]> git.proxmox.com Git - mirror_qemu.git/blob - include/exec/memory.h
softmmu/memory: Pass ram_flags to qemu_ram_alloc_from_fd()
[mirror_qemu.git] / include / exec / memory.h
1 /*
2 * Physical memory management API
3 *
4 * Copyright 2011 Red Hat, Inc. and/or its affiliates
5 *
6 * Authors:
7 * Avi Kivity <avi@redhat.com>
8 *
9 * This work is licensed under the terms of the GNU GPL, version 2. See
10 * the COPYING file in the top-level directory.
11 *
12 */
13
14 #ifndef MEMORY_H
15 #define MEMORY_H
16
17 #ifndef CONFIG_USER_ONLY
18
19 #include "exec/cpu-common.h"
20 #include "exec/hwaddr.h"
21 #include "exec/memattrs.h"
22 #include "exec/memop.h"
23 #include "exec/ramlist.h"
24 #include "qemu/bswap.h"
25 #include "qemu/queue.h"
26 #include "qemu/int128.h"
27 #include "qemu/notify.h"
28 #include "qom/object.h"
29 #include "qemu/rcu.h"
30
31 #define RAM_ADDR_INVALID (~(ram_addr_t)0)
32
33 #define MAX_PHYS_ADDR_SPACE_BITS 62
34 #define MAX_PHYS_ADDR (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1)
35
36 #define TYPE_MEMORY_REGION "memory-region"
37 DECLARE_INSTANCE_CHECKER(MemoryRegion, MEMORY_REGION,
38 TYPE_MEMORY_REGION)
39
40 #define TYPE_IOMMU_MEMORY_REGION "iommu-memory-region"
41 typedef struct IOMMUMemoryRegionClass IOMMUMemoryRegionClass;
42 DECLARE_OBJ_CHECKERS(IOMMUMemoryRegion, IOMMUMemoryRegionClass,
43 IOMMU_MEMORY_REGION, TYPE_IOMMU_MEMORY_REGION)
44
45 #ifdef CONFIG_FUZZ
46 void fuzz_dma_read_cb(size_t addr,
47 size_t len,
48 MemoryRegion *mr);
49 #else
50 static inline void fuzz_dma_read_cb(size_t addr,
51 size_t len,
52 MemoryRegion *mr)
53 {
54 /* Do Nothing */
55 }
56 #endif
57
58 extern bool global_dirty_log;
59
60 typedef struct MemoryRegionOps MemoryRegionOps;
61
62 struct ReservedRegion {
63 hwaddr low;
64 hwaddr high;
65 unsigned type;
66 };
67
68 typedef struct IOMMUTLBEntry IOMMUTLBEntry;
69
70 /* See address_space_translate: bit 0 is read, bit 1 is write. */
71 typedef enum {
72 IOMMU_NONE = 0,
73 IOMMU_RO = 1,
74 IOMMU_WO = 2,
75 IOMMU_RW = 3,
76 } IOMMUAccessFlags;
77
78 #define IOMMU_ACCESS_FLAG(r, w) (((r) ? IOMMU_RO : 0) | ((w) ? IOMMU_WO : 0))
79
80 struct IOMMUTLBEntry {
81 AddressSpace *target_as;
82 hwaddr iova;
83 hwaddr translated_addr;
84 hwaddr addr_mask; /* 0xfff = 4k translation */
85 IOMMUAccessFlags perm;
86 };
87
88 /*
89 * Bitmap for different IOMMUNotifier capabilities. Each notifier can
90 * register with one or multiple IOMMU Notifier capability bit(s).
91 */
92 typedef enum {
93 IOMMU_NOTIFIER_NONE = 0,
94 /* Notify cache invalidations */
95 IOMMU_NOTIFIER_UNMAP = 0x1,
96 /* Notify entry changes (newly created entries) */
97 IOMMU_NOTIFIER_MAP = 0x2,
98 /* Notify changes on device IOTLB entries */
99 IOMMU_NOTIFIER_DEVIOTLB_UNMAP = 0x04,
100 } IOMMUNotifierFlag;
101
102 #define IOMMU_NOTIFIER_IOTLB_EVENTS (IOMMU_NOTIFIER_MAP | IOMMU_NOTIFIER_UNMAP)
103 #define IOMMU_NOTIFIER_DEVIOTLB_EVENTS IOMMU_NOTIFIER_DEVIOTLB_UNMAP
104 #define IOMMU_NOTIFIER_ALL (IOMMU_NOTIFIER_IOTLB_EVENTS | \
105 IOMMU_NOTIFIER_DEVIOTLB_EVENTS)
106
107 struct IOMMUNotifier;
108 typedef void (*IOMMUNotify)(struct IOMMUNotifier *notifier,
109 IOMMUTLBEntry *data);
110
111 struct IOMMUNotifier {
112 IOMMUNotify notify;
113 IOMMUNotifierFlag notifier_flags;
114 /* Notify for address space range start <= addr <= end */
115 hwaddr start;
116 hwaddr end;
117 int iommu_idx;
118 QLIST_ENTRY(IOMMUNotifier) node;
119 };
120 typedef struct IOMMUNotifier IOMMUNotifier;
121
122 typedef struct IOMMUTLBEvent {
123 IOMMUNotifierFlag type;
124 IOMMUTLBEntry entry;
125 } IOMMUTLBEvent;
126
127 /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
128 #define RAM_PREALLOC (1 << 0)
129
130 /* RAM is mmap-ed with MAP_SHARED */
131 #define RAM_SHARED (1 << 1)
132
133 /* Only a portion of RAM (used_length) is actually used, and migrated.
134 * Resizing RAM while migrating can result in the migration being canceled.
135 */
136 #define RAM_RESIZEABLE (1 << 2)
137
138 /* UFFDIO_ZEROPAGE is available on this RAMBlock to atomically
139 * zero the page and wake waiting processes.
140 * (Set during postcopy)
141 */
142 #define RAM_UF_ZEROPAGE (1 << 3)
143
144 /* RAM can be migrated */
145 #define RAM_MIGRATABLE (1 << 4)
146
147 /* RAM is a persistent kind memory */
148 #define RAM_PMEM (1 << 5)
149
150
151 /*
152 * UFFDIO_WRITEPROTECT is used on this RAMBlock to
153 * support 'write-tracking' migration type.
154 * Implies ram_state->ram_wt_enabled.
155 */
156 #define RAM_UF_WRITEPROTECT (1 << 6)
157
158 static inline void iommu_notifier_init(IOMMUNotifier *n, IOMMUNotify fn,
159 IOMMUNotifierFlag flags,
160 hwaddr start, hwaddr end,
161 int iommu_idx)
162 {
163 n->notify = fn;
164 n->notifier_flags = flags;
165 n->start = start;
166 n->end = end;
167 n->iommu_idx = iommu_idx;
168 }
169
170 /*
171 * Memory region callbacks
172 */
173 struct MemoryRegionOps {
174 /* Read from the memory region. @addr is relative to @mr; @size is
175 * in bytes. */
176 uint64_t (*read)(void *opaque,
177 hwaddr addr,
178 unsigned size);
179 /* Write to the memory region. @addr is relative to @mr; @size is
180 * in bytes. */
181 void (*write)(void *opaque,
182 hwaddr addr,
183 uint64_t data,
184 unsigned size);
185
186 MemTxResult (*read_with_attrs)(void *opaque,
187 hwaddr addr,
188 uint64_t *data,
189 unsigned size,
190 MemTxAttrs attrs);
191 MemTxResult (*write_with_attrs)(void *opaque,
192 hwaddr addr,
193 uint64_t data,
194 unsigned size,
195 MemTxAttrs attrs);
196
197 enum device_endian endianness;
198 /* Guest-visible constraints: */
199 struct {
200 /* If nonzero, specify bounds on access sizes beyond which a machine
201 * check is thrown.
202 */
203 unsigned min_access_size;
204 unsigned max_access_size;
205 /* If true, unaligned accesses are supported. Otherwise unaligned
206 * accesses throw machine checks.
207 */
208 bool unaligned;
209 /*
210 * If present, and returns #false, the transaction is not accepted
211 * by the device (and results in machine dependent behaviour such
212 * as a machine check exception).
213 */
214 bool (*accepts)(void *opaque, hwaddr addr,
215 unsigned size, bool is_write,
216 MemTxAttrs attrs);
217 } valid;
218 /* Internal implementation constraints: */
219 struct {
220 /* If nonzero, specifies the minimum size implemented. Smaller sizes
221 * will be rounded upwards and a partial result will be returned.
222 */
223 unsigned min_access_size;
224 /* If nonzero, specifies the maximum size implemented. Larger sizes
225 * will be done as a series of accesses with smaller sizes.
226 */
227 unsigned max_access_size;
228 /* If true, unaligned accesses are supported. Otherwise all accesses
229 * are converted to (possibly multiple) naturally aligned accesses.
230 */
231 bool unaligned;
232 } impl;
233 };
234
235 typedef struct MemoryRegionClass {
236 /* private */
237 ObjectClass parent_class;
238 } MemoryRegionClass;
239
240
241 enum IOMMUMemoryRegionAttr {
242 IOMMU_ATTR_SPAPR_TCE_FD
243 };
244
245 /*
246 * IOMMUMemoryRegionClass:
247 *
248 * All IOMMU implementations need to subclass TYPE_IOMMU_MEMORY_REGION
249 * and provide an implementation of at least the @translate method here
250 * to handle requests to the memory region. Other methods are optional.
251 *
252 * The IOMMU implementation must use the IOMMU notifier infrastructure
253 * to report whenever mappings are changed, by calling
254 * memory_region_notify_iommu() (or, if necessary, by calling
255 * memory_region_notify_iommu_one() for each registered notifier).
256 *
257 * Conceptually an IOMMU provides a mapping from input address
258 * to an output TLB entry. If the IOMMU is aware of memory transaction
259 * attributes and the output TLB entry depends on the transaction
260 * attributes, we represent this using IOMMU indexes. Each index
261 * selects a particular translation table that the IOMMU has:
262 *
263 * @attrs_to_index returns the IOMMU index for a set of transaction attributes
264 *
265 * @translate takes an input address and an IOMMU index
266 *
267 * and the mapping returned can only depend on the input address and the
268 * IOMMU index.
269 *
270 * Most IOMMUs don't care about the transaction attributes and support
271 * only a single IOMMU index. A more complex IOMMU might have one index
272 * for secure transactions and one for non-secure transactions.
273 */
274 struct IOMMUMemoryRegionClass {
275 /* private: */
276 MemoryRegionClass parent_class;
277
278 /* public: */
279 /**
280 * @translate:
281 *
282 * Return a TLB entry that contains a given address.
283 *
284 * The IOMMUAccessFlags indicated via @flag are optional and may
285 * be specified as IOMMU_NONE to indicate that the caller needs
286 * the full translation information for both reads and writes. If
287 * the access flags are specified then the IOMMU implementation
288 * may use this as an optimization, to stop doing a page table
289 * walk as soon as it knows that the requested permissions are not
290 * allowed. If IOMMU_NONE is passed then the IOMMU must do the
291 * full page table walk and report the permissions in the returned
292 * IOMMUTLBEntry. (Note that this implies that an IOMMU may not
293 * return different mappings for reads and writes.)
294 *
295 * The returned information remains valid while the caller is
296 * holding the big QEMU lock or is inside an RCU critical section;
297 * if the caller wishes to cache the mapping beyond that it must
298 * register an IOMMU notifier so it can invalidate its cached
299 * information when the IOMMU mapping changes.
300 *
301 * @iommu: the IOMMUMemoryRegion
302 *
303 * @hwaddr: address to be translated within the memory region
304 *
305 * @flag: requested access permission
306 *
307 * @iommu_idx: IOMMU index for the translation
308 */
309 IOMMUTLBEntry (*translate)(IOMMUMemoryRegion *iommu, hwaddr addr,
310 IOMMUAccessFlags flag, int iommu_idx);
311 /**
312 * @get_min_page_size:
313 *
314 * Returns minimum supported page size in bytes.
315 *
316 * If this method is not provided then the minimum is assumed to
317 * be TARGET_PAGE_SIZE.
318 *
319 * @iommu: the IOMMUMemoryRegion
320 */
321 uint64_t (*get_min_page_size)(IOMMUMemoryRegion *iommu);
322 /**
323 * @notify_flag_changed:
324 *
325 * Called when IOMMU Notifier flag changes (ie when the set of
326 * events which IOMMU users are requesting notification for changes).
327 * Optional method -- need not be provided if the IOMMU does not
328 * need to know exactly which events must be notified.
329 *
330 * @iommu: the IOMMUMemoryRegion
331 *
332 * @old_flags: events which previously needed to be notified
333 *
334 * @new_flags: events which now need to be notified
335 *
336 * Returns 0 on success, or a negative errno; in particular
337 * returns -EINVAL if the new flag bitmap is not supported by the
338 * IOMMU memory region. In case of failure, the error object
339 * must be created
340 */
341 int (*notify_flag_changed)(IOMMUMemoryRegion *iommu,
342 IOMMUNotifierFlag old_flags,
343 IOMMUNotifierFlag new_flags,
344 Error **errp);
345 /**
346 * @replay:
347 *
348 * Called to handle memory_region_iommu_replay().
349 *
350 * The default implementation of memory_region_iommu_replay() is to
351 * call the IOMMU translate method for every page in the address space
352 * with flag == IOMMU_NONE and then call the notifier if translate
353 * returns a valid mapping. If this method is implemented then it
354 * overrides the default behaviour, and must provide the full semantics
355 * of memory_region_iommu_replay(), by calling @notifier for every
356 * translation present in the IOMMU.
357 *
358 * Optional method -- an IOMMU only needs to provide this method
359 * if the default is inefficient or produces undesirable side effects.
360 *
361 * Note: this is not related to record-and-replay functionality.
362 */
363 void (*replay)(IOMMUMemoryRegion *iommu, IOMMUNotifier *notifier);
364
365 /**
366 * @get_attr:
367 *
368 * Get IOMMU misc attributes. This is an optional method that
369 * can be used to allow users of the IOMMU to get implementation-specific
370 * information. The IOMMU implements this method to handle calls
371 * by IOMMU users to memory_region_iommu_get_attr() by filling in
372 * the arbitrary data pointer for any IOMMUMemoryRegionAttr values that
373 * the IOMMU supports. If the method is unimplemented then
374 * memory_region_iommu_get_attr() will always return -EINVAL.
375 *
376 * @iommu: the IOMMUMemoryRegion
377 *
378 * @attr: attribute being queried
379 *
380 * @data: memory to fill in with the attribute data
381 *
382 * Returns 0 on success, or a negative errno; in particular
383 * returns -EINVAL for unrecognized or unimplemented attribute types.
384 */
385 int (*get_attr)(IOMMUMemoryRegion *iommu, enum IOMMUMemoryRegionAttr attr,
386 void *data);
387
388 /**
389 * @attrs_to_index:
390 *
391 * Return the IOMMU index to use for a given set of transaction attributes.
392 *
393 * Optional method: if an IOMMU only supports a single IOMMU index then
394 * the default implementation of memory_region_iommu_attrs_to_index()
395 * will return 0.
396 *
397 * The indexes supported by an IOMMU must be contiguous, starting at 0.
398 *
399 * @iommu: the IOMMUMemoryRegion
400 * @attrs: memory transaction attributes
401 */
402 int (*attrs_to_index)(IOMMUMemoryRegion *iommu, MemTxAttrs attrs);
403
404 /**
405 * @num_indexes:
406 *
407 * Return the number of IOMMU indexes this IOMMU supports.
408 *
409 * Optional method: if this method is not provided, then
410 * memory_region_iommu_num_indexes() will return 1, indicating that
411 * only a single IOMMU index is supported.
412 *
413 * @iommu: the IOMMUMemoryRegion
414 */
415 int (*num_indexes)(IOMMUMemoryRegion *iommu);
416
417 /**
418 * @iommu_set_page_size_mask:
419 *
420 * Restrict the page size mask that can be supported with a given IOMMU
421 * memory region. Used for example to propagate host physical IOMMU page
422 * size mask limitations to the virtual IOMMU.
423 *
424 * Optional method: if this method is not provided, then the default global
425 * page mask is used.
426 *
427 * @iommu: the IOMMUMemoryRegion
428 *
429 * @page_size_mask: a bitmask of supported page sizes. At least one bit,
430 * representing the smallest page size, must be set. Additional set bits
431 * represent supported block sizes. For example a host physical IOMMU that
432 * uses page tables with a page size of 4kB, and supports 2MB and 4GB
433 * blocks, will set mask 0x40201000. A granule of 4kB with indiscriminate
434 * block sizes is specified with mask 0xfffffffffffff000.
435 *
436 * Returns 0 on success, or a negative error. In case of failure, the error
437 * object must be created.
438 */
439 int (*iommu_set_page_size_mask)(IOMMUMemoryRegion *iommu,
440 uint64_t page_size_mask,
441 Error **errp);
442 };
443
444 typedef struct CoalescedMemoryRange CoalescedMemoryRange;
445 typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd;
446
447 /** MemoryRegion:
448 *
449 * A struct representing a memory region.
450 */
451 struct MemoryRegion {
452 Object parent_obj;
453
454 /* private: */
455
456 /* The following fields should fit in a cache line */
457 bool romd_mode;
458 bool ram;
459 bool subpage;
460 bool readonly; /* For RAM regions */
461 bool nonvolatile;
462 bool rom_device;
463 bool flush_coalesced_mmio;
464 uint8_t dirty_log_mask;
465 bool is_iommu;
466 RAMBlock *ram_block;
467 Object *owner;
468
469 const MemoryRegionOps *ops;
470 void *opaque;
471 MemoryRegion *container;
472 Int128 size;
473 hwaddr addr;
474 void (*destructor)(MemoryRegion *mr);
475 uint64_t align;
476 bool terminates;
477 bool ram_device;
478 bool enabled;
479 bool warning_printed; /* For reservations */
480 uint8_t vga_logging_count;
481 MemoryRegion *alias;
482 hwaddr alias_offset;
483 int32_t priority;
484 QTAILQ_HEAD(, MemoryRegion) subregions;
485 QTAILQ_ENTRY(MemoryRegion) subregions_link;
486 QTAILQ_HEAD(, CoalescedMemoryRange) coalesced;
487 const char *name;
488 unsigned ioeventfd_nb;
489 MemoryRegionIoeventfd *ioeventfds;
490 };
491
492 struct IOMMUMemoryRegion {
493 MemoryRegion parent_obj;
494
495 QLIST_HEAD(, IOMMUNotifier) iommu_notify;
496 IOMMUNotifierFlag iommu_notify_flags;
497 };
498
499 #define IOMMU_NOTIFIER_FOREACH(n, mr) \
500 QLIST_FOREACH((n), &(mr)->iommu_notify, node)
501
502 /**
503 * struct MemoryListener: callbacks structure for updates to the physical memory map
504 *
505 * Allows a component to adjust to changes in the guest-visible memory map.
506 * Use with memory_listener_register() and memory_listener_unregister().
507 */
508 struct MemoryListener {
509 /**
510 * @begin:
511 *
512 * Called at the beginning of an address space update transaction.
513 * Followed by calls to #MemoryListener.region_add(),
514 * #MemoryListener.region_del(), #MemoryListener.region_nop(),
515 * #MemoryListener.log_start() and #MemoryListener.log_stop() in
516 * increasing address order.
517 *
518 * @listener: The #MemoryListener.
519 */
520 void (*begin)(MemoryListener *listener);
521
522 /**
523 * @commit:
524 *
525 * Called at the end of an address space update transaction,
526 * after the last call to #MemoryListener.region_add(),
527 * #MemoryListener.region_del() or #MemoryListener.region_nop(),
528 * #MemoryListener.log_start() and #MemoryListener.log_stop().
529 *
530 * @listener: The #MemoryListener.
531 */
532 void (*commit)(MemoryListener *listener);
533
534 /**
535 * @region_add:
536 *
537 * Called during an address space update transaction,
538 * for a section of the address space that is new in this address space
539 * space since the last transaction.
540 *
541 * @listener: The #MemoryListener.
542 * @section: The new #MemoryRegionSection.
543 */
544 void (*region_add)(MemoryListener *listener, MemoryRegionSection *section);
545
546 /**
547 * @region_del:
548 *
549 * Called during an address space update transaction,
550 * for a section of the address space that has disappeared in the address
551 * space since the last transaction.
552 *
553 * @listener: The #MemoryListener.
554 * @section: The old #MemoryRegionSection.
555 */
556 void (*region_del)(MemoryListener *listener, MemoryRegionSection *section);
557
558 /**
559 * @region_nop:
560 *
561 * Called during an address space update transaction,
562 * for a section of the address space that is in the same place in the address
563 * space as in the last transaction.
564 *
565 * @listener: The #MemoryListener.
566 * @section: The #MemoryRegionSection.
567 */
568 void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section);
569
570 /**
571 * @log_start:
572 *
573 * Called during an address space update transaction, after
574 * one of #MemoryListener.region_add(), #MemoryListener.region_del() or
575 * #MemoryListener.region_nop(), if dirty memory logging clients have
576 * become active since the last transaction.
577 *
578 * @listener: The #MemoryListener.
579 * @section: The #MemoryRegionSection.
580 * @old: A bitmap of dirty memory logging clients that were active in
581 * the previous transaction.
582 * @new: A bitmap of dirty memory logging clients that are active in
583 * the current transaction.
584 */
585 void (*log_start)(MemoryListener *listener, MemoryRegionSection *section,
586 int old, int new);
587
588 /**
589 * @log_stop:
590 *
591 * Called during an address space update transaction, after
592 * one of #MemoryListener.region_add(), #MemoryListener.region_del() or
593 * #MemoryListener.region_nop() and possibly after
594 * #MemoryListener.log_start(), if dirty memory logging clients have
595 * become inactive since the last transaction.
596 *
597 * @listener: The #MemoryListener.
598 * @section: The #MemoryRegionSection.
599 * @old: A bitmap of dirty memory logging clients that were active in
600 * the previous transaction.
601 * @new: A bitmap of dirty memory logging clients that are active in
602 * the current transaction.
603 */
604 void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section,
605 int old, int new);
606
607 /**
608 * @log_sync:
609 *
610 * Called by memory_region_snapshot_and_clear_dirty() and
611 * memory_global_dirty_log_sync(), before accessing QEMU's "official"
612 * copy of the dirty memory bitmap for a #MemoryRegionSection.
613 *
614 * @listener: The #MemoryListener.
615 * @section: The #MemoryRegionSection.
616 */
617 void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section);
618
619 /**
620 * @log_sync_global:
621 *
622 * This is the global version of @log_sync when the listener does
623 * not have a way to synchronize the log with finer granularity.
624 * When the listener registers with @log_sync_global defined, then
625 * its @log_sync must be NULL. Vice versa.
626 *
627 * @listener: The #MemoryListener.
628 */
629 void (*log_sync_global)(MemoryListener *listener);
630
631 /**
632 * @log_clear:
633 *
634 * Called before reading the dirty memory bitmap for a
635 * #MemoryRegionSection.
636 *
637 * @listener: The #MemoryListener.
638 * @section: The #MemoryRegionSection.
639 */
640 void (*log_clear)(MemoryListener *listener, MemoryRegionSection *section);
641
642 /**
643 * @log_global_start:
644 *
645 * Called by memory_global_dirty_log_start(), which
646 * enables the %DIRTY_LOG_MIGRATION client on all memory regions in
647 * the address space. #MemoryListener.log_global_start() is also
648 * called when a #MemoryListener is added, if global dirty logging is
649 * active at that time.
650 *
651 * @listener: The #MemoryListener.
652 */
653 void (*log_global_start)(MemoryListener *listener);
654
655 /**
656 * @log_global_stop:
657 *
658 * Called by memory_global_dirty_log_stop(), which
659 * disables the %DIRTY_LOG_MIGRATION client on all memory regions in
660 * the address space.
661 *
662 * @listener: The #MemoryListener.
663 */
664 void (*log_global_stop)(MemoryListener *listener);
665
666 /**
667 * @log_global_after_sync:
668 *
669 * Called after reading the dirty memory bitmap
670 * for any #MemoryRegionSection.
671 *
672 * @listener: The #MemoryListener.
673 */
674 void (*log_global_after_sync)(MemoryListener *listener);
675
676 /**
677 * @eventfd_add:
678 *
679 * Called during an address space update transaction,
680 * for a section of the address space that has had a new ioeventfd
681 * registration since the last transaction.
682 *
683 * @listener: The #MemoryListener.
684 * @section: The new #MemoryRegionSection.
685 * @match_data: The @match_data parameter for the new ioeventfd.
686 * @data: The @data parameter for the new ioeventfd.
687 * @e: The #EventNotifier parameter for the new ioeventfd.
688 */
689 void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section,
690 bool match_data, uint64_t data, EventNotifier *e);
691
692 /**
693 * @eventfd_del:
694 *
695 * Called during an address space update transaction,
696 * for a section of the address space that has dropped an ioeventfd
697 * registration since the last transaction.
698 *
699 * @listener: The #MemoryListener.
700 * @section: The new #MemoryRegionSection.
701 * @match_data: The @match_data parameter for the dropped ioeventfd.
702 * @data: The @data parameter for the dropped ioeventfd.
703 * @e: The #EventNotifier parameter for the dropped ioeventfd.
704 */
705 void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section,
706 bool match_data, uint64_t data, EventNotifier *e);
707
708 /**
709 * @coalesced_io_add:
710 *
711 * Called during an address space update transaction,
712 * for a section of the address space that has had a new coalesced
713 * MMIO range registration since the last transaction.
714 *
715 * @listener: The #MemoryListener.
716 * @section: The new #MemoryRegionSection.
717 * @addr: The starting address for the coalesced MMIO range.
718 * @len: The length of the coalesced MMIO range.
719 */
720 void (*coalesced_io_add)(MemoryListener *listener, MemoryRegionSection *section,
721 hwaddr addr, hwaddr len);
722
723 /**
724 * @coalesced_io_del:
725 *
726 * Called during an address space update transaction,
727 * for a section of the address space that has dropped a coalesced
728 * MMIO range since the last transaction.
729 *
730 * @listener: The #MemoryListener.
731 * @section: The new #MemoryRegionSection.
732 * @addr: The starting address for the coalesced MMIO range.
733 * @len: The length of the coalesced MMIO range.
734 */
735 void (*coalesced_io_del)(MemoryListener *listener, MemoryRegionSection *section,
736 hwaddr addr, hwaddr len);
737 /**
738 * @priority:
739 *
740 * Govern the order in which memory listeners are invoked. Lower priorities
741 * are invoked earlier for "add" or "start" callbacks, and later for "delete"
742 * or "stop" callbacks.
743 */
744 unsigned priority;
745
746 /* private: */
747 AddressSpace *address_space;
748 QTAILQ_ENTRY(MemoryListener) link;
749 QTAILQ_ENTRY(MemoryListener) link_as;
750 };
751
752 /**
753 * struct AddressSpace: describes a mapping of addresses to #MemoryRegion objects
754 */
755 struct AddressSpace {
756 /* private: */
757 struct rcu_head rcu;
758 char *name;
759 MemoryRegion *root;
760
761 /* Accessed via RCU. */
762 struct FlatView *current_map;
763
764 int ioeventfd_nb;
765 struct MemoryRegionIoeventfd *ioeventfds;
766 QTAILQ_HEAD(, MemoryListener) listeners;
767 QTAILQ_ENTRY(AddressSpace) address_spaces_link;
768 };
769
770 typedef struct AddressSpaceDispatch AddressSpaceDispatch;
771 typedef struct FlatRange FlatRange;
772
773 /* Flattened global view of current active memory hierarchy. Kept in sorted
774 * order.
775 */
776 struct FlatView {
777 struct rcu_head rcu;
778 unsigned ref;
779 FlatRange *ranges;
780 unsigned nr;
781 unsigned nr_allocated;
782 struct AddressSpaceDispatch *dispatch;
783 MemoryRegion *root;
784 };
785
786 static inline FlatView *address_space_to_flatview(AddressSpace *as)
787 {
788 return qatomic_rcu_read(&as->current_map);
789 }
790
791 /**
792 * typedef flatview_cb: callback for flatview_for_each_range()
793 *
794 * @start: start address of the range within the FlatView
795 * @len: length of the range in bytes
796 * @mr: MemoryRegion covering this range
797 * @offset_in_region: offset of the first byte of the range within @mr
798 * @opaque: data pointer passed to flatview_for_each_range()
799 *
800 * Returns: true to stop the iteration, false to keep going.
801 */
802 typedef bool (*flatview_cb)(Int128 start,
803 Int128 len,
804 const MemoryRegion *mr,
805 hwaddr offset_in_region,
806 void *opaque);
807
808 /**
809 * flatview_for_each_range: Iterate through a FlatView
810 * @fv: the FlatView to iterate through
811 * @cb: function to call for each range
812 * @opaque: opaque data pointer to pass to @cb
813 *
814 * A FlatView is made up of a list of non-overlapping ranges, each of
815 * which is a slice of a MemoryRegion. This function iterates through
816 * each range in @fv, calling @cb. The callback function can terminate
817 * iteration early by returning 'true'.
818 */
819 void flatview_for_each_range(FlatView *fv, flatview_cb cb, void *opaque);
820
821 /**
822 * struct MemoryRegionSection: describes a fragment of a #MemoryRegion
823 *
824 * @mr: the region, or %NULL if empty
825 * @fv: the flat view of the address space the region is mapped in
826 * @offset_within_region: the beginning of the section, relative to @mr's start
827 * @size: the size of the section; will not exceed @mr's boundaries
828 * @offset_within_address_space: the address of the first byte of the section
829 * relative to the region's address space
830 * @readonly: writes to this section are ignored
831 * @nonvolatile: this section is non-volatile
832 */
833 struct MemoryRegionSection {
834 Int128 size;
835 MemoryRegion *mr;
836 FlatView *fv;
837 hwaddr offset_within_region;
838 hwaddr offset_within_address_space;
839 bool readonly;
840 bool nonvolatile;
841 };
842
843 static inline bool MemoryRegionSection_eq(MemoryRegionSection *a,
844 MemoryRegionSection *b)
845 {
846 return a->mr == b->mr &&
847 a->fv == b->fv &&
848 a->offset_within_region == b->offset_within_region &&
849 a->offset_within_address_space == b->offset_within_address_space &&
850 int128_eq(a->size, b->size) &&
851 a->readonly == b->readonly &&
852 a->nonvolatile == b->nonvolatile;
853 }
854
855 /**
856 * memory_region_init: Initialize a memory region
857 *
858 * The region typically acts as a container for other memory regions. Use
859 * memory_region_add_subregion() to add subregions.
860 *
861 * @mr: the #MemoryRegion to be initialized
862 * @owner: the object that tracks the region's reference count
863 * @name: used for debugging; not visible to the user or ABI
864 * @size: size of the region; any subregions beyond this size will be clipped
865 */
866 void memory_region_init(MemoryRegion *mr,
867 Object *owner,
868 const char *name,
869 uint64_t size);
870
871 /**
872 * memory_region_ref: Add 1 to a memory region's reference count
873 *
874 * Whenever memory regions are accessed outside the BQL, they need to be
875 * preserved against hot-unplug. MemoryRegions actually do not have their
876 * own reference count; they piggyback on a QOM object, their "owner".
877 * This function adds a reference to the owner.
878 *
879 * All MemoryRegions must have an owner if they can disappear, even if the
880 * device they belong to operates exclusively under the BQL. This is because
881 * the region could be returned at any time by memory_region_find, and this
882 * is usually under guest control.
883 *
884 * @mr: the #MemoryRegion
885 */
886 void memory_region_ref(MemoryRegion *mr);
887
888 /**
889 * memory_region_unref: Remove 1 to a memory region's reference count
890 *
891 * Whenever memory regions are accessed outside the BQL, they need to be
892 * preserved against hot-unplug. MemoryRegions actually do not have their
893 * own reference count; they piggyback on a QOM object, their "owner".
894 * This function removes a reference to the owner and possibly destroys it.
895 *
896 * @mr: the #MemoryRegion
897 */
898 void memory_region_unref(MemoryRegion *mr);
899
900 /**
901 * memory_region_init_io: Initialize an I/O memory region.
902 *
903 * Accesses into the region will cause the callbacks in @ops to be called.
904 * if @size is nonzero, subregions will be clipped to @size.
905 *
906 * @mr: the #MemoryRegion to be initialized.
907 * @owner: the object that tracks the region's reference count
908 * @ops: a structure containing read and write callbacks to be used when
909 * I/O is performed on the region.
910 * @opaque: passed to the read and write callbacks of the @ops structure.
911 * @name: used for debugging; not visible to the user or ABI
912 * @size: size of the region.
913 */
914 void memory_region_init_io(MemoryRegion *mr,
915 Object *owner,
916 const MemoryRegionOps *ops,
917 void *opaque,
918 const char *name,
919 uint64_t size);
920
921 /**
922 * memory_region_init_ram_nomigrate: Initialize RAM memory region. Accesses
923 * into the region will modify memory
924 * directly.
925 *
926 * @mr: the #MemoryRegion to be initialized.
927 * @owner: the object that tracks the region's reference count
928 * @name: Region name, becomes part of RAMBlock name used in migration stream
929 * must be unique within any device
930 * @size: size of the region.
931 * @errp: pointer to Error*, to store an error if it happens.
932 *
933 * Note that this function does not do anything to cause the data in the
934 * RAM memory region to be migrated; that is the responsibility of the caller.
935 */
936 void memory_region_init_ram_nomigrate(MemoryRegion *mr,
937 Object *owner,
938 const char *name,
939 uint64_t size,
940 Error **errp);
941
942 /**
943 * memory_region_init_ram_shared_nomigrate: Initialize RAM memory region.
944 * Accesses into the region will
945 * modify memory directly.
946 *
947 * @mr: the #MemoryRegion to be initialized.
948 * @owner: the object that tracks the region's reference count
949 * @name: Region name, becomes part of RAMBlock name used in migration stream
950 * must be unique within any device
951 * @size: size of the region.
952 * @share: allow remapping RAM to different addresses
953 * @errp: pointer to Error*, to store an error if it happens.
954 *
955 * Note that this function is similar to memory_region_init_ram_nomigrate.
956 * The only difference is part of the RAM region can be remapped.
957 */
958 void memory_region_init_ram_shared_nomigrate(MemoryRegion *mr,
959 Object *owner,
960 const char *name,
961 uint64_t size,
962 bool share,
963 Error **errp);
964
965 /**
966 * memory_region_init_resizeable_ram: Initialize memory region with resizeable
967 * RAM. Accesses into the region will
968 * modify memory directly. Only an initial
969 * portion of this RAM is actually used.
970 * Changing the size while migrating
971 * can result in the migration being
972 * canceled.
973 *
974 * @mr: the #MemoryRegion to be initialized.
975 * @owner: the object that tracks the region's reference count
976 * @name: Region name, becomes part of RAMBlock name used in migration stream
977 * must be unique within any device
978 * @size: used size of the region.
979 * @max_size: max size of the region.
980 * @resized: callback to notify owner about used size change.
981 * @errp: pointer to Error*, to store an error if it happens.
982 *
983 * Note that this function does not do anything to cause the data in the
984 * RAM memory region to be migrated; that is the responsibility of the caller.
985 */
986 void memory_region_init_resizeable_ram(MemoryRegion *mr,
987 Object *owner,
988 const char *name,
989 uint64_t size,
990 uint64_t max_size,
991 void (*resized)(const char*,
992 uint64_t length,
993 void *host),
994 Error **errp);
995 #ifdef CONFIG_POSIX
996
997 /**
998 * memory_region_init_ram_from_file: Initialize RAM memory region with a
999 * mmap-ed backend.
1000 *
1001 * @mr: the #MemoryRegion to be initialized.
1002 * @owner: the object that tracks the region's reference count
1003 * @name: Region name, becomes part of RAMBlock name used in migration stream
1004 * must be unique within any device
1005 * @size: size of the region.
1006 * @align: alignment of the region base address; if 0, the default alignment
1007 * (getpagesize()) will be used.
1008 * @ram_flags: RamBlock flags. Supported flags: RAM_SHARED, RAM_PMEM.
1009 * @path: the path in which to allocate the RAM.
1010 * @readonly: true to open @path for reading, false for read/write.
1011 * @errp: pointer to Error*, to store an error if it happens.
1012 *
1013 * Note that this function does not do anything to cause the data in the
1014 * RAM memory region to be migrated; that is the responsibility of the caller.
1015 */
1016 void memory_region_init_ram_from_file(MemoryRegion *mr,
1017 Object *owner,
1018 const char *name,
1019 uint64_t size,
1020 uint64_t align,
1021 uint32_t ram_flags,
1022 const char *path,
1023 bool readonly,
1024 Error **errp);
1025
1026 /**
1027 * memory_region_init_ram_from_fd: Initialize RAM memory region with a
1028 * mmap-ed backend.
1029 *
1030 * @mr: the #MemoryRegion to be initialized.
1031 * @owner: the object that tracks the region's reference count
1032 * @name: the name of the region.
1033 * @size: size of the region.
1034 * @ram_flags: RamBlock flags. Supported flags: RAM_SHARED, RAM_PMEM.
1035 * @fd: the fd to mmap.
1036 * @offset: offset within the file referenced by fd
1037 * @errp: pointer to Error*, to store an error if it happens.
1038 *
1039 * Note that this function does not do anything to cause the data in the
1040 * RAM memory region to be migrated; that is the responsibility of the caller.
1041 */
1042 void memory_region_init_ram_from_fd(MemoryRegion *mr,
1043 Object *owner,
1044 const char *name,
1045 uint64_t size,
1046 uint32_t ram_flags,
1047 int fd,
1048 ram_addr_t offset,
1049 Error **errp);
1050 #endif
1051
1052 /**
1053 * memory_region_init_ram_ptr: Initialize RAM memory region from a
1054 * user-provided pointer. Accesses into the
1055 * region will modify memory directly.
1056 *
1057 * @mr: the #MemoryRegion to be initialized.
1058 * @owner: the object that tracks the region's reference count
1059 * @name: Region name, becomes part of RAMBlock name used in migration stream
1060 * must be unique within any device
1061 * @size: size of the region.
1062 * @ptr: memory to be mapped; must contain at least @size bytes.
1063 *
1064 * Note that this function does not do anything to cause the data in the
1065 * RAM memory region to be migrated; that is the responsibility of the caller.
1066 */
1067 void memory_region_init_ram_ptr(MemoryRegion *mr,
1068 Object *owner,
1069 const char *name,
1070 uint64_t size,
1071 void *ptr);
1072
1073 /**
1074 * memory_region_init_ram_device_ptr: Initialize RAM device memory region from
1075 * a user-provided pointer.
1076 *
1077 * A RAM device represents a mapping to a physical device, such as to a PCI
1078 * MMIO BAR of an vfio-pci assigned device. The memory region may be mapped
1079 * into the VM address space and access to the region will modify memory
1080 * directly. However, the memory region should not be included in a memory
1081 * dump (device may not be enabled/mapped at the time of the dump), and
1082 * operations incompatible with manipulating MMIO should be avoided. Replaces
1083 * skip_dump flag.
1084 *
1085 * @mr: the #MemoryRegion to be initialized.
1086 * @owner: the object that tracks the region's reference count
1087 * @name: the name of the region.
1088 * @size: size of the region.
1089 * @ptr: memory to be mapped; must contain at least @size bytes.
1090 *
1091 * Note that this function does not do anything to cause the data in the
1092 * RAM memory region to be migrated; that is the responsibility of the caller.
1093 * (For RAM device memory regions, migrating the contents rarely makes sense.)
1094 */
1095 void memory_region_init_ram_device_ptr(MemoryRegion *mr,
1096 Object *owner,
1097 const char *name,
1098 uint64_t size,
1099 void *ptr);
1100
1101 /**
1102 * memory_region_init_alias: Initialize a memory region that aliases all or a
1103 * part of another memory region.
1104 *
1105 * @mr: the #MemoryRegion to be initialized.
1106 * @owner: the object that tracks the region's reference count
1107 * @name: used for debugging; not visible to the user or ABI
1108 * @orig: the region to be referenced; @mr will be equivalent to
1109 * @orig between @offset and @offset + @size - 1.
1110 * @offset: start of the section in @orig to be referenced.
1111 * @size: size of the region.
1112 */
1113 void memory_region_init_alias(MemoryRegion *mr,
1114 Object *owner,
1115 const char *name,
1116 MemoryRegion *orig,
1117 hwaddr offset,
1118 uint64_t size);
1119
1120 /**
1121 * memory_region_init_rom_nomigrate: Initialize a ROM memory region.
1122 *
1123 * This has the same effect as calling memory_region_init_ram_nomigrate()
1124 * and then marking the resulting region read-only with
1125 * memory_region_set_readonly().
1126 *
1127 * Note that this function does not do anything to cause the data in the
1128 * RAM side of the memory region to be migrated; that is the responsibility
1129 * of the caller.
1130 *
1131 * @mr: the #MemoryRegion to be initialized.
1132 * @owner: the object that tracks the region's reference count
1133 * @name: Region name, becomes part of RAMBlock name used in migration stream
1134 * must be unique within any device
1135 * @size: size of the region.
1136 * @errp: pointer to Error*, to store an error if it happens.
1137 */
1138 void memory_region_init_rom_nomigrate(MemoryRegion *mr,
1139 Object *owner,
1140 const char *name,
1141 uint64_t size,
1142 Error **errp);
1143
1144 /**
1145 * memory_region_init_rom_device_nomigrate: Initialize a ROM memory region.
1146 * Writes are handled via callbacks.
1147 *
1148 * Note that this function does not do anything to cause the data in the
1149 * RAM side of the memory region to be migrated; that is the responsibility
1150 * of the caller.
1151 *
1152 * @mr: the #MemoryRegion to be initialized.
1153 * @owner: the object that tracks the region's reference count
1154 * @ops: callbacks for write access handling (must not be NULL).
1155 * @opaque: passed to the read and write callbacks of the @ops structure.
1156 * @name: Region name, becomes part of RAMBlock name used in migration stream
1157 * must be unique within any device
1158 * @size: size of the region.
1159 * @errp: pointer to Error*, to store an error if it happens.
1160 */
1161 void memory_region_init_rom_device_nomigrate(MemoryRegion *mr,
1162 Object *owner,
1163 const MemoryRegionOps *ops,
1164 void *opaque,
1165 const char *name,
1166 uint64_t size,
1167 Error **errp);
1168
1169 /**
1170 * memory_region_init_iommu: Initialize a memory region of a custom type
1171 * that translates addresses
1172 *
1173 * An IOMMU region translates addresses and forwards accesses to a target
1174 * memory region.
1175 *
1176 * The IOMMU implementation must define a subclass of TYPE_IOMMU_MEMORY_REGION.
1177 * @_iommu_mr should be a pointer to enough memory for an instance of
1178 * that subclass, @instance_size is the size of that subclass, and
1179 * @mrtypename is its name. This function will initialize @_iommu_mr as an
1180 * instance of the subclass, and its methods will then be called to handle
1181 * accesses to the memory region. See the documentation of
1182 * #IOMMUMemoryRegionClass for further details.
1183 *
1184 * @_iommu_mr: the #IOMMUMemoryRegion to be initialized
1185 * @instance_size: the IOMMUMemoryRegion subclass instance size
1186 * @mrtypename: the type name of the #IOMMUMemoryRegion
1187 * @owner: the object that tracks the region's reference count
1188 * @name: used for debugging; not visible to the user or ABI
1189 * @size: size of the region.
1190 */
1191 void memory_region_init_iommu(void *_iommu_mr,
1192 size_t instance_size,
1193 const char *mrtypename,
1194 Object *owner,
1195 const char *name,
1196 uint64_t size);
1197
1198 /**
1199 * memory_region_init_ram - Initialize RAM memory region. Accesses into the
1200 * region will modify memory directly.
1201 *
1202 * @mr: the #MemoryRegion to be initialized
1203 * @owner: the object that tracks the region's reference count (must be
1204 * TYPE_DEVICE or a subclass of TYPE_DEVICE, or NULL)
1205 * @name: name of the memory region
1206 * @size: size of the region in bytes
1207 * @errp: pointer to Error*, to store an error if it happens.
1208 *
1209 * This function allocates RAM for a board model or device, and
1210 * arranges for it to be migrated (by calling vmstate_register_ram()
1211 * if @owner is a DeviceState, or vmstate_register_ram_global() if
1212 * @owner is NULL).
1213 *
1214 * TODO: Currently we restrict @owner to being either NULL (for
1215 * global RAM regions with no owner) or devices, so that we can
1216 * give the RAM block a unique name for migration purposes.
1217 * We should lift this restriction and allow arbitrary Objects.
1218 * If you pass a non-NULL non-device @owner then we will assert.
1219 */
1220 void memory_region_init_ram(MemoryRegion *mr,
1221 Object *owner,
1222 const char *name,
1223 uint64_t size,
1224 Error **errp);
1225
1226 /**
1227 * memory_region_init_rom: Initialize a ROM memory region.
1228 *
1229 * This has the same effect as calling memory_region_init_ram()
1230 * and then marking the resulting region read-only with
1231 * memory_region_set_readonly(). This includes arranging for the
1232 * contents to be migrated.
1233 *
1234 * TODO: Currently we restrict @owner to being either NULL (for
1235 * global RAM regions with no owner) or devices, so that we can
1236 * give the RAM block a unique name for migration purposes.
1237 * We should lift this restriction and allow arbitrary Objects.
1238 * If you pass a non-NULL non-device @owner then we will assert.
1239 *
1240 * @mr: the #MemoryRegion to be initialized.
1241 * @owner: the object that tracks the region's reference count
1242 * @name: Region name, becomes part of RAMBlock name used in migration stream
1243 * must be unique within any device
1244 * @size: size of the region.
1245 * @errp: pointer to Error*, to store an error if it happens.
1246 */
1247 void memory_region_init_rom(MemoryRegion *mr,
1248 Object *owner,
1249 const char *name,
1250 uint64_t size,
1251 Error **errp);
1252
1253 /**
1254 * memory_region_init_rom_device: Initialize a ROM memory region.
1255 * Writes are handled via callbacks.
1256 *
1257 * This function initializes a memory region backed by RAM for reads
1258 * and callbacks for writes, and arranges for the RAM backing to
1259 * be migrated (by calling vmstate_register_ram()
1260 * if @owner is a DeviceState, or vmstate_register_ram_global() if
1261 * @owner is NULL).
1262 *
1263 * TODO: Currently we restrict @owner to being either NULL (for
1264 * global RAM regions with no owner) or devices, so that we can
1265 * give the RAM block a unique name for migration purposes.
1266 * We should lift this restriction and allow arbitrary Objects.
1267 * If you pass a non-NULL non-device @owner then we will assert.
1268 *
1269 * @mr: the #MemoryRegion to be initialized.
1270 * @owner: the object that tracks the region's reference count
1271 * @ops: callbacks for write access handling (must not be NULL).
1272 * @opaque: passed to the read and write callbacks of the @ops structure.
1273 * @name: Region name, becomes part of RAMBlock name used in migration stream
1274 * must be unique within any device
1275 * @size: size of the region.
1276 * @errp: pointer to Error*, to store an error if it happens.
1277 */
1278 void memory_region_init_rom_device(MemoryRegion *mr,
1279 Object *owner,
1280 const MemoryRegionOps *ops,
1281 void *opaque,
1282 const char *name,
1283 uint64_t size,
1284 Error **errp);
1285
1286
1287 /**
1288 * memory_region_owner: get a memory region's owner.
1289 *
1290 * @mr: the memory region being queried.
1291 */
1292 Object *memory_region_owner(MemoryRegion *mr);
1293
1294 /**
1295 * memory_region_size: get a memory region's size.
1296 *
1297 * @mr: the memory region being queried.
1298 */
1299 uint64_t memory_region_size(MemoryRegion *mr);
1300
1301 /**
1302 * memory_region_is_ram: check whether a memory region is random access
1303 *
1304 * Returns %true if a memory region is random access.
1305 *
1306 * @mr: the memory region being queried
1307 */
1308 static inline bool memory_region_is_ram(MemoryRegion *mr)
1309 {
1310 return mr->ram;
1311 }
1312
1313 /**
1314 * memory_region_is_ram_device: check whether a memory region is a ram device
1315 *
1316 * Returns %true if a memory region is a device backed ram region
1317 *
1318 * @mr: the memory region being queried
1319 */
1320 bool memory_region_is_ram_device(MemoryRegion *mr);
1321
1322 /**
1323 * memory_region_is_romd: check whether a memory region is in ROMD mode
1324 *
1325 * Returns %true if a memory region is a ROM device and currently set to allow
1326 * direct reads.
1327 *
1328 * @mr: the memory region being queried
1329 */
1330 static inline bool memory_region_is_romd(MemoryRegion *mr)
1331 {
1332 return mr->rom_device && mr->romd_mode;
1333 }
1334
1335 /**
1336 * memory_region_get_iommu: check whether a memory region is an iommu
1337 *
1338 * Returns pointer to IOMMUMemoryRegion if a memory region is an iommu,
1339 * otherwise NULL.
1340 *
1341 * @mr: the memory region being queried
1342 */
1343 static inline IOMMUMemoryRegion *memory_region_get_iommu(MemoryRegion *mr)
1344 {
1345 if (mr->alias) {
1346 return memory_region_get_iommu(mr->alias);
1347 }
1348 if (mr->is_iommu) {
1349 return (IOMMUMemoryRegion *) mr;
1350 }
1351 return NULL;
1352 }
1353
1354 /**
1355 * memory_region_get_iommu_class_nocheck: returns iommu memory region class
1356 * if an iommu or NULL if not
1357 *
1358 * Returns pointer to IOMMUMemoryRegionClass if a memory region is an iommu,
1359 * otherwise NULL. This is fast path avoiding QOM checking, use with caution.
1360 *
1361 * @iommu_mr: the memory region being queried
1362 */
1363 static inline IOMMUMemoryRegionClass *memory_region_get_iommu_class_nocheck(
1364 IOMMUMemoryRegion *iommu_mr)
1365 {
1366 return (IOMMUMemoryRegionClass *) (((Object *)iommu_mr)->class);
1367 }
1368
1369 #define memory_region_is_iommu(mr) (memory_region_get_iommu(mr) != NULL)
1370
1371 /**
1372 * memory_region_iommu_get_min_page_size: get minimum supported page size
1373 * for an iommu
1374 *
1375 * Returns minimum supported page size for an iommu.
1376 *
1377 * @iommu_mr: the memory region being queried
1378 */
1379 uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion *iommu_mr);
1380
1381 /**
1382 * memory_region_notify_iommu: notify a change in an IOMMU translation entry.
1383 *
1384 * Note: for any IOMMU implementation, an in-place mapping change
1385 * should be notified with an UNMAP followed by a MAP.
1386 *
1387 * @iommu_mr: the memory region that was changed
1388 * @iommu_idx: the IOMMU index for the translation table which has changed
1389 * @event: TLB event with the new entry in the IOMMU translation table.
1390 * The entry replaces all old entries for the same virtual I/O address
1391 * range.
1392 */
1393 void memory_region_notify_iommu(IOMMUMemoryRegion *iommu_mr,
1394 int iommu_idx,
1395 IOMMUTLBEvent event);
1396
1397 /**
1398 * memory_region_notify_iommu_one: notify a change in an IOMMU translation
1399 * entry to a single notifier
1400 *
1401 * This works just like memory_region_notify_iommu(), but it only
1402 * notifies a specific notifier, not all of them.
1403 *
1404 * @notifier: the notifier to be notified
1405 * @event: TLB event with the new entry in the IOMMU translation table.
1406 * The entry replaces all old entries for the same virtual I/O address
1407 * range.
1408 */
1409 void memory_region_notify_iommu_one(IOMMUNotifier *notifier,
1410 IOMMUTLBEvent *event);
1411
1412 /**
1413 * memory_region_register_iommu_notifier: register a notifier for changes to
1414 * IOMMU translation entries.
1415 *
1416 * Returns 0 on success, or a negative errno otherwise. In particular,
1417 * -EINVAL indicates that at least one of the attributes of the notifier
1418 * is not supported (flag/range) by the IOMMU memory region. In case of error
1419 * the error object must be created.
1420 *
1421 * @mr: the memory region to observe
1422 * @n: the IOMMUNotifier to be added; the notify callback receives a
1423 * pointer to an #IOMMUTLBEntry as the opaque value; the pointer
1424 * ceases to be valid on exit from the notifier.
1425 * @errp: pointer to Error*, to store an error if it happens.
1426 */
1427 int memory_region_register_iommu_notifier(MemoryRegion *mr,
1428 IOMMUNotifier *n, Error **errp);
1429
1430 /**
1431 * memory_region_iommu_replay: replay existing IOMMU translations to
1432 * a notifier with the minimum page granularity returned by
1433 * mr->iommu_ops->get_page_size().
1434 *
1435 * Note: this is not related to record-and-replay functionality.
1436 *
1437 * @iommu_mr: the memory region to observe
1438 * @n: the notifier to which to replay iommu mappings
1439 */
1440 void memory_region_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n);
1441
1442 /**
1443 * memory_region_unregister_iommu_notifier: unregister a notifier for
1444 * changes to IOMMU translation entries.
1445 *
1446 * @mr: the memory region which was observed and for which notity_stopped()
1447 * needs to be called
1448 * @n: the notifier to be removed.
1449 */
1450 void memory_region_unregister_iommu_notifier(MemoryRegion *mr,
1451 IOMMUNotifier *n);
1452
1453 /**
1454 * memory_region_iommu_get_attr: return an IOMMU attr if get_attr() is
1455 * defined on the IOMMU.
1456 *
1457 * Returns 0 on success, or a negative errno otherwise. In particular,
1458 * -EINVAL indicates that the IOMMU does not support the requested
1459 * attribute.
1460 *
1461 * @iommu_mr: the memory region
1462 * @attr: the requested attribute
1463 * @data: a pointer to the requested attribute data
1464 */
1465 int memory_region_iommu_get_attr(IOMMUMemoryRegion *iommu_mr,
1466 enum IOMMUMemoryRegionAttr attr,
1467 void *data);
1468
1469 /**
1470 * memory_region_iommu_attrs_to_index: return the IOMMU index to
1471 * use for translations with the given memory transaction attributes.
1472 *
1473 * @iommu_mr: the memory region
1474 * @attrs: the memory transaction attributes
1475 */
1476 int memory_region_iommu_attrs_to_index(IOMMUMemoryRegion *iommu_mr,
1477 MemTxAttrs attrs);
1478
1479 /**
1480 * memory_region_iommu_num_indexes: return the total number of IOMMU
1481 * indexes that this IOMMU supports.
1482 *
1483 * @iommu_mr: the memory region
1484 */
1485 int memory_region_iommu_num_indexes(IOMMUMemoryRegion *iommu_mr);
1486
1487 /**
1488 * memory_region_iommu_set_page_size_mask: set the supported page
1489 * sizes for a given IOMMU memory region
1490 *
1491 * @iommu_mr: IOMMU memory region
1492 * @page_size_mask: supported page size mask
1493 * @errp: pointer to Error*, to store an error if it happens.
1494 */
1495 int memory_region_iommu_set_page_size_mask(IOMMUMemoryRegion *iommu_mr,
1496 uint64_t page_size_mask,
1497 Error **errp);
1498
1499 /**
1500 * memory_region_name: get a memory region's name
1501 *
1502 * Returns the string that was used to initialize the memory region.
1503 *
1504 * @mr: the memory region being queried
1505 */
1506 const char *memory_region_name(const MemoryRegion *mr);
1507
1508 /**
1509 * memory_region_is_logging: return whether a memory region is logging writes
1510 *
1511 * Returns %true if the memory region is logging writes for the given client
1512 *
1513 * @mr: the memory region being queried
1514 * @client: the client being queried
1515 */
1516 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client);
1517
1518 /**
1519 * memory_region_get_dirty_log_mask: return the clients for which a
1520 * memory region is logging writes.
1521 *
1522 * Returns a bitmap of clients, in which the DIRTY_MEMORY_* constants
1523 * are the bit indices.
1524 *
1525 * @mr: the memory region being queried
1526 */
1527 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr);
1528
1529 /**
1530 * memory_region_is_rom: check whether a memory region is ROM
1531 *
1532 * Returns %true if a memory region is read-only memory.
1533 *
1534 * @mr: the memory region being queried
1535 */
1536 static inline bool memory_region_is_rom(MemoryRegion *mr)
1537 {
1538 return mr->ram && mr->readonly;
1539 }
1540
1541 /**
1542 * memory_region_is_nonvolatile: check whether a memory region is non-volatile
1543 *
1544 * Returns %true is a memory region is non-volatile memory.
1545 *
1546 * @mr: the memory region being queried
1547 */
1548 static inline bool memory_region_is_nonvolatile(MemoryRegion *mr)
1549 {
1550 return mr->nonvolatile;
1551 }
1552
1553 /**
1554 * memory_region_get_fd: Get a file descriptor backing a RAM memory region.
1555 *
1556 * Returns a file descriptor backing a file-based RAM memory region,
1557 * or -1 if the region is not a file-based RAM memory region.
1558 *
1559 * @mr: the RAM or alias memory region being queried.
1560 */
1561 int memory_region_get_fd(MemoryRegion *mr);
1562
1563 /**
1564 * memory_region_from_host: Convert a pointer into a RAM memory region
1565 * and an offset within it.
1566 *
1567 * Given a host pointer inside a RAM memory region (created with
1568 * memory_region_init_ram() or memory_region_init_ram_ptr()), return
1569 * the MemoryRegion and the offset within it.
1570 *
1571 * Use with care; by the time this function returns, the returned pointer is
1572 * not protected by RCU anymore. If the caller is not within an RCU critical
1573 * section and does not hold the iothread lock, it must have other means of
1574 * protecting the pointer, such as a reference to the region that includes
1575 * the incoming ram_addr_t.
1576 *
1577 * @ptr: the host pointer to be converted
1578 * @offset: the offset within memory region
1579 */
1580 MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset);
1581
1582 /**
1583 * memory_region_get_ram_ptr: Get a pointer into a RAM memory region.
1584 *
1585 * Returns a host pointer to a RAM memory region (created with
1586 * memory_region_init_ram() or memory_region_init_ram_ptr()).
1587 *
1588 * Use with care; by the time this function returns, the returned pointer is
1589 * not protected by RCU anymore. If the caller is not within an RCU critical
1590 * section and does not hold the iothread lock, it must have other means of
1591 * protecting the pointer, such as a reference to the region that includes
1592 * the incoming ram_addr_t.
1593 *
1594 * @mr: the memory region being queried.
1595 */
1596 void *memory_region_get_ram_ptr(MemoryRegion *mr);
1597
1598 /* memory_region_ram_resize: Resize a RAM region.
1599 *
1600 * Resizing RAM while migrating can result in the migration being canceled.
1601 * Care has to be taken if the guest might have already detected the memory.
1602 *
1603 * @mr: a memory region created with @memory_region_init_resizeable_ram.
1604 * @newsize: the new size the region
1605 * @errp: pointer to Error*, to store an error if it happens.
1606 */
1607 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize,
1608 Error **errp);
1609
1610 /**
1611 * memory_region_msync: Synchronize selected address range of
1612 * a memory mapped region
1613 *
1614 * @mr: the memory region to be msync
1615 * @addr: the initial address of the range to be sync
1616 * @size: the size of the range to be sync
1617 */
1618 void memory_region_msync(MemoryRegion *mr, hwaddr addr, hwaddr size);
1619
1620 /**
1621 * memory_region_writeback: Trigger cache writeback for
1622 * selected address range
1623 *
1624 * @mr: the memory region to be updated
1625 * @addr: the initial address of the range to be written back
1626 * @size: the size of the range to be written back
1627 */
1628 void memory_region_writeback(MemoryRegion *mr, hwaddr addr, hwaddr size);
1629
1630 /**
1631 * memory_region_set_log: Turn dirty logging on or off for a region.
1632 *
1633 * Turns dirty logging on or off for a specified client (display, migration).
1634 * Only meaningful for RAM regions.
1635 *
1636 * @mr: the memory region being updated.
1637 * @log: whether dirty logging is to be enabled or disabled.
1638 * @client: the user of the logging information; %DIRTY_MEMORY_VGA only.
1639 */
1640 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client);
1641
1642 /**
1643 * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region.
1644 *
1645 * Marks a range of bytes as dirty, after it has been dirtied outside
1646 * guest code.
1647 *
1648 * @mr: the memory region being dirtied.
1649 * @addr: the address (relative to the start of the region) being dirtied.
1650 * @size: size of the range being dirtied.
1651 */
1652 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
1653 hwaddr size);
1654
1655 /**
1656 * memory_region_clear_dirty_bitmap - clear dirty bitmap for memory range
1657 *
1658 * This function is called when the caller wants to clear the remote
1659 * dirty bitmap of a memory range within the memory region. This can
1660 * be used by e.g. KVM to manually clear dirty log when
1661 * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT is declared support by the host
1662 * kernel.
1663 *
1664 * @mr: the memory region to clear the dirty log upon
1665 * @start: start address offset within the memory region
1666 * @len: length of the memory region to clear dirty bitmap
1667 */
1668 void memory_region_clear_dirty_bitmap(MemoryRegion *mr, hwaddr start,
1669 hwaddr len);
1670
1671 /**
1672 * memory_region_snapshot_and_clear_dirty: Get a snapshot of the dirty
1673 * bitmap and clear it.
1674 *
1675 * Creates a snapshot of the dirty bitmap, clears the dirty bitmap and
1676 * returns the snapshot. The snapshot can then be used to query dirty
1677 * status, using memory_region_snapshot_get_dirty. Snapshotting allows
1678 * querying the same page multiple times, which is especially useful for
1679 * display updates where the scanlines often are not page aligned.
1680 *
1681 * The dirty bitmap region which gets copyed into the snapshot (and
1682 * cleared afterwards) can be larger than requested. The boundaries
1683 * are rounded up/down so complete bitmap longs (covering 64 pages on
1684 * 64bit hosts) can be copied over into the bitmap snapshot. Which
1685 * isn't a problem for display updates as the extra pages are outside
1686 * the visible area, and in case the visible area changes a full
1687 * display redraw is due anyway. Should other use cases for this
1688 * function emerge we might have to revisit this implementation
1689 * detail.
1690 *
1691 * Use g_free to release DirtyBitmapSnapshot.
1692 *
1693 * @mr: the memory region being queried.
1694 * @addr: the address (relative to the start of the region) being queried.
1695 * @size: the size of the range being queried.
1696 * @client: the user of the logging information; typically %DIRTY_MEMORY_VGA.
1697 */
1698 DirtyBitmapSnapshot *memory_region_snapshot_and_clear_dirty(MemoryRegion *mr,
1699 hwaddr addr,
1700 hwaddr size,
1701 unsigned client);
1702
1703 /**
1704 * memory_region_snapshot_get_dirty: Check whether a range of bytes is dirty
1705 * in the specified dirty bitmap snapshot.
1706 *
1707 * @mr: the memory region being queried.
1708 * @snap: the dirty bitmap snapshot
1709 * @addr: the address (relative to the start of the region) being queried.
1710 * @size: the size of the range being queried.
1711 */
1712 bool memory_region_snapshot_get_dirty(MemoryRegion *mr,
1713 DirtyBitmapSnapshot *snap,
1714 hwaddr addr, hwaddr size);
1715
1716 /**
1717 * memory_region_reset_dirty: Mark a range of pages as clean, for a specified
1718 * client.
1719 *
1720 * Marks a range of pages as no longer dirty.
1721 *
1722 * @mr: the region being updated.
1723 * @addr: the start of the subrange being cleaned.
1724 * @size: the size of the subrange being cleaned.
1725 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
1726 * %DIRTY_MEMORY_VGA.
1727 */
1728 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
1729 hwaddr size, unsigned client);
1730
1731 /**
1732 * memory_region_flush_rom_device: Mark a range of pages dirty and invalidate
1733 * TBs (for self-modifying code).
1734 *
1735 * The MemoryRegionOps->write() callback of a ROM device must use this function
1736 * to mark byte ranges that have been modified internally, such as by directly
1737 * accessing the memory returned by memory_region_get_ram_ptr().
1738 *
1739 * This function marks the range dirty and invalidates TBs so that TCG can
1740 * detect self-modifying code.
1741 *
1742 * @mr: the region being flushed.
1743 * @addr: the start, relative to the start of the region, of the range being
1744 * flushed.
1745 * @size: the size, in bytes, of the range being flushed.
1746 */
1747 void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size);
1748
1749 /**
1750 * memory_region_set_readonly: Turn a memory region read-only (or read-write)
1751 *
1752 * Allows a memory region to be marked as read-only (turning it into a ROM).
1753 * only useful on RAM regions.
1754 *
1755 * @mr: the region being updated.
1756 * @readonly: whether rhe region is to be ROM or RAM.
1757 */
1758 void memory_region_set_readonly(MemoryRegion *mr, bool readonly);
1759
1760 /**
1761 * memory_region_set_nonvolatile: Turn a memory region non-volatile
1762 *
1763 * Allows a memory region to be marked as non-volatile.
1764 * only useful on RAM regions.
1765 *
1766 * @mr: the region being updated.
1767 * @nonvolatile: whether rhe region is to be non-volatile.
1768 */
1769 void memory_region_set_nonvolatile(MemoryRegion *mr, bool nonvolatile);
1770
1771 /**
1772 * memory_region_rom_device_set_romd: enable/disable ROMD mode
1773 *
1774 * Allows a ROM device (initialized with memory_region_init_rom_device() to
1775 * set to ROMD mode (default) or MMIO mode. When it is in ROMD mode, the
1776 * device is mapped to guest memory and satisfies read access directly.
1777 * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function.
1778 * Writes are always handled by the #MemoryRegion.write function.
1779 *
1780 * @mr: the memory region to be updated
1781 * @romd_mode: %true to put the region into ROMD mode
1782 */
1783 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode);
1784
1785 /**
1786 * memory_region_set_coalescing: Enable memory coalescing for the region.
1787 *
1788 * Enabled writes to a region to be queued for later processing. MMIO ->write
1789 * callbacks may be delayed until a non-coalesced MMIO is issued.
1790 * Only useful for IO regions. Roughly similar to write-combining hardware.
1791 *
1792 * @mr: the memory region to be write coalesced
1793 */
1794 void memory_region_set_coalescing(MemoryRegion *mr);
1795
1796 /**
1797 * memory_region_add_coalescing: Enable memory coalescing for a sub-range of
1798 * a region.
1799 *
1800 * Like memory_region_set_coalescing(), but works on a sub-range of a region.
1801 * Multiple calls can be issued coalesced disjoint ranges.
1802 *
1803 * @mr: the memory region to be updated.
1804 * @offset: the start of the range within the region to be coalesced.
1805 * @size: the size of the subrange to be coalesced.
1806 */
1807 void memory_region_add_coalescing(MemoryRegion *mr,
1808 hwaddr offset,
1809 uint64_t size);
1810
1811 /**
1812 * memory_region_clear_coalescing: Disable MMIO coalescing for the region.
1813 *
1814 * Disables any coalescing caused by memory_region_set_coalescing() or
1815 * memory_region_add_coalescing(). Roughly equivalent to uncacheble memory
1816 * hardware.
1817 *
1818 * @mr: the memory region to be updated.
1819 */
1820 void memory_region_clear_coalescing(MemoryRegion *mr);
1821
1822 /**
1823 * memory_region_set_flush_coalesced: Enforce memory coalescing flush before
1824 * accesses.
1825 *
1826 * Ensure that pending coalesced MMIO request are flushed before the memory
1827 * region is accessed. This property is automatically enabled for all regions
1828 * passed to memory_region_set_coalescing() and memory_region_add_coalescing().
1829 *
1830 * @mr: the memory region to be updated.
1831 */
1832 void memory_region_set_flush_coalesced(MemoryRegion *mr);
1833
1834 /**
1835 * memory_region_clear_flush_coalesced: Disable memory coalescing flush before
1836 * accesses.
1837 *
1838 * Clear the automatic coalesced MMIO flushing enabled via
1839 * memory_region_set_flush_coalesced. Note that this service has no effect on
1840 * memory regions that have MMIO coalescing enabled for themselves. For them,
1841 * automatic flushing will stop once coalescing is disabled.
1842 *
1843 * @mr: the memory region to be updated.
1844 */
1845 void memory_region_clear_flush_coalesced(MemoryRegion *mr);
1846
1847 /**
1848 * memory_region_add_eventfd: Request an eventfd to be triggered when a word
1849 * is written to a location.
1850 *
1851 * Marks a word in an IO region (initialized with memory_region_init_io())
1852 * as a trigger for an eventfd event. The I/O callback will not be called.
1853 * The caller must be prepared to handle failure (that is, take the required
1854 * action if the callback _is_ called).
1855 *
1856 * @mr: the memory region being updated.
1857 * @addr: the address within @mr that is to be monitored
1858 * @size: the size of the access to trigger the eventfd
1859 * @match_data: whether to match against @data, instead of just @addr
1860 * @data: the data to match against the guest write
1861 * @e: event notifier to be triggered when @addr, @size, and @data all match.
1862 **/
1863 void memory_region_add_eventfd(MemoryRegion *mr,
1864 hwaddr addr,
1865 unsigned size,
1866 bool match_data,
1867 uint64_t data,
1868 EventNotifier *e);
1869
1870 /**
1871 * memory_region_del_eventfd: Cancel an eventfd.
1872 *
1873 * Cancels an eventfd trigger requested by a previous
1874 * memory_region_add_eventfd() call.
1875 *
1876 * @mr: the memory region being updated.
1877 * @addr: the address within @mr that is to be monitored
1878 * @size: the size of the access to trigger the eventfd
1879 * @match_data: whether to match against @data, instead of just @addr
1880 * @data: the data to match against the guest write
1881 * @e: event notifier to be triggered when @addr, @size, and @data all match.
1882 */
1883 void memory_region_del_eventfd(MemoryRegion *mr,
1884 hwaddr addr,
1885 unsigned size,
1886 bool match_data,
1887 uint64_t data,
1888 EventNotifier *e);
1889
1890 /**
1891 * memory_region_add_subregion: Add a subregion to a container.
1892 *
1893 * Adds a subregion at @offset. The subregion may not overlap with other
1894 * subregions (except for those explicitly marked as overlapping). A region
1895 * may only be added once as a subregion (unless removed with
1896 * memory_region_del_subregion()); use memory_region_init_alias() if you
1897 * want a region to be a subregion in multiple locations.
1898 *
1899 * @mr: the region to contain the new subregion; must be a container
1900 * initialized with memory_region_init().
1901 * @offset: the offset relative to @mr where @subregion is added.
1902 * @subregion: the subregion to be added.
1903 */
1904 void memory_region_add_subregion(MemoryRegion *mr,
1905 hwaddr offset,
1906 MemoryRegion *subregion);
1907 /**
1908 * memory_region_add_subregion_overlap: Add a subregion to a container
1909 * with overlap.
1910 *
1911 * Adds a subregion at @offset. The subregion may overlap with other
1912 * subregions. Conflicts are resolved by having a higher @priority hide a
1913 * lower @priority. Subregions without priority are taken as @priority 0.
1914 * A region may only be added once as a subregion (unless removed with
1915 * memory_region_del_subregion()); use memory_region_init_alias() if you
1916 * want a region to be a subregion in multiple locations.
1917 *
1918 * @mr: the region to contain the new subregion; must be a container
1919 * initialized with memory_region_init().
1920 * @offset: the offset relative to @mr where @subregion is added.
1921 * @subregion: the subregion to be added.
1922 * @priority: used for resolving overlaps; highest priority wins.
1923 */
1924 void memory_region_add_subregion_overlap(MemoryRegion *mr,
1925 hwaddr offset,
1926 MemoryRegion *subregion,
1927 int priority);
1928
1929 /**
1930 * memory_region_get_ram_addr: Get the ram address associated with a memory
1931 * region
1932 *
1933 * @mr: the region to be queried
1934 */
1935 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr);
1936
1937 uint64_t memory_region_get_alignment(const MemoryRegion *mr);
1938 /**
1939 * memory_region_del_subregion: Remove a subregion.
1940 *
1941 * Removes a subregion from its container.
1942 *
1943 * @mr: the container to be updated.
1944 * @subregion: the region being removed; must be a current subregion of @mr.
1945 */
1946 void memory_region_del_subregion(MemoryRegion *mr,
1947 MemoryRegion *subregion);
1948
1949 /*
1950 * memory_region_set_enabled: dynamically enable or disable a region
1951 *
1952 * Enables or disables a memory region. A disabled memory region
1953 * ignores all accesses to itself and its subregions. It does not
1954 * obscure sibling subregions with lower priority - it simply behaves as
1955 * if it was removed from the hierarchy.
1956 *
1957 * Regions default to being enabled.
1958 *
1959 * @mr: the region to be updated
1960 * @enabled: whether to enable or disable the region
1961 */
1962 void memory_region_set_enabled(MemoryRegion *mr, bool enabled);
1963
1964 /*
1965 * memory_region_set_address: dynamically update the address of a region
1966 *
1967 * Dynamically updates the address of a region, relative to its container.
1968 * May be used on regions are currently part of a memory hierarchy.
1969 *
1970 * @mr: the region to be updated
1971 * @addr: new address, relative to container region
1972 */
1973 void memory_region_set_address(MemoryRegion *mr, hwaddr addr);
1974
1975 /*
1976 * memory_region_set_size: dynamically update the size of a region.
1977 *
1978 * Dynamically updates the size of a region.
1979 *
1980 * @mr: the region to be updated
1981 * @size: used size of the region.
1982 */
1983 void memory_region_set_size(MemoryRegion *mr, uint64_t size);
1984
1985 /*
1986 * memory_region_set_alias_offset: dynamically update a memory alias's offset
1987 *
1988 * Dynamically updates the offset into the target region that an alias points
1989 * to, as if the fourth argument to memory_region_init_alias() has changed.
1990 *
1991 * @mr: the #MemoryRegion to be updated; should be an alias.
1992 * @offset: the new offset into the target memory region
1993 */
1994 void memory_region_set_alias_offset(MemoryRegion *mr,
1995 hwaddr offset);
1996
1997 /**
1998 * memory_region_present: checks if an address relative to a @container
1999 * translates into #MemoryRegion within @container
2000 *
2001 * Answer whether a #MemoryRegion within @container covers the address
2002 * @addr.
2003 *
2004 * @container: a #MemoryRegion within which @addr is a relative address
2005 * @addr: the area within @container to be searched
2006 */
2007 bool memory_region_present(MemoryRegion *container, hwaddr addr);
2008
2009 /**
2010 * memory_region_is_mapped: returns true if #MemoryRegion is mapped
2011 * into any address space.
2012 *
2013 * @mr: a #MemoryRegion which should be checked if it's mapped
2014 */
2015 bool memory_region_is_mapped(MemoryRegion *mr);
2016
2017 /**
2018 * memory_region_find: translate an address/size relative to a
2019 * MemoryRegion into a #MemoryRegionSection.
2020 *
2021 * Locates the first #MemoryRegion within @mr that overlaps the range
2022 * given by @addr and @size.
2023 *
2024 * Returns a #MemoryRegionSection that describes a contiguous overlap.
2025 * It will have the following characteristics:
2026 * - @size = 0 iff no overlap was found
2027 * - @mr is non-%NULL iff an overlap was found
2028 *
2029 * Remember that in the return value the @offset_within_region is
2030 * relative to the returned region (in the .@mr field), not to the
2031 * @mr argument.
2032 *
2033 * Similarly, the .@offset_within_address_space is relative to the
2034 * address space that contains both regions, the passed and the
2035 * returned one. However, in the special case where the @mr argument
2036 * has no container (and thus is the root of the address space), the
2037 * following will hold:
2038 * - @offset_within_address_space >= @addr
2039 * - @offset_within_address_space + .@size <= @addr + @size
2040 *
2041 * @mr: a MemoryRegion within which @addr is a relative address
2042 * @addr: start of the area within @as to be searched
2043 * @size: size of the area to be searched
2044 */
2045 MemoryRegionSection memory_region_find(MemoryRegion *mr,
2046 hwaddr addr, uint64_t size);
2047
2048 /**
2049 * memory_global_dirty_log_sync: synchronize the dirty log for all memory
2050 *
2051 * Synchronizes the dirty page log for all address spaces.
2052 */
2053 void memory_global_dirty_log_sync(void);
2054
2055 /**
2056 * memory_global_dirty_log_sync: synchronize the dirty log for all memory
2057 *
2058 * Synchronizes the vCPUs with a thread that is reading the dirty bitmap.
2059 * This function must be called after the dirty log bitmap is cleared, and
2060 * before dirty guest memory pages are read. If you are using
2061 * #DirtyBitmapSnapshot, memory_region_snapshot_and_clear_dirty() takes
2062 * care of doing this.
2063 */
2064 void memory_global_after_dirty_log_sync(void);
2065
2066 /**
2067 * memory_region_transaction_begin: Start a transaction.
2068 *
2069 * During a transaction, changes will be accumulated and made visible
2070 * only when the transaction ends (is committed).
2071 */
2072 void memory_region_transaction_begin(void);
2073
2074 /**
2075 * memory_region_transaction_commit: Commit a transaction and make changes
2076 * visible to the guest.
2077 */
2078 void memory_region_transaction_commit(void);
2079
2080 /**
2081 * memory_listener_register: register callbacks to be called when memory
2082 * sections are mapped or unmapped into an address
2083 * space
2084 *
2085 * @listener: an object containing the callbacks to be called
2086 * @filter: if non-%NULL, only regions in this address space will be observed
2087 */
2088 void memory_listener_register(MemoryListener *listener, AddressSpace *filter);
2089
2090 /**
2091 * memory_listener_unregister: undo the effect of memory_listener_register()
2092 *
2093 * @listener: an object containing the callbacks to be removed
2094 */
2095 void memory_listener_unregister(MemoryListener *listener);
2096
2097 /**
2098 * memory_global_dirty_log_start: begin dirty logging for all regions
2099 */
2100 void memory_global_dirty_log_start(void);
2101
2102 /**
2103 * memory_global_dirty_log_stop: end dirty logging for all regions
2104 */
2105 void memory_global_dirty_log_stop(void);
2106
2107 void mtree_info(bool flatview, bool dispatch_tree, bool owner, bool disabled);
2108
2109 /**
2110 * memory_region_dispatch_read: perform a read directly to the specified
2111 * MemoryRegion.
2112 *
2113 * @mr: #MemoryRegion to access
2114 * @addr: address within that region
2115 * @pval: pointer to uint64_t which the data is written to
2116 * @op: size, sign, and endianness of the memory operation
2117 * @attrs: memory transaction attributes to use for the access
2118 */
2119 MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
2120 hwaddr addr,
2121 uint64_t *pval,
2122 MemOp op,
2123 MemTxAttrs attrs);
2124 /**
2125 * memory_region_dispatch_write: perform a write directly to the specified
2126 * MemoryRegion.
2127 *
2128 * @mr: #MemoryRegion to access
2129 * @addr: address within that region
2130 * @data: data to write
2131 * @op: size, sign, and endianness of the memory operation
2132 * @attrs: memory transaction attributes to use for the access
2133 */
2134 MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
2135 hwaddr addr,
2136 uint64_t data,
2137 MemOp op,
2138 MemTxAttrs attrs);
2139
2140 /**
2141 * address_space_init: initializes an address space
2142 *
2143 * @as: an uninitialized #AddressSpace
2144 * @root: a #MemoryRegion that routes addresses for the address space
2145 * @name: an address space name. The name is only used for debugging
2146 * output.
2147 */
2148 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name);
2149
2150 /**
2151 * address_space_destroy: destroy an address space
2152 *
2153 * Releases all resources associated with an address space. After an address space
2154 * is destroyed, its root memory region (given by address_space_init()) may be destroyed
2155 * as well.
2156 *
2157 * @as: address space to be destroyed
2158 */
2159 void address_space_destroy(AddressSpace *as);
2160
2161 /**
2162 * address_space_remove_listeners: unregister all listeners of an address space
2163 *
2164 * Removes all callbacks previously registered with memory_listener_register()
2165 * for @as.
2166 *
2167 * @as: an initialized #AddressSpace
2168 */
2169 void address_space_remove_listeners(AddressSpace *as);
2170
2171 /**
2172 * address_space_rw: read from or write to an address space.
2173 *
2174 * Return a MemTxResult indicating whether the operation succeeded
2175 * or failed (eg unassigned memory, device rejected the transaction,
2176 * IOMMU fault).
2177 *
2178 * @as: #AddressSpace to be accessed
2179 * @addr: address within that address space
2180 * @attrs: memory transaction attributes
2181 * @buf: buffer with the data transferred
2182 * @len: the number of bytes to read or write
2183 * @is_write: indicates the transfer direction
2184 */
2185 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr,
2186 MemTxAttrs attrs, void *buf,
2187 hwaddr len, bool is_write);
2188
2189 /**
2190 * address_space_write: write to address space.
2191 *
2192 * Return a MemTxResult indicating whether the operation succeeded
2193 * or failed (eg unassigned memory, device rejected the transaction,
2194 * IOMMU fault).
2195 *
2196 * @as: #AddressSpace to be accessed
2197 * @addr: address within that address space
2198 * @attrs: memory transaction attributes
2199 * @buf: buffer with the data transferred
2200 * @len: the number of bytes to write
2201 */
2202 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
2203 MemTxAttrs attrs,
2204 const void *buf, hwaddr len);
2205
2206 /**
2207 * address_space_write_rom: write to address space, including ROM.
2208 *
2209 * This function writes to the specified address space, but will
2210 * write data to both ROM and RAM. This is used for non-guest
2211 * writes like writes from the gdb debug stub or initial loading
2212 * of ROM contents.
2213 *
2214 * Note that portions of the write which attempt to write data to
2215 * a device will be silently ignored -- only real RAM and ROM will
2216 * be written to.
2217 *
2218 * Return a MemTxResult indicating whether the operation succeeded
2219 * or failed (eg unassigned memory, device rejected the transaction,
2220 * IOMMU fault).
2221 *
2222 * @as: #AddressSpace to be accessed
2223 * @addr: address within that address space
2224 * @attrs: memory transaction attributes
2225 * @buf: buffer with the data transferred
2226 * @len: the number of bytes to write
2227 */
2228 MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
2229 MemTxAttrs attrs,
2230 const void *buf, hwaddr len);
2231
2232 /* address_space_ld*: load from an address space
2233 * address_space_st*: store to an address space
2234 *
2235 * These functions perform a load or store of the byte, word,
2236 * longword or quad to the specified address within the AddressSpace.
2237 * The _le suffixed functions treat the data as little endian;
2238 * _be indicates big endian; no suffix indicates "same endianness
2239 * as guest CPU".
2240 *
2241 * The "guest CPU endianness" accessors are deprecated for use outside
2242 * target-* code; devices should be CPU-agnostic and use either the LE
2243 * or the BE accessors.
2244 *
2245 * @as #AddressSpace to be accessed
2246 * @addr: address within that address space
2247 * @val: data value, for stores
2248 * @attrs: memory transaction attributes
2249 * @result: location to write the success/failure of the transaction;
2250 * if NULL, this information is discarded
2251 */
2252
2253 #define SUFFIX
2254 #define ARG1 as
2255 #define ARG1_DECL AddressSpace *as
2256 #include "exec/memory_ldst.h.inc"
2257
2258 #define SUFFIX
2259 #define ARG1 as
2260 #define ARG1_DECL AddressSpace *as
2261 #include "exec/memory_ldst_phys.h.inc"
2262
2263 struct MemoryRegionCache {
2264 void *ptr;
2265 hwaddr xlat;
2266 hwaddr len;
2267 FlatView *fv;
2268 MemoryRegionSection mrs;
2269 bool is_write;
2270 };
2271
2272 #define MEMORY_REGION_CACHE_INVALID ((MemoryRegionCache) { .mrs.mr = NULL })
2273
2274
2275 /* address_space_ld*_cached: load from a cached #MemoryRegion
2276 * address_space_st*_cached: store into a cached #MemoryRegion
2277 *
2278 * These functions perform a load or store of the byte, word,
2279 * longword or quad to the specified address. The address is
2280 * a physical address in the AddressSpace, but it must lie within
2281 * a #MemoryRegion that was mapped with address_space_cache_init.
2282 *
2283 * The _le suffixed functions treat the data as little endian;
2284 * _be indicates big endian; no suffix indicates "same endianness
2285 * as guest CPU".
2286 *
2287 * The "guest CPU endianness" accessors are deprecated for use outside
2288 * target-* code; devices should be CPU-agnostic and use either the LE
2289 * or the BE accessors.
2290 *
2291 * @cache: previously initialized #MemoryRegionCache to be accessed
2292 * @addr: address within the address space
2293 * @val: data value, for stores
2294 * @attrs: memory transaction attributes
2295 * @result: location to write the success/failure of the transaction;
2296 * if NULL, this information is discarded
2297 */
2298
2299 #define SUFFIX _cached_slow
2300 #define ARG1 cache
2301 #define ARG1_DECL MemoryRegionCache *cache
2302 #include "exec/memory_ldst.h.inc"
2303
2304 /* Inline fast path for direct RAM access. */
2305 static inline uint8_t address_space_ldub_cached(MemoryRegionCache *cache,
2306 hwaddr addr, MemTxAttrs attrs, MemTxResult *result)
2307 {
2308 assert(addr < cache->len);
2309 if (likely(cache->ptr)) {
2310 return ldub_p(cache->ptr + addr);
2311 } else {
2312 return address_space_ldub_cached_slow(cache, addr, attrs, result);
2313 }
2314 }
2315
2316 static inline void address_space_stb_cached(MemoryRegionCache *cache,
2317 hwaddr addr, uint8_t val, MemTxAttrs attrs, MemTxResult *result)
2318 {
2319 assert(addr < cache->len);
2320 if (likely(cache->ptr)) {
2321 stb_p(cache->ptr + addr, val);
2322 } else {
2323 address_space_stb_cached_slow(cache, addr, val, attrs, result);
2324 }
2325 }
2326
2327 #define ENDIANNESS _le
2328 #include "exec/memory_ldst_cached.h.inc"
2329
2330 #define ENDIANNESS _be
2331 #include "exec/memory_ldst_cached.h.inc"
2332
2333 #define SUFFIX _cached
2334 #define ARG1 cache
2335 #define ARG1_DECL MemoryRegionCache *cache
2336 #include "exec/memory_ldst_phys.h.inc"
2337
2338 /* address_space_cache_init: prepare for repeated access to a physical
2339 * memory region
2340 *
2341 * @cache: #MemoryRegionCache to be filled
2342 * @as: #AddressSpace to be accessed
2343 * @addr: address within that address space
2344 * @len: length of buffer
2345 * @is_write: indicates the transfer direction
2346 *
2347 * Will only work with RAM, and may map a subset of the requested range by
2348 * returning a value that is less than @len. On failure, return a negative
2349 * errno value.
2350 *
2351 * Because it only works with RAM, this function can be used for
2352 * read-modify-write operations. In this case, is_write should be %true.
2353 *
2354 * Note that addresses passed to the address_space_*_cached functions
2355 * are relative to @addr.
2356 */
2357 int64_t address_space_cache_init(MemoryRegionCache *cache,
2358 AddressSpace *as,
2359 hwaddr addr,
2360 hwaddr len,
2361 bool is_write);
2362
2363 /**
2364 * address_space_cache_invalidate: complete a write to a #MemoryRegionCache
2365 *
2366 * @cache: The #MemoryRegionCache to operate on.
2367 * @addr: The first physical address that was written, relative to the
2368 * address that was passed to @address_space_cache_init.
2369 * @access_len: The number of bytes that were written starting at @addr.
2370 */
2371 void address_space_cache_invalidate(MemoryRegionCache *cache,
2372 hwaddr addr,
2373 hwaddr access_len);
2374
2375 /**
2376 * address_space_cache_destroy: free a #MemoryRegionCache
2377 *
2378 * @cache: The #MemoryRegionCache whose memory should be released.
2379 */
2380 void address_space_cache_destroy(MemoryRegionCache *cache);
2381
2382 /* address_space_get_iotlb_entry: translate an address into an IOTLB
2383 * entry. Should be called from an RCU critical section.
2384 */
2385 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
2386 bool is_write, MemTxAttrs attrs);
2387
2388 /* address_space_translate: translate an address range into an address space
2389 * into a MemoryRegion and an address range into that section. Should be
2390 * called from an RCU critical section, to avoid that the last reference
2391 * to the returned region disappears after address_space_translate returns.
2392 *
2393 * @fv: #FlatView to be accessed
2394 * @addr: address within that address space
2395 * @xlat: pointer to address within the returned memory region section's
2396 * #MemoryRegion.
2397 * @len: pointer to length
2398 * @is_write: indicates the transfer direction
2399 * @attrs: memory attributes
2400 */
2401 MemoryRegion *flatview_translate(FlatView *fv,
2402 hwaddr addr, hwaddr *xlat,
2403 hwaddr *len, bool is_write,
2404 MemTxAttrs attrs);
2405
2406 static inline MemoryRegion *address_space_translate(AddressSpace *as,
2407 hwaddr addr, hwaddr *xlat,
2408 hwaddr *len, bool is_write,
2409 MemTxAttrs attrs)
2410 {
2411 return flatview_translate(address_space_to_flatview(as),
2412 addr, xlat, len, is_write, attrs);
2413 }
2414
2415 /* address_space_access_valid: check for validity of accessing an address
2416 * space range
2417 *
2418 * Check whether memory is assigned to the given address space range, and
2419 * access is permitted by any IOMMU regions that are active for the address
2420 * space.
2421 *
2422 * For now, addr and len should be aligned to a page size. This limitation
2423 * will be lifted in the future.
2424 *
2425 * @as: #AddressSpace to be accessed
2426 * @addr: address within that address space
2427 * @len: length of the area to be checked
2428 * @is_write: indicates the transfer direction
2429 * @attrs: memory attributes
2430 */
2431 bool address_space_access_valid(AddressSpace *as, hwaddr addr, hwaddr len,
2432 bool is_write, MemTxAttrs attrs);
2433
2434 /* address_space_map: map a physical memory region into a host virtual address
2435 *
2436 * May map a subset of the requested range, given by and returned in @plen.
2437 * May return %NULL and set *@plen to zero(0), if resources needed to perform
2438 * the mapping are exhausted.
2439 * Use only for reads OR writes - not for read-modify-write operations.
2440 * Use cpu_register_map_client() to know when retrying the map operation is
2441 * likely to succeed.
2442 *
2443 * @as: #AddressSpace to be accessed
2444 * @addr: address within that address space
2445 * @plen: pointer to length of buffer; updated on return
2446 * @is_write: indicates the transfer direction
2447 * @attrs: memory attributes
2448 */
2449 void *address_space_map(AddressSpace *as, hwaddr addr,
2450 hwaddr *plen, bool is_write, MemTxAttrs attrs);
2451
2452 /* address_space_unmap: Unmaps a memory region previously mapped by address_space_map()
2453 *
2454 * Will also mark the memory as dirty if @is_write == %true. @access_len gives
2455 * the amount of memory that was actually read or written by the caller.
2456 *
2457 * @as: #AddressSpace used
2458 * @buffer: host pointer as returned by address_space_map()
2459 * @len: buffer length as returned by address_space_map()
2460 * @access_len: amount of data actually transferred
2461 * @is_write: indicates the transfer direction
2462 */
2463 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
2464 bool is_write, hwaddr access_len);
2465
2466
2467 /* Internal functions, part of the implementation of address_space_read. */
2468 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
2469 MemTxAttrs attrs, void *buf, hwaddr len);
2470 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
2471 MemTxAttrs attrs, void *buf,
2472 hwaddr len, hwaddr addr1, hwaddr l,
2473 MemoryRegion *mr);
2474 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr);
2475
2476 /* Internal functions, part of the implementation of address_space_read_cached
2477 * and address_space_write_cached. */
2478 MemTxResult address_space_read_cached_slow(MemoryRegionCache *cache,
2479 hwaddr addr, void *buf, hwaddr len);
2480 MemTxResult address_space_write_cached_slow(MemoryRegionCache *cache,
2481 hwaddr addr, const void *buf,
2482 hwaddr len);
2483
2484 static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write)
2485 {
2486 if (is_write) {
2487 return memory_region_is_ram(mr) && !mr->readonly &&
2488 !mr->rom_device && !memory_region_is_ram_device(mr);
2489 } else {
2490 return (memory_region_is_ram(mr) && !memory_region_is_ram_device(mr)) ||
2491 memory_region_is_romd(mr);
2492 }
2493 }
2494
2495 /**
2496 * address_space_read: read from an address space.
2497 *
2498 * Return a MemTxResult indicating whether the operation succeeded
2499 * or failed (eg unassigned memory, device rejected the transaction,
2500 * IOMMU fault). Called within RCU critical section.
2501 *
2502 * @as: #AddressSpace to be accessed
2503 * @addr: address within that address space
2504 * @attrs: memory transaction attributes
2505 * @buf: buffer with the data transferred
2506 * @len: length of the data transferred
2507 */
2508 static inline __attribute__((__always_inline__))
2509 MemTxResult address_space_read(AddressSpace *as, hwaddr addr,
2510 MemTxAttrs attrs, void *buf,
2511 hwaddr len)
2512 {
2513 MemTxResult result = MEMTX_OK;
2514 hwaddr l, addr1;
2515 void *ptr;
2516 MemoryRegion *mr;
2517 FlatView *fv;
2518
2519 if (__builtin_constant_p(len)) {
2520 if (len) {
2521 RCU_READ_LOCK_GUARD();
2522 fv = address_space_to_flatview(as);
2523 l = len;
2524 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
2525 if (len == l && memory_access_is_direct(mr, false)) {
2526 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
2527 memcpy(buf, ptr, len);
2528 } else {
2529 result = flatview_read_continue(fv, addr, attrs, buf, len,
2530 addr1, l, mr);
2531 }
2532 }
2533 } else {
2534 result = address_space_read_full(as, addr, attrs, buf, len);
2535 }
2536 return result;
2537 }
2538
2539 /**
2540 * address_space_read_cached: read from a cached RAM region
2541 *
2542 * @cache: Cached region to be addressed
2543 * @addr: address relative to the base of the RAM region
2544 * @buf: buffer with the data transferred
2545 * @len: length of the data transferred
2546 */
2547 static inline MemTxResult
2548 address_space_read_cached(MemoryRegionCache *cache, hwaddr addr,
2549 void *buf, hwaddr len)
2550 {
2551 assert(addr < cache->len && len <= cache->len - addr);
2552 fuzz_dma_read_cb(cache->xlat + addr, len, cache->mrs.mr);
2553 if (likely(cache->ptr)) {
2554 memcpy(buf, cache->ptr + addr, len);
2555 return MEMTX_OK;
2556 } else {
2557 return address_space_read_cached_slow(cache, addr, buf, len);
2558 }
2559 }
2560
2561 /**
2562 * address_space_write_cached: write to a cached RAM region
2563 *
2564 * @cache: Cached region to be addressed
2565 * @addr: address relative to the base of the RAM region
2566 * @buf: buffer with the data transferred
2567 * @len: length of the data transferred
2568 */
2569 static inline MemTxResult
2570 address_space_write_cached(MemoryRegionCache *cache, hwaddr addr,
2571 const void *buf, hwaddr len)
2572 {
2573 assert(addr < cache->len && len <= cache->len - addr);
2574 if (likely(cache->ptr)) {
2575 memcpy(cache->ptr + addr, buf, len);
2576 return MEMTX_OK;
2577 } else {
2578 return address_space_write_cached_slow(cache, addr, buf, len);
2579 }
2580 }
2581
2582 #ifdef NEED_CPU_H
2583 /* enum device_endian to MemOp. */
2584 static inline MemOp devend_memop(enum device_endian end)
2585 {
2586 QEMU_BUILD_BUG_ON(DEVICE_HOST_ENDIAN != DEVICE_LITTLE_ENDIAN &&
2587 DEVICE_HOST_ENDIAN != DEVICE_BIG_ENDIAN);
2588
2589 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
2590 /* Swap if non-host endianness or native (target) endianness */
2591 return (end == DEVICE_HOST_ENDIAN) ? 0 : MO_BSWAP;
2592 #else
2593 const int non_host_endianness =
2594 DEVICE_LITTLE_ENDIAN ^ DEVICE_BIG_ENDIAN ^ DEVICE_HOST_ENDIAN;
2595
2596 /* In this case, native (target) endianness needs no swap. */
2597 return (end == non_host_endianness) ? MO_BSWAP : 0;
2598 #endif
2599 }
2600 #endif
2601
2602 /*
2603 * Inhibit technologies that require discarding of pages in RAM blocks, e.g.,
2604 * to manage the actual amount of memory consumed by the VM (then, the memory
2605 * provided by RAM blocks might be bigger than the desired memory consumption).
2606 * This *must* be set if:
2607 * - Discarding parts of a RAM blocks does not result in the change being
2608 * reflected in the VM and the pages getting freed.
2609 * - All memory in RAM blocks is pinned or duplicated, invaldiating any previous
2610 * discards blindly.
2611 * - Discarding parts of a RAM blocks will result in integrity issues (e.g.,
2612 * encrypted VMs).
2613 * Technologies that only temporarily pin the current working set of a
2614 * driver are fine, because we don't expect such pages to be discarded
2615 * (esp. based on guest action like balloon inflation).
2616 *
2617 * This is *not* to be used to protect from concurrent discards (esp.,
2618 * postcopy).
2619 *
2620 * Returns 0 if successful. Returns -EBUSY if a technology that relies on
2621 * discards to work reliably is active.
2622 */
2623 int ram_block_discard_disable(bool state);
2624
2625 /*
2626 * Inhibit technologies that disable discarding of pages in RAM blocks.
2627 *
2628 * Returns 0 if successful. Returns -EBUSY if discards are already set to
2629 * broken.
2630 */
2631 int ram_block_discard_require(bool state);
2632
2633 /*
2634 * Test if discarding of memory in ram blocks is disabled.
2635 */
2636 bool ram_block_discard_is_disabled(void);
2637
2638 /*
2639 * Test if discarding of memory in ram blocks is required to work reliably.
2640 */
2641 bool ram_block_discard_is_required(void);
2642
2643 #endif
2644
2645 #endif