]> git.proxmox.com Git - mirror_qemu.git/blob - include/exec/memory.h
Merge remote-tracking branch 'remotes/xtensa/tags/20191023-xtensa' into staging
[mirror_qemu.git] / include / exec / memory.h
1 /*
2 * Physical memory management API
3 *
4 * Copyright 2011 Red Hat, Inc. and/or its affiliates
5 *
6 * Authors:
7 * Avi Kivity <avi@redhat.com>
8 *
9 * This work is licensed under the terms of the GNU GPL, version 2. See
10 * the COPYING file in the top-level directory.
11 *
12 */
13
14 #ifndef MEMORY_H
15 #define MEMORY_H
16
17 #ifndef CONFIG_USER_ONLY
18
19 #include "exec/cpu-common.h"
20 #include "exec/hwaddr.h"
21 #include "exec/memattrs.h"
22 #include "exec/memop.h"
23 #include "exec/ramlist.h"
24 #include "qemu/bswap.h"
25 #include "qemu/queue.h"
26 #include "qemu/int128.h"
27 #include "qemu/notify.h"
28 #include "qom/object.h"
29 #include "qemu/rcu.h"
30
31 #define RAM_ADDR_INVALID (~(ram_addr_t)0)
32
33 #define MAX_PHYS_ADDR_SPACE_BITS 62
34 #define MAX_PHYS_ADDR (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1)
35
36 #define TYPE_MEMORY_REGION "qemu:memory-region"
37 #define MEMORY_REGION(obj) \
38 OBJECT_CHECK(MemoryRegion, (obj), TYPE_MEMORY_REGION)
39
40 #define TYPE_IOMMU_MEMORY_REGION "qemu:iommu-memory-region"
41 #define IOMMU_MEMORY_REGION(obj) \
42 OBJECT_CHECK(IOMMUMemoryRegion, (obj), TYPE_IOMMU_MEMORY_REGION)
43 #define IOMMU_MEMORY_REGION_CLASS(klass) \
44 OBJECT_CLASS_CHECK(IOMMUMemoryRegionClass, (klass), \
45 TYPE_IOMMU_MEMORY_REGION)
46 #define IOMMU_MEMORY_REGION_GET_CLASS(obj) \
47 OBJECT_GET_CLASS(IOMMUMemoryRegionClass, (obj), \
48 TYPE_IOMMU_MEMORY_REGION)
49
50 extern bool global_dirty_log;
51
52 typedef struct MemoryRegionOps MemoryRegionOps;
53 typedef struct MemoryRegionMmio MemoryRegionMmio;
54
55 struct MemoryRegionMmio {
56 CPUReadMemoryFunc *read[3];
57 CPUWriteMemoryFunc *write[3];
58 };
59
60 typedef struct IOMMUTLBEntry IOMMUTLBEntry;
61
62 /* See address_space_translate: bit 0 is read, bit 1 is write. */
63 typedef enum {
64 IOMMU_NONE = 0,
65 IOMMU_RO = 1,
66 IOMMU_WO = 2,
67 IOMMU_RW = 3,
68 } IOMMUAccessFlags;
69
70 #define IOMMU_ACCESS_FLAG(r, w) (((r) ? IOMMU_RO : 0) | ((w) ? IOMMU_WO : 0))
71
72 struct IOMMUTLBEntry {
73 AddressSpace *target_as;
74 hwaddr iova;
75 hwaddr translated_addr;
76 hwaddr addr_mask; /* 0xfff = 4k translation */
77 IOMMUAccessFlags perm;
78 };
79
80 /*
81 * Bitmap for different IOMMUNotifier capabilities. Each notifier can
82 * register with one or multiple IOMMU Notifier capability bit(s).
83 */
84 typedef enum {
85 IOMMU_NOTIFIER_NONE = 0,
86 /* Notify cache invalidations */
87 IOMMU_NOTIFIER_UNMAP = 0x1,
88 /* Notify entry changes (newly created entries) */
89 IOMMU_NOTIFIER_MAP = 0x2,
90 } IOMMUNotifierFlag;
91
92 #define IOMMU_NOTIFIER_ALL (IOMMU_NOTIFIER_MAP | IOMMU_NOTIFIER_UNMAP)
93
94 struct IOMMUNotifier;
95 typedef void (*IOMMUNotify)(struct IOMMUNotifier *notifier,
96 IOMMUTLBEntry *data);
97
98 struct IOMMUNotifier {
99 IOMMUNotify notify;
100 IOMMUNotifierFlag notifier_flags;
101 /* Notify for address space range start <= addr <= end */
102 hwaddr start;
103 hwaddr end;
104 int iommu_idx;
105 QLIST_ENTRY(IOMMUNotifier) node;
106 };
107 typedef struct IOMMUNotifier IOMMUNotifier;
108
109 /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
110 #define RAM_PREALLOC (1 << 0)
111
112 /* RAM is mmap-ed with MAP_SHARED */
113 #define RAM_SHARED (1 << 1)
114
115 /* Only a portion of RAM (used_length) is actually used, and migrated.
116 * This used_length size can change across reboots.
117 */
118 #define RAM_RESIZEABLE (1 << 2)
119
120 /* UFFDIO_ZEROPAGE is available on this RAMBlock to atomically
121 * zero the page and wake waiting processes.
122 * (Set during postcopy)
123 */
124 #define RAM_UF_ZEROPAGE (1 << 3)
125
126 /* RAM can be migrated */
127 #define RAM_MIGRATABLE (1 << 4)
128
129 /* RAM is a persistent kind memory */
130 #define RAM_PMEM (1 << 5)
131
132 static inline void iommu_notifier_init(IOMMUNotifier *n, IOMMUNotify fn,
133 IOMMUNotifierFlag flags,
134 hwaddr start, hwaddr end,
135 int iommu_idx)
136 {
137 n->notify = fn;
138 n->notifier_flags = flags;
139 n->start = start;
140 n->end = end;
141 n->iommu_idx = iommu_idx;
142 }
143
144 /*
145 * Memory region callbacks
146 */
147 struct MemoryRegionOps {
148 /* Read from the memory region. @addr is relative to @mr; @size is
149 * in bytes. */
150 uint64_t (*read)(void *opaque,
151 hwaddr addr,
152 unsigned size);
153 /* Write to the memory region. @addr is relative to @mr; @size is
154 * in bytes. */
155 void (*write)(void *opaque,
156 hwaddr addr,
157 uint64_t data,
158 unsigned size);
159
160 MemTxResult (*read_with_attrs)(void *opaque,
161 hwaddr addr,
162 uint64_t *data,
163 unsigned size,
164 MemTxAttrs attrs);
165 MemTxResult (*write_with_attrs)(void *opaque,
166 hwaddr addr,
167 uint64_t data,
168 unsigned size,
169 MemTxAttrs attrs);
170
171 enum device_endian endianness;
172 /* Guest-visible constraints: */
173 struct {
174 /* If nonzero, specify bounds on access sizes beyond which a machine
175 * check is thrown.
176 */
177 unsigned min_access_size;
178 unsigned max_access_size;
179 /* If true, unaligned accesses are supported. Otherwise unaligned
180 * accesses throw machine checks.
181 */
182 bool unaligned;
183 /*
184 * If present, and returns #false, the transaction is not accepted
185 * by the device (and results in machine dependent behaviour such
186 * as a machine check exception).
187 */
188 bool (*accepts)(void *opaque, hwaddr addr,
189 unsigned size, bool is_write,
190 MemTxAttrs attrs);
191 } valid;
192 /* Internal implementation constraints: */
193 struct {
194 /* If nonzero, specifies the minimum size implemented. Smaller sizes
195 * will be rounded upwards and a partial result will be returned.
196 */
197 unsigned min_access_size;
198 /* If nonzero, specifies the maximum size implemented. Larger sizes
199 * will be done as a series of accesses with smaller sizes.
200 */
201 unsigned max_access_size;
202 /* If true, unaligned accesses are supported. Otherwise all accesses
203 * are converted to (possibly multiple) naturally aligned accesses.
204 */
205 bool unaligned;
206 } impl;
207 };
208
209 typedef struct MemoryRegionClass {
210 /* private */
211 ObjectClass parent_class;
212 } MemoryRegionClass;
213
214
215 enum IOMMUMemoryRegionAttr {
216 IOMMU_ATTR_SPAPR_TCE_FD
217 };
218
219 /**
220 * IOMMUMemoryRegionClass:
221 *
222 * All IOMMU implementations need to subclass TYPE_IOMMU_MEMORY_REGION
223 * and provide an implementation of at least the @translate method here
224 * to handle requests to the memory region. Other methods are optional.
225 *
226 * The IOMMU implementation must use the IOMMU notifier infrastructure
227 * to report whenever mappings are changed, by calling
228 * memory_region_notify_iommu() (or, if necessary, by calling
229 * memory_region_notify_one() for each registered notifier).
230 *
231 * Conceptually an IOMMU provides a mapping from input address
232 * to an output TLB entry. If the IOMMU is aware of memory transaction
233 * attributes and the output TLB entry depends on the transaction
234 * attributes, we represent this using IOMMU indexes. Each index
235 * selects a particular translation table that the IOMMU has:
236 * @attrs_to_index returns the IOMMU index for a set of transaction attributes
237 * @translate takes an input address and an IOMMU index
238 * and the mapping returned can only depend on the input address and the
239 * IOMMU index.
240 *
241 * Most IOMMUs don't care about the transaction attributes and support
242 * only a single IOMMU index. A more complex IOMMU might have one index
243 * for secure transactions and one for non-secure transactions.
244 */
245 typedef struct IOMMUMemoryRegionClass {
246 /* private */
247 MemoryRegionClass parent_class;
248
249 /*
250 * Return a TLB entry that contains a given address.
251 *
252 * The IOMMUAccessFlags indicated via @flag are optional and may
253 * be specified as IOMMU_NONE to indicate that the caller needs
254 * the full translation information for both reads and writes. If
255 * the access flags are specified then the IOMMU implementation
256 * may use this as an optimization, to stop doing a page table
257 * walk as soon as it knows that the requested permissions are not
258 * allowed. If IOMMU_NONE is passed then the IOMMU must do the
259 * full page table walk and report the permissions in the returned
260 * IOMMUTLBEntry. (Note that this implies that an IOMMU may not
261 * return different mappings for reads and writes.)
262 *
263 * The returned information remains valid while the caller is
264 * holding the big QEMU lock or is inside an RCU critical section;
265 * if the caller wishes to cache the mapping beyond that it must
266 * register an IOMMU notifier so it can invalidate its cached
267 * information when the IOMMU mapping changes.
268 *
269 * @iommu: the IOMMUMemoryRegion
270 * @hwaddr: address to be translated within the memory region
271 * @flag: requested access permissions
272 * @iommu_idx: IOMMU index for the translation
273 */
274 IOMMUTLBEntry (*translate)(IOMMUMemoryRegion *iommu, hwaddr addr,
275 IOMMUAccessFlags flag, int iommu_idx);
276 /* Returns minimum supported page size in bytes.
277 * If this method is not provided then the minimum is assumed to
278 * be TARGET_PAGE_SIZE.
279 *
280 * @iommu: the IOMMUMemoryRegion
281 */
282 uint64_t (*get_min_page_size)(IOMMUMemoryRegion *iommu);
283 /* Called when IOMMU Notifier flag changes (ie when the set of
284 * events which IOMMU users are requesting notification for changes).
285 * Optional method -- need not be provided if the IOMMU does not
286 * need to know exactly which events must be notified.
287 *
288 * @iommu: the IOMMUMemoryRegion
289 * @old_flags: events which previously needed to be notified
290 * @new_flags: events which now need to be notified
291 *
292 * Returns 0 on success, or a negative errno; in particular
293 * returns -EINVAL if the new flag bitmap is not supported by the
294 * IOMMU memory region. In case of failure, the error object
295 * must be created
296 */
297 int (*notify_flag_changed)(IOMMUMemoryRegion *iommu,
298 IOMMUNotifierFlag old_flags,
299 IOMMUNotifierFlag new_flags,
300 Error **errp);
301 /* Called to handle memory_region_iommu_replay().
302 *
303 * The default implementation of memory_region_iommu_replay() is to
304 * call the IOMMU translate method for every page in the address space
305 * with flag == IOMMU_NONE and then call the notifier if translate
306 * returns a valid mapping. If this method is implemented then it
307 * overrides the default behaviour, and must provide the full semantics
308 * of memory_region_iommu_replay(), by calling @notifier for every
309 * translation present in the IOMMU.
310 *
311 * Optional method -- an IOMMU only needs to provide this method
312 * if the default is inefficient or produces undesirable side effects.
313 *
314 * Note: this is not related to record-and-replay functionality.
315 */
316 void (*replay)(IOMMUMemoryRegion *iommu, IOMMUNotifier *notifier);
317
318 /* Get IOMMU misc attributes. This is an optional method that
319 * can be used to allow users of the IOMMU to get implementation-specific
320 * information. The IOMMU implements this method to handle calls
321 * by IOMMU users to memory_region_iommu_get_attr() by filling in
322 * the arbitrary data pointer for any IOMMUMemoryRegionAttr values that
323 * the IOMMU supports. If the method is unimplemented then
324 * memory_region_iommu_get_attr() will always return -EINVAL.
325 *
326 * @iommu: the IOMMUMemoryRegion
327 * @attr: attribute being queried
328 * @data: memory to fill in with the attribute data
329 *
330 * Returns 0 on success, or a negative errno; in particular
331 * returns -EINVAL for unrecognized or unimplemented attribute types.
332 */
333 int (*get_attr)(IOMMUMemoryRegion *iommu, enum IOMMUMemoryRegionAttr attr,
334 void *data);
335
336 /* Return the IOMMU index to use for a given set of transaction attributes.
337 *
338 * Optional method: if an IOMMU only supports a single IOMMU index then
339 * the default implementation of memory_region_iommu_attrs_to_index()
340 * will return 0.
341 *
342 * The indexes supported by an IOMMU must be contiguous, starting at 0.
343 *
344 * @iommu: the IOMMUMemoryRegion
345 * @attrs: memory transaction attributes
346 */
347 int (*attrs_to_index)(IOMMUMemoryRegion *iommu, MemTxAttrs attrs);
348
349 /* Return the number of IOMMU indexes this IOMMU supports.
350 *
351 * Optional method: if this method is not provided, then
352 * memory_region_iommu_num_indexes() will return 1, indicating that
353 * only a single IOMMU index is supported.
354 *
355 * @iommu: the IOMMUMemoryRegion
356 */
357 int (*num_indexes)(IOMMUMemoryRegion *iommu);
358 } IOMMUMemoryRegionClass;
359
360 typedef struct CoalescedMemoryRange CoalescedMemoryRange;
361 typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd;
362
363 struct MemoryRegion {
364 Object parent_obj;
365
366 /* All fields are private - violators will be prosecuted */
367
368 /* The following fields should fit in a cache line */
369 bool romd_mode;
370 bool ram;
371 bool subpage;
372 bool readonly; /* For RAM regions */
373 bool nonvolatile;
374 bool rom_device;
375 bool flush_coalesced_mmio;
376 bool global_locking;
377 uint8_t dirty_log_mask;
378 bool is_iommu;
379 RAMBlock *ram_block;
380 Object *owner;
381
382 const MemoryRegionOps *ops;
383 void *opaque;
384 MemoryRegion *container;
385 Int128 size;
386 hwaddr addr;
387 void (*destructor)(MemoryRegion *mr);
388 uint64_t align;
389 bool terminates;
390 bool ram_device;
391 bool enabled;
392 bool warning_printed; /* For reservations */
393 uint8_t vga_logging_count;
394 MemoryRegion *alias;
395 hwaddr alias_offset;
396 int32_t priority;
397 QTAILQ_HEAD(, MemoryRegion) subregions;
398 QTAILQ_ENTRY(MemoryRegion) subregions_link;
399 QTAILQ_HEAD(, CoalescedMemoryRange) coalesced;
400 const char *name;
401 unsigned ioeventfd_nb;
402 MemoryRegionIoeventfd *ioeventfds;
403 };
404
405 struct IOMMUMemoryRegion {
406 MemoryRegion parent_obj;
407
408 QLIST_HEAD(, IOMMUNotifier) iommu_notify;
409 IOMMUNotifierFlag iommu_notify_flags;
410 };
411
412 #define IOMMU_NOTIFIER_FOREACH(n, mr) \
413 QLIST_FOREACH((n), &(mr)->iommu_notify, node)
414
415 /**
416 * MemoryListener: callbacks structure for updates to the physical memory map
417 *
418 * Allows a component to adjust to changes in the guest-visible memory map.
419 * Use with memory_listener_register() and memory_listener_unregister().
420 */
421 struct MemoryListener {
422 void (*begin)(MemoryListener *listener);
423 void (*commit)(MemoryListener *listener);
424 void (*region_add)(MemoryListener *listener, MemoryRegionSection *section);
425 void (*region_del)(MemoryListener *listener, MemoryRegionSection *section);
426 void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section);
427 void (*log_start)(MemoryListener *listener, MemoryRegionSection *section,
428 int old, int new);
429 void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section,
430 int old, int new);
431 void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section);
432 void (*log_clear)(MemoryListener *listener, MemoryRegionSection *section);
433 void (*log_global_start)(MemoryListener *listener);
434 void (*log_global_stop)(MemoryListener *listener);
435 void (*log_global_after_sync)(MemoryListener *listener);
436 void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section,
437 bool match_data, uint64_t data, EventNotifier *e);
438 void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section,
439 bool match_data, uint64_t data, EventNotifier *e);
440 void (*coalesced_io_add)(MemoryListener *listener, MemoryRegionSection *section,
441 hwaddr addr, hwaddr len);
442 void (*coalesced_io_del)(MemoryListener *listener, MemoryRegionSection *section,
443 hwaddr addr, hwaddr len);
444 /* Lower = earlier (during add), later (during del) */
445 unsigned priority;
446 AddressSpace *address_space;
447 QTAILQ_ENTRY(MemoryListener) link;
448 QTAILQ_ENTRY(MemoryListener) link_as;
449 };
450
451 /**
452 * AddressSpace: describes a mapping of addresses to #MemoryRegion objects
453 */
454 struct AddressSpace {
455 /* All fields are private. */
456 struct rcu_head rcu;
457 char *name;
458 MemoryRegion *root;
459
460 /* Accessed via RCU. */
461 struct FlatView *current_map;
462
463 int ioeventfd_nb;
464 struct MemoryRegionIoeventfd *ioeventfds;
465 QTAILQ_HEAD(, MemoryListener) listeners;
466 QTAILQ_ENTRY(AddressSpace) address_spaces_link;
467 };
468
469 typedef struct AddressSpaceDispatch AddressSpaceDispatch;
470 typedef struct FlatRange FlatRange;
471
472 /* Flattened global view of current active memory hierarchy. Kept in sorted
473 * order.
474 */
475 struct FlatView {
476 struct rcu_head rcu;
477 unsigned ref;
478 FlatRange *ranges;
479 unsigned nr;
480 unsigned nr_allocated;
481 struct AddressSpaceDispatch *dispatch;
482 MemoryRegion *root;
483 };
484
485 static inline FlatView *address_space_to_flatview(AddressSpace *as)
486 {
487 return atomic_rcu_read(&as->current_map);
488 }
489
490
491 /**
492 * MemoryRegionSection: describes a fragment of a #MemoryRegion
493 *
494 * @mr: the region, or %NULL if empty
495 * @fv: the flat view of the address space the region is mapped in
496 * @offset_within_region: the beginning of the section, relative to @mr's start
497 * @size: the size of the section; will not exceed @mr's boundaries
498 * @offset_within_address_space: the address of the first byte of the section
499 * relative to the region's address space
500 * @readonly: writes to this section are ignored
501 * @nonvolatile: this section is non-volatile
502 */
503 struct MemoryRegionSection {
504 Int128 size;
505 MemoryRegion *mr;
506 FlatView *fv;
507 hwaddr offset_within_region;
508 hwaddr offset_within_address_space;
509 bool readonly;
510 bool nonvolatile;
511 };
512
513 static inline bool MemoryRegionSection_eq(MemoryRegionSection *a,
514 MemoryRegionSection *b)
515 {
516 return a->mr == b->mr &&
517 a->fv == b->fv &&
518 a->offset_within_region == b->offset_within_region &&
519 a->offset_within_address_space == b->offset_within_address_space &&
520 int128_eq(a->size, b->size) &&
521 a->readonly == b->readonly &&
522 a->nonvolatile == b->nonvolatile;
523 }
524
525 /**
526 * memory_region_init: Initialize a memory region
527 *
528 * The region typically acts as a container for other memory regions. Use
529 * memory_region_add_subregion() to add subregions.
530 *
531 * @mr: the #MemoryRegion to be initialized
532 * @owner: the object that tracks the region's reference count
533 * @name: used for debugging; not visible to the user or ABI
534 * @size: size of the region; any subregions beyond this size will be clipped
535 */
536 void memory_region_init(MemoryRegion *mr,
537 struct Object *owner,
538 const char *name,
539 uint64_t size);
540
541 /**
542 * memory_region_ref: Add 1 to a memory region's reference count
543 *
544 * Whenever memory regions are accessed outside the BQL, they need to be
545 * preserved against hot-unplug. MemoryRegions actually do not have their
546 * own reference count; they piggyback on a QOM object, their "owner".
547 * This function adds a reference to the owner.
548 *
549 * All MemoryRegions must have an owner if they can disappear, even if the
550 * device they belong to operates exclusively under the BQL. This is because
551 * the region could be returned at any time by memory_region_find, and this
552 * is usually under guest control.
553 *
554 * @mr: the #MemoryRegion
555 */
556 void memory_region_ref(MemoryRegion *mr);
557
558 /**
559 * memory_region_unref: Remove 1 to a memory region's reference count
560 *
561 * Whenever memory regions are accessed outside the BQL, they need to be
562 * preserved against hot-unplug. MemoryRegions actually do not have their
563 * own reference count; they piggyback on a QOM object, their "owner".
564 * This function removes a reference to the owner and possibly destroys it.
565 *
566 * @mr: the #MemoryRegion
567 */
568 void memory_region_unref(MemoryRegion *mr);
569
570 /**
571 * memory_region_init_io: Initialize an I/O memory region.
572 *
573 * Accesses into the region will cause the callbacks in @ops to be called.
574 * if @size is nonzero, subregions will be clipped to @size.
575 *
576 * @mr: the #MemoryRegion to be initialized.
577 * @owner: the object that tracks the region's reference count
578 * @ops: a structure containing read and write callbacks to be used when
579 * I/O is performed on the region.
580 * @opaque: passed to the read and write callbacks of the @ops structure.
581 * @name: used for debugging; not visible to the user or ABI
582 * @size: size of the region.
583 */
584 void memory_region_init_io(MemoryRegion *mr,
585 struct Object *owner,
586 const MemoryRegionOps *ops,
587 void *opaque,
588 const char *name,
589 uint64_t size);
590
591 /**
592 * memory_region_init_ram_nomigrate: Initialize RAM memory region. Accesses
593 * into the region will modify memory
594 * directly.
595 *
596 * @mr: the #MemoryRegion to be initialized.
597 * @owner: the object that tracks the region's reference count
598 * @name: Region name, becomes part of RAMBlock name used in migration stream
599 * must be unique within any device
600 * @size: size of the region.
601 * @errp: pointer to Error*, to store an error if it happens.
602 *
603 * Note that this function does not do anything to cause the data in the
604 * RAM memory region to be migrated; that is the responsibility of the caller.
605 */
606 void memory_region_init_ram_nomigrate(MemoryRegion *mr,
607 struct Object *owner,
608 const char *name,
609 uint64_t size,
610 Error **errp);
611
612 /**
613 * memory_region_init_ram_shared_nomigrate: Initialize RAM memory region.
614 * Accesses into the region will
615 * modify memory directly.
616 *
617 * @mr: the #MemoryRegion to be initialized.
618 * @owner: the object that tracks the region's reference count
619 * @name: Region name, becomes part of RAMBlock name used in migration stream
620 * must be unique within any device
621 * @size: size of the region.
622 * @share: allow remapping RAM to different addresses
623 * @errp: pointer to Error*, to store an error if it happens.
624 *
625 * Note that this function is similar to memory_region_init_ram_nomigrate.
626 * The only difference is part of the RAM region can be remapped.
627 */
628 void memory_region_init_ram_shared_nomigrate(MemoryRegion *mr,
629 struct Object *owner,
630 const char *name,
631 uint64_t size,
632 bool share,
633 Error **errp);
634
635 /**
636 * memory_region_init_resizeable_ram: Initialize memory region with resizeable
637 * RAM. Accesses into the region will
638 * modify memory directly. Only an initial
639 * portion of this RAM is actually used.
640 * The used size can change across reboots.
641 *
642 * @mr: the #MemoryRegion to be initialized.
643 * @owner: the object that tracks the region's reference count
644 * @name: Region name, becomes part of RAMBlock name used in migration stream
645 * must be unique within any device
646 * @size: used size of the region.
647 * @max_size: max size of the region.
648 * @resized: callback to notify owner about used size change.
649 * @errp: pointer to Error*, to store an error if it happens.
650 *
651 * Note that this function does not do anything to cause the data in the
652 * RAM memory region to be migrated; that is the responsibility of the caller.
653 */
654 void memory_region_init_resizeable_ram(MemoryRegion *mr,
655 struct Object *owner,
656 const char *name,
657 uint64_t size,
658 uint64_t max_size,
659 void (*resized)(const char*,
660 uint64_t length,
661 void *host),
662 Error **errp);
663 #ifdef CONFIG_POSIX
664
665 /**
666 * memory_region_init_ram_from_file: Initialize RAM memory region with a
667 * mmap-ed backend.
668 *
669 * @mr: the #MemoryRegion to be initialized.
670 * @owner: the object that tracks the region's reference count
671 * @name: Region name, becomes part of RAMBlock name used in migration stream
672 * must be unique within any device
673 * @size: size of the region.
674 * @align: alignment of the region base address; if 0, the default alignment
675 * (getpagesize()) will be used.
676 * @ram_flags: Memory region features:
677 * - RAM_SHARED: memory must be mmaped with the MAP_SHARED flag
678 * - RAM_PMEM: the memory is persistent memory
679 * Other bits are ignored now.
680 * @path: the path in which to allocate the RAM.
681 * @errp: pointer to Error*, to store an error if it happens.
682 *
683 * Note that this function does not do anything to cause the data in the
684 * RAM memory region to be migrated; that is the responsibility of the caller.
685 */
686 void memory_region_init_ram_from_file(MemoryRegion *mr,
687 struct Object *owner,
688 const char *name,
689 uint64_t size,
690 uint64_t align,
691 uint32_t ram_flags,
692 const char *path,
693 Error **errp);
694
695 /**
696 * memory_region_init_ram_from_fd: Initialize RAM memory region with a
697 * mmap-ed backend.
698 *
699 * @mr: the #MemoryRegion to be initialized.
700 * @owner: the object that tracks the region's reference count
701 * @name: the name of the region.
702 * @size: size of the region.
703 * @share: %true if memory must be mmaped with the MAP_SHARED flag
704 * @fd: the fd to mmap.
705 * @errp: pointer to Error*, to store an error if it happens.
706 *
707 * Note that this function does not do anything to cause the data in the
708 * RAM memory region to be migrated; that is the responsibility of the caller.
709 */
710 void memory_region_init_ram_from_fd(MemoryRegion *mr,
711 struct Object *owner,
712 const char *name,
713 uint64_t size,
714 bool share,
715 int fd,
716 Error **errp);
717 #endif
718
719 /**
720 * memory_region_init_ram_ptr: Initialize RAM memory region from a
721 * user-provided pointer. Accesses into the
722 * region will modify memory directly.
723 *
724 * @mr: the #MemoryRegion to be initialized.
725 * @owner: the object that tracks the region's reference count
726 * @name: Region name, becomes part of RAMBlock name used in migration stream
727 * must be unique within any device
728 * @size: size of the region.
729 * @ptr: memory to be mapped; must contain at least @size bytes.
730 *
731 * Note that this function does not do anything to cause the data in the
732 * RAM memory region to be migrated; that is the responsibility of the caller.
733 */
734 void memory_region_init_ram_ptr(MemoryRegion *mr,
735 struct Object *owner,
736 const char *name,
737 uint64_t size,
738 void *ptr);
739
740 /**
741 * memory_region_init_ram_device_ptr: Initialize RAM device memory region from
742 * a user-provided pointer.
743 *
744 * A RAM device represents a mapping to a physical device, such as to a PCI
745 * MMIO BAR of an vfio-pci assigned device. The memory region may be mapped
746 * into the VM address space and access to the region will modify memory
747 * directly. However, the memory region should not be included in a memory
748 * dump (device may not be enabled/mapped at the time of the dump), and
749 * operations incompatible with manipulating MMIO should be avoided. Replaces
750 * skip_dump flag.
751 *
752 * @mr: the #MemoryRegion to be initialized.
753 * @owner: the object that tracks the region's reference count
754 * @name: the name of the region.
755 * @size: size of the region.
756 * @ptr: memory to be mapped; must contain at least @size bytes.
757 *
758 * Note that this function does not do anything to cause the data in the
759 * RAM memory region to be migrated; that is the responsibility of the caller.
760 * (For RAM device memory regions, migrating the contents rarely makes sense.)
761 */
762 void memory_region_init_ram_device_ptr(MemoryRegion *mr,
763 struct Object *owner,
764 const char *name,
765 uint64_t size,
766 void *ptr);
767
768 /**
769 * memory_region_init_alias: Initialize a memory region that aliases all or a
770 * part of another memory region.
771 *
772 * @mr: the #MemoryRegion to be initialized.
773 * @owner: the object that tracks the region's reference count
774 * @name: used for debugging; not visible to the user or ABI
775 * @orig: the region to be referenced; @mr will be equivalent to
776 * @orig between @offset and @offset + @size - 1.
777 * @offset: start of the section in @orig to be referenced.
778 * @size: size of the region.
779 */
780 void memory_region_init_alias(MemoryRegion *mr,
781 struct Object *owner,
782 const char *name,
783 MemoryRegion *orig,
784 hwaddr offset,
785 uint64_t size);
786
787 /**
788 * memory_region_init_rom_nomigrate: Initialize a ROM memory region.
789 *
790 * This has the same effect as calling memory_region_init_ram_nomigrate()
791 * and then marking the resulting region read-only with
792 * memory_region_set_readonly().
793 *
794 * Note that this function does not do anything to cause the data in the
795 * RAM side of the memory region to be migrated; that is the responsibility
796 * of the caller.
797 *
798 * @mr: the #MemoryRegion to be initialized.
799 * @owner: the object that tracks the region's reference count
800 * @name: Region name, becomes part of RAMBlock name used in migration stream
801 * must be unique within any device
802 * @size: size of the region.
803 * @errp: pointer to Error*, to store an error if it happens.
804 */
805 void memory_region_init_rom_nomigrate(MemoryRegion *mr,
806 struct Object *owner,
807 const char *name,
808 uint64_t size,
809 Error **errp);
810
811 /**
812 * memory_region_init_rom_device_nomigrate: Initialize a ROM memory region.
813 * Writes are handled via callbacks.
814 *
815 * Note that this function does not do anything to cause the data in the
816 * RAM side of the memory region to be migrated; that is the responsibility
817 * of the caller.
818 *
819 * @mr: the #MemoryRegion to be initialized.
820 * @owner: the object that tracks the region's reference count
821 * @ops: callbacks for write access handling (must not be NULL).
822 * @opaque: passed to the read and write callbacks of the @ops structure.
823 * @name: Region name, becomes part of RAMBlock name used in migration stream
824 * must be unique within any device
825 * @size: size of the region.
826 * @errp: pointer to Error*, to store an error if it happens.
827 */
828 void memory_region_init_rom_device_nomigrate(MemoryRegion *mr,
829 struct Object *owner,
830 const MemoryRegionOps *ops,
831 void *opaque,
832 const char *name,
833 uint64_t size,
834 Error **errp);
835
836 /**
837 * memory_region_init_iommu: Initialize a memory region of a custom type
838 * that translates addresses
839 *
840 * An IOMMU region translates addresses and forwards accesses to a target
841 * memory region.
842 *
843 * The IOMMU implementation must define a subclass of TYPE_IOMMU_MEMORY_REGION.
844 * @_iommu_mr should be a pointer to enough memory for an instance of
845 * that subclass, @instance_size is the size of that subclass, and
846 * @mrtypename is its name. This function will initialize @_iommu_mr as an
847 * instance of the subclass, and its methods will then be called to handle
848 * accesses to the memory region. See the documentation of
849 * #IOMMUMemoryRegionClass for further details.
850 *
851 * @_iommu_mr: the #IOMMUMemoryRegion to be initialized
852 * @instance_size: the IOMMUMemoryRegion subclass instance size
853 * @mrtypename: the type name of the #IOMMUMemoryRegion
854 * @owner: the object that tracks the region's reference count
855 * @name: used for debugging; not visible to the user or ABI
856 * @size: size of the region.
857 */
858 void memory_region_init_iommu(void *_iommu_mr,
859 size_t instance_size,
860 const char *mrtypename,
861 Object *owner,
862 const char *name,
863 uint64_t size);
864
865 /**
866 * memory_region_init_ram - Initialize RAM memory region. Accesses into the
867 * region will modify memory directly.
868 *
869 * @mr: the #MemoryRegion to be initialized
870 * @owner: the object that tracks the region's reference count (must be
871 * TYPE_DEVICE or a subclass of TYPE_DEVICE, or NULL)
872 * @name: name of the memory region
873 * @size: size of the region in bytes
874 * @errp: pointer to Error*, to store an error if it happens.
875 *
876 * This function allocates RAM for a board model or device, and
877 * arranges for it to be migrated (by calling vmstate_register_ram()
878 * if @owner is a DeviceState, or vmstate_register_ram_global() if
879 * @owner is NULL).
880 *
881 * TODO: Currently we restrict @owner to being either NULL (for
882 * global RAM regions with no owner) or devices, so that we can
883 * give the RAM block a unique name for migration purposes.
884 * We should lift this restriction and allow arbitrary Objects.
885 * If you pass a non-NULL non-device @owner then we will assert.
886 */
887 void memory_region_init_ram(MemoryRegion *mr,
888 struct Object *owner,
889 const char *name,
890 uint64_t size,
891 Error **errp);
892
893 /**
894 * memory_region_init_rom: Initialize a ROM memory region.
895 *
896 * This has the same effect as calling memory_region_init_ram()
897 * and then marking the resulting region read-only with
898 * memory_region_set_readonly(). This includes arranging for the
899 * contents to be migrated.
900 *
901 * TODO: Currently we restrict @owner to being either NULL (for
902 * global RAM regions with no owner) or devices, so that we can
903 * give the RAM block a unique name for migration purposes.
904 * We should lift this restriction and allow arbitrary Objects.
905 * If you pass a non-NULL non-device @owner then we will assert.
906 *
907 * @mr: the #MemoryRegion to be initialized.
908 * @owner: the object that tracks the region's reference count
909 * @name: Region name, becomes part of RAMBlock name used in migration stream
910 * must be unique within any device
911 * @size: size of the region.
912 * @errp: pointer to Error*, to store an error if it happens.
913 */
914 void memory_region_init_rom(MemoryRegion *mr,
915 struct Object *owner,
916 const char *name,
917 uint64_t size,
918 Error **errp);
919
920 /**
921 * memory_region_init_rom_device: Initialize a ROM memory region.
922 * Writes are handled via callbacks.
923 *
924 * This function initializes a memory region backed by RAM for reads
925 * and callbacks for writes, and arranges for the RAM backing to
926 * be migrated (by calling vmstate_register_ram()
927 * if @owner is a DeviceState, or vmstate_register_ram_global() if
928 * @owner is NULL).
929 *
930 * TODO: Currently we restrict @owner to being either NULL (for
931 * global RAM regions with no owner) or devices, so that we can
932 * give the RAM block a unique name for migration purposes.
933 * We should lift this restriction and allow arbitrary Objects.
934 * If you pass a non-NULL non-device @owner then we will assert.
935 *
936 * @mr: the #MemoryRegion to be initialized.
937 * @owner: the object that tracks the region's reference count
938 * @ops: callbacks for write access handling (must not be NULL).
939 * @name: Region name, becomes part of RAMBlock name used in migration stream
940 * must be unique within any device
941 * @size: size of the region.
942 * @errp: pointer to Error*, to store an error if it happens.
943 */
944 void memory_region_init_rom_device(MemoryRegion *mr,
945 struct Object *owner,
946 const MemoryRegionOps *ops,
947 void *opaque,
948 const char *name,
949 uint64_t size,
950 Error **errp);
951
952
953 /**
954 * memory_region_owner: get a memory region's owner.
955 *
956 * @mr: the memory region being queried.
957 */
958 struct Object *memory_region_owner(MemoryRegion *mr);
959
960 /**
961 * memory_region_size: get a memory region's size.
962 *
963 * @mr: the memory region being queried.
964 */
965 uint64_t memory_region_size(MemoryRegion *mr);
966
967 /**
968 * memory_region_is_ram: check whether a memory region is random access
969 *
970 * Returns %true if a memory region is random access.
971 *
972 * @mr: the memory region being queried
973 */
974 static inline bool memory_region_is_ram(MemoryRegion *mr)
975 {
976 return mr->ram;
977 }
978
979 /**
980 * memory_region_is_ram_device: check whether a memory region is a ram device
981 *
982 * Returns %true if a memory region is a device backed ram region
983 *
984 * @mr: the memory region being queried
985 */
986 bool memory_region_is_ram_device(MemoryRegion *mr);
987
988 /**
989 * memory_region_is_romd: check whether a memory region is in ROMD mode
990 *
991 * Returns %true if a memory region is a ROM device and currently set to allow
992 * direct reads.
993 *
994 * @mr: the memory region being queried
995 */
996 static inline bool memory_region_is_romd(MemoryRegion *mr)
997 {
998 return mr->rom_device && mr->romd_mode;
999 }
1000
1001 /**
1002 * memory_region_get_iommu: check whether a memory region is an iommu
1003 *
1004 * Returns pointer to IOMMUMemoryRegion if a memory region is an iommu,
1005 * otherwise NULL.
1006 *
1007 * @mr: the memory region being queried
1008 */
1009 static inline IOMMUMemoryRegion *memory_region_get_iommu(MemoryRegion *mr)
1010 {
1011 if (mr->alias) {
1012 return memory_region_get_iommu(mr->alias);
1013 }
1014 if (mr->is_iommu) {
1015 return (IOMMUMemoryRegion *) mr;
1016 }
1017 return NULL;
1018 }
1019
1020 /**
1021 * memory_region_get_iommu_class_nocheck: returns iommu memory region class
1022 * if an iommu or NULL if not
1023 *
1024 * Returns pointer to IOMMUMemoryRegionClass if a memory region is an iommu,
1025 * otherwise NULL. This is fast path avoiding QOM checking, use with caution.
1026 *
1027 * @mr: the memory region being queried
1028 */
1029 static inline IOMMUMemoryRegionClass *memory_region_get_iommu_class_nocheck(
1030 IOMMUMemoryRegion *iommu_mr)
1031 {
1032 return (IOMMUMemoryRegionClass *) (((Object *)iommu_mr)->class);
1033 }
1034
1035 #define memory_region_is_iommu(mr) (memory_region_get_iommu(mr) != NULL)
1036
1037 /**
1038 * memory_region_iommu_get_min_page_size: get minimum supported page size
1039 * for an iommu
1040 *
1041 * Returns minimum supported page size for an iommu.
1042 *
1043 * @iommu_mr: the memory region being queried
1044 */
1045 uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion *iommu_mr);
1046
1047 /**
1048 * memory_region_notify_iommu: notify a change in an IOMMU translation entry.
1049 *
1050 * The notification type will be decided by entry.perm bits:
1051 *
1052 * - For UNMAP (cache invalidation) notifies: set entry.perm to IOMMU_NONE.
1053 * - For MAP (newly added entry) notifies: set entry.perm to the
1054 * permission of the page (which is definitely !IOMMU_NONE).
1055 *
1056 * Note: for any IOMMU implementation, an in-place mapping change
1057 * should be notified with an UNMAP followed by a MAP.
1058 *
1059 * @iommu_mr: the memory region that was changed
1060 * @iommu_idx: the IOMMU index for the translation table which has changed
1061 * @entry: the new entry in the IOMMU translation table. The entry
1062 * replaces all old entries for the same virtual I/O address range.
1063 * Deleted entries have .@perm == 0.
1064 */
1065 void memory_region_notify_iommu(IOMMUMemoryRegion *iommu_mr,
1066 int iommu_idx,
1067 IOMMUTLBEntry entry);
1068
1069 /**
1070 * memory_region_notify_one: notify a change in an IOMMU translation
1071 * entry to a single notifier
1072 *
1073 * This works just like memory_region_notify_iommu(), but it only
1074 * notifies a specific notifier, not all of them.
1075 *
1076 * @notifier: the notifier to be notified
1077 * @entry: the new entry in the IOMMU translation table. The entry
1078 * replaces all old entries for the same virtual I/O address range.
1079 * Deleted entries have .@perm == 0.
1080 */
1081 void memory_region_notify_one(IOMMUNotifier *notifier,
1082 IOMMUTLBEntry *entry);
1083
1084 /**
1085 * memory_region_register_iommu_notifier: register a notifier for changes to
1086 * IOMMU translation entries.
1087 *
1088 * Returns 0 on success, or a negative errno otherwise. In particular,
1089 * -EINVAL indicates that at least one of the attributes of the notifier
1090 * is not supported (flag/range) by the IOMMU memory region. In case of error
1091 * the error object must be created.
1092 *
1093 * @mr: the memory region to observe
1094 * @n: the IOMMUNotifier to be added; the notify callback receives a
1095 * pointer to an #IOMMUTLBEntry as the opaque value; the pointer
1096 * ceases to be valid on exit from the notifier.
1097 */
1098 int memory_region_register_iommu_notifier(MemoryRegion *mr,
1099 IOMMUNotifier *n, Error **errp);
1100
1101 /**
1102 * memory_region_iommu_replay: replay existing IOMMU translations to
1103 * a notifier with the minimum page granularity returned by
1104 * mr->iommu_ops->get_page_size().
1105 *
1106 * Note: this is not related to record-and-replay functionality.
1107 *
1108 * @iommu_mr: the memory region to observe
1109 * @n: the notifier to which to replay iommu mappings
1110 */
1111 void memory_region_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n);
1112
1113 /**
1114 * memory_region_unregister_iommu_notifier: unregister a notifier for
1115 * changes to IOMMU translation entries.
1116 *
1117 * @mr: the memory region which was observed and for which notity_stopped()
1118 * needs to be called
1119 * @n: the notifier to be removed.
1120 */
1121 void memory_region_unregister_iommu_notifier(MemoryRegion *mr,
1122 IOMMUNotifier *n);
1123
1124 /**
1125 * memory_region_iommu_get_attr: return an IOMMU attr if get_attr() is
1126 * defined on the IOMMU.
1127 *
1128 * Returns 0 on success, or a negative errno otherwise. In particular,
1129 * -EINVAL indicates that the IOMMU does not support the requested
1130 * attribute.
1131 *
1132 * @iommu_mr: the memory region
1133 * @attr: the requested attribute
1134 * @data: a pointer to the requested attribute data
1135 */
1136 int memory_region_iommu_get_attr(IOMMUMemoryRegion *iommu_mr,
1137 enum IOMMUMemoryRegionAttr attr,
1138 void *data);
1139
1140 /**
1141 * memory_region_iommu_attrs_to_index: return the IOMMU index to
1142 * use for translations with the given memory transaction attributes.
1143 *
1144 * @iommu_mr: the memory region
1145 * @attrs: the memory transaction attributes
1146 */
1147 int memory_region_iommu_attrs_to_index(IOMMUMemoryRegion *iommu_mr,
1148 MemTxAttrs attrs);
1149
1150 /**
1151 * memory_region_iommu_num_indexes: return the total number of IOMMU
1152 * indexes that this IOMMU supports.
1153 *
1154 * @iommu_mr: the memory region
1155 */
1156 int memory_region_iommu_num_indexes(IOMMUMemoryRegion *iommu_mr);
1157
1158 /**
1159 * memory_region_name: get a memory region's name
1160 *
1161 * Returns the string that was used to initialize the memory region.
1162 *
1163 * @mr: the memory region being queried
1164 */
1165 const char *memory_region_name(const MemoryRegion *mr);
1166
1167 /**
1168 * memory_region_is_logging: return whether a memory region is logging writes
1169 *
1170 * Returns %true if the memory region is logging writes for the given client
1171 *
1172 * @mr: the memory region being queried
1173 * @client: the client being queried
1174 */
1175 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client);
1176
1177 /**
1178 * memory_region_get_dirty_log_mask: return the clients for which a
1179 * memory region is logging writes.
1180 *
1181 * Returns a bitmap of clients, in which the DIRTY_MEMORY_* constants
1182 * are the bit indices.
1183 *
1184 * @mr: the memory region being queried
1185 */
1186 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr);
1187
1188 /**
1189 * memory_region_is_rom: check whether a memory region is ROM
1190 *
1191 * Returns %true if a memory region is read-only memory.
1192 *
1193 * @mr: the memory region being queried
1194 */
1195 static inline bool memory_region_is_rom(MemoryRegion *mr)
1196 {
1197 return mr->ram && mr->readonly;
1198 }
1199
1200 /**
1201 * memory_region_is_nonvolatile: check whether a memory region is non-volatile
1202 *
1203 * Returns %true is a memory region is non-volatile memory.
1204 *
1205 * @mr: the memory region being queried
1206 */
1207 static inline bool memory_region_is_nonvolatile(MemoryRegion *mr)
1208 {
1209 return mr->nonvolatile;
1210 }
1211
1212 /**
1213 * memory_region_get_fd: Get a file descriptor backing a RAM memory region.
1214 *
1215 * Returns a file descriptor backing a file-based RAM memory region,
1216 * or -1 if the region is not a file-based RAM memory region.
1217 *
1218 * @mr: the RAM or alias memory region being queried.
1219 */
1220 int memory_region_get_fd(MemoryRegion *mr);
1221
1222 /**
1223 * memory_region_from_host: Convert a pointer into a RAM memory region
1224 * and an offset within it.
1225 *
1226 * Given a host pointer inside a RAM memory region (created with
1227 * memory_region_init_ram() or memory_region_init_ram_ptr()), return
1228 * the MemoryRegion and the offset within it.
1229 *
1230 * Use with care; by the time this function returns, the returned pointer is
1231 * not protected by RCU anymore. If the caller is not within an RCU critical
1232 * section and does not hold the iothread lock, it must have other means of
1233 * protecting the pointer, such as a reference to the region that includes
1234 * the incoming ram_addr_t.
1235 *
1236 * @ptr: the host pointer to be converted
1237 * @offset: the offset within memory region
1238 */
1239 MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset);
1240
1241 /**
1242 * memory_region_get_ram_ptr: Get a pointer into a RAM memory region.
1243 *
1244 * Returns a host pointer to a RAM memory region (created with
1245 * memory_region_init_ram() or memory_region_init_ram_ptr()).
1246 *
1247 * Use with care; by the time this function returns, the returned pointer is
1248 * not protected by RCU anymore. If the caller is not within an RCU critical
1249 * section and does not hold the iothread lock, it must have other means of
1250 * protecting the pointer, such as a reference to the region that includes
1251 * the incoming ram_addr_t.
1252 *
1253 * @mr: the memory region being queried.
1254 */
1255 void *memory_region_get_ram_ptr(MemoryRegion *mr);
1256
1257 /* memory_region_ram_resize: Resize a RAM region.
1258 *
1259 * Only legal before guest might have detected the memory size: e.g. on
1260 * incoming migration, or right after reset.
1261 *
1262 * @mr: a memory region created with @memory_region_init_resizeable_ram.
1263 * @newsize: the new size the region
1264 * @errp: pointer to Error*, to store an error if it happens.
1265 */
1266 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize,
1267 Error **errp);
1268
1269 /**
1270 * memory_region_set_log: Turn dirty logging on or off for a region.
1271 *
1272 * Turns dirty logging on or off for a specified client (display, migration).
1273 * Only meaningful for RAM regions.
1274 *
1275 * @mr: the memory region being updated.
1276 * @log: whether dirty logging is to be enabled or disabled.
1277 * @client: the user of the logging information; %DIRTY_MEMORY_VGA only.
1278 */
1279 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client);
1280
1281 /**
1282 * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region.
1283 *
1284 * Marks a range of bytes as dirty, after it has been dirtied outside
1285 * guest code.
1286 *
1287 * @mr: the memory region being dirtied.
1288 * @addr: the address (relative to the start of the region) being dirtied.
1289 * @size: size of the range being dirtied.
1290 */
1291 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
1292 hwaddr size);
1293
1294 /**
1295 * memory_region_clear_dirty_bitmap - clear dirty bitmap for memory range
1296 *
1297 * This function is called when the caller wants to clear the remote
1298 * dirty bitmap of a memory range within the memory region. This can
1299 * be used by e.g. KVM to manually clear dirty log when
1300 * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT is declared support by the host
1301 * kernel.
1302 *
1303 * @mr: the memory region to clear the dirty log upon
1304 * @start: start address offset within the memory region
1305 * @len: length of the memory region to clear dirty bitmap
1306 */
1307 void memory_region_clear_dirty_bitmap(MemoryRegion *mr, hwaddr start,
1308 hwaddr len);
1309
1310 /**
1311 * memory_region_snapshot_and_clear_dirty: Get a snapshot of the dirty
1312 * bitmap and clear it.
1313 *
1314 * Creates a snapshot of the dirty bitmap, clears the dirty bitmap and
1315 * returns the snapshot. The snapshot can then be used to query dirty
1316 * status, using memory_region_snapshot_get_dirty. Snapshotting allows
1317 * querying the same page multiple times, which is especially useful for
1318 * display updates where the scanlines often are not page aligned.
1319 *
1320 * The dirty bitmap region which gets copyed into the snapshot (and
1321 * cleared afterwards) can be larger than requested. The boundaries
1322 * are rounded up/down so complete bitmap longs (covering 64 pages on
1323 * 64bit hosts) can be copied over into the bitmap snapshot. Which
1324 * isn't a problem for display updates as the extra pages are outside
1325 * the visible area, and in case the visible area changes a full
1326 * display redraw is due anyway. Should other use cases for this
1327 * function emerge we might have to revisit this implementation
1328 * detail.
1329 *
1330 * Use g_free to release DirtyBitmapSnapshot.
1331 *
1332 * @mr: the memory region being queried.
1333 * @addr: the address (relative to the start of the region) being queried.
1334 * @size: the size of the range being queried.
1335 * @client: the user of the logging information; typically %DIRTY_MEMORY_VGA.
1336 */
1337 DirtyBitmapSnapshot *memory_region_snapshot_and_clear_dirty(MemoryRegion *mr,
1338 hwaddr addr,
1339 hwaddr size,
1340 unsigned client);
1341
1342 /**
1343 * memory_region_snapshot_get_dirty: Check whether a range of bytes is dirty
1344 * in the specified dirty bitmap snapshot.
1345 *
1346 * @mr: the memory region being queried.
1347 * @snap: the dirty bitmap snapshot
1348 * @addr: the address (relative to the start of the region) being queried.
1349 * @size: the size of the range being queried.
1350 */
1351 bool memory_region_snapshot_get_dirty(MemoryRegion *mr,
1352 DirtyBitmapSnapshot *snap,
1353 hwaddr addr, hwaddr size);
1354
1355 /**
1356 * memory_region_reset_dirty: Mark a range of pages as clean, for a specified
1357 * client.
1358 *
1359 * Marks a range of pages as no longer dirty.
1360 *
1361 * @mr: the region being updated.
1362 * @addr: the start of the subrange being cleaned.
1363 * @size: the size of the subrange being cleaned.
1364 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
1365 * %DIRTY_MEMORY_VGA.
1366 */
1367 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
1368 hwaddr size, unsigned client);
1369
1370 /**
1371 * memory_region_flush_rom_device: Mark a range of pages dirty and invalidate
1372 * TBs (for self-modifying code).
1373 *
1374 * The MemoryRegionOps->write() callback of a ROM device must use this function
1375 * to mark byte ranges that have been modified internally, such as by directly
1376 * accessing the memory returned by memory_region_get_ram_ptr().
1377 *
1378 * This function marks the range dirty and invalidates TBs so that TCG can
1379 * detect self-modifying code.
1380 *
1381 * @mr: the region being flushed.
1382 * @addr: the start, relative to the start of the region, of the range being
1383 * flushed.
1384 * @size: the size, in bytes, of the range being flushed.
1385 */
1386 void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size);
1387
1388 /**
1389 * memory_region_set_readonly: Turn a memory region read-only (or read-write)
1390 *
1391 * Allows a memory region to be marked as read-only (turning it into a ROM).
1392 * only useful on RAM regions.
1393 *
1394 * @mr: the region being updated.
1395 * @readonly: whether rhe region is to be ROM or RAM.
1396 */
1397 void memory_region_set_readonly(MemoryRegion *mr, bool readonly);
1398
1399 /**
1400 * memory_region_set_nonvolatile: Turn a memory region non-volatile
1401 *
1402 * Allows a memory region to be marked as non-volatile.
1403 * only useful on RAM regions.
1404 *
1405 * @mr: the region being updated.
1406 * @nonvolatile: whether rhe region is to be non-volatile.
1407 */
1408 void memory_region_set_nonvolatile(MemoryRegion *mr, bool nonvolatile);
1409
1410 /**
1411 * memory_region_rom_device_set_romd: enable/disable ROMD mode
1412 *
1413 * Allows a ROM device (initialized with memory_region_init_rom_device() to
1414 * set to ROMD mode (default) or MMIO mode. When it is in ROMD mode, the
1415 * device is mapped to guest memory and satisfies read access directly.
1416 * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function.
1417 * Writes are always handled by the #MemoryRegion.write function.
1418 *
1419 * @mr: the memory region to be updated
1420 * @romd_mode: %true to put the region into ROMD mode
1421 */
1422 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode);
1423
1424 /**
1425 * memory_region_set_coalescing: Enable memory coalescing for the region.
1426 *
1427 * Enabled writes to a region to be queued for later processing. MMIO ->write
1428 * callbacks may be delayed until a non-coalesced MMIO is issued.
1429 * Only useful for IO regions. Roughly similar to write-combining hardware.
1430 *
1431 * @mr: the memory region to be write coalesced
1432 */
1433 void memory_region_set_coalescing(MemoryRegion *mr);
1434
1435 /**
1436 * memory_region_add_coalescing: Enable memory coalescing for a sub-range of
1437 * a region.
1438 *
1439 * Like memory_region_set_coalescing(), but works on a sub-range of a region.
1440 * Multiple calls can be issued coalesced disjoint ranges.
1441 *
1442 * @mr: the memory region to be updated.
1443 * @offset: the start of the range within the region to be coalesced.
1444 * @size: the size of the subrange to be coalesced.
1445 */
1446 void memory_region_add_coalescing(MemoryRegion *mr,
1447 hwaddr offset,
1448 uint64_t size);
1449
1450 /**
1451 * memory_region_clear_coalescing: Disable MMIO coalescing for the region.
1452 *
1453 * Disables any coalescing caused by memory_region_set_coalescing() or
1454 * memory_region_add_coalescing(). Roughly equivalent to uncacheble memory
1455 * hardware.
1456 *
1457 * @mr: the memory region to be updated.
1458 */
1459 void memory_region_clear_coalescing(MemoryRegion *mr);
1460
1461 /**
1462 * memory_region_set_flush_coalesced: Enforce memory coalescing flush before
1463 * accesses.
1464 *
1465 * Ensure that pending coalesced MMIO request are flushed before the memory
1466 * region is accessed. This property is automatically enabled for all regions
1467 * passed to memory_region_set_coalescing() and memory_region_add_coalescing().
1468 *
1469 * @mr: the memory region to be updated.
1470 */
1471 void memory_region_set_flush_coalesced(MemoryRegion *mr);
1472
1473 /**
1474 * memory_region_clear_flush_coalesced: Disable memory coalescing flush before
1475 * accesses.
1476 *
1477 * Clear the automatic coalesced MMIO flushing enabled via
1478 * memory_region_set_flush_coalesced. Note that this service has no effect on
1479 * memory regions that have MMIO coalescing enabled for themselves. For them,
1480 * automatic flushing will stop once coalescing is disabled.
1481 *
1482 * @mr: the memory region to be updated.
1483 */
1484 void memory_region_clear_flush_coalesced(MemoryRegion *mr);
1485
1486 /**
1487 * memory_region_clear_global_locking: Declares that access processing does
1488 * not depend on the QEMU global lock.
1489 *
1490 * By clearing this property, accesses to the memory region will be processed
1491 * outside of QEMU's global lock (unless the lock is held on when issuing the
1492 * access request). In this case, the device model implementing the access
1493 * handlers is responsible for synchronization of concurrency.
1494 *
1495 * @mr: the memory region to be updated.
1496 */
1497 void memory_region_clear_global_locking(MemoryRegion *mr);
1498
1499 /**
1500 * memory_region_add_eventfd: Request an eventfd to be triggered when a word
1501 * is written to a location.
1502 *
1503 * Marks a word in an IO region (initialized with memory_region_init_io())
1504 * as a trigger for an eventfd event. The I/O callback will not be called.
1505 * The caller must be prepared to handle failure (that is, take the required
1506 * action if the callback _is_ called).
1507 *
1508 * @mr: the memory region being updated.
1509 * @addr: the address within @mr that is to be monitored
1510 * @size: the size of the access to trigger the eventfd
1511 * @match_data: whether to match against @data, instead of just @addr
1512 * @data: the data to match against the guest write
1513 * @e: event notifier to be triggered when @addr, @size, and @data all match.
1514 **/
1515 void memory_region_add_eventfd(MemoryRegion *mr,
1516 hwaddr addr,
1517 unsigned size,
1518 bool match_data,
1519 uint64_t data,
1520 EventNotifier *e);
1521
1522 /**
1523 * memory_region_del_eventfd: Cancel an eventfd.
1524 *
1525 * Cancels an eventfd trigger requested by a previous
1526 * memory_region_add_eventfd() call.
1527 *
1528 * @mr: the memory region being updated.
1529 * @addr: the address within @mr that is to be monitored
1530 * @size: the size of the access to trigger the eventfd
1531 * @match_data: whether to match against @data, instead of just @addr
1532 * @data: the data to match against the guest write
1533 * @e: event notifier to be triggered when @addr, @size, and @data all match.
1534 */
1535 void memory_region_del_eventfd(MemoryRegion *mr,
1536 hwaddr addr,
1537 unsigned size,
1538 bool match_data,
1539 uint64_t data,
1540 EventNotifier *e);
1541
1542 /**
1543 * memory_region_add_subregion: Add a subregion to a container.
1544 *
1545 * Adds a subregion at @offset. The subregion may not overlap with other
1546 * subregions (except for those explicitly marked as overlapping). A region
1547 * may only be added once as a subregion (unless removed with
1548 * memory_region_del_subregion()); use memory_region_init_alias() if you
1549 * want a region to be a subregion in multiple locations.
1550 *
1551 * @mr: the region to contain the new subregion; must be a container
1552 * initialized with memory_region_init().
1553 * @offset: the offset relative to @mr where @subregion is added.
1554 * @subregion: the subregion to be added.
1555 */
1556 void memory_region_add_subregion(MemoryRegion *mr,
1557 hwaddr offset,
1558 MemoryRegion *subregion);
1559 /**
1560 * memory_region_add_subregion_overlap: Add a subregion to a container
1561 * with overlap.
1562 *
1563 * Adds a subregion at @offset. The subregion may overlap with other
1564 * subregions. Conflicts are resolved by having a higher @priority hide a
1565 * lower @priority. Subregions without priority are taken as @priority 0.
1566 * A region may only be added once as a subregion (unless removed with
1567 * memory_region_del_subregion()); use memory_region_init_alias() if you
1568 * want a region to be a subregion in multiple locations.
1569 *
1570 * @mr: the region to contain the new subregion; must be a container
1571 * initialized with memory_region_init().
1572 * @offset: the offset relative to @mr where @subregion is added.
1573 * @subregion: the subregion to be added.
1574 * @priority: used for resolving overlaps; highest priority wins.
1575 */
1576 void memory_region_add_subregion_overlap(MemoryRegion *mr,
1577 hwaddr offset,
1578 MemoryRegion *subregion,
1579 int priority);
1580
1581 /**
1582 * memory_region_get_ram_addr: Get the ram address associated with a memory
1583 * region
1584 */
1585 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr);
1586
1587 uint64_t memory_region_get_alignment(const MemoryRegion *mr);
1588 /**
1589 * memory_region_del_subregion: Remove a subregion.
1590 *
1591 * Removes a subregion from its container.
1592 *
1593 * @mr: the container to be updated.
1594 * @subregion: the region being removed; must be a current subregion of @mr.
1595 */
1596 void memory_region_del_subregion(MemoryRegion *mr,
1597 MemoryRegion *subregion);
1598
1599 /*
1600 * memory_region_set_enabled: dynamically enable or disable a region
1601 *
1602 * Enables or disables a memory region. A disabled memory region
1603 * ignores all accesses to itself and its subregions. It does not
1604 * obscure sibling subregions with lower priority - it simply behaves as
1605 * if it was removed from the hierarchy.
1606 *
1607 * Regions default to being enabled.
1608 *
1609 * @mr: the region to be updated
1610 * @enabled: whether to enable or disable the region
1611 */
1612 void memory_region_set_enabled(MemoryRegion *mr, bool enabled);
1613
1614 /*
1615 * memory_region_set_address: dynamically update the address of a region
1616 *
1617 * Dynamically updates the address of a region, relative to its container.
1618 * May be used on regions are currently part of a memory hierarchy.
1619 *
1620 * @mr: the region to be updated
1621 * @addr: new address, relative to container region
1622 */
1623 void memory_region_set_address(MemoryRegion *mr, hwaddr addr);
1624
1625 /*
1626 * memory_region_set_size: dynamically update the size of a region.
1627 *
1628 * Dynamically updates the size of a region.
1629 *
1630 * @mr: the region to be updated
1631 * @size: used size of the region.
1632 */
1633 void memory_region_set_size(MemoryRegion *mr, uint64_t size);
1634
1635 /*
1636 * memory_region_set_alias_offset: dynamically update a memory alias's offset
1637 *
1638 * Dynamically updates the offset into the target region that an alias points
1639 * to, as if the fourth argument to memory_region_init_alias() has changed.
1640 *
1641 * @mr: the #MemoryRegion to be updated; should be an alias.
1642 * @offset: the new offset into the target memory region
1643 */
1644 void memory_region_set_alias_offset(MemoryRegion *mr,
1645 hwaddr offset);
1646
1647 /**
1648 * memory_region_present: checks if an address relative to a @container
1649 * translates into #MemoryRegion within @container
1650 *
1651 * Answer whether a #MemoryRegion within @container covers the address
1652 * @addr.
1653 *
1654 * @container: a #MemoryRegion within which @addr is a relative address
1655 * @addr: the area within @container to be searched
1656 */
1657 bool memory_region_present(MemoryRegion *container, hwaddr addr);
1658
1659 /**
1660 * memory_region_is_mapped: returns true if #MemoryRegion is mapped
1661 * into any address space.
1662 *
1663 * @mr: a #MemoryRegion which should be checked if it's mapped
1664 */
1665 bool memory_region_is_mapped(MemoryRegion *mr);
1666
1667 /**
1668 * memory_region_find: translate an address/size relative to a
1669 * MemoryRegion into a #MemoryRegionSection.
1670 *
1671 * Locates the first #MemoryRegion within @mr that overlaps the range
1672 * given by @addr and @size.
1673 *
1674 * Returns a #MemoryRegionSection that describes a contiguous overlap.
1675 * It will have the following characteristics:
1676 * .@size = 0 iff no overlap was found
1677 * .@mr is non-%NULL iff an overlap was found
1678 *
1679 * Remember that in the return value the @offset_within_region is
1680 * relative to the returned region (in the .@mr field), not to the
1681 * @mr argument.
1682 *
1683 * Similarly, the .@offset_within_address_space is relative to the
1684 * address space that contains both regions, the passed and the
1685 * returned one. However, in the special case where the @mr argument
1686 * has no container (and thus is the root of the address space), the
1687 * following will hold:
1688 * .@offset_within_address_space >= @addr
1689 * .@offset_within_address_space + .@size <= @addr + @size
1690 *
1691 * @mr: a MemoryRegion within which @addr is a relative address
1692 * @addr: start of the area within @as to be searched
1693 * @size: size of the area to be searched
1694 */
1695 MemoryRegionSection memory_region_find(MemoryRegion *mr,
1696 hwaddr addr, uint64_t size);
1697
1698 /**
1699 * memory_global_dirty_log_sync: synchronize the dirty log for all memory
1700 *
1701 * Synchronizes the dirty page log for all address spaces.
1702 */
1703 void memory_global_dirty_log_sync(void);
1704
1705 /**
1706 * memory_global_dirty_log_sync: synchronize the dirty log for all memory
1707 *
1708 * Synchronizes the vCPUs with a thread that is reading the dirty bitmap.
1709 * This function must be called after the dirty log bitmap is cleared, and
1710 * before dirty guest memory pages are read. If you are using
1711 * #DirtyBitmapSnapshot, memory_region_snapshot_and_clear_dirty() takes
1712 * care of doing this.
1713 */
1714 void memory_global_after_dirty_log_sync(void);
1715
1716 /**
1717 * memory_region_transaction_begin: Start a transaction.
1718 *
1719 * During a transaction, changes will be accumulated and made visible
1720 * only when the transaction ends (is committed).
1721 */
1722 void memory_region_transaction_begin(void);
1723
1724 /**
1725 * memory_region_transaction_commit: Commit a transaction and make changes
1726 * visible to the guest.
1727 */
1728 void memory_region_transaction_commit(void);
1729
1730 /**
1731 * memory_listener_register: register callbacks to be called when memory
1732 * sections are mapped or unmapped into an address
1733 * space
1734 *
1735 * @listener: an object containing the callbacks to be called
1736 * @filter: if non-%NULL, only regions in this address space will be observed
1737 */
1738 void memory_listener_register(MemoryListener *listener, AddressSpace *filter);
1739
1740 /**
1741 * memory_listener_unregister: undo the effect of memory_listener_register()
1742 *
1743 * @listener: an object containing the callbacks to be removed
1744 */
1745 void memory_listener_unregister(MemoryListener *listener);
1746
1747 /**
1748 * memory_global_dirty_log_start: begin dirty logging for all regions
1749 */
1750 void memory_global_dirty_log_start(void);
1751
1752 /**
1753 * memory_global_dirty_log_stop: end dirty logging for all regions
1754 */
1755 void memory_global_dirty_log_stop(void);
1756
1757 void mtree_info(bool flatview, bool dispatch_tree, bool owner);
1758
1759 /**
1760 * memory_region_dispatch_read: perform a read directly to the specified
1761 * MemoryRegion.
1762 *
1763 * @mr: #MemoryRegion to access
1764 * @addr: address within that region
1765 * @pval: pointer to uint64_t which the data is written to
1766 * @op: size, sign, and endianness of the memory operation
1767 * @attrs: memory transaction attributes to use for the access
1768 */
1769 MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
1770 hwaddr addr,
1771 uint64_t *pval,
1772 MemOp op,
1773 MemTxAttrs attrs);
1774 /**
1775 * memory_region_dispatch_write: perform a write directly to the specified
1776 * MemoryRegion.
1777 *
1778 * @mr: #MemoryRegion to access
1779 * @addr: address within that region
1780 * @data: data to write
1781 * @op: size, sign, and endianness of the memory operation
1782 * @attrs: memory transaction attributes to use for the access
1783 */
1784 MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
1785 hwaddr addr,
1786 uint64_t data,
1787 MemOp op,
1788 MemTxAttrs attrs);
1789
1790 /**
1791 * address_space_init: initializes an address space
1792 *
1793 * @as: an uninitialized #AddressSpace
1794 * @root: a #MemoryRegion that routes addresses for the address space
1795 * @name: an address space name. The name is only used for debugging
1796 * output.
1797 */
1798 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name);
1799
1800 /**
1801 * address_space_destroy: destroy an address space
1802 *
1803 * Releases all resources associated with an address space. After an address space
1804 * is destroyed, its root memory region (given by address_space_init()) may be destroyed
1805 * as well.
1806 *
1807 * @as: address space to be destroyed
1808 */
1809 void address_space_destroy(AddressSpace *as);
1810
1811 /**
1812 * address_space_remove_listeners: unregister all listeners of an address space
1813 *
1814 * Removes all callbacks previously registered with memory_listener_register()
1815 * for @as.
1816 *
1817 * @as: an initialized #AddressSpace
1818 */
1819 void address_space_remove_listeners(AddressSpace *as);
1820
1821 /**
1822 * address_space_rw: read from or write to an address space.
1823 *
1824 * Return a MemTxResult indicating whether the operation succeeded
1825 * or failed (eg unassigned memory, device rejected the transaction,
1826 * IOMMU fault).
1827 *
1828 * @as: #AddressSpace to be accessed
1829 * @addr: address within that address space
1830 * @attrs: memory transaction attributes
1831 * @buf: buffer with the data transferred
1832 * @len: the number of bytes to read or write
1833 * @is_write: indicates the transfer direction
1834 */
1835 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr,
1836 MemTxAttrs attrs, uint8_t *buf,
1837 hwaddr len, bool is_write);
1838
1839 /**
1840 * address_space_write: write to address space.
1841 *
1842 * Return a MemTxResult indicating whether the operation succeeded
1843 * or failed (eg unassigned memory, device rejected the transaction,
1844 * IOMMU fault).
1845 *
1846 * @as: #AddressSpace to be accessed
1847 * @addr: address within that address space
1848 * @attrs: memory transaction attributes
1849 * @buf: buffer with the data transferred
1850 * @len: the number of bytes to write
1851 */
1852 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
1853 MemTxAttrs attrs,
1854 const uint8_t *buf, hwaddr len);
1855
1856 /**
1857 * address_space_write_rom: write to address space, including ROM.
1858 *
1859 * This function writes to the specified address space, but will
1860 * write data to both ROM and RAM. This is used for non-guest
1861 * writes like writes from the gdb debug stub or initial loading
1862 * of ROM contents.
1863 *
1864 * Note that portions of the write which attempt to write data to
1865 * a device will be silently ignored -- only real RAM and ROM will
1866 * be written to.
1867 *
1868 * Return a MemTxResult indicating whether the operation succeeded
1869 * or failed (eg unassigned memory, device rejected the transaction,
1870 * IOMMU fault).
1871 *
1872 * @as: #AddressSpace to be accessed
1873 * @addr: address within that address space
1874 * @attrs: memory transaction attributes
1875 * @buf: buffer with the data transferred
1876 * @len: the number of bytes to write
1877 */
1878 MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
1879 MemTxAttrs attrs,
1880 const uint8_t *buf, hwaddr len);
1881
1882 /* address_space_ld*: load from an address space
1883 * address_space_st*: store to an address space
1884 *
1885 * These functions perform a load or store of the byte, word,
1886 * longword or quad to the specified address within the AddressSpace.
1887 * The _le suffixed functions treat the data as little endian;
1888 * _be indicates big endian; no suffix indicates "same endianness
1889 * as guest CPU".
1890 *
1891 * The "guest CPU endianness" accessors are deprecated for use outside
1892 * target-* code; devices should be CPU-agnostic and use either the LE
1893 * or the BE accessors.
1894 *
1895 * @as #AddressSpace to be accessed
1896 * @addr: address within that address space
1897 * @val: data value, for stores
1898 * @attrs: memory transaction attributes
1899 * @result: location to write the success/failure of the transaction;
1900 * if NULL, this information is discarded
1901 */
1902
1903 #define SUFFIX
1904 #define ARG1 as
1905 #define ARG1_DECL AddressSpace *as
1906 #include "exec/memory_ldst.inc.h"
1907
1908 #define SUFFIX
1909 #define ARG1 as
1910 #define ARG1_DECL AddressSpace *as
1911 #include "exec/memory_ldst_phys.inc.h"
1912
1913 struct MemoryRegionCache {
1914 void *ptr;
1915 hwaddr xlat;
1916 hwaddr len;
1917 FlatView *fv;
1918 MemoryRegionSection mrs;
1919 bool is_write;
1920 };
1921
1922 #define MEMORY_REGION_CACHE_INVALID ((MemoryRegionCache) { .mrs.mr = NULL })
1923
1924
1925 /* address_space_ld*_cached: load from a cached #MemoryRegion
1926 * address_space_st*_cached: store into a cached #MemoryRegion
1927 *
1928 * These functions perform a load or store of the byte, word,
1929 * longword or quad to the specified address. The address is
1930 * a physical address in the AddressSpace, but it must lie within
1931 * a #MemoryRegion that was mapped with address_space_cache_init.
1932 *
1933 * The _le suffixed functions treat the data as little endian;
1934 * _be indicates big endian; no suffix indicates "same endianness
1935 * as guest CPU".
1936 *
1937 * The "guest CPU endianness" accessors are deprecated for use outside
1938 * target-* code; devices should be CPU-agnostic and use either the LE
1939 * or the BE accessors.
1940 *
1941 * @cache: previously initialized #MemoryRegionCache to be accessed
1942 * @addr: address within the address space
1943 * @val: data value, for stores
1944 * @attrs: memory transaction attributes
1945 * @result: location to write the success/failure of the transaction;
1946 * if NULL, this information is discarded
1947 */
1948
1949 #define SUFFIX _cached_slow
1950 #define ARG1 cache
1951 #define ARG1_DECL MemoryRegionCache *cache
1952 #include "exec/memory_ldst.inc.h"
1953
1954 /* Inline fast path for direct RAM access. */
1955 static inline uint8_t address_space_ldub_cached(MemoryRegionCache *cache,
1956 hwaddr addr, MemTxAttrs attrs, MemTxResult *result)
1957 {
1958 assert(addr < cache->len);
1959 if (likely(cache->ptr)) {
1960 return ldub_p(cache->ptr + addr);
1961 } else {
1962 return address_space_ldub_cached_slow(cache, addr, attrs, result);
1963 }
1964 }
1965
1966 static inline void address_space_stb_cached(MemoryRegionCache *cache,
1967 hwaddr addr, uint32_t val, MemTxAttrs attrs, MemTxResult *result)
1968 {
1969 assert(addr < cache->len);
1970 if (likely(cache->ptr)) {
1971 stb_p(cache->ptr + addr, val);
1972 } else {
1973 address_space_stb_cached_slow(cache, addr, val, attrs, result);
1974 }
1975 }
1976
1977 #define ENDIANNESS _le
1978 #include "exec/memory_ldst_cached.inc.h"
1979
1980 #define ENDIANNESS _be
1981 #include "exec/memory_ldst_cached.inc.h"
1982
1983 #define SUFFIX _cached
1984 #define ARG1 cache
1985 #define ARG1_DECL MemoryRegionCache *cache
1986 #include "exec/memory_ldst_phys.inc.h"
1987
1988 /* address_space_cache_init: prepare for repeated access to a physical
1989 * memory region
1990 *
1991 * @cache: #MemoryRegionCache to be filled
1992 * @as: #AddressSpace to be accessed
1993 * @addr: address within that address space
1994 * @len: length of buffer
1995 * @is_write: indicates the transfer direction
1996 *
1997 * Will only work with RAM, and may map a subset of the requested range by
1998 * returning a value that is less than @len. On failure, return a negative
1999 * errno value.
2000 *
2001 * Because it only works with RAM, this function can be used for
2002 * read-modify-write operations. In this case, is_write should be %true.
2003 *
2004 * Note that addresses passed to the address_space_*_cached functions
2005 * are relative to @addr.
2006 */
2007 int64_t address_space_cache_init(MemoryRegionCache *cache,
2008 AddressSpace *as,
2009 hwaddr addr,
2010 hwaddr len,
2011 bool is_write);
2012
2013 /**
2014 * address_space_cache_invalidate: complete a write to a #MemoryRegionCache
2015 *
2016 * @cache: The #MemoryRegionCache to operate on.
2017 * @addr: The first physical address that was written, relative to the
2018 * address that was passed to @address_space_cache_init.
2019 * @access_len: The number of bytes that were written starting at @addr.
2020 */
2021 void address_space_cache_invalidate(MemoryRegionCache *cache,
2022 hwaddr addr,
2023 hwaddr access_len);
2024
2025 /**
2026 * address_space_cache_destroy: free a #MemoryRegionCache
2027 *
2028 * @cache: The #MemoryRegionCache whose memory should be released.
2029 */
2030 void address_space_cache_destroy(MemoryRegionCache *cache);
2031
2032 /* address_space_get_iotlb_entry: translate an address into an IOTLB
2033 * entry. Should be called from an RCU critical section.
2034 */
2035 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
2036 bool is_write, MemTxAttrs attrs);
2037
2038 /* address_space_translate: translate an address range into an address space
2039 * into a MemoryRegion and an address range into that section. Should be
2040 * called from an RCU critical section, to avoid that the last reference
2041 * to the returned region disappears after address_space_translate returns.
2042 *
2043 * @fv: #FlatView to be accessed
2044 * @addr: address within that address space
2045 * @xlat: pointer to address within the returned memory region section's
2046 * #MemoryRegion.
2047 * @len: pointer to length
2048 * @is_write: indicates the transfer direction
2049 * @attrs: memory attributes
2050 */
2051 MemoryRegion *flatview_translate(FlatView *fv,
2052 hwaddr addr, hwaddr *xlat,
2053 hwaddr *len, bool is_write,
2054 MemTxAttrs attrs);
2055
2056 static inline MemoryRegion *address_space_translate(AddressSpace *as,
2057 hwaddr addr, hwaddr *xlat,
2058 hwaddr *len, bool is_write,
2059 MemTxAttrs attrs)
2060 {
2061 return flatview_translate(address_space_to_flatview(as),
2062 addr, xlat, len, is_write, attrs);
2063 }
2064
2065 /* address_space_access_valid: check for validity of accessing an address
2066 * space range
2067 *
2068 * Check whether memory is assigned to the given address space range, and
2069 * access is permitted by any IOMMU regions that are active for the address
2070 * space.
2071 *
2072 * For now, addr and len should be aligned to a page size. This limitation
2073 * will be lifted in the future.
2074 *
2075 * @as: #AddressSpace to be accessed
2076 * @addr: address within that address space
2077 * @len: length of the area to be checked
2078 * @is_write: indicates the transfer direction
2079 * @attrs: memory attributes
2080 */
2081 bool address_space_access_valid(AddressSpace *as, hwaddr addr, hwaddr len,
2082 bool is_write, MemTxAttrs attrs);
2083
2084 /* address_space_map: map a physical memory region into a host virtual address
2085 *
2086 * May map a subset of the requested range, given by and returned in @plen.
2087 * May return %NULL if resources needed to perform the mapping are exhausted.
2088 * Use only for reads OR writes - not for read-modify-write operations.
2089 * Use cpu_register_map_client() to know when retrying the map operation is
2090 * likely to succeed.
2091 *
2092 * @as: #AddressSpace to be accessed
2093 * @addr: address within that address space
2094 * @plen: pointer to length of buffer; updated on return
2095 * @is_write: indicates the transfer direction
2096 * @attrs: memory attributes
2097 */
2098 void *address_space_map(AddressSpace *as, hwaddr addr,
2099 hwaddr *plen, bool is_write, MemTxAttrs attrs);
2100
2101 /* address_space_unmap: Unmaps a memory region previously mapped by address_space_map()
2102 *
2103 * Will also mark the memory as dirty if @is_write == %true. @access_len gives
2104 * the amount of memory that was actually read or written by the caller.
2105 *
2106 * @as: #AddressSpace used
2107 * @buffer: host pointer as returned by address_space_map()
2108 * @len: buffer length as returned by address_space_map()
2109 * @access_len: amount of data actually transferred
2110 * @is_write: indicates the transfer direction
2111 */
2112 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
2113 int is_write, hwaddr access_len);
2114
2115
2116 /* Internal functions, part of the implementation of address_space_read. */
2117 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
2118 MemTxAttrs attrs, uint8_t *buf, hwaddr len);
2119 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
2120 MemTxAttrs attrs, uint8_t *buf,
2121 hwaddr len, hwaddr addr1, hwaddr l,
2122 MemoryRegion *mr);
2123 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr);
2124
2125 /* Internal functions, part of the implementation of address_space_read_cached
2126 * and address_space_write_cached. */
2127 void address_space_read_cached_slow(MemoryRegionCache *cache,
2128 hwaddr addr, void *buf, hwaddr len);
2129 void address_space_write_cached_slow(MemoryRegionCache *cache,
2130 hwaddr addr, const void *buf, hwaddr len);
2131
2132 static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write)
2133 {
2134 if (is_write) {
2135 return memory_region_is_ram(mr) &&
2136 !mr->readonly && !memory_region_is_ram_device(mr);
2137 } else {
2138 return (memory_region_is_ram(mr) && !memory_region_is_ram_device(mr)) ||
2139 memory_region_is_romd(mr);
2140 }
2141 }
2142
2143 /**
2144 * address_space_read: read from an address space.
2145 *
2146 * Return a MemTxResult indicating whether the operation succeeded
2147 * or failed (eg unassigned memory, device rejected the transaction,
2148 * IOMMU fault). Called within RCU critical section.
2149 *
2150 * @as: #AddressSpace to be accessed
2151 * @addr: address within that address space
2152 * @attrs: memory transaction attributes
2153 * @buf: buffer with the data transferred
2154 */
2155 static inline __attribute__((__always_inline__))
2156 MemTxResult address_space_read(AddressSpace *as, hwaddr addr,
2157 MemTxAttrs attrs, uint8_t *buf,
2158 hwaddr len)
2159 {
2160 MemTxResult result = MEMTX_OK;
2161 hwaddr l, addr1;
2162 void *ptr;
2163 MemoryRegion *mr;
2164 FlatView *fv;
2165
2166 if (__builtin_constant_p(len)) {
2167 if (len) {
2168 rcu_read_lock();
2169 fv = address_space_to_flatview(as);
2170 l = len;
2171 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
2172 if (len == l && memory_access_is_direct(mr, false)) {
2173 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
2174 memcpy(buf, ptr, len);
2175 } else {
2176 result = flatview_read_continue(fv, addr, attrs, buf, len,
2177 addr1, l, mr);
2178 }
2179 rcu_read_unlock();
2180 }
2181 } else {
2182 result = address_space_read_full(as, addr, attrs, buf, len);
2183 }
2184 return result;
2185 }
2186
2187 /**
2188 * address_space_read_cached: read from a cached RAM region
2189 *
2190 * @cache: Cached region to be addressed
2191 * @addr: address relative to the base of the RAM region
2192 * @buf: buffer with the data transferred
2193 * @len: length of the data transferred
2194 */
2195 static inline void
2196 address_space_read_cached(MemoryRegionCache *cache, hwaddr addr,
2197 void *buf, hwaddr len)
2198 {
2199 assert(addr < cache->len && len <= cache->len - addr);
2200 if (likely(cache->ptr)) {
2201 memcpy(buf, cache->ptr + addr, len);
2202 } else {
2203 address_space_read_cached_slow(cache, addr, buf, len);
2204 }
2205 }
2206
2207 /**
2208 * address_space_write_cached: write to a cached RAM region
2209 *
2210 * @cache: Cached region to be addressed
2211 * @addr: address relative to the base of the RAM region
2212 * @buf: buffer with the data transferred
2213 * @len: length of the data transferred
2214 */
2215 static inline void
2216 address_space_write_cached(MemoryRegionCache *cache, hwaddr addr,
2217 void *buf, hwaddr len)
2218 {
2219 assert(addr < cache->len && len <= cache->len - addr);
2220 if (likely(cache->ptr)) {
2221 memcpy(cache->ptr + addr, buf, len);
2222 } else {
2223 address_space_write_cached_slow(cache, addr, buf, len);
2224 }
2225 }
2226
2227 #ifdef NEED_CPU_H
2228 /* enum device_endian to MemOp. */
2229 static inline MemOp devend_memop(enum device_endian end)
2230 {
2231 QEMU_BUILD_BUG_ON(DEVICE_HOST_ENDIAN != DEVICE_LITTLE_ENDIAN &&
2232 DEVICE_HOST_ENDIAN != DEVICE_BIG_ENDIAN);
2233
2234 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
2235 /* Swap if non-host endianness or native (target) endianness */
2236 return (end == DEVICE_HOST_ENDIAN) ? 0 : MO_BSWAP;
2237 #else
2238 const int non_host_endianness =
2239 DEVICE_LITTLE_ENDIAN ^ DEVICE_BIG_ENDIAN ^ DEVICE_HOST_ENDIAN;
2240
2241 /* In this case, native (target) endianness needs no swap. */
2242 return (end == non_host_endianness) ? MO_BSWAP : 0;
2243 #endif
2244 }
2245 #endif
2246
2247 #endif
2248
2249 #endif