sibling subregions with lower priority - it simply behaves as
1594 * if it was removed from the hierarchy.
1595 *
1596 * Regions default to being enabled.
1597 *
1598 * @mr: the region to be updated
1599 * @enabled: whether to enable or disable the region
1600 */
1601 void memory_region_set_enabled(MemoryRegion *mr, bool enabled);
1602
1603 /*
1604 * memory_region_set_address: dynamically update the address of a region
1605 *
1606 * Dynamically updates the address of a region, relative to its container.
1607 * May be used on regions are currently part of a memory hierarchy.
1608 *
1609 * @mr: the region to be updated
1610 * @addr: new address, relative to container region
1611 */
1612 void memory_region_set_address(MemoryRegion *mr, hwaddr addr);
1613
1614 /*
1615 * memory_region_set_size: dynamically update the size of a region.
1616 *
1617 * Dynamically updates the size of a region.
1618 *
1619 * @mr: the region to be updated
1620 * @size: used size of the region.
1621 */
1622 void memory_region_set_size(MemoryRegion *mr, uint64_t size);
1623
1624 /*
1625 * memory_region_set_alias_offset: dynamically update a memory alias's offset
1626 *
1627 * Dynamically updates the offset into the target region that an alias points
1628 * to, as if the fourth argument to memory_region_init_alias() has changed.
1629 *
1630 * @mr: the #MemoryRegion to be updated; should be an alias.
1631 * @offset: the new offset into the target memory region
1632 */
1633 void memory_region_set_alias_offset(MemoryRegion *mr,
1634 hwaddr offset);
1635
1636 /**
1637 * memory_region_present: checks if an address relative to a @container
1638 * translates into #MemoryRegion within @container
1639 *
1640 * Answer whether a #MemoryRegion within @container covers the address
1641 * @addr.
1642 *
1643 * @container: a #MemoryRegion within which @addr is a relative address
1644 * @addr: the area within @container to be searched
1645 */
1646 bool memory_region_present(MemoryRegion *container, hwaddr addr);
1647
1648 /**
1649 * memory_region_is_mapped: returns true if #MemoryRegion is mapped
1650 * into any address space.
1651 *
1652 * @mr: a #MemoryRegion which should be checked if it's mapped
1653 */
1654 bool memory_region_is_mapped(MemoryRegion *mr);
1655
1656 /**
1657 * memory_region_find: translate an address/size relative to a
1658 * MemoryRegion into a #MemoryRegionSection.
1659 *
1660 * Locates the first #MemoryRegion within @mr that overlaps the range
1661 * given by @addr and @size.
1662 *
1663 * Returns a #MemoryRegionSection that describes a contiguous overlap.
1664 * It will have the following characteristics:
1665 * .@size = 0 iff no overlap was found
1666 * .@mr is non-%NULL iff an overlap was found
1667 *
1668 * Remember that in the return value the @offset_within_region is
1669 * relative to the returned region (in the .@mr field), not to the
1670 * @mr argument.
1671 *
1672 * Similarly, the .@offset_within_address_space is relative to the
1673 * address space that contains both regions, the passed and the
1674 * returned one. However, in the special case where the @mr argument
1675 * has no container (and thus is the root of the address space), the
1676 * following will hold:
1677 * .@offset_within_address_space >= @addr
1678 * .@offset_within_address_space + .@size <= @addr + @size
1679 *
1680 * @mr: a MemoryRegion within which @addr is a relative address
1681 * @addr: start of the area within @as to be searched
1682 * @size: size of the area to be searched
1683 */
1684 MemoryRegionSection memory_region_find(MemoryRegion *mr,
1685 hwaddr addr, uint64_t size);
1686
1687 /**
1688 * memory_global_dirty_log_sync: synchronize the dirty log for all memory
1689 *
1690 * Synchronizes the dirty page log for all address spaces.
1691 */
1692 void memory_global_dirty_log_sync(void);
1693
1694 /**
1695 * memory_global_dirty_log_sync: synchronize the dirty log for all memory
1696 *
1697 * Synchronizes the vCPUs with a thread that is reading the dirty bitmap.
1698 * This function must be called after the dirty log bitmap is cleared, and
1699 * before dirty guest memory pages are read. If you are using
1700 * #DirtyBitmapSnapshot, memory_region_snapshot_and_clear_dirty() takes
1701 * care of doing this.
1702 */
1703 void memory_global_after_dirty_log_sync(void);
1704
1705 /**
1706 * memory_region_transaction_begin: Start a transaction.
1707 *
1708 * During a transaction, changes will be accumulated and made visible
1709 * only when the transaction ends (is committed).
1710 */
1711 void memory_region_transaction_begin(void);
1712
1713 /**
1714 * memory_region_transaction_commit: Commit a transaction and make changes
1715 * visible to the guest.
1716 */
1717 void memory_region_transaction_commit(void);
1718
1719 /**
1720 * memory_listener_register: register callbacks to be called when memory
1721 * sections are mapped or unmapped into an address
1722 * space
1723 *
1724 * @listener: an object containing the callbacks to be called
1725 * @filter: if non-%NULL, only regions in this address space will be observed
1726 */
1727 void memory_listener_register(MemoryListener *listener, AddressSpace *filter);
1728
1729 /**
1730 * memory_listener_unregister: undo the effect of memory_listener_register()
1731 *
1732 * @listener: an object containing the callbacks to be removed
1733 */
1734 void memory_listener_unregister(MemoryListener *listener);
1735
1736 /**
1737 * memory_global_dirty_log_start: begin dirty logging for all regions
1738 */
1739 void memory_global_dirty_log_start(void);
1740
1741 /**
1742 * memory_global_dirty_log_stop: end dirty logging for all regions
1743 */
1744 void memory_global_dirty_log_stop(void);
1745
1746 void mtree_info(bool flatview, bool dispatch_tree, bool owner);
1747
1748 /**
1749 * memory_region_dispatch_read: perform a read directly to the specified
1750 * MemoryRegion.
1751 *
1752 * @mr: #MemoryRegion to access
1753 * @addr: address within that region
1754 * @pval: pointer to uint64_t which the data is written to
1755 * @op: size, sign, and endianness of the memory operation
1756 * @attrs: memory transaction attributes to use for the access
1757 */
1758 MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
1759 hwaddr addr,
1760 uint64_t *pval,
1761 MemOp op,
1762 MemTxAttrs attrs);
1763 /**
1764 * memory_region_dispatch_write: perform a write directly to the specified
1765 * MemoryRegion.
1766 *
1767 * @mr: #MemoryRegion to access
1768 * @addr: address within that region
1769 * @data: data to write
1770 * @op: size, sign, and endianness of the memory operation
1771 * @attrs: memory transaction attributes to use for the access
1772 */
1773 MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
1774 hwaddr addr,
1775 uint64_t data,
1776 MemOp op,
1777 MemTxAttrs attrs);
1778
1779 /**
1780 * address_space_init: initializes an address space
1781 *
1782 * @as: an uninitialized #AddressSpace
1783 * @root: a #MemoryRegion that routes addresses for the address space
1784 * @name: an address space name. The name is only used for debugging
1785 * output.
1786 */
1787 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name);
1788
1789 /**
1790 * address_space_destroy: destroy an address space
1791 *
1792 * Releases all resources associated with an address space. After an address space
1793 * is destroyed, its root memory region (given by address_space_init()) may be destroyed
1794 * as well.
1795 *
1796 * @as: address space to be destroyed
1797 */
1798 void address_space_destroy(AddressSpace *as);
1799
1800 /**
1801 * address_space_remove_listeners: unregister all listeners of an address space
1802 *
1803 * Removes all callbacks previously registered with memory_listener_register()
1804 * for @as.
1805 *
1806 * @as: an initialized #AddressSpace
1807 */
1808 void address_space_remove_listeners(AddressSpace *as);
1809
1810 /**
1811 * address_space_rw: read from or write to an address space.
1812 *
1813 * Return a MemTxResult indicating whether the operation succeeded
1814 * or failed (eg unassigned memory, device rejected the transaction,
1815 * IOMMU fault).
1816 *
1817 * @as: #AddressSpace to be accessed
1818 * @addr: address within that address space
1819 * @attrs: memory transaction attributes
1820 * @buf: buffer with the data transferred
1821 * @len: the number of bytes to read or write
1822 * @is_write: indicates the transfer direction
1823 */
1824 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr,
1825 MemTxAttrs attrs, uint8_t *buf,
1826 hwaddr len, bool is_write);
1827
1828 /**
1829 * address_space_write: write to address space.
1830 *
1831 * Return a MemTxResult indicating whether the operation succeeded
1832 * or failed (eg unassigned memory, device rejected the transaction,
1833 * IOMMU fault).
1834 *
1835 * @as: #AddressSpace to be accessed
1836 * @addr: address within that address space
1837 * @attrs: memory transaction attributes
1838 * @buf: buffer with the data transferred
1839 * @len: the number of bytes to write
1840 */
1841 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
1842 MemTxAttrs attrs,
1843 const uint8_t *buf, hwaddr len);
1844
1845 /**
1846 * address_space_write_rom: write to address space, including ROM.
1847 *
1848 * This function writes to the specified address space, but will
1849 * write data to both ROM and RAM. This is used for non-guest
1850 * writes like writes from the gdb debug stub or initial loading
1851 * of ROM contents.
1852 *
1853 * Note that portions of the write which attempt to write data to
1854 * a device will be silently ignored -- only real RAM and ROM will
1855 * be written to.
1856 *
1857 * Return a MemTxResult indicating whether the operation succeeded
1858 * or failed (eg unassigned memory, device rejected the transaction,
1859 * IOMMU fault).
1860 *
1861 * @as: #AddressSpace to be accessed
1862 * @addr: address within that address space
1863 * @attrs: memory transaction attributes
1864 * @buf: buffer with the data transferred
1865 * @len: the number of bytes to write
1866 */
1867 MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
1868 MemTxAttrs attrs,
1869 const uint8_t *buf, hwaddr len);
1870
1871 /* address_space_ld*: load from an address space
1872 * address_space_st*: store to an address space
1873 *
1874 * These functions perform a load or store of the byte, word,
1875 * longword or quad to the specified address within the AddressSpace.
1876 * The _le suffixed functions treat the data as little endian;
1877 * _be indicates big endian; no suffix indicates "same endianness
1878 * as guest CPU".
1879 *
1880 * The "guest CPU endianness" accessors are deprecated for use outside
1881 * target-* code; devices should be CPU-agnostic and use either the LE
1882 * or the BE accessors.
1883 *
1884 * @as #AddressSpace to be accessed
1885 * @addr: address within that address space
1886 * @val: data value, for stores
1887 * @attrs: memory transaction attributes
1888 * @result: location to write the success/failure of the transaction;
1889 * if NULL, this information is discarded
1890 */
1891
1892 #define SUFFIX
1893 #define ARG1 as
1894 #define ARG1_DECL AddressSpace *as
1895 #include "exec/memory_ldst.inc.h"
1896
1897 #define SUFFIX
1898 #define ARG1 as
1899 #define ARG1_DECL AddressSpace *as
1900 #include "exec/memory_ldst_phys.inc.h"
1901
1902 struct MemoryRegionCache {
1903 void *ptr;
1904 hwaddr xlat;
1905 hwaddr len;
1906 FlatView *fv;
1907 MemoryRegionSection mrs;
1908 bool is_write;
1909 };
1910
1911 #define MEMORY_REGION_CACHE_INVALID ((MemoryRegionCache) { .mrs.mr = NULL })
1912
1913
1914 /* address_space_ld*_cached: load from a cached #MemoryRegion
1915 * address_space_st*_cached: store into a cached #MemoryRegion
1916 *
1917 * These functions perform a load or store of the byte, word,
1918 * longword or quad to the specified address. The address is
1919 * a physical address in the AddressSpace, but it must lie within
1920 * a #MemoryRegion that was mapped with address_space_cache_init.
1921 *
1922 * The _le suffixed functions treat the data as little endian;
1923 * _be indicates big endian; no suffix indicates "same endianness
1924 * as guest CPU".
1925 *
1926 * The "guest CPU endianness" accessors are deprecated for use outside
1927 * target-* code; devices should be CPU-agnostic and use either the LE
1928 * or the BE accessors.
1929 *
1930 * @cache: previously initialized #MemoryRegionCache to be accessed
1931 * @addr: address within the address space
1932 * @val: data value, for stores
1933 * @attrs: memory transaction attributes
1934 * @result: location to write the success/failure of the transaction;
1935 * if NULL, this information is discarded
1936 */
1937
1938 #define SUFFIX _cached_slow
1939 #define ARG1 cache
1940 #define ARG1_DECL MemoryRegionCache *cache
1941 #include "exec/memory_ldst.inc.h"
1942
1943 /* Inline fast path for direct RAM access. */
1944 static inline uint8_t address_space_ldub_cached(MemoryRegionCache *cache,
1945 hwaddr addr, MemTxAttrs attrs, MemTxResult *result)
1946 {
1947 assert(addr < cache->len);
1948 if (likely(cache->ptr)) {
1949 return ldub_p(cache->ptr + addr);
1950 } else {
1951 return address_space_ldub_cached_slow(cache, addr, attrs, result);
1952 }
1953 }
1954
1955 static inline void address_space_stb_cached(MemoryRegionCache *cache,
1956 hwaddr addr, uint32_t val, MemTxAttrs attrs, MemTxResult *result)
1957 {
1958 assert(addr < cache->len);
1959 if (likely(cache->ptr)) {
1960 stb_p(cache->ptr + addr, val);
1961 } else {
1962 address_space_stb_cached_slow(cache, addr, val, attrs, result);
1963 }
1964 }
1965
1966 #define ENDIANNESS _le
1967 #include "exec/memory_ldst_cached.inc.h"
1968
1969 #define ENDIANNESS _be
1970 #include "exec/memory_ldst_cached.inc.h"
1971
1972 #define SUFFIX _cached
1973 #define ARG1 cache
1974 #define ARG1_DECL MemoryRegionCache *cache
1975 #include "exec/memory_ldst_phys.inc.h"
1976
1977 /* address_space_cache_init: prepare for repeated access to a physical
1978 * memory region
1979 *
1980 * @cache: #MemoryRegionCache to be filled
1981 * @as: #AddressSpace to be accessed
1982 * @addr: address within that address space
1983 * @len: length of buffer
1984 * @is_write: indicates the transfer direction
1985 *
1986 * Will only work with RAM, and may map a subset of the requested range by
1987 * returning a value that is less than @len. On failure, return a negative
1988 * errno value.
1989 *
1990 * Because it only works with RAM, this function can be used for
1991 * read-modify-write operations. In this case, is_write should be %true.
1992 *
1993 * Note that addresses passed to the address_space_*_cached functions
1994 * are relative to @addr.
1995 */
1996 int64_t address_space_cache_init(MemoryRegionCache *cache,
1997 AddressSpace *as,
1998 hwaddr addr,
1999 hwaddr len,
2000 bool is_write);
2001
2002 /**
2003 * address_space_cache_invalidate: complete a write to a #MemoryRegionCache
2004 *
2005 * @cache: The #MemoryRegionCache to operate on.
2006 * @addr: The first physical address that was written, relative to the
2007 * address that was passed to @address_space_cache_init.
2008 * @access_len: The number of bytes that were written starting at @addr.
2009 */
2010 void address_space_cache_invalidate(MemoryRegionCache *cache,
2011 hwaddr addr,
2012 hwaddr access_len);
2013
2014 /**
2015 * address_space_cache_destroy: free a #MemoryRegionCache
2016 *
2017 * @cache: The #MemoryRegionCache whose memory should be released.
2018 */
2019 void address_space_cache_destroy(MemoryRegionCache *cache);
2020
2021 /* address_space_get_iotlb_entry: translate an address into an IOTLB
2022 * entry. Should be called from an RCU critical section.
2023 */
2024 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
2025 bool is_write, MemTxAttrs attrs);
2026
2027 /* address_space_translate: translate an address range into an address space
2028 * into a MemoryRegion and an address range into that section. Should be
2029 * called from an RCU critical section, to avoid that the last reference
2030 * to the returned region disappears after address_space_translate returns.
2031 *
2032 * @fv: #FlatView to be accessed
2033 * @addr: address within that address space
2034 * @xlat: pointer to address within the returned memory region section's
2035 * #MemoryRegion.
2036 * @len: pointer to length
2037 * @is_write: indicates the transfer direction
2038 * @attrs: memory attributes
2039 */
2040 MemoryRegion *flatview_translate(FlatView *fv,
2041 hwaddr addr, hwaddr *xlat,
2042 hwaddr *len, bool is_write,
2043 MemTxAttrs attrs);
2044
2045 static inline MemoryRegion *address_space_translate(AddressSpace *as,
2046 hwaddr addr, hwaddr *xlat,
2047 hwaddr *len, bool is_write,
2048 MemTxAttrs attrs)
2049 {
2050 return flatview_translate(address_space_to_flatview(as),
2051 addr, xlat, len, is_write, attrs);
2052 }
2053
2054 /* address_space_access_valid: check for validity of accessing an address
2055 * space range
2056 *
2057 * Check whether memory is assigned to the given address space range, and
2058 * access is permitted by any IOMMU regions that are active for the address
2059 * space.
2060 *
2061 * For now, addr and len should be aligned to a page size. This limitation
2062 * will be lifted in the future.
2063 *
2064 * @as: #AddressSpace to be accessed
2065 * @addr: address within that address space
2066 * @len: length of the area to be checked
2067 * @is_write: indicates the transfer direction
2068 * @attrs: memory attributes
2069 */
2070 bool address_space_access_valid(AddressSpace *as, hwaddr addr, hwaddr len,
2071 bool is_write, MemTxAttrs attrs);
2072
2073 /* address_space_map: map a physical memory region into a host virtual address
2074 *
2075 * May map a subset of the requested range, given by and returned in @plen.
2076 * May return %NULL if resources needed to perform the mapping are exhausted.
2077 * Use only for reads OR writes - not for read-modify-write operations.
2078 * Use cpu_register_map_client() to know when retrying the map operation is
2079 * likely to succeed.
2080 *
2081 * @as: #AddressSpace to be accessed
2082 * @addr: address within that address space
2083 * @plen: pointer to length of buffer; updated on return
2084 * @is_write: indicates the transfer direction
2085 * @attrs: memory attributes
2086 */
2087 void *address_space_map(AddressSpace *as, hwaddr addr,
2088 hwaddr *plen, bool is_write, MemTxAttrs attrs);
2089
2090 /* address_space_unmap: Unmaps a memory region previously mapped by address_space_map()
2091 *
2092 * Will also mark the memory as dirty if @is_write == %true. @access_len gives
2093 * the amount of memory that was actually read or written by the caller.
2094 *
2095 * @as: #AddressSpace used
2096 * @buffer: host pointer as returned by address_space_map()
2097 * @len: buffer length as returned by address_space_map()
2098 * @access_len: amount of data actually transferred
2099 * @is_write: indicates the transfer direction
2100 */
2101 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
2102 int is_write, hwaddr access_len);
2103
2104
2105 /* Internal functions, part of the implementation of address_space_read. */
2106 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
2107 MemTxAttrs attrs, uint8_t *buf, hwaddr len);
2108 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
2109 MemTxAttrs attrs, uint8_t *buf,
2110 hwaddr len, hwaddr addr1, hwaddr l,
2111 MemoryRegion *mr);
2112 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr);
2113
2114 /* Internal functions, part of the implementation of address_space_read_cached
2115 * and address_space_write_cached. */
2116 void address_space_read_cached_slow(MemoryRegionCache *cache,
2117 hwaddr addr, void *buf, hwaddr len);
2118 void address_space_write_cached_slow(MemoryRegionCache *cache,
2119 hwaddr addr, const void *buf, hwaddr len);
2120
2121 static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write)
2122 {
2123 if (is_write) {
2124 return memory_region_is_ram(mr) &&
2125 !mr->readonly && !memory_region_is_ram_device(mr);
2126 } else {
2127 return (memory_region_is_ram(mr) && !memory_region_is_ram_device(mr)) ||
2128 memory_region_is_romd(mr);
2129 }
2130 }
2131
2132 /**
2133 * address_space_read: read from an address space.
2134 *
2135 * Return a MemTxResult indicating whether the operation succeeded
2136 * or failed (eg unassigned memory, device rejected the transaction,
2137 * IOMMU fault). Called within RCU critical section.
2138 *
2139 * @as: #AddressSpace to be accessed
2140 * @addr: address within that address space
2141 * @attrs: memory transaction attributes
2142 * @buf: buffer with the data transferred
2143 */
2144 static inline __attribute__((__always_inline__))
2145 MemTxResult address_space_read(AddressSpace *as, hwaddr addr,
2146 MemTxAttrs attrs, uint8_t *buf,
2147 hwaddr len)
2148 {
2149 MemTxResult result = MEMTX_OK;
2150 hwaddr l, addr1;
2151 void *ptr;
2152 MemoryRegion *mr;
2153 FlatView *fv;
2154
2155 if (__builtin_constant_p(len)) {
2156 if (len) {
2157 rcu_read_lock();
2158 fv = address_space_to_flatview(as);
2159 l = len;
2160 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
2161 if (len == l && memory_access_is_direct(mr, false)) {
2162 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
2163 memcpy(buf, ptr, len);
2164 } else {
2165 result = flatview_read_continue(fv, addr, attrs, buf, len,
2166 addr1, l, mr);
2167 }
2168 rcu_read_unlock();
2169 }
2170 } else {
2171 result = address_space_read_full(as, addr, attrs, buf, len);
2172 }
2173 return result;
2174 }
2175
2176 /**
2177 * address_space_read_cached: read from a cached RAM region
2178 *
2179 * @cache: Cached region to be addressed
2180 * @addr: address relative to the base of the RAM region
2181 * @buf: buffer with the data transferred
2182 * @len: length of the data transferred
2183 */
2184 static inline void
2185 address_space_read_cached(MemoryRegionCache *cache, hwaddr addr,
2186 void *buf, hwaddr len)
2187 {
2188 assert(addr < cache->len && len <= cache->len - addr);
2189 if (likely(cache->ptr)) {
2190 memcpy(buf, cache->ptr + addr, len);
2191 } else {
2192 address_space_read_cached_slow(cache, addr, buf, len);
2193 }
2194 }
2195
2196 /**
2197 * address_space_write_cached: write to a cached RAM region
2198 *
2199 * @cache: Cached region to be addressed
2200 * @addr: address relative to the base of the RAM region
2201 * @buf: buffer with the data transferred
2202 * @len: length of the data transferred
2203 */
2204 static inline void
2205 address_space_write_cached(MemoryRegionCache *cache, hwaddr addr,
2206 void *buf, hwaddr len)
2207 {
2208 assert(addr < cache->len && len <= cache->len - addr);
2209 if (likely(cache->ptr)) {
2210 memcpy(cache->ptr + addr, buf, len);
2211 } else {
2212 address_space_write_cached_slow(cache, addr, buf, len);
2213 }
2214 }
2215
2216 #ifdef NEED_CPU_H
2217 /* enum device_endian to MemOp. */
2218 static inline MemOp devend_memop(enum device_endian end)
2219 {
2220 QEMU_BUILD_BUG_ON(DEVICE_HOST_ENDIAN != DEVICE_LITTLE_ENDIAN &&
2221 DEVICE_HOST_ENDIAN != DEVICE_BIG_ENDIAN);
2222
2223 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
2224 /* Swap if non-host endianness or native (target) endianness */
2225 return (end == DEVICE_HOST_ENDIAN) ? 0 : MO_BSWAP;
2226 #else
2227 const int non_host_endianness =
2228 DEVICE_LITTLE_ENDIAN ^ DEVICE_BIG_ENDIAN ^ DEVICE_HOST_ENDIAN;
2229
2230 /* In this case, native (target) endianness needs no swap. */
2231 return (end == non_host_endianness) ? MO_BSWAP : 0;
2232 #endif
2233 }
2234 #endif
2235
2236 #endif
2237
2238 #endif