]> git.proxmox.com Git - mirror_qemu.git/blob - include/exec/memory.h
memory: count number of active VGA logging clients
[mirror_qemu.git] / include / exec / memory.h
1 /*
2 * Physical memory management API
3 *
4 * Copyright 2011 Red Hat, Inc. and/or its affiliates
5 *
6 * Authors:
7 * Avi Kivity <avi@redhat.com>
8 *
9 * This work is licensed under the terms of the GNU GPL, version 2. See
10 * the COPYING file in the top-level directory.
11 *
12 */
13
14 #ifndef MEMORY_H
15 #define MEMORY_H
16
17 #ifndef CONFIG_USER_ONLY
18
19 #define DIRTY_MEMORY_VGA 0
20 #define DIRTY_MEMORY_CODE 1
21 #define DIRTY_MEMORY_MIGRATION 2
22 #define DIRTY_MEMORY_NUM 3 /* num of dirty bits */
23
24 #include <stdint.h>
25 #include <stdbool.h>
26 #include "exec/cpu-common.h"
27 #ifndef CONFIG_USER_ONLY
28 #include "exec/hwaddr.h"
29 #endif
30 #include "exec/memattrs.h"
31 #include "qemu/queue.h"
32 #include "qemu/int128.h"
33 #include "qemu/notify.h"
34 #include "qapi/error.h"
35 #include "qom/object.h"
36 #include "qemu/rcu.h"
37
38 #define MAX_PHYS_ADDR_SPACE_BITS 62
39 #define MAX_PHYS_ADDR (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1)
40
41 #define TYPE_MEMORY_REGION "qemu:memory-region"
42 #define MEMORY_REGION(obj) \
43 OBJECT_CHECK(MemoryRegion, (obj), TYPE_MEMORY_REGION)
44
45 typedef struct MemoryRegionOps MemoryRegionOps;
46 typedef struct MemoryRegionMmio MemoryRegionMmio;
47
48 struct MemoryRegionMmio {
49 CPUReadMemoryFunc *read[3];
50 CPUWriteMemoryFunc *write[3];
51 };
52
53 typedef struct IOMMUTLBEntry IOMMUTLBEntry;
54
55 /* See address_space_translate: bit 0 is read, bit 1 is write. */
56 typedef enum {
57 IOMMU_NONE = 0,
58 IOMMU_RO = 1,
59 IOMMU_WO = 2,
60 IOMMU_RW = 3,
61 } IOMMUAccessFlags;
62
63 struct IOMMUTLBEntry {
64 AddressSpace *target_as;
65 hwaddr iova;
66 hwaddr translated_addr;
67 hwaddr addr_mask; /* 0xfff = 4k translation */
68 IOMMUAccessFlags perm;
69 };
70
71 /* New-style MMIO accessors can indicate that the transaction failed.
72 * A zero (MEMTX_OK) response means success; anything else is a failure
73 * of some kind. The memory subsystem will bitwise-OR together results
74 * if it is synthesizing an operation from multiple smaller accesses.
75 */
76 #define MEMTX_OK 0
77 #define MEMTX_ERROR (1U << 0) /* device returned an error */
78 #define MEMTX_DECODE_ERROR (1U << 1) /* nothing at that address */
79 typedef uint32_t MemTxResult;
80
81 /*
82 * Memory region callbacks
83 */
84 struct MemoryRegionOps {
85 /* Read from the memory region. @addr is relative to @mr; @size is
86 * in bytes. */
87 uint64_t (*read)(void *opaque,
88 hwaddr addr,
89 unsigned size);
90 /* Write to the memory region. @addr is relative to @mr; @size is
91 * in bytes. */
92 void (*write)(void *opaque,
93 hwaddr addr,
94 uint64_t data,
95 unsigned size);
96
97 MemTxResult (*read_with_attrs)(void *opaque,
98 hwaddr addr,
99 uint64_t *data,
100 unsigned size,
101 MemTxAttrs attrs);
102 MemTxResult (*write_with_attrs)(void *opaque,
103 hwaddr addr,
104 uint64_t data,
105 unsigned size,
106 MemTxAttrs attrs);
107
108 enum device_endian endianness;
109 /* Guest-visible constraints: */
110 struct {
111 /* If nonzero, specify bounds on access sizes beyond which a machine
112 * check is thrown.
113 */
114 unsigned min_access_size;
115 unsigned max_access_size;
116 /* If true, unaligned accesses are supported. Otherwise unaligned
117 * accesses throw machine checks.
118 */
119 bool unaligned;
120 /*
121 * If present, and returns #false, the transaction is not accepted
122 * by the device (and results in machine dependent behaviour such
123 * as a machine check exception).
124 */
125 bool (*accepts)(void *opaque, hwaddr addr,
126 unsigned size, bool is_write);
127 } valid;
128 /* Internal implementation constraints: */
129 struct {
130 /* If nonzero, specifies the minimum size implemented. Smaller sizes
131 * will be rounded upwards and a partial result will be returned.
132 */
133 unsigned min_access_size;
134 /* If nonzero, specifies the maximum size implemented. Larger sizes
135 * will be done as a series of accesses with smaller sizes.
136 */
137 unsigned max_access_size;
138 /* If true, unaligned accesses are supported. Otherwise all accesses
139 * are converted to (possibly multiple) naturally aligned accesses.
140 */
141 bool unaligned;
142 } impl;
143
144 /* If .read and .write are not present, old_mmio may be used for
145 * backwards compatibility with old mmio registration
146 */
147 const MemoryRegionMmio old_mmio;
148 };
149
150 typedef struct MemoryRegionIOMMUOps MemoryRegionIOMMUOps;
151
152 struct MemoryRegionIOMMUOps {
153 /* Return a TLB entry that contains a given address. */
154 IOMMUTLBEntry (*translate)(MemoryRegion *iommu, hwaddr addr, bool is_write);
155 };
156
157 typedef struct CoalescedMemoryRange CoalescedMemoryRange;
158 typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd;
159
160 struct MemoryRegion {
161 Object parent_obj;
162 /* All fields are private - violators will be prosecuted */
163 const MemoryRegionOps *ops;
164 const MemoryRegionIOMMUOps *iommu_ops;
165 void *opaque;
166 MemoryRegion *container;
167 Int128 size;
168 hwaddr addr;
169 void (*destructor)(MemoryRegion *mr);
170 ram_addr_t ram_addr;
171 uint64_t align;
172 bool subpage;
173 bool terminates;
174 bool romd_mode;
175 bool ram;
176 bool skip_dump;
177 bool readonly; /* For RAM regions */
178 bool enabled;
179 bool rom_device;
180 bool warning_printed; /* For reservations */
181 bool flush_coalesced_mmio;
182 bool global_locking;
183 uint8_t vga_logging_count;
184 MemoryRegion *alias;
185 hwaddr alias_offset;
186 int32_t priority;
187 bool may_overlap;
188 QTAILQ_HEAD(subregions, MemoryRegion) subregions;
189 QTAILQ_ENTRY(MemoryRegion) subregions_link;
190 QTAILQ_HEAD(coalesced_ranges, CoalescedMemoryRange) coalesced;
191 const char *name;
192 uint8_t dirty_log_mask;
193 unsigned ioeventfd_nb;
194 MemoryRegionIoeventfd *ioeventfds;
195 NotifierList iommu_notify;
196 };
197
198 /**
199 * MemoryListener: callbacks structure for updates to the physical memory map
200 *
201 * Allows a component to adjust to changes in the guest-visible memory map.
202 * Use with memory_listener_register() and memory_listener_unregister().
203 */
204 struct MemoryListener {
205 void (*begin)(MemoryListener *listener);
206 void (*commit)(MemoryListener *listener);
207 void (*region_add)(MemoryListener *listener, MemoryRegionSection *section);
208 void (*region_del)(MemoryListener *listener, MemoryRegionSection *section);
209 void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section);
210 void (*log_start)(MemoryListener *listener, MemoryRegionSection *section,
211 int old, int new);
212 void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section,
213 int old, int new);
214 void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section);
215 void (*log_global_start)(MemoryListener *listener);
216 void (*log_global_stop)(MemoryListener *listener);
217 void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section,
218 bool match_data, uint64_t data, EventNotifier *e);
219 void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section,
220 bool match_data, uint64_t data, EventNotifier *e);
221 void (*coalesced_mmio_add)(MemoryListener *listener, MemoryRegionSection *section,
222 hwaddr addr, hwaddr len);
223 void (*coalesced_mmio_del)(MemoryListener *listener, MemoryRegionSection *section,
224 hwaddr addr, hwaddr len);
225 /* Lower = earlier (during add), later (during del) */
226 unsigned priority;
227 AddressSpace *address_space_filter;
228 QTAILQ_ENTRY(MemoryListener) link;
229 };
230
231 /**
232 * AddressSpace: describes a mapping of addresses to #MemoryRegion objects
233 */
234 struct AddressSpace {
235 /* All fields are private. */
236 struct rcu_head rcu;
237 char *name;
238 MemoryRegion *root;
239
240 /* Accessed via RCU. */
241 struct FlatView *current_map;
242
243 int ioeventfd_nb;
244 struct MemoryRegionIoeventfd *ioeventfds;
245 struct AddressSpaceDispatch *dispatch;
246 struct AddressSpaceDispatch *next_dispatch;
247 MemoryListener dispatch_listener;
248
249 QTAILQ_ENTRY(AddressSpace) address_spaces_link;
250 };
251
252 /**
253 * MemoryRegionSection: describes a fragment of a #MemoryRegion
254 *
255 * @mr: the region, or %NULL if empty
256 * @address_space: the address space the region is mapped in
257 * @offset_within_region: the beginning of the section, relative to @mr's start
258 * @size: the size of the section; will not exceed @mr's boundaries
259 * @offset_within_address_space: the address of the first byte of the section
260 * relative to the region's address space
261 * @readonly: writes to this section are ignored
262 */
263 struct MemoryRegionSection {
264 MemoryRegion *mr;
265 AddressSpace *address_space;
266 hwaddr offset_within_region;
267 Int128 size;
268 hwaddr offset_within_address_space;
269 bool readonly;
270 };
271
272 /**
273 * memory_region_init: Initialize a memory region
274 *
275 * The region typically acts as a container for other memory regions. Use
276 * memory_region_add_subregion() to add subregions.
277 *
278 * @mr: the #MemoryRegion to be initialized
279 * @owner: the object that tracks the region's reference count
280 * @name: used for debugging; not visible to the user or ABI
281 * @size: size of the region; any subregions beyond this size will be clipped
282 */
283 void memory_region_init(MemoryRegion *mr,
284 struct Object *owner,
285 const char *name,
286 uint64_t size);
287
288 /**
289 * memory_region_ref: Add 1 to a memory region's reference count
290 *
291 * Whenever memory regions are accessed outside the BQL, they need to be
292 * preserved against hot-unplug. MemoryRegions actually do not have their
293 * own reference count; they piggyback on a QOM object, their "owner".
294 * This function adds a reference to the owner.
295 *
296 * All MemoryRegions must have an owner if they can disappear, even if the
297 * device they belong to operates exclusively under the BQL. This is because
298 * the region could be returned at any time by memory_region_find, and this
299 * is usually under guest control.
300 *
301 * @mr: the #MemoryRegion
302 */
303 void memory_region_ref(MemoryRegion *mr);
304
305 /**
306 * memory_region_unref: Remove 1 to a memory region's reference count
307 *
308 * Whenever memory regions are accessed outside the BQL, they need to be
309 * preserved against hot-unplug. MemoryRegions actually do not have their
310 * own reference count; they piggyback on a QOM object, their "owner".
311 * This function removes a reference to the owner and possibly destroys it.
312 *
313 * @mr: the #MemoryRegion
314 */
315 void memory_region_unref(MemoryRegion *mr);
316
317 /**
318 * memory_region_init_io: Initialize an I/O memory region.
319 *
320 * Accesses into the region will cause the callbacks in @ops to be called.
321 * if @size is nonzero, subregions will be clipped to @size.
322 *
323 * @mr: the #MemoryRegion to be initialized.
324 * @owner: the object that tracks the region's reference count
325 * @ops: a structure containing read and write callbacks to be used when
326 * I/O is performed on the region.
327 * @opaque: passed to to the read and write callbacks of the @ops structure.
328 * @name: used for debugging; not visible to the user or ABI
329 * @size: size of the region.
330 */
331 void memory_region_init_io(MemoryRegion *mr,
332 struct Object *owner,
333 const MemoryRegionOps *ops,
334 void *opaque,
335 const char *name,
336 uint64_t size);
337
338 /**
339 * memory_region_init_ram: Initialize RAM memory region. Accesses into the
340 * region will modify memory directly.
341 *
342 * @mr: the #MemoryRegion to be initialized.
343 * @owner: the object that tracks the region's reference count
344 * @name: the name of the region.
345 * @size: size of the region.
346 * @errp: pointer to Error*, to store an error if it happens.
347 */
348 void memory_region_init_ram(MemoryRegion *mr,
349 struct Object *owner,
350 const char *name,
351 uint64_t size,
352 Error **errp);
353
354 /**
355 * memory_region_init_resizeable_ram: Initialize memory region with resizeable
356 * RAM. Accesses into the region will
357 * modify memory directly. Only an initial
358 * portion of this RAM is actually used.
359 * The used size can change across reboots.
360 *
361 * @mr: the #MemoryRegion to be initialized.
362 * @owner: the object that tracks the region's reference count
363 * @name: the name of the region.
364 * @size: used size of the region.
365 * @max_size: max size of the region.
366 * @resized: callback to notify owner about used size change.
367 * @errp: pointer to Error*, to store an error if it happens.
368 */
369 void memory_region_init_resizeable_ram(MemoryRegion *mr,
370 struct Object *owner,
371 const char *name,
372 uint64_t size,
373 uint64_t max_size,
374 void (*resized)(const char*,
375 uint64_t length,
376 void *host),
377 Error **errp);
378 #ifdef __linux__
379 /**
380 * memory_region_init_ram_from_file: Initialize RAM memory region with a
381 * mmap-ed backend.
382 *
383 * @mr: the #MemoryRegion to be initialized.
384 * @owner: the object that tracks the region's reference count
385 * @name: the name of the region.
386 * @size: size of the region.
387 * @share: %true if memory must be mmaped with the MAP_SHARED flag
388 * @path: the path in which to allocate the RAM.
389 * @errp: pointer to Error*, to store an error if it happens.
390 */
391 void memory_region_init_ram_from_file(MemoryRegion *mr,
392 struct Object *owner,
393 const char *name,
394 uint64_t size,
395 bool share,
396 const char *path,
397 Error **errp);
398 #endif
399
400 /**
401 * memory_region_init_ram_ptr: Initialize RAM memory region from a
402 * user-provided pointer. Accesses into the
403 * region will modify memory directly.
404 *
405 * @mr: the #MemoryRegion to be initialized.
406 * @owner: the object that tracks the region's reference count
407 * @name: the name of the region.
408 * @size: size of the region.
409 * @ptr: memory to be mapped; must contain at least @size bytes.
410 */
411 void memory_region_init_ram_ptr(MemoryRegion *mr,
412 struct Object *owner,
413 const char *name,
414 uint64_t size,
415 void *ptr);
416
417 /**
418 * memory_region_init_alias: Initialize a memory region that aliases all or a
419 * part of another memory region.
420 *
421 * @mr: the #MemoryRegion to be initialized.
422 * @owner: the object that tracks the region's reference count
423 * @name: used for debugging; not visible to the user or ABI
424 * @orig: the region to be referenced; @mr will be equivalent to
425 * @orig between @offset and @offset + @size - 1.
426 * @offset: start of the section in @orig to be referenced.
427 * @size: size of the region.
428 */
429 void memory_region_init_alias(MemoryRegion *mr,
430 struct Object *owner,
431 const char *name,
432 MemoryRegion *orig,
433 hwaddr offset,
434 uint64_t size);
435
436 /**
437 * memory_region_init_rom_device: Initialize a ROM memory region. Writes are
438 * handled via callbacks.
439 *
440 * @mr: the #MemoryRegion to be initialized.
441 * @owner: the object that tracks the region's reference count
442 * @ops: callbacks for write access handling.
443 * @name: the name of the region.
444 * @size: size of the region.
445 * @errp: pointer to Error*, to store an error if it happens.
446 */
447 void memory_region_init_rom_device(MemoryRegion *mr,
448 struct Object *owner,
449 const MemoryRegionOps *ops,
450 void *opaque,
451 const char *name,
452 uint64_t size,
453 Error **errp);
454
455 /**
456 * memory_region_init_reservation: Initialize a memory region that reserves
457 * I/O space.
458 *
459 * A reservation region primariy serves debugging purposes. It claims I/O
460 * space that is not supposed to be handled by QEMU itself. Any access via
461 * the memory API will cause an abort().
462 *
463 * @mr: the #MemoryRegion to be initialized
464 * @owner: the object that tracks the region's reference count
465 * @name: used for debugging; not visible to the user or ABI
466 * @size: size of the region.
467 */
468 void memory_region_init_reservation(MemoryRegion *mr,
469 struct Object *owner,
470 const char *name,
471 uint64_t size);
472
473 /**
474 * memory_region_init_iommu: Initialize a memory region that translates
475 * addresses
476 *
477 * An IOMMU region translates addresses and forwards accesses to a target
478 * memory region.
479 *
480 * @mr: the #MemoryRegion to be initialized
481 * @owner: the object that tracks the region's reference count
482 * @ops: a function that translates addresses into the @target region
483 * @name: used for debugging; not visible to the user or ABI
484 * @size: size of the region.
485 */
486 void memory_region_init_iommu(MemoryRegion *mr,
487 struct Object *owner,
488 const MemoryRegionIOMMUOps *ops,
489 const char *name,
490 uint64_t size);
491
492 /**
493 * memory_region_owner: get a memory region's owner.
494 *
495 * @mr: the memory region being queried.
496 */
497 struct Object *memory_region_owner(MemoryRegion *mr);
498
499 /**
500 * memory_region_size: get a memory region's size.
501 *
502 * @mr: the memory region being queried.
503 */
504 uint64_t memory_region_size(MemoryRegion *mr);
505
506 /**
507 * memory_region_is_ram: check whether a memory region is random access
508 *
509 * Returns %true is a memory region is random access.
510 *
511 * @mr: the memory region being queried
512 */
513 bool memory_region_is_ram(MemoryRegion *mr);
514
515 /**
516 * memory_region_is_skip_dump: check whether a memory region should not be
517 * dumped
518 *
519 * Returns %true is a memory region should not be dumped(e.g. VFIO BAR MMAP).
520 *
521 * @mr: the memory region being queried
522 */
523 bool memory_region_is_skip_dump(MemoryRegion *mr);
524
525 /**
526 * memory_region_set_skip_dump: Set skip_dump flag, dump will ignore this memory
527 * region
528 *
529 * @mr: the memory region being queried
530 */
531 void memory_region_set_skip_dump(MemoryRegion *mr);
532
533 /**
534 * memory_region_is_romd: check whether a memory region is in ROMD mode
535 *
536 * Returns %true if a memory region is a ROM device and currently set to allow
537 * direct reads.
538 *
539 * @mr: the memory region being queried
540 */
541 static inline bool memory_region_is_romd(MemoryRegion *mr)
542 {
543 return mr->rom_device && mr->romd_mode;
544 }
545
546 /**
547 * memory_region_is_iommu: check whether a memory region is an iommu
548 *
549 * Returns %true is a memory region is an iommu.
550 *
551 * @mr: the memory region being queried
552 */
553 bool memory_region_is_iommu(MemoryRegion *mr);
554
555 /**
556 * memory_region_notify_iommu: notify a change in an IOMMU translation entry.
557 *
558 * @mr: the memory region that was changed
559 * @entry: the new entry in the IOMMU translation table. The entry
560 * replaces all old entries for the same virtual I/O address range.
561 * Deleted entries have .@perm == 0.
562 */
563 void memory_region_notify_iommu(MemoryRegion *mr,
564 IOMMUTLBEntry entry);
565
566 /**
567 * memory_region_register_iommu_notifier: register a notifier for changes to
568 * IOMMU translation entries.
569 *
570 * @mr: the memory region to observe
571 * @n: the notifier to be added; the notifier receives a pointer to an
572 * #IOMMUTLBEntry as the opaque value; the pointer ceases to be
573 * valid on exit from the notifier.
574 */
575 void memory_region_register_iommu_notifier(MemoryRegion *mr, Notifier *n);
576
577 /**
578 * memory_region_unregister_iommu_notifier: unregister a notifier for
579 * changes to IOMMU translation entries.
580 *
581 * @n: the notifier to be removed.
582 */
583 void memory_region_unregister_iommu_notifier(Notifier *n);
584
585 /**
586 * memory_region_name: get a memory region's name
587 *
588 * Returns the string that was used to initialize the memory region.
589 *
590 * @mr: the memory region being queried
591 */
592 const char *memory_region_name(const MemoryRegion *mr);
593
594 /**
595 * memory_region_is_logging: return whether a memory region is logging writes
596 *
597 * Returns %true if the memory region is logging writes for the given client
598 *
599 * @mr: the memory region being queried
600 * @client: the client being queried
601 */
602 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client);
603
604 /**
605 * memory_region_get_dirty_log_mask: return the clients for which a
606 * memory region is logging writes.
607 *
608 * Returns a bitmap of clients, in which the DIRTY_MEMORY_* constants
609 * are the bit indices.
610 *
611 * @mr: the memory region being queried
612 */
613 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr);
614
615 /**
616 * memory_region_is_rom: check whether a memory region is ROM
617 *
618 * Returns %true is a memory region is read-only memory.
619 *
620 * @mr: the memory region being queried
621 */
622 bool memory_region_is_rom(MemoryRegion *mr);
623
624 /**
625 * memory_region_get_fd: Get a file descriptor backing a RAM memory region.
626 *
627 * Returns a file descriptor backing a file-based RAM memory region,
628 * or -1 if the region is not a file-based RAM memory region.
629 *
630 * @mr: the RAM or alias memory region being queried.
631 */
632 int memory_region_get_fd(MemoryRegion *mr);
633
634 /**
635 * memory_region_get_ram_ptr: Get a pointer into a RAM memory region.
636 *
637 * Returns a host pointer to a RAM memory region (created with
638 * memory_region_init_ram() or memory_region_init_ram_ptr()). Use with
639 * care.
640 *
641 * @mr: the memory region being queried.
642 */
643 void *memory_region_get_ram_ptr(MemoryRegion *mr);
644
645 /* memory_region_ram_resize: Resize a RAM region.
646 *
647 * Only legal before guest might have detected the memory size: e.g. on
648 * incoming migration, or right after reset.
649 *
650 * @mr: a memory region created with @memory_region_init_resizeable_ram.
651 * @newsize: the new size the region
652 * @errp: pointer to Error*, to store an error if it happens.
653 */
654 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize,
655 Error **errp);
656
657 /**
658 * memory_region_set_log: Turn dirty logging on or off for a region.
659 *
660 * Turns dirty logging on or off for a specified client (display, migration).
661 * Only meaningful for RAM regions.
662 *
663 * @mr: the memory region being updated.
664 * @log: whether dirty logging is to be enabled or disabled.
665 * @client: the user of the logging information; %DIRTY_MEMORY_VGA only.
666 */
667 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client);
668
669 /**
670 * memory_region_get_dirty: Check whether a range of bytes is dirty
671 * for a specified client.
672 *
673 * Checks whether a range of bytes has been written to since the last
674 * call to memory_region_reset_dirty() with the same @client. Dirty logging
675 * must be enabled.
676 *
677 * @mr: the memory region being queried.
678 * @addr: the address (relative to the start of the region) being queried.
679 * @size: the size of the range being queried.
680 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
681 * %DIRTY_MEMORY_VGA.
682 */
683 bool memory_region_get_dirty(MemoryRegion *mr, hwaddr addr,
684 hwaddr size, unsigned client);
685
686 /**
687 * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region.
688 *
689 * Marks a range of bytes as dirty, after it has been dirtied outside
690 * guest code.
691 *
692 * @mr: the memory region being dirtied.
693 * @addr: the address (relative to the start of the region) being dirtied.
694 * @size: size of the range being dirtied.
695 */
696 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
697 hwaddr size);
698
699 /**
700 * memory_region_test_and_clear_dirty: Check whether a range of bytes is dirty
701 * for a specified client. It clears them.
702 *
703 * Checks whether a range of bytes has been written to since the last
704 * call to memory_region_reset_dirty() with the same @client. Dirty logging
705 * must be enabled.
706 *
707 * @mr: the memory region being queried.
708 * @addr: the address (relative to the start of the region) being queried.
709 * @size: the size of the range being queried.
710 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
711 * %DIRTY_MEMORY_VGA.
712 */
713 bool memory_region_test_and_clear_dirty(MemoryRegion *mr, hwaddr addr,
714 hwaddr size, unsigned client);
715 /**
716 * memory_region_sync_dirty_bitmap: Synchronize a region's dirty bitmap with
717 * any external TLBs (e.g. kvm)
718 *
719 * Flushes dirty information from accelerators such as kvm and vhost-net
720 * and makes it available to users of the memory API.
721 *
722 * @mr: the region being flushed.
723 */
724 void memory_region_sync_dirty_bitmap(MemoryRegion *mr);
725
726 /**
727 * memory_region_reset_dirty: Mark a range of pages as clean, for a specified
728 * client.
729 *
730 * Marks a range of pages as no longer dirty.
731 *
732 * @mr: the region being updated.
733 * @addr: the start of the subrange being cleaned.
734 * @size: the size of the subrange being cleaned.
735 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
736 * %DIRTY_MEMORY_VGA.
737 */
738 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
739 hwaddr size, unsigned client);
740
741 /**
742 * memory_region_set_readonly: Turn a memory region read-only (or read-write)
743 *
744 * Allows a memory region to be marked as read-only (turning it into a ROM).
745 * only useful on RAM regions.
746 *
747 * @mr: the region being updated.
748 * @readonly: whether rhe region is to be ROM or RAM.
749 */
750 void memory_region_set_readonly(MemoryRegion *mr, bool readonly);
751
752 /**
753 * memory_region_rom_device_set_romd: enable/disable ROMD mode
754 *
755 * Allows a ROM device (initialized with memory_region_init_rom_device() to
756 * set to ROMD mode (default) or MMIO mode. When it is in ROMD mode, the
757 * device is mapped to guest memory and satisfies read access directly.
758 * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function.
759 * Writes are always handled by the #MemoryRegion.write function.
760 *
761 * @mr: the memory region to be updated
762 * @romd_mode: %true to put the region into ROMD mode
763 */
764 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode);
765
766 /**
767 * memory_region_set_coalescing: Enable memory coalescing for the region.
768 *
769 * Enabled writes to a region to be queued for later processing. MMIO ->write
770 * callbacks may be delayed until a non-coalesced MMIO is issued.
771 * Only useful for IO regions. Roughly similar to write-combining hardware.
772 *
773 * @mr: the memory region to be write coalesced
774 */
775 void memory_region_set_coalescing(MemoryRegion *mr);
776
777 /**
778 * memory_region_add_coalescing: Enable memory coalescing for a sub-range of
779 * a region.
780 *
781 * Like memory_region_set_coalescing(), but works on a sub-range of a region.
782 * Multiple calls can be issued coalesced disjoint ranges.
783 *
784 * @mr: the memory region to be updated.
785 * @offset: the start of the range within the region to be coalesced.
786 * @size: the size of the subrange to be coalesced.
787 */
788 void memory_region_add_coalescing(MemoryRegion *mr,
789 hwaddr offset,
790 uint64_t size);
791
792 /**
793 * memory_region_clear_coalescing: Disable MMIO coalescing for the region.
794 *
795 * Disables any coalescing caused by memory_region_set_coalescing() or
796 * memory_region_add_coalescing(). Roughly equivalent to uncacheble memory
797 * hardware.
798 *
799 * @mr: the memory region to be updated.
800 */
801 void memory_region_clear_coalescing(MemoryRegion *mr);
802
803 /**
804 * memory_region_set_flush_coalesced: Enforce memory coalescing flush before
805 * accesses.
806 *
807 * Ensure that pending coalesced MMIO request are flushed before the memory
808 * region is accessed. This property is automatically enabled for all regions
809 * passed to memory_region_set_coalescing() and memory_region_add_coalescing().
810 *
811 * @mr: the memory region to be updated.
812 */
813 void memory_region_set_flush_coalesced(MemoryRegion *mr);
814
815 /**
816 * memory_region_clear_flush_coalesced: Disable memory coalescing flush before
817 * accesses.
818 *
819 * Clear the automatic coalesced MMIO flushing enabled via
820 * memory_region_set_flush_coalesced. Note that this service has no effect on
821 * memory regions that have MMIO coalescing enabled for themselves. For them,
822 * automatic flushing will stop once coalescing is disabled.
823 *
824 * @mr: the memory region to be updated.
825 */
826 void memory_region_clear_flush_coalesced(MemoryRegion *mr);
827
828 /**
829 * memory_region_set_global_locking: Declares the access processing requires
830 * QEMU's global lock.
831 *
832 * When this is invoked, accesses to the memory region will be processed while
833 * holding the global lock of QEMU. This is the default behavior of memory
834 * regions.
835 *
836 * @mr: the memory region to be updated.
837 */
838 void memory_region_set_global_locking(MemoryRegion *mr);
839
840 /**
841 * memory_region_clear_global_locking: Declares that access processing does
842 * not depend on the QEMU global lock.
843 *
844 * By clearing this property, accesses to the memory region will be processed
845 * outside of QEMU's global lock (unless the lock is held on when issuing the
846 * access request). In this case, the device model implementing the access
847 * handlers is responsible for synchronization of concurrency.
848 *
849 * @mr: the memory region to be updated.
850 */
851 void memory_region_clear_global_locking(MemoryRegion *mr);
852
853 /**
854 * memory_region_add_eventfd: Request an eventfd to be triggered when a word
855 * is written to a location.
856 *
857 * Marks a word in an IO region (initialized with memory_region_init_io())
858 * as a trigger for an eventfd event. The I/O callback will not be called.
859 * The caller must be prepared to handle failure (that is, take the required
860 * action if the callback _is_ called).
861 *
862 * @mr: the memory region being updated.
863 * @addr: the address within @mr that is to be monitored
864 * @size: the size of the access to trigger the eventfd
865 * @match_data: whether to match against @data, instead of just @addr
866 * @data: the data to match against the guest write
867 * @fd: the eventfd to be triggered when @addr, @size, and @data all match.
868 **/
869 void memory_region_add_eventfd(MemoryRegion *mr,
870 hwaddr addr,
871 unsigned size,
872 bool match_data,
873 uint64_t data,
874 EventNotifier *e);
875
876 /**
877 * memory_region_del_eventfd: Cancel an eventfd.
878 *
879 * Cancels an eventfd trigger requested by a previous
880 * memory_region_add_eventfd() call.
881 *
882 * @mr: the memory region being updated.
883 * @addr: the address within @mr that is to be monitored
884 * @size: the size of the access to trigger the eventfd
885 * @match_data: whether to match against @data, instead of just @addr
886 * @data: the data to match against the guest write
887 * @fd: the eventfd to be triggered when @addr, @size, and @data all match.
888 */
889 void memory_region_del_eventfd(MemoryRegion *mr,
890 hwaddr addr,
891 unsigned size,
892 bool match_data,
893 uint64_t data,
894 EventNotifier *e);
895
896 /**
897 * memory_region_add_subregion: Add a subregion to a container.
898 *
899 * Adds a subregion at @offset. The subregion may not overlap with other
900 * subregions (except for those explicitly marked as overlapping). A region
901 * may only be added once as a subregion (unless removed with
902 * memory_region_del_subregion()); use memory_region_init_alias() if you
903 * want a region to be a subregion in multiple locations.
904 *
905 * @mr: the region to contain the new subregion; must be a container
906 * initialized with memory_region_init().
907 * @offset: the offset relative to @mr where @subregion is added.
908 * @subregion: the subregion to be added.
909 */
910 void memory_region_add_subregion(MemoryRegion *mr,
911 hwaddr offset,
912 MemoryRegion *subregion);
913 /**
914 * memory_region_add_subregion_overlap: Add a subregion to a container
915 * with overlap.
916 *
917 * Adds a subregion at @offset. The subregion may overlap with other
918 * subregions. Conflicts are resolved by having a higher @priority hide a
919 * lower @priority. Subregions without priority are taken as @priority 0.
920 * A region may only be added once as a subregion (unless removed with
921 * memory_region_del_subregion()); use memory_region_init_alias() if you
922 * want a region to be a subregion in multiple locations.
923 *
924 * @mr: the region to contain the new subregion; must be a container
925 * initialized with memory_region_init().
926 * @offset: the offset relative to @mr where @subregion is added.
927 * @subregion: the subregion to be added.
928 * @priority: used for resolving overlaps; highest priority wins.
929 */
930 void memory_region_add_subregion_overlap(MemoryRegion *mr,
931 hwaddr offset,
932 MemoryRegion *subregion,
933 int priority);
934
935 /**
936 * memory_region_get_ram_addr: Get the ram address associated with a memory
937 * region
938 *
939 * DO NOT USE THIS FUNCTION. This is a temporary workaround while the Xen
940 * code is being reworked.
941 */
942 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr);
943
944 uint64_t memory_region_get_alignment(const MemoryRegion *mr);
945 /**
946 * memory_region_del_subregion: Remove a subregion.
947 *
948 * Removes a subregion from its container.
949 *
950 * @mr: the container to be updated.
951 * @subregion: the region being removed; must be a current subregion of @mr.
952 */
953 void memory_region_del_subregion(MemoryRegion *mr,
954 MemoryRegion *subregion);
955
956 /*
957 * memory_region_set_enabled: dynamically enable or disable a region
958 *
959 * Enables or disables a memory region. A disabled memory region
960 * ignores all accesses to itself and its subregions. It does not
961 * obscure sibling subregions with lower priority - it simply behaves as
962 * if it was removed from the hierarchy.
963 *
964 * Regions default to being enabled.
965 *
966 * @mr: the region to be updated
967 * @enabled: whether to enable or disable the region
968 */
969 void memory_region_set_enabled(MemoryRegion *mr, bool enabled);
970
971 /*
972 * memory_region_set_address: dynamically update the address of a region
973 *
974 * Dynamically updates the address of a region, relative to its container.
975 * May be used on regions are currently part of a memory hierarchy.
976 *
977 * @mr: the region to be updated
978 * @addr: new address, relative to container region
979 */
980 void memory_region_set_address(MemoryRegion *mr, hwaddr addr);
981
982 /*
983 * memory_region_set_size: dynamically update the size of a region.
984 *
985 * Dynamically updates the size of a region.
986 *
987 * @mr: the region to be updated
988 * @size: used size of the region.
989 */
990 void memory_region_set_size(MemoryRegion *mr, uint64_t size);
991
992 /*
993 * memory_region_set_alias_offset: dynamically update a memory alias's offset
994 *
995 * Dynamically updates the offset into the target region that an alias points
996 * to, as if the fourth argument to memory_region_init_alias() has changed.
997 *
998 * @mr: the #MemoryRegion to be updated; should be an alias.
999 * @offset: the new offset into the target memory region
1000 */
1001 void memory_region_set_alias_offset(MemoryRegion *mr,
1002 hwaddr offset);
1003
1004 /**
1005 * memory_region_present: checks if an address relative to a @container
1006 * translates into #MemoryRegion within @container
1007 *
1008 * Answer whether a #MemoryRegion within @container covers the address
1009 * @addr.
1010 *
1011 * @container: a #MemoryRegion within which @addr is a relative address
1012 * @addr: the area within @container to be searched
1013 */
1014 bool memory_region_present(MemoryRegion *container, hwaddr addr);
1015
1016 /**
1017 * memory_region_is_mapped: returns true if #MemoryRegion is mapped
1018 * into any address space.
1019 *
1020 * @mr: a #MemoryRegion which should be checked if it's mapped
1021 */
1022 bool memory_region_is_mapped(MemoryRegion *mr);
1023
1024 /**
1025 * memory_region_find: translate an address/size relative to a
1026 * MemoryRegion into a #MemoryRegionSection.
1027 *
1028 * Locates the first #MemoryRegion within @mr that overlaps the range
1029 * given by @addr and @size.
1030 *
1031 * Returns a #MemoryRegionSection that describes a contiguous overlap.
1032 * It will have the following characteristics:
1033 * .@size = 0 iff no overlap was found
1034 * .@mr is non-%NULL iff an overlap was found
1035 *
1036 * Remember that in the return value the @offset_within_region is
1037 * relative to the returned region (in the .@mr field), not to the
1038 * @mr argument.
1039 *
1040 * Similarly, the .@offset_within_address_space is relative to the
1041 * address space that contains both regions, the passed and the
1042 * returned one. However, in the special case where the @mr argument
1043 * has no container (and thus is the root of the address space), the
1044 * following will hold:
1045 * .@offset_within_address_space >= @addr
1046 * .@offset_within_address_space + .@size <= @addr + @size
1047 *
1048 * @mr: a MemoryRegion within which @addr is a relative address
1049 * @addr: start of the area within @as to be searched
1050 * @size: size of the area to be searched
1051 */
1052 MemoryRegionSection memory_region_find(MemoryRegion *mr,
1053 hwaddr addr, uint64_t size);
1054
1055 /**
1056 * address_space_sync_dirty_bitmap: synchronize the dirty log for all memory
1057 *
1058 * Synchronizes the dirty page log for an entire address space.
1059 * @as: the address space that contains the memory being synchronized
1060 */
1061 void address_space_sync_dirty_bitmap(AddressSpace *as);
1062
1063 /**
1064 * memory_region_transaction_begin: Start a transaction.
1065 *
1066 * During a transaction, changes will be accumulated and made visible
1067 * only when the transaction ends (is committed).
1068 */
1069 void memory_region_transaction_begin(void);
1070
1071 /**
1072 * memory_region_transaction_commit: Commit a transaction and make changes
1073 * visible to the guest.
1074 */
1075 void memory_region_transaction_commit(void);
1076
1077 /**
1078 * memory_listener_register: register callbacks to be called when memory
1079 * sections are mapped or unmapped into an address
1080 * space
1081 *
1082 * @listener: an object containing the callbacks to be called
1083 * @filter: if non-%NULL, only regions in this address space will be observed
1084 */
1085 void memory_listener_register(MemoryListener *listener, AddressSpace *filter);
1086
1087 /**
1088 * memory_listener_unregister: undo the effect of memory_listener_register()
1089 *
1090 * @listener: an object containing the callbacks to be removed
1091 */
1092 void memory_listener_unregister(MemoryListener *listener);
1093
1094 /**
1095 * memory_global_dirty_log_start: begin dirty logging for all regions
1096 */
1097 void memory_global_dirty_log_start(void);
1098
1099 /**
1100 * memory_global_dirty_log_stop: end dirty logging for all regions
1101 */
1102 void memory_global_dirty_log_stop(void);
1103
1104 void mtree_info(fprintf_function mon_printf, void *f);
1105
1106 /**
1107 * memory_region_dispatch_read: perform a read directly to the specified
1108 * MemoryRegion.
1109 *
1110 * @mr: #MemoryRegion to access
1111 * @addr: address within that region
1112 * @pval: pointer to uint64_t which the data is written to
1113 * @size: size of the access in bytes
1114 * @attrs: memory transaction attributes to use for the access
1115 */
1116 MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
1117 hwaddr addr,
1118 uint64_t *pval,
1119 unsigned size,
1120 MemTxAttrs attrs);
1121 /**
1122 * memory_region_dispatch_write: perform a write directly to the specified
1123 * MemoryRegion.
1124 *
1125 * @mr: #MemoryRegion to access
1126 * @addr: address within that region
1127 * @data: data to write
1128 * @size: size of the access in bytes
1129 * @attrs: memory transaction attributes to use for the access
1130 */
1131 MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
1132 hwaddr addr,
1133 uint64_t data,
1134 unsigned size,
1135 MemTxAttrs attrs);
1136
1137 /**
1138 * address_space_init: initializes an address space
1139 *
1140 * @as: an uninitialized #AddressSpace
1141 * @root: a #MemoryRegion that routes addesses for the address space
1142 * @name: an address space name. The name is only used for debugging
1143 * output.
1144 */
1145 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name);
1146
1147
1148 /**
1149 * address_space_destroy: destroy an address space
1150 *
1151 * Releases all resources associated with an address space. After an address space
1152 * is destroyed, its root memory region (given by address_space_init()) may be destroyed
1153 * as well.
1154 *
1155 * @as: address space to be destroyed
1156 */
1157 void address_space_destroy(AddressSpace *as);
1158
1159 /**
1160 * address_space_rw: read from or write to an address space.
1161 *
1162 * Return a MemTxResult indicating whether the operation succeeded
1163 * or failed (eg unassigned memory, device rejected the transaction,
1164 * IOMMU fault).
1165 *
1166 * @as: #AddressSpace to be accessed
1167 * @addr: address within that address space
1168 * @attrs: memory transaction attributes
1169 * @buf: buffer with the data transferred
1170 * @is_write: indicates the transfer direction
1171 */
1172 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr,
1173 MemTxAttrs attrs, uint8_t *buf,
1174 int len, bool is_write);
1175
1176 /**
1177 * address_space_write: write to address space.
1178 *
1179 * Return a MemTxResult indicating whether the operation succeeded
1180 * or failed (eg unassigned memory, device rejected the transaction,
1181 * IOMMU fault).
1182 *
1183 * @as: #AddressSpace to be accessed
1184 * @addr: address within that address space
1185 * @attrs: memory transaction attributes
1186 * @buf: buffer with the data transferred
1187 */
1188 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
1189 MemTxAttrs attrs,
1190 const uint8_t *buf, int len);
1191
1192 /**
1193 * address_space_read: read from an address space.
1194 *
1195 * Return a MemTxResult indicating whether the operation succeeded
1196 * or failed (eg unassigned memory, device rejected the transaction,
1197 * IOMMU fault).
1198 *
1199 * @as: #AddressSpace to be accessed
1200 * @addr: address within that address space
1201 * @attrs: memory transaction attributes
1202 * @buf: buffer with the data transferred
1203 */
1204 MemTxResult address_space_read(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
1205 uint8_t *buf, int len);
1206
1207 /**
1208 * address_space_ld*: load from an address space
1209 * address_space_st*: store to an address space
1210 *
1211 * These functions perform a load or store of the byte, word,
1212 * longword or quad to the specified address within the AddressSpace.
1213 * The _le suffixed functions treat the data as little endian;
1214 * _be indicates big endian; no suffix indicates "same endianness
1215 * as guest CPU".
1216 *
1217 * The "guest CPU endianness" accessors are deprecated for use outside
1218 * target-* code; devices should be CPU-agnostic and use either the LE
1219 * or the BE accessors.
1220 *
1221 * @as #AddressSpace to be accessed
1222 * @addr: address within that address space
1223 * @val: data value, for stores
1224 * @attrs: memory transaction attributes
1225 * @result: location to write the success/failure of the transaction;
1226 * if NULL, this information is discarded
1227 */
1228 uint32_t address_space_ldub(AddressSpace *as, hwaddr addr,
1229 MemTxAttrs attrs, MemTxResult *result);
1230 uint32_t address_space_lduw_le(AddressSpace *as, hwaddr addr,
1231 MemTxAttrs attrs, MemTxResult *result);
1232 uint32_t address_space_lduw_be(AddressSpace *as, hwaddr addr,
1233 MemTxAttrs attrs, MemTxResult *result);
1234 uint32_t address_space_ldl_le(AddressSpace *as, hwaddr addr,
1235 MemTxAttrs attrs, MemTxResult *result);
1236 uint32_t address_space_ldl_be(AddressSpace *as, hwaddr addr,
1237 MemTxAttrs attrs, MemTxResult *result);
1238 uint64_t address_space_ldq_le(AddressSpace *as, hwaddr addr,
1239 MemTxAttrs attrs, MemTxResult *result);
1240 uint64_t address_space_ldq_be(AddressSpace *as, hwaddr addr,
1241 MemTxAttrs attrs, MemTxResult *result);
1242 void address_space_stb(AddressSpace *as, hwaddr addr, uint32_t val,
1243 MemTxAttrs attrs, MemTxResult *result);
1244 void address_space_stw_le(AddressSpace *as, hwaddr addr, uint32_t val,
1245 MemTxAttrs attrs, MemTxResult *result);
1246 void address_space_stw_be(AddressSpace *as, hwaddr addr, uint32_t val,
1247 MemTxAttrs attrs, MemTxResult *result);
1248 void address_space_stl_le(AddressSpace *as, hwaddr addr, uint32_t val,
1249 MemTxAttrs attrs, MemTxResult *result);
1250 void address_space_stl_be(AddressSpace *as, hwaddr addr, uint32_t val,
1251 MemTxAttrs attrs, MemTxResult *result);
1252 void address_space_stq_le(AddressSpace *as, hwaddr addr, uint64_t val,
1253 MemTxAttrs attrs, MemTxResult *result);
1254 void address_space_stq_be(AddressSpace *as, hwaddr addr, uint64_t val,
1255 MemTxAttrs attrs, MemTxResult *result);
1256
1257 #ifdef NEED_CPU_H
1258 uint32_t address_space_lduw(AddressSpace *as, hwaddr addr,
1259 MemTxAttrs attrs, MemTxResult *result);
1260 uint32_t address_space_ldl(AddressSpace *as, hwaddr addr,
1261 MemTxAttrs attrs, MemTxResult *result);
1262 uint64_t address_space_ldq(AddressSpace *as, hwaddr addr,
1263 MemTxAttrs attrs, MemTxResult *result);
1264 void address_space_stl_notdirty(AddressSpace *as, hwaddr addr, uint32_t val,
1265 MemTxAttrs attrs, MemTxResult *result);
1266 void address_space_stw(AddressSpace *as, hwaddr addr, uint32_t val,
1267 MemTxAttrs attrs, MemTxResult *result);
1268 void address_space_stl(AddressSpace *as, hwaddr addr, uint32_t val,
1269 MemTxAttrs attrs, MemTxResult *result);
1270 void address_space_stq(AddressSpace *as, hwaddr addr, uint64_t val,
1271 MemTxAttrs attrs, MemTxResult *result);
1272 #endif
1273
1274 /* address_space_translate: translate an address range into an address space
1275 * into a MemoryRegion and an address range into that section. Should be
1276 * called from an RCU critical section, to avoid that the last reference
1277 * to the returned region disappears after address_space_translate returns.
1278 *
1279 * @as: #AddressSpace to be accessed
1280 * @addr: address within that address space
1281 * @xlat: pointer to address within the returned memory region section's
1282 * #MemoryRegion.
1283 * @len: pointer to length
1284 * @is_write: indicates the transfer direction
1285 */
1286 MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr,
1287 hwaddr *xlat, hwaddr *len,
1288 bool is_write);
1289
1290 /* address_space_access_valid: check for validity of accessing an address
1291 * space range
1292 *
1293 * Check whether memory is assigned to the given address space range, and
1294 * access is permitted by any IOMMU regions that are active for the address
1295 * space.
1296 *
1297 * For now, addr and len should be aligned to a page size. This limitation
1298 * will be lifted in the future.
1299 *
1300 * @as: #AddressSpace to be accessed
1301 * @addr: address within that address space
1302 * @len: length of the area to be checked
1303 * @is_write: indicates the transfer direction
1304 */
1305 bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write);
1306
1307 /* address_space_map: map a physical memory region into a host virtual address
1308 *
1309 * May map a subset of the requested range, given by and returned in @plen.
1310 * May return %NULL if resources needed to perform the mapping are exhausted.
1311 * Use only for reads OR writes - not for read-modify-write operations.
1312 * Use cpu_register_map_client() to know when retrying the map operation is
1313 * likely to succeed.
1314 *
1315 * @as: #AddressSpace to be accessed
1316 * @addr: address within that address space
1317 * @plen: pointer to length of buffer; updated on return
1318 * @is_write: indicates the transfer direction
1319 */
1320 void *address_space_map(AddressSpace *as, hwaddr addr,
1321 hwaddr *plen, bool is_write);
1322
1323 /* address_space_unmap: Unmaps a memory region previously mapped by address_space_map()
1324 *
1325 * Will also mark the memory as dirty if @is_write == %true. @access_len gives
1326 * the amount of memory that was actually read or written by the caller.
1327 *
1328 * @as: #AddressSpace used
1329 * @addr: address within that address space
1330 * @len: buffer length as returned by address_space_map()
1331 * @access_len: amount of data actually transferred
1332 * @is_write: indicates the transfer direction
1333 */
1334 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
1335 int is_write, hwaddr access_len);
1336
1337
1338 #endif
1339
1340 #endif