]> git.proxmox.com Git - mirror_qemu.git/blob - include/exec/memory.h
Add skip_dump flag to ignore memory region during dump
[mirror_qemu.git] / include / exec / memory.h
1 /*
2 * Physical memory management API
3 *
4 * Copyright 2011 Red Hat, Inc. and/or its affiliates
5 *
6 * Authors:
7 * Avi Kivity <avi@redhat.com>
8 *
9 * This work is licensed under the terms of the GNU GPL, version 2. See
10 * the COPYING file in the top-level directory.
11 *
12 */
13
14 #ifndef MEMORY_H
15 #define MEMORY_H
16
17 #ifndef CONFIG_USER_ONLY
18
19 #define DIRTY_MEMORY_VGA 0
20 #define DIRTY_MEMORY_CODE 1
21 #define DIRTY_MEMORY_MIGRATION 2
22 #define DIRTY_MEMORY_NUM 3 /* num of dirty bits */
23
24 #include <stdint.h>
25 #include <stdbool.h>
26 #include "qemu-common.h"
27 #include "exec/cpu-common.h"
28 #ifndef CONFIG_USER_ONLY
29 #include "exec/hwaddr.h"
30 #endif
31 #include "qemu/queue.h"
32 #include "qemu/int128.h"
33 #include "qemu/notify.h"
34 #include "qapi/error.h"
35 #include "qom/object.h"
36
37 #define MAX_PHYS_ADDR_SPACE_BITS 62
38 #define MAX_PHYS_ADDR (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1)
39
40 #define TYPE_MEMORY_REGION "qemu:memory-region"
41 #define MEMORY_REGION(obj) \
42 OBJECT_CHECK(MemoryRegion, (obj), TYPE_MEMORY_REGION)
43
44 typedef struct MemoryRegionOps MemoryRegionOps;
45 typedef struct MemoryRegionMmio MemoryRegionMmio;
46
47 struct MemoryRegionMmio {
48 CPUReadMemoryFunc *read[3];
49 CPUWriteMemoryFunc *write[3];
50 };
51
52 typedef struct IOMMUTLBEntry IOMMUTLBEntry;
53
54 /* See address_space_translate: bit 0 is read, bit 1 is write. */
55 typedef enum {
56 IOMMU_NONE = 0,
57 IOMMU_RO = 1,
58 IOMMU_WO = 2,
59 IOMMU_RW = 3,
60 } IOMMUAccessFlags;
61
62 struct IOMMUTLBEntry {
63 AddressSpace *target_as;
64 hwaddr iova;
65 hwaddr translated_addr;
66 hwaddr addr_mask; /* 0xfff = 4k translation */
67 IOMMUAccessFlags perm;
68 };
69
70 /*
71 * Memory region callbacks
72 */
73 struct MemoryRegionOps {
74 /* Read from the memory region. @addr is relative to @mr; @size is
75 * in bytes. */
76 uint64_t (*read)(void *opaque,
77 hwaddr addr,
78 unsigned size);
79 /* Write to the memory region. @addr is relative to @mr; @size is
80 * in bytes. */
81 void (*write)(void *opaque,
82 hwaddr addr,
83 uint64_t data,
84 unsigned size);
85
86 enum device_endian endianness;
87 /* Guest-visible constraints: */
88 struct {
89 /* If nonzero, specify bounds on access sizes beyond which a machine
90 * check is thrown.
91 */
92 unsigned min_access_size;
93 unsigned max_access_size;
94 /* If true, unaligned accesses are supported. Otherwise unaligned
95 * accesses throw machine checks.
96 */
97 bool unaligned;
98 /*
99 * If present, and returns #false, the transaction is not accepted
100 * by the device (and results in machine dependent behaviour such
101 * as a machine check exception).
102 */
103 bool (*accepts)(void *opaque, hwaddr addr,
104 unsigned size, bool is_write);
105 } valid;
106 /* Internal implementation constraints: */
107 struct {
108 /* If nonzero, specifies the minimum size implemented. Smaller sizes
109 * will be rounded upwards and a partial result will be returned.
110 */
111 unsigned min_access_size;
112 /* If nonzero, specifies the maximum size implemented. Larger sizes
113 * will be done as a series of accesses with smaller sizes.
114 */
115 unsigned max_access_size;
116 /* If true, unaligned accesses are supported. Otherwise all accesses
117 * are converted to (possibly multiple) naturally aligned accesses.
118 */
119 bool unaligned;
120 } impl;
121
122 /* If .read and .write are not present, old_mmio may be used for
123 * backwards compatibility with old mmio registration
124 */
125 const MemoryRegionMmio old_mmio;
126 };
127
128 typedef struct MemoryRegionIOMMUOps MemoryRegionIOMMUOps;
129
130 struct MemoryRegionIOMMUOps {
131 /* Return a TLB entry that contains a given address. */
132 IOMMUTLBEntry (*translate)(MemoryRegion *iommu, hwaddr addr, bool is_write);
133 };
134
135 typedef struct CoalescedMemoryRange CoalescedMemoryRange;
136 typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd;
137
138 struct MemoryRegion {
139 Object parent_obj;
140 /* All fields are private - violators will be prosecuted */
141 const MemoryRegionOps *ops;
142 const MemoryRegionIOMMUOps *iommu_ops;
143 void *opaque;
144 MemoryRegion *container;
145 Int128 size;
146 hwaddr addr;
147 void (*destructor)(MemoryRegion *mr);
148 ram_addr_t ram_addr;
149 bool subpage;
150 bool terminates;
151 bool romd_mode;
152 bool ram;
153 bool skip_dump;
154 bool readonly; /* For RAM regions */
155 bool enabled;
156 bool rom_device;
157 bool warning_printed; /* For reservations */
158 bool flush_coalesced_mmio;
159 MemoryRegion *alias;
160 hwaddr alias_offset;
161 int32_t priority;
162 bool may_overlap;
163 QTAILQ_HEAD(subregions, MemoryRegion) subregions;
164 QTAILQ_ENTRY(MemoryRegion) subregions_link;
165 QTAILQ_HEAD(coalesced_ranges, CoalescedMemoryRange) coalesced;
166 const char *name;
167 uint8_t dirty_log_mask;
168 unsigned ioeventfd_nb;
169 MemoryRegionIoeventfd *ioeventfds;
170 NotifierList iommu_notify;
171 };
172
173 /**
174 * MemoryListener: callbacks structure for updates to the physical memory map
175 *
176 * Allows a component to adjust to changes in the guest-visible memory map.
177 * Use with memory_listener_register() and memory_listener_unregister().
178 */
179 struct MemoryListener {
180 void (*begin)(MemoryListener *listener);
181 void (*commit)(MemoryListener *listener);
182 void (*region_add)(MemoryListener *listener, MemoryRegionSection *section);
183 void (*region_del)(MemoryListener *listener, MemoryRegionSection *section);
184 void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section);
185 void (*log_start)(MemoryListener *listener, MemoryRegionSection *section);
186 void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section);
187 void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section);
188 void (*log_global_start)(MemoryListener *listener);
189 void (*log_global_stop)(MemoryListener *listener);
190 void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section,
191 bool match_data, uint64_t data, EventNotifier *e);
192 void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section,
193 bool match_data, uint64_t data, EventNotifier *e);
194 void (*coalesced_mmio_add)(MemoryListener *listener, MemoryRegionSection *section,
195 hwaddr addr, hwaddr len);
196 void (*coalesced_mmio_del)(MemoryListener *listener, MemoryRegionSection *section,
197 hwaddr addr, hwaddr len);
198 /* Lower = earlier (during add), later (during del) */
199 unsigned priority;
200 AddressSpace *address_space_filter;
201 QTAILQ_ENTRY(MemoryListener) link;
202 };
203
204 /**
205 * AddressSpace: describes a mapping of addresses to #MemoryRegion objects
206 */
207 struct AddressSpace {
208 /* All fields are private. */
209 char *name;
210 MemoryRegion *root;
211 struct FlatView *current_map;
212 int ioeventfd_nb;
213 struct MemoryRegionIoeventfd *ioeventfds;
214 struct AddressSpaceDispatch *dispatch;
215 struct AddressSpaceDispatch *next_dispatch;
216 MemoryListener dispatch_listener;
217
218 QTAILQ_ENTRY(AddressSpace) address_spaces_link;
219 };
220
221 /**
222 * MemoryRegionSection: describes a fragment of a #MemoryRegion
223 *
224 * @mr: the region, or %NULL if empty
225 * @address_space: the address space the region is mapped in
226 * @offset_within_region: the beginning of the section, relative to @mr's start
227 * @size: the size of the section; will not exceed @mr's boundaries
228 * @offset_within_address_space: the address of the first byte of the section
229 * relative to the region's address space
230 * @readonly: writes to this section are ignored
231 */
232 struct MemoryRegionSection {
233 MemoryRegion *mr;
234 AddressSpace *address_space;
235 hwaddr offset_within_region;
236 Int128 size;
237 hwaddr offset_within_address_space;
238 bool readonly;
239 };
240
241 /**
242 * memory_region_init: Initialize a memory region
243 *
244 * The region typically acts as a container for other memory regions. Use
245 * memory_region_add_subregion() to add subregions.
246 *
247 * @mr: the #MemoryRegion to be initialized
248 * @owner: the object that tracks the region's reference count
249 * @name: used for debugging; not visible to the user or ABI
250 * @size: size of the region; any subregions beyond this size will be clipped
251 */
252 void memory_region_init(MemoryRegion *mr,
253 struct Object *owner,
254 const char *name,
255 uint64_t size);
256
257 /**
258 * memory_region_ref: Add 1 to a memory region's reference count
259 *
260 * Whenever memory regions are accessed outside the BQL, they need to be
261 * preserved against hot-unplug. MemoryRegions actually do not have their
262 * own reference count; they piggyback on a QOM object, their "owner".
263 * This function adds a reference to the owner.
264 *
265 * All MemoryRegions must have an owner if they can disappear, even if the
266 * device they belong to operates exclusively under the BQL. This is because
267 * the region could be returned at any time by memory_region_find, and this
268 * is usually under guest control.
269 *
270 * @mr: the #MemoryRegion
271 */
272 void memory_region_ref(MemoryRegion *mr);
273
274 /**
275 * memory_region_unref: Remove 1 to a memory region's reference count
276 *
277 * Whenever memory regions are accessed outside the BQL, they need to be
278 * preserved against hot-unplug. MemoryRegions actually do not have their
279 * own reference count; they piggyback on a QOM object, their "owner".
280 * This function removes a reference to the owner and possibly destroys it.
281 *
282 * @mr: the #MemoryRegion
283 */
284 void memory_region_unref(MemoryRegion *mr);
285
286 /**
287 * memory_region_init_io: Initialize an I/O memory region.
288 *
289 * Accesses into the region will cause the callbacks in @ops to be called.
290 * if @size is nonzero, subregions will be clipped to @size.
291 *
292 * @mr: the #MemoryRegion to be initialized.
293 * @owner: the object that tracks the region's reference count
294 * @ops: a structure containing read and write callbacks to be used when
295 * I/O is performed on the region.
296 * @opaque: passed to to the read and write callbacks of the @ops structure.
297 * @name: used for debugging; not visible to the user or ABI
298 * @size: size of the region.
299 */
300 void memory_region_init_io(MemoryRegion *mr,
301 struct Object *owner,
302 const MemoryRegionOps *ops,
303 void *opaque,
304 const char *name,
305 uint64_t size);
306
307 /**
308 * memory_region_init_ram: Initialize RAM memory region. Accesses into the
309 * region will modify memory directly.
310 *
311 * @mr: the #MemoryRegion to be initialized.
312 * @owner: the object that tracks the region's reference count
313 * @name: the name of the region.
314 * @size: size of the region.
315 * @errp: pointer to Error*, to store an error if it happens.
316 */
317 void memory_region_init_ram(MemoryRegion *mr,
318 struct Object *owner,
319 const char *name,
320 uint64_t size,
321 Error **errp);
322
323 #ifdef __linux__
324 /**
325 * memory_region_init_ram_from_file: Initialize RAM memory region with a
326 * mmap-ed backend.
327 *
328 * @mr: the #MemoryRegion to be initialized.
329 * @owner: the object that tracks the region's reference count
330 * @name: the name of the region.
331 * @size: size of the region.
332 * @share: %true if memory must be mmaped with the MAP_SHARED flag
333 * @path: the path in which to allocate the RAM.
334 * @errp: pointer to Error*, to store an error if it happens.
335 */
336 void memory_region_init_ram_from_file(MemoryRegion *mr,
337 struct Object *owner,
338 const char *name,
339 uint64_t size,
340 bool share,
341 const char *path,
342 Error **errp);
343 #endif
344
345 /**
346 * memory_region_init_ram_ptr: Initialize RAM memory region from a
347 * user-provided pointer. Accesses into the
348 * region will modify memory directly.
349 *
350 * @mr: the #MemoryRegion to be initialized.
351 * @owner: the object that tracks the region's reference count
352 * @name: the name of the region.
353 * @size: size of the region.
354 * @ptr: memory to be mapped; must contain at least @size bytes.
355 */
356 void memory_region_init_ram_ptr(MemoryRegion *mr,
357 struct Object *owner,
358 const char *name,
359 uint64_t size,
360 void *ptr);
361
362 /**
363 * memory_region_init_alias: Initialize a memory region that aliases all or a
364 * part of another memory region.
365 *
366 * @mr: the #MemoryRegion to be initialized.
367 * @owner: the object that tracks the region's reference count
368 * @name: used for debugging; not visible to the user or ABI
369 * @orig: the region to be referenced; @mr will be equivalent to
370 * @orig between @offset and @offset + @size - 1.
371 * @offset: start of the section in @orig to be referenced.
372 * @size: size of the region.
373 */
374 void memory_region_init_alias(MemoryRegion *mr,
375 struct Object *owner,
376 const char *name,
377 MemoryRegion *orig,
378 hwaddr offset,
379 uint64_t size);
380
381 /**
382 * memory_region_init_rom_device: Initialize a ROM memory region. Writes are
383 * handled via callbacks.
384 *
385 * @mr: the #MemoryRegion to be initialized.
386 * @owner: the object that tracks the region's reference count
387 * @ops: callbacks for write access handling.
388 * @name: the name of the region.
389 * @size: size of the region.
390 * @errp: pointer to Error*, to store an error if it happens.
391 */
392 void memory_region_init_rom_device(MemoryRegion *mr,
393 struct Object *owner,
394 const MemoryRegionOps *ops,
395 void *opaque,
396 const char *name,
397 uint64_t size,
398 Error **errp);
399
400 /**
401 * memory_region_init_reservation: Initialize a memory region that reserves
402 * I/O space.
403 *
404 * A reservation region primariy serves debugging purposes. It claims I/O
405 * space that is not supposed to be handled by QEMU itself. Any access via
406 * the memory API will cause an abort().
407 *
408 * @mr: the #MemoryRegion to be initialized
409 * @owner: the object that tracks the region's reference count
410 * @name: used for debugging; not visible to the user or ABI
411 * @size: size of the region.
412 */
413 void memory_region_init_reservation(MemoryRegion *mr,
414 struct Object *owner,
415 const char *name,
416 uint64_t size);
417
418 /**
419 * memory_region_init_iommu: Initialize a memory region that translates
420 * addresses
421 *
422 * An IOMMU region translates addresses and forwards accesses to a target
423 * memory region.
424 *
425 * @mr: the #MemoryRegion to be initialized
426 * @owner: the object that tracks the region's reference count
427 * @ops: a function that translates addresses into the @target region
428 * @name: used for debugging; not visible to the user or ABI
429 * @size: size of the region.
430 */
431 void memory_region_init_iommu(MemoryRegion *mr,
432 struct Object *owner,
433 const MemoryRegionIOMMUOps *ops,
434 const char *name,
435 uint64_t size);
436
437 /**
438 * memory_region_owner: get a memory region's owner.
439 *
440 * @mr: the memory region being queried.
441 */
442 struct Object *memory_region_owner(MemoryRegion *mr);
443
444 /**
445 * memory_region_size: get a memory region's size.
446 *
447 * @mr: the memory region being queried.
448 */
449 uint64_t memory_region_size(MemoryRegion *mr);
450
451 /**
452 * memory_region_is_ram: check whether a memory region is random access
453 *
454 * Returns %true is a memory region is random access.
455 *
456 * @mr: the memory region being queried
457 */
458 bool memory_region_is_ram(MemoryRegion *mr);
459
460 /**
461 * memory_region_is_skip_dump: check whether a memory region should not be
462 * dumped
463 *
464 * Returns %true is a memory region should not be dumped(e.g. VFIO BAR MMAP).
465 *
466 * @mr: the memory region being queried
467 */
468 bool memory_region_is_skip_dump(MemoryRegion *mr);
469
470 /**
471 * memory_region_set_skip_dump: Set skip_dump flag, dump will ignore this memory
472 * region
473 *
474 * @mr: the memory region being queried
475 */
476 void memory_region_set_skip_dump(MemoryRegion *mr);
477
478 /**
479 * memory_region_is_romd: check whether a memory region is in ROMD mode
480 *
481 * Returns %true if a memory region is a ROM device and currently set to allow
482 * direct reads.
483 *
484 * @mr: the memory region being queried
485 */
486 static inline bool memory_region_is_romd(MemoryRegion *mr)
487 {
488 return mr->rom_device && mr->romd_mode;
489 }
490
491 /**
492 * memory_region_is_iommu: check whether a memory region is an iommu
493 *
494 * Returns %true is a memory region is an iommu.
495 *
496 * @mr: the memory region being queried
497 */
498 bool memory_region_is_iommu(MemoryRegion *mr);
499
500 /**
501 * memory_region_notify_iommu: notify a change in an IOMMU translation entry.
502 *
503 * @mr: the memory region that was changed
504 * @entry: the new entry in the IOMMU translation table. The entry
505 * replaces all old entries for the same virtual I/O address range.
506 * Deleted entries have .@perm == 0.
507 */
508 void memory_region_notify_iommu(MemoryRegion *mr,
509 IOMMUTLBEntry entry);
510
511 /**
512 * memory_region_register_iommu_notifier: register a notifier for changes to
513 * IOMMU translation entries.
514 *
515 * @mr: the memory region to observe
516 * @n: the notifier to be added; the notifier receives a pointer to an
517 * #IOMMUTLBEntry as the opaque value; the pointer ceases to be
518 * valid on exit from the notifier.
519 */
520 void memory_region_register_iommu_notifier(MemoryRegion *mr, Notifier *n);
521
522 /**
523 * memory_region_unregister_iommu_notifier: unregister a notifier for
524 * changes to IOMMU translation entries.
525 *
526 * @n: the notifier to be removed.
527 */
528 void memory_region_unregister_iommu_notifier(Notifier *n);
529
530 /**
531 * memory_region_name: get a memory region's name
532 *
533 * Returns the string that was used to initialize the memory region.
534 *
535 * @mr: the memory region being queried
536 */
537 const char *memory_region_name(const MemoryRegion *mr);
538
539 /**
540 * memory_region_is_logging: return whether a memory region is logging writes
541 *
542 * Returns %true if the memory region is logging writes
543 *
544 * @mr: the memory region being queried
545 */
546 bool memory_region_is_logging(MemoryRegion *mr);
547
548 /**
549 * memory_region_is_rom: check whether a memory region is ROM
550 *
551 * Returns %true is a memory region is read-only memory.
552 *
553 * @mr: the memory region being queried
554 */
555 bool memory_region_is_rom(MemoryRegion *mr);
556
557 /**
558 * memory_region_get_fd: Get a file descriptor backing a RAM memory region.
559 *
560 * Returns a file descriptor backing a file-based RAM memory region,
561 * or -1 if the region is not a file-based RAM memory region.
562 *
563 * @mr: the RAM or alias memory region being queried.
564 */
565 int memory_region_get_fd(MemoryRegion *mr);
566
567 /**
568 * memory_region_get_ram_ptr: Get a pointer into a RAM memory region.
569 *
570 * Returns a host pointer to a RAM memory region (created with
571 * memory_region_init_ram() or memory_region_init_ram_ptr()). Use with
572 * care.
573 *
574 * @mr: the memory region being queried.
575 */
576 void *memory_region_get_ram_ptr(MemoryRegion *mr);
577
578 /**
579 * memory_region_set_log: Turn dirty logging on or off for a region.
580 *
581 * Turns dirty logging on or off for a specified client (display, migration).
582 * Only meaningful for RAM regions.
583 *
584 * @mr: the memory region being updated.
585 * @log: whether dirty logging is to be enabled or disabled.
586 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
587 * %DIRTY_MEMORY_VGA.
588 */
589 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client);
590
591 /**
592 * memory_region_get_dirty: Check whether a range of bytes is dirty
593 * for a specified client.
594 *
595 * Checks whether a range of bytes has been written to since the last
596 * call to memory_region_reset_dirty() with the same @client. Dirty logging
597 * must be enabled.
598 *
599 * @mr: the memory region being queried.
600 * @addr: the address (relative to the start of the region) being queried.
601 * @size: the size of the range being queried.
602 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
603 * %DIRTY_MEMORY_VGA.
604 */
605 bool memory_region_get_dirty(MemoryRegion *mr, hwaddr addr,
606 hwaddr size, unsigned client);
607
608 /**
609 * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region.
610 *
611 * Marks a range of bytes as dirty, after it has been dirtied outside
612 * guest code.
613 *
614 * @mr: the memory region being dirtied.
615 * @addr: the address (relative to the start of the region) being dirtied.
616 * @size: size of the range being dirtied.
617 */
618 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
619 hwaddr size);
620
621 /**
622 * memory_region_test_and_clear_dirty: Check whether a range of bytes is dirty
623 * for a specified client. It clears them.
624 *
625 * Checks whether a range of bytes has been written to since the last
626 * call to memory_region_reset_dirty() with the same @client. Dirty logging
627 * must be enabled.
628 *
629 * @mr: the memory region being queried.
630 * @addr: the address (relative to the start of the region) being queried.
631 * @size: the size of the range being queried.
632 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
633 * %DIRTY_MEMORY_VGA.
634 */
635 bool memory_region_test_and_clear_dirty(MemoryRegion *mr, hwaddr addr,
636 hwaddr size, unsigned client);
637 /**
638 * memory_region_sync_dirty_bitmap: Synchronize a region's dirty bitmap with
639 * any external TLBs (e.g. kvm)
640 *
641 * Flushes dirty information from accelerators such as kvm and vhost-net
642 * and makes it available to users of the memory API.
643 *
644 * @mr: the region being flushed.
645 */
646 void memory_region_sync_dirty_bitmap(MemoryRegion *mr);
647
648 /**
649 * memory_region_reset_dirty: Mark a range of pages as clean, for a specified
650 * client.
651 *
652 * Marks a range of pages as no longer dirty.
653 *
654 * @mr: the region being updated.
655 * @addr: the start of the subrange being cleaned.
656 * @size: the size of the subrange being cleaned.
657 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
658 * %DIRTY_MEMORY_VGA.
659 */
660 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
661 hwaddr size, unsigned client);
662
663 /**
664 * memory_region_set_readonly: Turn a memory region read-only (or read-write)
665 *
666 * Allows a memory region to be marked as read-only (turning it into a ROM).
667 * only useful on RAM regions.
668 *
669 * @mr: the region being updated.
670 * @readonly: whether rhe region is to be ROM or RAM.
671 */
672 void memory_region_set_readonly(MemoryRegion *mr, bool readonly);
673
674 /**
675 * memory_region_rom_device_set_romd: enable/disable ROMD mode
676 *
677 * Allows a ROM device (initialized with memory_region_init_rom_device() to
678 * set to ROMD mode (default) or MMIO mode. When it is in ROMD mode, the
679 * device is mapped to guest memory and satisfies read access directly.
680 * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function.
681 * Writes are always handled by the #MemoryRegion.write function.
682 *
683 * @mr: the memory region to be updated
684 * @romd_mode: %true to put the region into ROMD mode
685 */
686 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode);
687
688 /**
689 * memory_region_set_coalescing: Enable memory coalescing for the region.
690 *
691 * Enabled writes to a region to be queued for later processing. MMIO ->write
692 * callbacks may be delayed until a non-coalesced MMIO is issued.
693 * Only useful for IO regions. Roughly similar to write-combining hardware.
694 *
695 * @mr: the memory region to be write coalesced
696 */
697 void memory_region_set_coalescing(MemoryRegion *mr);
698
699 /**
700 * memory_region_add_coalescing: Enable memory coalescing for a sub-range of
701 * a region.
702 *
703 * Like memory_region_set_coalescing(), but works on a sub-range of a region.
704 * Multiple calls can be issued coalesced disjoint ranges.
705 *
706 * @mr: the memory region to be updated.
707 * @offset: the start of the range within the region to be coalesced.
708 * @size: the size of the subrange to be coalesced.
709 */
710 void memory_region_add_coalescing(MemoryRegion *mr,
711 hwaddr offset,
712 uint64_t size);
713
714 /**
715 * memory_region_clear_coalescing: Disable MMIO coalescing for the region.
716 *
717 * Disables any coalescing caused by memory_region_set_coalescing() or
718 * memory_region_add_coalescing(). Roughly equivalent to uncacheble memory
719 * hardware.
720 *
721 * @mr: the memory region to be updated.
722 */
723 void memory_region_clear_coalescing(MemoryRegion *mr);
724
725 /**
726 * memory_region_set_flush_coalesced: Enforce memory coalescing flush before
727 * accesses.
728 *
729 * Ensure that pending coalesced MMIO request are flushed before the memory
730 * region is accessed. This property is automatically enabled for all regions
731 * passed to memory_region_set_coalescing() and memory_region_add_coalescing().
732 *
733 * @mr: the memory region to be updated.
734 */
735 void memory_region_set_flush_coalesced(MemoryRegion *mr);
736
737 /**
738 * memory_region_clear_flush_coalesced: Disable memory coalescing flush before
739 * accesses.
740 *
741 * Clear the automatic coalesced MMIO flushing enabled via
742 * memory_region_set_flush_coalesced. Note that this service has no effect on
743 * memory regions that have MMIO coalescing enabled for themselves. For them,
744 * automatic flushing will stop once coalescing is disabled.
745 *
746 * @mr: the memory region to be updated.
747 */
748 void memory_region_clear_flush_coalesced(MemoryRegion *mr);
749
750 /**
751 * memory_region_add_eventfd: Request an eventfd to be triggered when a word
752 * is written to a location.
753 *
754 * Marks a word in an IO region (initialized with memory_region_init_io())
755 * as a trigger for an eventfd event. The I/O callback will not be called.
756 * The caller must be prepared to handle failure (that is, take the required
757 * action if the callback _is_ called).
758 *
759 * @mr: the memory region being updated.
760 * @addr: the address within @mr that is to be monitored
761 * @size: the size of the access to trigger the eventfd
762 * @match_data: whether to match against @data, instead of just @addr
763 * @data: the data to match against the guest write
764 * @fd: the eventfd to be triggered when @addr, @size, and @data all match.
765 **/
766 void memory_region_add_eventfd(MemoryRegion *mr,
767 hwaddr addr,
768 unsigned size,
769 bool match_data,
770 uint64_t data,
771 EventNotifier *e);
772
773 /**
774 * memory_region_del_eventfd: Cancel an eventfd.
775 *
776 * Cancels an eventfd trigger requested by a previous
777 * memory_region_add_eventfd() call.
778 *
779 * @mr: the memory region being updated.
780 * @addr: the address within @mr that is to be monitored
781 * @size: the size of the access to trigger the eventfd
782 * @match_data: whether to match against @data, instead of just @addr
783 * @data: the data to match against the guest write
784 * @fd: the eventfd to be triggered when @addr, @size, and @data all match.
785 */
786 void memory_region_del_eventfd(MemoryRegion *mr,
787 hwaddr addr,
788 unsigned size,
789 bool match_data,
790 uint64_t data,
791 EventNotifier *e);
792
793 /**
794 * memory_region_add_subregion: Add a subregion to a container.
795 *
796 * Adds a subregion at @offset. The subregion may not overlap with other
797 * subregions (except for those explicitly marked as overlapping). A region
798 * may only be added once as a subregion (unless removed with
799 * memory_region_del_subregion()); use memory_region_init_alias() if you
800 * want a region to be a subregion in multiple locations.
801 *
802 * @mr: the region to contain the new subregion; must be a container
803 * initialized with memory_region_init().
804 * @offset: the offset relative to @mr where @subregion is added.
805 * @subregion: the subregion to be added.
806 */
807 void memory_region_add_subregion(MemoryRegion *mr,
808 hwaddr offset,
809 MemoryRegion *subregion);
810 /**
811 * memory_region_add_subregion_overlap: Add a subregion to a container
812 * with overlap.
813 *
814 * Adds a subregion at @offset. The subregion may overlap with other
815 * subregions. Conflicts are resolved by having a higher @priority hide a
816 * lower @priority. Subregions without priority are taken as @priority 0.
817 * A region may only be added once as a subregion (unless removed with
818 * memory_region_del_subregion()); use memory_region_init_alias() if you
819 * want a region to be a subregion in multiple locations.
820 *
821 * @mr: the region to contain the new subregion; must be a container
822 * initialized with memory_region_init().
823 * @offset: the offset relative to @mr where @subregion is added.
824 * @subregion: the subregion to be added.
825 * @priority: used for resolving overlaps; highest priority wins.
826 */
827 void memory_region_add_subregion_overlap(MemoryRegion *mr,
828 hwaddr offset,
829 MemoryRegion *subregion,
830 int priority);
831
832 /**
833 * memory_region_get_ram_addr: Get the ram address associated with a memory
834 * region
835 *
836 * DO NOT USE THIS FUNCTION. This is a temporary workaround while the Xen
837 * code is being reworked.
838 */
839 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr);
840
841 /**
842 * memory_region_del_subregion: Remove a subregion.
843 *
844 * Removes a subregion from its container.
845 *
846 * @mr: the container to be updated.
847 * @subregion: the region being removed; must be a current subregion of @mr.
848 */
849 void memory_region_del_subregion(MemoryRegion *mr,
850 MemoryRegion *subregion);
851
852 /*
853 * memory_region_set_enabled: dynamically enable or disable a region
854 *
855 * Enables or disables a memory region. A disabled memory region
856 * ignores all accesses to itself and its subregions. It does not
857 * obscure sibling subregions with lower priority - it simply behaves as
858 * if it was removed from the hierarchy.
859 *
860 * Regions default to being enabled.
861 *
862 * @mr: the region to be updated
863 * @enabled: whether to enable or disable the region
864 */
865 void memory_region_set_enabled(MemoryRegion *mr, bool enabled);
866
867 /*
868 * memory_region_set_address: dynamically update the address of a region
869 *
870 * Dynamically updates the address of a region, relative to its container.
871 * May be used on regions are currently part of a memory hierarchy.
872 *
873 * @mr: the region to be updated
874 * @addr: new address, relative to container region
875 */
876 void memory_region_set_address(MemoryRegion *mr, hwaddr addr);
877
878 /*
879 * memory_region_set_alias_offset: dynamically update a memory alias's offset
880 *
881 * Dynamically updates the offset into the target region that an alias points
882 * to, as if the fourth argument to memory_region_init_alias() has changed.
883 *
884 * @mr: the #MemoryRegion to be updated; should be an alias.
885 * @offset: the new offset into the target memory region
886 */
887 void memory_region_set_alias_offset(MemoryRegion *mr,
888 hwaddr offset);
889
890 /**
891 * memory_region_present: checks if an address relative to a @container
892 * translates into #MemoryRegion within @container
893 *
894 * Answer whether a #MemoryRegion within @container covers the address
895 * @addr.
896 *
897 * @container: a #MemoryRegion within which @addr is a relative address
898 * @addr: the area within @container to be searched
899 */
900 bool memory_region_present(MemoryRegion *container, hwaddr addr);
901
902 /**
903 * memory_region_is_mapped: returns true if #MemoryRegion is mapped
904 * into any address space.
905 *
906 * @mr: a #MemoryRegion which should be checked if it's mapped
907 */
908 bool memory_region_is_mapped(MemoryRegion *mr);
909
910 /**
911 * memory_region_find: translate an address/size relative to a
912 * MemoryRegion into a #MemoryRegionSection.
913 *
914 * Locates the first #MemoryRegion within @mr that overlaps the range
915 * given by @addr and @size.
916 *
917 * Returns a #MemoryRegionSection that describes a contiguous overlap.
918 * It will have the following characteristics:
919 * .@size = 0 iff no overlap was found
920 * .@mr is non-%NULL iff an overlap was found
921 *
922 * Remember that in the return value the @offset_within_region is
923 * relative to the returned region (in the .@mr field), not to the
924 * @mr argument.
925 *
926 * Similarly, the .@offset_within_address_space is relative to the
927 * address space that contains both regions, the passed and the
928 * returned one. However, in the special case where the @mr argument
929 * has no container (and thus is the root of the address space), the
930 * following will hold:
931 * .@offset_within_address_space >= @addr
932 * .@offset_within_address_space + .@size <= @addr + @size
933 *
934 * @mr: a MemoryRegion within which @addr is a relative address
935 * @addr: start of the area within @as to be searched
936 * @size: size of the area to be searched
937 */
938 MemoryRegionSection memory_region_find(MemoryRegion *mr,
939 hwaddr addr, uint64_t size);
940
941 /**
942 * address_space_sync_dirty_bitmap: synchronize the dirty log for all memory
943 *
944 * Synchronizes the dirty page log for an entire address space.
945 * @as: the address space that contains the memory being synchronized
946 */
947 void address_space_sync_dirty_bitmap(AddressSpace *as);
948
949 /**
950 * memory_region_transaction_begin: Start a transaction.
951 *
952 * During a transaction, changes will be accumulated and made visible
953 * only when the transaction ends (is committed).
954 */
955 void memory_region_transaction_begin(void);
956
957 /**
958 * memory_region_transaction_commit: Commit a transaction and make changes
959 * visible to the guest.
960 */
961 void memory_region_transaction_commit(void);
962
963 /**
964 * memory_listener_register: register callbacks to be called when memory
965 * sections are mapped or unmapped into an address
966 * space
967 *
968 * @listener: an object containing the callbacks to be called
969 * @filter: if non-%NULL, only regions in this address space will be observed
970 */
971 void memory_listener_register(MemoryListener *listener, AddressSpace *filter);
972
973 /**
974 * memory_listener_unregister: undo the effect of memory_listener_register()
975 *
976 * @listener: an object containing the callbacks to be removed
977 */
978 void memory_listener_unregister(MemoryListener *listener);
979
980 /**
981 * memory_global_dirty_log_start: begin dirty logging for all regions
982 */
983 void memory_global_dirty_log_start(void);
984
985 /**
986 * memory_global_dirty_log_stop: end dirty logging for all regions
987 */
988 void memory_global_dirty_log_stop(void);
989
990 void mtree_info(fprintf_function mon_printf, void *f);
991
992 /**
993 * address_space_init: initializes an address space
994 *
995 * @as: an uninitialized #AddressSpace
996 * @root: a #MemoryRegion that routes addesses for the address space
997 * @name: an address space name. The name is only used for debugging
998 * output.
999 */
1000 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name);
1001
1002
1003 /**
1004 * address_space_destroy: destroy an address space
1005 *
1006 * Releases all resources associated with an address space. After an address space
1007 * is destroyed, its root memory region (given by address_space_init()) may be destroyed
1008 * as well.
1009 *
1010 * @as: address space to be destroyed
1011 */
1012 void address_space_destroy(AddressSpace *as);
1013
1014 /**
1015 * address_space_rw: read from or write to an address space.
1016 *
1017 * Return true if the operation hit any unassigned memory or encountered an
1018 * IOMMU fault.
1019 *
1020 * @as: #AddressSpace to be accessed
1021 * @addr: address within that address space
1022 * @buf: buffer with the data transferred
1023 * @is_write: indicates the transfer direction
1024 */
1025 bool address_space_rw(AddressSpace *as, hwaddr addr, uint8_t *buf,
1026 int len, bool is_write);
1027
1028 /**
1029 * address_space_write: write to address space.
1030 *
1031 * Return true if the operation hit any unassigned memory or encountered an
1032 * IOMMU fault.
1033 *
1034 * @as: #AddressSpace to be accessed
1035 * @addr: address within that address space
1036 * @buf: buffer with the data transferred
1037 */
1038 bool address_space_write(AddressSpace *as, hwaddr addr,
1039 const uint8_t *buf, int len);
1040
1041 /**
1042 * address_space_read: read from an address space.
1043 *
1044 * Return true if the operation hit any unassigned memory or encountered an
1045 * IOMMU fault.
1046 *
1047 * @as: #AddressSpace to be accessed
1048 * @addr: address within that address space
1049 * @buf: buffer with the data transferred
1050 */
1051 bool address_space_read(AddressSpace *as, hwaddr addr, uint8_t *buf, int len);
1052
1053 /* address_space_translate: translate an address range into an address space
1054 * into a MemoryRegion and an address range into that section
1055 *
1056 * @as: #AddressSpace to be accessed
1057 * @addr: address within that address space
1058 * @xlat: pointer to address within the returned memory region section's
1059 * #MemoryRegion.
1060 * @len: pointer to length
1061 * @is_write: indicates the transfer direction
1062 */
1063 MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr,
1064 hwaddr *xlat, hwaddr *len,
1065 bool is_write);
1066
1067 /* address_space_access_valid: check for validity of accessing an address
1068 * space range
1069 *
1070 * Check whether memory is assigned to the given address space range, and
1071 * access is permitted by any IOMMU regions that are active for the address
1072 * space.
1073 *
1074 * For now, addr and len should be aligned to a page size. This limitation
1075 * will be lifted in the future.
1076 *
1077 * @as: #AddressSpace to be accessed
1078 * @addr: address within that address space
1079 * @len: length of the area to be checked
1080 * @is_write: indicates the transfer direction
1081 */
1082 bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write);
1083
1084 /* address_space_map: map a physical memory region into a host virtual address
1085 *
1086 * May map a subset of the requested range, given by and returned in @plen.
1087 * May return %NULL if resources needed to perform the mapping are exhausted.
1088 * Use only for reads OR writes - not for read-modify-write operations.
1089 * Use cpu_register_map_client() to know when retrying the map operation is
1090 * likely to succeed.
1091 *
1092 * @as: #AddressSpace to be accessed
1093 * @addr: address within that address space
1094 * @plen: pointer to length of buffer; updated on return
1095 * @is_write: indicates the transfer direction
1096 */
1097 void *address_space_map(AddressSpace *as, hwaddr addr,
1098 hwaddr *plen, bool is_write);
1099
1100 /* address_space_unmap: Unmaps a memory region previously mapped by address_space_map()
1101 *
1102 * Will also mark the memory as dirty if @is_write == %true. @access_len gives
1103 * the amount of memory that was actually read or written by the caller.
1104 *
1105 * @as: #AddressSpace used
1106 * @addr: address within that address space
1107 * @len: buffer length as returned by address_space_map()
1108 * @access_len: amount of data actually transferred
1109 * @is_write: indicates the transfer direction
1110 */
1111 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
1112 int is_write, hwaddr access_len);
1113
1114
1115 #endif
1116
1117 #endif