]> git.proxmox.com Git - mirror_qemu.git/blob - include/exec/memory.h
Merge tag 'for_upstream' of https://git.kernel.org/pub/scm/virt/kvm/mst/qemu into...
[mirror_qemu.git] / include / exec / memory.h
1 /*
2 * Physical memory management API
3 *
4 * Copyright 2011 Red Hat, Inc. and/or its affiliates
5 *
6 * Authors:
7 * Avi Kivity <avi@redhat.com>
8 *
9 * This work is licensed under the terms of the GNU GPL, version 2. See
10 * the COPYING file in the top-level directory.
11 *
12 */
13
14 #ifndef MEMORY_H
15 #define MEMORY_H
16
17 #ifndef CONFIG_USER_ONLY
18
19 #include "exec/cpu-common.h"
20 #include "exec/hwaddr.h"
21 #include "exec/memattrs.h"
22 #include "exec/memop.h"
23 #include "exec/ramlist.h"
24 #include "qemu/bswap.h"
25 #include "qemu/queue.h"
26 #include "qemu/int128.h"
27 #include "qemu/notify.h"
28 #include "qom/object.h"
29 #include "qemu/rcu.h"
30
31 #define RAM_ADDR_INVALID (~(ram_addr_t)0)
32
33 #define MAX_PHYS_ADDR_SPACE_BITS 62
34 #define MAX_PHYS_ADDR (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1)
35
36 #define TYPE_MEMORY_REGION "memory-region"
37 DECLARE_INSTANCE_CHECKER(MemoryRegion, MEMORY_REGION,
38 TYPE_MEMORY_REGION)
39
40 #define TYPE_IOMMU_MEMORY_REGION "iommu-memory-region"
41 typedef struct IOMMUMemoryRegionClass IOMMUMemoryRegionClass;
42 DECLARE_OBJ_CHECKERS(IOMMUMemoryRegion, IOMMUMemoryRegionClass,
43 IOMMU_MEMORY_REGION, TYPE_IOMMU_MEMORY_REGION)
44
45 #define TYPE_RAM_DISCARD_MANAGER "qemu:ram-discard-manager"
46 typedef struct RamDiscardManagerClass RamDiscardManagerClass;
47 typedef struct RamDiscardManager RamDiscardManager;
48 DECLARE_OBJ_CHECKERS(RamDiscardManager, RamDiscardManagerClass,
49 RAM_DISCARD_MANAGER, TYPE_RAM_DISCARD_MANAGER);
50
51 #ifdef CONFIG_FUZZ
52 void fuzz_dma_read_cb(size_t addr,
53 size_t len,
54 MemoryRegion *mr);
55 #else
56 static inline void fuzz_dma_read_cb(size_t addr,
57 size_t len,
58 MemoryRegion *mr)
59 {
60 /* Do Nothing */
61 }
62 #endif
63
64 /* Possible bits for global_dirty_log_{start|stop} */
65
66 /* Dirty tracking enabled because migration is running */
67 #define GLOBAL_DIRTY_MIGRATION (1U << 0)
68
69 /* Dirty tracking enabled because measuring dirty rate */
70 #define GLOBAL_DIRTY_DIRTY_RATE (1U << 1)
71
72 /* Dirty tracking enabled because dirty limit */
73 #define GLOBAL_DIRTY_LIMIT (1U << 2)
74
75 #define GLOBAL_DIRTY_MASK (0x7)
76
77 extern unsigned int global_dirty_tracking;
78
79 typedef struct MemoryRegionOps MemoryRegionOps;
80
81 struct ReservedRegion {
82 hwaddr low;
83 hwaddr high;
84 unsigned type;
85 };
86
87 /**
88 * struct MemoryRegionSection: describes a fragment of a #MemoryRegion
89 *
90 * @mr: the region, or %NULL if empty
91 * @fv: the flat view of the address space the region is mapped in
92 * @offset_within_region: the beginning of the section, relative to @mr's start
93 * @size: the size of the section; will not exceed @mr's boundaries
94 * @offset_within_address_space: the address of the first byte of the section
95 * relative to the region's address space
96 * @readonly: writes to this section are ignored
97 * @nonvolatile: this section is non-volatile
98 */
99 struct MemoryRegionSection {
100 Int128 size;
101 MemoryRegion *mr;
102 FlatView *fv;
103 hwaddr offset_within_region;
104 hwaddr offset_within_address_space;
105 bool readonly;
106 bool nonvolatile;
107 };
108
109 typedef struct IOMMUTLBEntry IOMMUTLBEntry;
110
111 /* See address_space_translate: bit 0 is read, bit 1 is write. */
112 typedef enum {
113 IOMMU_NONE = 0,
114 IOMMU_RO = 1,
115 IOMMU_WO = 2,
116 IOMMU_RW = 3,
117 } IOMMUAccessFlags;
118
119 #define IOMMU_ACCESS_FLAG(r, w) (((r) ? IOMMU_RO : 0) | ((w) ? IOMMU_WO : 0))
120
121 struct IOMMUTLBEntry {
122 AddressSpace *target_as;
123 hwaddr iova;
124 hwaddr translated_addr;
125 hwaddr addr_mask; /* 0xfff = 4k translation */
126 IOMMUAccessFlags perm;
127 };
128
129 /*
130 * Bitmap for different IOMMUNotifier capabilities. Each notifier can
131 * register with one or multiple IOMMU Notifier capability bit(s).
132 */
133 typedef enum {
134 IOMMU_NOTIFIER_NONE = 0,
135 /* Notify cache invalidations */
136 IOMMU_NOTIFIER_UNMAP = 0x1,
137 /* Notify entry changes (newly created entries) */
138 IOMMU_NOTIFIER_MAP = 0x2,
139 /* Notify changes on device IOTLB entries */
140 IOMMU_NOTIFIER_DEVIOTLB_UNMAP = 0x04,
141 } IOMMUNotifierFlag;
142
143 #define IOMMU_NOTIFIER_IOTLB_EVENTS (IOMMU_NOTIFIER_MAP | IOMMU_NOTIFIER_UNMAP)
144 #define IOMMU_NOTIFIER_DEVIOTLB_EVENTS IOMMU_NOTIFIER_DEVIOTLB_UNMAP
145 #define IOMMU_NOTIFIER_ALL (IOMMU_NOTIFIER_IOTLB_EVENTS | \
146 IOMMU_NOTIFIER_DEVIOTLB_EVENTS)
147
148 struct IOMMUNotifier;
149 typedef void (*IOMMUNotify)(struct IOMMUNotifier *notifier,
150 IOMMUTLBEntry *data);
151
152 struct IOMMUNotifier {
153 IOMMUNotify notify;
154 IOMMUNotifierFlag notifier_flags;
155 /* Notify for address space range start <= addr <= end */
156 hwaddr start;
157 hwaddr end;
158 int iommu_idx;
159 QLIST_ENTRY(IOMMUNotifier) node;
160 };
161 typedef struct IOMMUNotifier IOMMUNotifier;
162
163 typedef struct IOMMUTLBEvent {
164 IOMMUNotifierFlag type;
165 IOMMUTLBEntry entry;
166 } IOMMUTLBEvent;
167
168 /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
169 #define RAM_PREALLOC (1 << 0)
170
171 /* RAM is mmap-ed with MAP_SHARED */
172 #define RAM_SHARED (1 << 1)
173
174 /* Only a portion of RAM (used_length) is actually used, and migrated.
175 * Resizing RAM while migrating can result in the migration being canceled.
176 */
177 #define RAM_RESIZEABLE (1 << 2)
178
179 /* UFFDIO_ZEROPAGE is available on this RAMBlock to atomically
180 * zero the page and wake waiting processes.
181 * (Set during postcopy)
182 */
183 #define RAM_UF_ZEROPAGE (1 << 3)
184
185 /* RAM can be migrated */
186 #define RAM_MIGRATABLE (1 << 4)
187
188 /* RAM is a persistent kind memory */
189 #define RAM_PMEM (1 << 5)
190
191
192 /*
193 * UFFDIO_WRITEPROTECT is used on this RAMBlock to
194 * support 'write-tracking' migration type.
195 * Implies ram_state->ram_wt_enabled.
196 */
197 #define RAM_UF_WRITEPROTECT (1 << 6)
198
199 /*
200 * RAM is mmap-ed with MAP_NORESERVE. When set, reserving swap space (or huge
201 * pages if applicable) is skipped: will bail out if not supported. When not
202 * set, the OS will do the reservation, if supported for the memory type.
203 */
204 #define RAM_NORESERVE (1 << 7)
205
206 /* RAM that isn't accessible through normal means. */
207 #define RAM_PROTECTED (1 << 8)
208
209 static inline void iommu_notifier_init(IOMMUNotifier *n, IOMMUNotify fn,
210 IOMMUNotifierFlag flags,
211 hwaddr start, hwaddr end,
212 int iommu_idx)
213 {
214 n->notify = fn;
215 n->notifier_flags = flags;
216 n->start = start;
217 n->end = end;
218 n->iommu_idx = iommu_idx;
219 }
220
221 /*
222 * Memory region callbacks
223 */
224 struct MemoryRegionOps {
225 /* Read from the memory region. @addr is relative to @mr; @size is
226 * in bytes. */
227 uint64_t (*read)(void *opaque,
228 hwaddr addr,
229 unsigned size);
230 /* Write to the memory region. @addr is relative to @mr; @size is
231 * in bytes. */
232 void (*write)(void *opaque,
233 hwaddr addr,
234 uint64_t data,
235 unsigned size);
236
237 MemTxResult (*read_with_attrs)(void *opaque,
238 hwaddr addr,
239 uint64_t *data,
240 unsigned size,
241 MemTxAttrs attrs);
242 MemTxResult (*write_with_attrs)(void *opaque,
243 hwaddr addr,
244 uint64_t data,
245 unsigned size,
246 MemTxAttrs attrs);
247
248 enum device_endian endianness;
249 /* Guest-visible constraints: */
250 struct {
251 /* If nonzero, specify bounds on access sizes beyond which a machine
252 * check is thrown.
253 */
254 unsigned min_access_size;
255 unsigned max_access_size;
256 /* If true, unaligned accesses are supported. Otherwise unaligned
257 * accesses throw machine checks.
258 */
259 bool unaligned;
260 /*
261 * If present, and returns #false, the transaction is not accepted
262 * by the device (and results in machine dependent behaviour such
263 * as a machine check exception).
264 */
265 bool (*accepts)(void *opaque, hwaddr addr,
266 unsigned size, bool is_write,
267 MemTxAttrs attrs);
268 } valid;
269 /* Internal implementation constraints: */
270 struct {
271 /* If nonzero, specifies the minimum size implemented. Smaller sizes
272 * will be rounded upwards and a partial result will be returned.
273 */
274 unsigned min_access_size;
275 /* If nonzero, specifies the maximum size implemented. Larger sizes
276 * will be done as a series of accesses with smaller sizes.
277 */
278 unsigned max_access_size;
279 /* If true, unaligned accesses are supported. Otherwise all accesses
280 * are converted to (possibly multiple) naturally aligned accesses.
281 */
282 bool unaligned;
283 } impl;
284 };
285
286 typedef struct MemoryRegionClass {
287 /* private */
288 ObjectClass parent_class;
289 } MemoryRegionClass;
290
291
292 enum IOMMUMemoryRegionAttr {
293 IOMMU_ATTR_SPAPR_TCE_FD
294 };
295
296 /*
297 * IOMMUMemoryRegionClass:
298 *
299 * All IOMMU implementations need to subclass TYPE_IOMMU_MEMORY_REGION
300 * and provide an implementation of at least the @translate method here
301 * to handle requests to the memory region. Other methods are optional.
302 *
303 * The IOMMU implementation must use the IOMMU notifier infrastructure
304 * to report whenever mappings are changed, by calling
305 * memory_region_notify_iommu() (or, if necessary, by calling
306 * memory_region_notify_iommu_one() for each registered notifier).
307 *
308 * Conceptually an IOMMU provides a mapping from input address
309 * to an output TLB entry. If the IOMMU is aware of memory transaction
310 * attributes and the output TLB entry depends on the transaction
311 * attributes, we represent this using IOMMU indexes. Each index
312 * selects a particular translation table that the IOMMU has:
313 *
314 * @attrs_to_index returns the IOMMU index for a set of transaction attributes
315 *
316 * @translate takes an input address and an IOMMU index
317 *
318 * and the mapping returned can only depend on the input address and the
319 * IOMMU index.
320 *
321 * Most IOMMUs don't care about the transaction attributes and support
322 * only a single IOMMU index. A more complex IOMMU might have one index
323 * for secure transactions and one for non-secure transactions.
324 */
325 struct IOMMUMemoryRegionClass {
326 /* private: */
327 MemoryRegionClass parent_class;
328
329 /* public: */
330 /**
331 * @translate:
332 *
333 * Return a TLB entry that contains a given address.
334 *
335 * The IOMMUAccessFlags indicated via @flag are optional and may
336 * be specified as IOMMU_NONE to indicate that the caller needs
337 * the full translation information for both reads and writes. If
338 * the access flags are specified then the IOMMU implementation
339 * may use this as an optimization, to stop doing a page table
340 * walk as soon as it knows that the requested permissions are not
341 * allowed. If IOMMU_NONE is passed then the IOMMU must do the
342 * full page table walk and report the permissions in the returned
343 * IOMMUTLBEntry. (Note that this implies that an IOMMU may not
344 * return different mappings for reads and writes.)
345 *
346 * The returned information remains valid while the caller is
347 * holding the big QEMU lock or is inside an RCU critical section;
348 * if the caller wishes to cache the mapping beyond that it must
349 * register an IOMMU notifier so it can invalidate its cached
350 * information when the IOMMU mapping changes.
351 *
352 * @iommu: the IOMMUMemoryRegion
353 *
354 * @hwaddr: address to be translated within the memory region
355 *
356 * @flag: requested access permission
357 *
358 * @iommu_idx: IOMMU index for the translation
359 */
360 IOMMUTLBEntry (*translate)(IOMMUMemoryRegion *iommu, hwaddr addr,
361 IOMMUAccessFlags flag, int iommu_idx);
362 /**
363 * @get_min_page_size:
364 *
365 * Returns minimum supported page size in bytes.
366 *
367 * If this method is not provided then the minimum is assumed to
368 * be TARGET_PAGE_SIZE.
369 *
370 * @iommu: the IOMMUMemoryRegion
371 */
372 uint64_t (*get_min_page_size)(IOMMUMemoryRegion *iommu);
373 /**
374 * @notify_flag_changed:
375 *
376 * Called when IOMMU Notifier flag changes (ie when the set of
377 * events which IOMMU users are requesting notification for changes).
378 * Optional method -- need not be provided if the IOMMU does not
379 * need to know exactly which events must be notified.
380 *
381 * @iommu: the IOMMUMemoryRegion
382 *
383 * @old_flags: events which previously needed to be notified
384 *
385 * @new_flags: events which now need to be notified
386 *
387 * Returns 0 on success, or a negative errno; in particular
388 * returns -EINVAL if the new flag bitmap is not supported by the
389 * IOMMU memory region. In case of failure, the error object
390 * must be created
391 */
392 int (*notify_flag_changed)(IOMMUMemoryRegion *iommu,
393 IOMMUNotifierFlag old_flags,
394 IOMMUNotifierFlag new_flags,
395 Error **errp);
396 /**
397 * @replay:
398 *
399 * Called to handle memory_region_iommu_replay().
400 *
401 * The default implementation of memory_region_iommu_replay() is to
402 * call the IOMMU translate method for every page in the address space
403 * with flag == IOMMU_NONE and then call the notifier if translate
404 * returns a valid mapping. If this method is implemented then it
405 * overrides the default behaviour, and must provide the full semantics
406 * of memory_region_iommu_replay(), by calling @notifier for every
407 * translation present in the IOMMU.
408 *
409 * Optional method -- an IOMMU only needs to provide this method
410 * if the default is inefficient or produces undesirable side effects.
411 *
412 * Note: this is not related to record-and-replay functionality.
413 */
414 void (*replay)(IOMMUMemoryRegion *iommu, IOMMUNotifier *notifier);
415
416 /**
417 * @get_attr:
418 *
419 * Get IOMMU misc attributes. This is an optional method that
420 * can be used to allow users of the IOMMU to get implementation-specific
421 * information. The IOMMU implements this method to handle calls
422 * by IOMMU users to memory_region_iommu_get_attr() by filling in
423 * the arbitrary data pointer for any IOMMUMemoryRegionAttr values that
424 * the IOMMU supports. If the method is unimplemented then
425 * memory_region_iommu_get_attr() will always return -EINVAL.
426 *
427 * @iommu: the IOMMUMemoryRegion
428 *
429 * @attr: attribute being queried
430 *
431 * @data: memory to fill in with the attribute data
432 *
433 * Returns 0 on success, or a negative errno; in particular
434 * returns -EINVAL for unrecognized or unimplemented attribute types.
435 */
436 int (*get_attr)(IOMMUMemoryRegion *iommu, enum IOMMUMemoryRegionAttr attr,
437 void *data);
438
439 /**
440 * @attrs_to_index:
441 *
442 * Return the IOMMU index to use for a given set of transaction attributes.
443 *
444 * Optional method: if an IOMMU only supports a single IOMMU index then
445 * the default implementation of memory_region_iommu_attrs_to_index()
446 * will return 0.
447 *
448 * The indexes supported by an IOMMU must be contiguous, starting at 0.
449 *
450 * @iommu: the IOMMUMemoryRegion
451 * @attrs: memory transaction attributes
452 */
453 int (*attrs_to_index)(IOMMUMemoryRegion *iommu, MemTxAttrs attrs);
454
455 /**
456 * @num_indexes:
457 *
458 * Return the number of IOMMU indexes this IOMMU supports.
459 *
460 * Optional method: if this method is not provided, then
461 * memory_region_iommu_num_indexes() will return 1, indicating that
462 * only a single IOMMU index is supported.
463 *
464 * @iommu: the IOMMUMemoryRegion
465 */
466 int (*num_indexes)(IOMMUMemoryRegion *iommu);
467
468 /**
469 * @iommu_set_page_size_mask:
470 *
471 * Restrict the page size mask that can be supported with a given IOMMU
472 * memory region. Used for example to propagate host physical IOMMU page
473 * size mask limitations to the virtual IOMMU.
474 *
475 * Optional method: if this method is not provided, then the default global
476 * page mask is used.
477 *
478 * @iommu: the IOMMUMemoryRegion
479 *
480 * @page_size_mask: a bitmask of supported page sizes. At least one bit,
481 * representing the smallest page size, must be set. Additional set bits
482 * represent supported block sizes. For example a host physical IOMMU that
483 * uses page tables with a page size of 4kB, and supports 2MB and 4GB
484 * blocks, will set mask 0x40201000. A granule of 4kB with indiscriminate
485 * block sizes is specified with mask 0xfffffffffffff000.
486 *
487 * Returns 0 on success, or a negative error. In case of failure, the error
488 * object must be created.
489 */
490 int (*iommu_set_page_size_mask)(IOMMUMemoryRegion *iommu,
491 uint64_t page_size_mask,
492 Error **errp);
493 };
494
495 typedef struct RamDiscardListener RamDiscardListener;
496 typedef int (*NotifyRamPopulate)(RamDiscardListener *rdl,
497 MemoryRegionSection *section);
498 typedef void (*NotifyRamDiscard)(RamDiscardListener *rdl,
499 MemoryRegionSection *section);
500
501 struct RamDiscardListener {
502 /*
503 * @notify_populate:
504 *
505 * Notification that previously discarded memory is about to get populated.
506 * Listeners are able to object. If any listener objects, already
507 * successfully notified listeners are notified about a discard again.
508 *
509 * @rdl: the #RamDiscardListener getting notified
510 * @section: the #MemoryRegionSection to get populated. The section
511 * is aligned within the memory region to the minimum granularity
512 * unless it would exceed the registered section.
513 *
514 * Returns 0 on success. If the notification is rejected by the listener,
515 * an error is returned.
516 */
517 NotifyRamPopulate notify_populate;
518
519 /*
520 * @notify_discard:
521 *
522 * Notification that previously populated memory was discarded successfully
523 * and listeners should drop all references to such memory and prevent
524 * new population (e.g., unmap).
525 *
526 * @rdl: the #RamDiscardListener getting notified
527 * @section: the #MemoryRegionSection to get populated. The section
528 * is aligned within the memory region to the minimum granularity
529 * unless it would exceed the registered section.
530 */
531 NotifyRamDiscard notify_discard;
532
533 /*
534 * @double_discard_supported:
535 *
536 * The listener suppors getting @notify_discard notifications that span
537 * already discarded parts.
538 */
539 bool double_discard_supported;
540
541 MemoryRegionSection *section;
542 QLIST_ENTRY(RamDiscardListener) next;
543 };
544
545 static inline void ram_discard_listener_init(RamDiscardListener *rdl,
546 NotifyRamPopulate populate_fn,
547 NotifyRamDiscard discard_fn,
548 bool double_discard_supported)
549 {
550 rdl->notify_populate = populate_fn;
551 rdl->notify_discard = discard_fn;
552 rdl->double_discard_supported = double_discard_supported;
553 }
554
555 typedef int (*ReplayRamPopulate)(MemoryRegionSection *section, void *opaque);
556 typedef void (*ReplayRamDiscard)(MemoryRegionSection *section, void *opaque);
557
558 /*
559 * RamDiscardManagerClass:
560 *
561 * A #RamDiscardManager coordinates which parts of specific RAM #MemoryRegion
562 * regions are currently populated to be used/accessed by the VM, notifying
563 * after parts were discarded (freeing up memory) and before parts will be
564 * populated (consuming memory), to be used/acessed by the VM.
565 *
566 * A #RamDiscardManager can only be set for a RAM #MemoryRegion while the
567 * #MemoryRegion isn't mapped yet; it cannot change while the #MemoryRegion is
568 * mapped.
569 *
570 * The #RamDiscardManager is intended to be used by technologies that are
571 * incompatible with discarding of RAM (e.g., VFIO, which may pin all
572 * memory inside a #MemoryRegion), and require proper coordination to only
573 * map the currently populated parts, to hinder parts that are expected to
574 * remain discarded from silently getting populated and consuming memory.
575 * Technologies that support discarding of RAM don't have to bother and can
576 * simply map the whole #MemoryRegion.
577 *
578 * An example #RamDiscardManager is virtio-mem, which logically (un)plugs
579 * memory within an assigned RAM #MemoryRegion, coordinated with the VM.
580 * Logically unplugging memory consists of discarding RAM. The VM agreed to not
581 * access unplugged (discarded) memory - especially via DMA. virtio-mem will
582 * properly coordinate with listeners before memory is plugged (populated),
583 * and after memory is unplugged (discarded).
584 *
585 * Listeners are called in multiples of the minimum granularity (unless it
586 * would exceed the registered range) and changes are aligned to the minimum
587 * granularity within the #MemoryRegion. Listeners have to prepare for memory
588 * becomming discarded in a different granularity than it was populated and the
589 * other way around.
590 */
591 struct RamDiscardManagerClass {
592 /* private */
593 InterfaceClass parent_class;
594
595 /* public */
596
597 /**
598 * @get_min_granularity:
599 *
600 * Get the minimum granularity in which listeners will get notified
601 * about changes within the #MemoryRegion via the #RamDiscardManager.
602 *
603 * @rdm: the #RamDiscardManager
604 * @mr: the #MemoryRegion
605 *
606 * Returns the minimum granularity.
607 */
608 uint64_t (*get_min_granularity)(const RamDiscardManager *rdm,
609 const MemoryRegion *mr);
610
611 /**
612 * @is_populated:
613 *
614 * Check whether the given #MemoryRegionSection is completely populated
615 * (i.e., no parts are currently discarded) via the #RamDiscardManager.
616 * There are no alignment requirements.
617 *
618 * @rdm: the #RamDiscardManager
619 * @section: the #MemoryRegionSection
620 *
621 * Returns whether the given range is completely populated.
622 */
623 bool (*is_populated)(const RamDiscardManager *rdm,
624 const MemoryRegionSection *section);
625
626 /**
627 * @replay_populated:
628 *
629 * Call the #ReplayRamPopulate callback for all populated parts within the
630 * #MemoryRegionSection via the #RamDiscardManager.
631 *
632 * In case any call fails, no further calls are made.
633 *
634 * @rdm: the #RamDiscardManager
635 * @section: the #MemoryRegionSection
636 * @replay_fn: the #ReplayRamPopulate callback
637 * @opaque: pointer to forward to the callback
638 *
639 * Returns 0 on success, or a negative error if any notification failed.
640 */
641 int (*replay_populated)(const RamDiscardManager *rdm,
642 MemoryRegionSection *section,
643 ReplayRamPopulate replay_fn, void *opaque);
644
645 /**
646 * @replay_discarded:
647 *
648 * Call the #ReplayRamDiscard callback for all discarded parts within the
649 * #MemoryRegionSection via the #RamDiscardManager.
650 *
651 * @rdm: the #RamDiscardManager
652 * @section: the #MemoryRegionSection
653 * @replay_fn: the #ReplayRamDiscard callback
654 * @opaque: pointer to forward to the callback
655 */
656 void (*replay_discarded)(const RamDiscardManager *rdm,
657 MemoryRegionSection *section,
658 ReplayRamDiscard replay_fn, void *opaque);
659
660 /**
661 * @register_listener:
662 *
663 * Register a #RamDiscardListener for the given #MemoryRegionSection and
664 * immediately notify the #RamDiscardListener about all populated parts
665 * within the #MemoryRegionSection via the #RamDiscardManager.
666 *
667 * In case any notification fails, no further notifications are triggered
668 * and an error is logged.
669 *
670 * @rdm: the #RamDiscardManager
671 * @rdl: the #RamDiscardListener
672 * @section: the #MemoryRegionSection
673 */
674 void (*register_listener)(RamDiscardManager *rdm,
675 RamDiscardListener *rdl,
676 MemoryRegionSection *section);
677
678 /**
679 * @unregister_listener:
680 *
681 * Unregister a previously registered #RamDiscardListener via the
682 * #RamDiscardManager after notifying the #RamDiscardListener about all
683 * populated parts becoming unpopulated within the registered
684 * #MemoryRegionSection.
685 *
686 * @rdm: the #RamDiscardManager
687 * @rdl: the #RamDiscardListener
688 */
689 void (*unregister_listener)(RamDiscardManager *rdm,
690 RamDiscardListener *rdl);
691 };
692
693 uint64_t ram_discard_manager_get_min_granularity(const RamDiscardManager *rdm,
694 const MemoryRegion *mr);
695
696 bool ram_discard_manager_is_populated(const RamDiscardManager *rdm,
697 const MemoryRegionSection *section);
698
699 int ram_discard_manager_replay_populated(const RamDiscardManager *rdm,
700 MemoryRegionSection *section,
701 ReplayRamPopulate replay_fn,
702 void *opaque);
703
704 void ram_discard_manager_replay_discarded(const RamDiscardManager *rdm,
705 MemoryRegionSection *section,
706 ReplayRamDiscard replay_fn,
707 void *opaque);
708
709 void ram_discard_manager_register_listener(RamDiscardManager *rdm,
710 RamDiscardListener *rdl,
711 MemoryRegionSection *section);
712
713 void ram_discard_manager_unregister_listener(RamDiscardManager *rdm,
714 RamDiscardListener *rdl);
715
716 bool memory_get_xlat_addr(IOMMUTLBEntry *iotlb, void **vaddr,
717 ram_addr_t *ram_addr, bool *read_only,
718 bool *mr_has_discard_manager);
719
720 typedef struct CoalescedMemoryRange CoalescedMemoryRange;
721 typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd;
722
723 /** MemoryRegion:
724 *
725 * A struct representing a memory region.
726 */
727 struct MemoryRegion {
728 Object parent_obj;
729
730 /* private: */
731
732 /* The following fields should fit in a cache line */
733 bool romd_mode;
734 bool ram;
735 bool subpage;
736 bool readonly; /* For RAM regions */
737 bool nonvolatile;
738 bool rom_device;
739 bool flush_coalesced_mmio;
740 uint8_t dirty_log_mask;
741 bool is_iommu;
742 RAMBlock *ram_block;
743 Object *owner;
744
745 const MemoryRegionOps *ops;
746 void *opaque;
747 MemoryRegion *container;
748 int mapped_via_alias; /* Mapped via an alias, container might be NULL */
749 Int128 size;
750 hwaddr addr;
751 void (*destructor)(MemoryRegion *mr);
752 uint64_t align;
753 bool terminates;
754 bool ram_device;
755 bool enabled;
756 bool warning_printed; /* For reservations */
757 uint8_t vga_logging_count;
758 MemoryRegion *alias;
759 hwaddr alias_offset;
760 int32_t priority;
761 QTAILQ_HEAD(, MemoryRegion) subregions;
762 QTAILQ_ENTRY(MemoryRegion) subregions_link;
763 QTAILQ_HEAD(, CoalescedMemoryRange) coalesced;
764 const char *name;
765 unsigned ioeventfd_nb;
766 MemoryRegionIoeventfd *ioeventfds;
767 RamDiscardManager *rdm; /* Only for RAM */
768 };
769
770 struct IOMMUMemoryRegion {
771 MemoryRegion parent_obj;
772
773 QLIST_HEAD(, IOMMUNotifier) iommu_notify;
774 IOMMUNotifierFlag iommu_notify_flags;
775 };
776
777 #define IOMMU_NOTIFIER_FOREACH(n, mr) \
778 QLIST_FOREACH((n), &(mr)->iommu_notify, node)
779
780 /**
781 * struct MemoryListener: callbacks structure for updates to the physical memory map
782 *
783 * Allows a component to adjust to changes in the guest-visible memory map.
784 * Use with memory_listener_register() and memory_listener_unregister().
785 */
786 struct MemoryListener {
787 /**
788 * @begin:
789 *
790 * Called at the beginning of an address space update transaction.
791 * Followed by calls to #MemoryListener.region_add(),
792 * #MemoryListener.region_del(), #MemoryListener.region_nop(),
793 * #MemoryListener.log_start() and #MemoryListener.log_stop() in
794 * increasing address order.
795 *
796 * @listener: The #MemoryListener.
797 */
798 void (*begin)(MemoryListener *listener);
799
800 /**
801 * @commit:
802 *
803 * Called at the end of an address space update transaction,
804 * after the last call to #MemoryListener.region_add(),
805 * #MemoryListener.region_del() or #MemoryListener.region_nop(),
806 * #MemoryListener.log_start() and #MemoryListener.log_stop().
807 *
808 * @listener: The #MemoryListener.
809 */
810 void (*commit)(MemoryListener *listener);
811
812 /**
813 * @region_add:
814 *
815 * Called during an address space update transaction,
816 * for a section of the address space that is new in this address space
817 * space since the last transaction.
818 *
819 * @listener: The #MemoryListener.
820 * @section: The new #MemoryRegionSection.
821 */
822 void (*region_add)(MemoryListener *listener, MemoryRegionSection *section);
823
824 /**
825 * @region_del:
826 *
827 * Called during an address space update transaction,
828 * for a section of the address space that has disappeared in the address
829 * space since the last transaction.
830 *
831 * @listener: The #MemoryListener.
832 * @section: The old #MemoryRegionSection.
833 */
834 void (*region_del)(MemoryListener *listener, MemoryRegionSection *section);
835
836 /**
837 * @region_nop:
838 *
839 * Called during an address space update transaction,
840 * for a section of the address space that is in the same place in the address
841 * space as in the last transaction.
842 *
843 * @listener: The #MemoryListener.
844 * @section: The #MemoryRegionSection.
845 */
846 void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section);
847
848 /**
849 * @log_start:
850 *
851 * Called during an address space update transaction, after
852 * one of #MemoryListener.region_add(), #MemoryListener.region_del() or
853 * #MemoryListener.region_nop(), if dirty memory logging clients have
854 * become active since the last transaction.
855 *
856 * @listener: The #MemoryListener.
857 * @section: The #MemoryRegionSection.
858 * @old: A bitmap of dirty memory logging clients that were active in
859 * the previous transaction.
860 * @new: A bitmap of dirty memory logging clients that are active in
861 * the current transaction.
862 */
863 void (*log_start)(MemoryListener *listener, MemoryRegionSection *section,
864 int old, int new);
865
866 /**
867 * @log_stop:
868 *
869 * Called during an address space update transaction, after
870 * one of #MemoryListener.region_add(), #MemoryListener.region_del() or
871 * #MemoryListener.region_nop() and possibly after
872 * #MemoryListener.log_start(), if dirty memory logging clients have
873 * become inactive since the last transaction.
874 *
875 * @listener: The #MemoryListener.
876 * @section: The #MemoryRegionSection.
877 * @old: A bitmap of dirty memory logging clients that were active in
878 * the previous transaction.
879 * @new: A bitmap of dirty memory logging clients that are active in
880 * the current transaction.
881 */
882 void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section,
883 int old, int new);
884
885 /**
886 * @log_sync:
887 *
888 * Called by memory_region_snapshot_and_clear_dirty() and
889 * memory_global_dirty_log_sync(), before accessing QEMU's "official"
890 * copy of the dirty memory bitmap for a #MemoryRegionSection.
891 *
892 * @listener: The #MemoryListener.
893 * @section: The #MemoryRegionSection.
894 */
895 void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section);
896
897 /**
898 * @log_sync_global:
899 *
900 * This is the global version of @log_sync when the listener does
901 * not have a way to synchronize the log with finer granularity.
902 * When the listener registers with @log_sync_global defined, then
903 * its @log_sync must be NULL. Vice versa.
904 *
905 * @listener: The #MemoryListener.
906 */
907 void (*log_sync_global)(MemoryListener *listener);
908
909 /**
910 * @log_clear:
911 *
912 * Called before reading the dirty memory bitmap for a
913 * #MemoryRegionSection.
914 *
915 * @listener: The #MemoryListener.
916 * @section: The #MemoryRegionSection.
917 */
918 void (*log_clear)(MemoryListener *listener, MemoryRegionSection *section);
919
920 /**
921 * @log_global_start:
922 *
923 * Called by memory_global_dirty_log_start(), which
924 * enables the %DIRTY_LOG_MIGRATION client on all memory regions in
925 * the address space. #MemoryListener.log_global_start() is also
926 * called when a #MemoryListener is added, if global dirty logging is
927 * active at that time.
928 *
929 * @listener: The #MemoryListener.
930 */
931 void (*log_global_start)(MemoryListener *listener);
932
933 /**
934 * @log_global_stop:
935 *
936 * Called by memory_global_dirty_log_stop(), which
937 * disables the %DIRTY_LOG_MIGRATION client on all memory regions in
938 * the address space.
939 *
940 * @listener: The #MemoryListener.
941 */
942 void (*log_global_stop)(MemoryListener *listener);
943
944 /**
945 * @log_global_after_sync:
946 *
947 * Called after reading the dirty memory bitmap
948 * for any #MemoryRegionSection.
949 *
950 * @listener: The #MemoryListener.
951 */
952 void (*log_global_after_sync)(MemoryListener *listener);
953
954 /**
955 * @eventfd_add:
956 *
957 * Called during an address space update transaction,
958 * for a section of the address space that has had a new ioeventfd
959 * registration since the last transaction.
960 *
961 * @listener: The #MemoryListener.
962 * @section: The new #MemoryRegionSection.
963 * @match_data: The @match_data parameter for the new ioeventfd.
964 * @data: The @data parameter for the new ioeventfd.
965 * @e: The #EventNotifier parameter for the new ioeventfd.
966 */
967 void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section,
968 bool match_data, uint64_t data, EventNotifier *e);
969
970 /**
971 * @eventfd_del:
972 *
973 * Called during an address space update transaction,
974 * for a section of the address space that has dropped an ioeventfd
975 * registration since the last transaction.
976 *
977 * @listener: The #MemoryListener.
978 * @section: The new #MemoryRegionSection.
979 * @match_data: The @match_data parameter for the dropped ioeventfd.
980 * @data: The @data parameter for the dropped ioeventfd.
981 * @e: The #EventNotifier parameter for the dropped ioeventfd.
982 */
983 void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section,
984 bool match_data, uint64_t data, EventNotifier *e);
985
986 /**
987 * @coalesced_io_add:
988 *
989 * Called during an address space update transaction,
990 * for a section of the address space that has had a new coalesced
991 * MMIO range registration since the last transaction.
992 *
993 * @listener: The #MemoryListener.
994 * @section: The new #MemoryRegionSection.
995 * @addr: The starting address for the coalesced MMIO range.
996 * @len: The length of the coalesced MMIO range.
997 */
998 void (*coalesced_io_add)(MemoryListener *listener, MemoryRegionSection *section,
999 hwaddr addr, hwaddr len);
1000
1001 /**
1002 * @coalesced_io_del:
1003 *
1004 * Called during an address space update transaction,
1005 * for a section of the address space that has dropped a coalesced
1006 * MMIO range since the last transaction.
1007 *
1008 * @listener: The #MemoryListener.
1009 * @section: The new #MemoryRegionSection.
1010 * @addr: The starting address for the coalesced MMIO range.
1011 * @len: The length of the coalesced MMIO range.
1012 */
1013 void (*coalesced_io_del)(MemoryListener *listener, MemoryRegionSection *section,
1014 hwaddr addr, hwaddr len);
1015 /**
1016 * @priority:
1017 *
1018 * Govern the order in which memory listeners are invoked. Lower priorities
1019 * are invoked earlier for "add" or "start" callbacks, and later for "delete"
1020 * or "stop" callbacks.
1021 */
1022 unsigned priority;
1023
1024 /**
1025 * @name:
1026 *
1027 * Name of the listener. It can be used in contexts where we'd like to
1028 * identify one memory listener with the rest.
1029 */
1030 const char *name;
1031
1032 /* private: */
1033 AddressSpace *address_space;
1034 QTAILQ_ENTRY(MemoryListener) link;
1035 QTAILQ_ENTRY(MemoryListener) link_as;
1036 };
1037
1038 /**
1039 * struct AddressSpace: describes a mapping of addresses to #MemoryRegion objects
1040 */
1041 struct AddressSpace {
1042 /* private: */
1043 struct rcu_head rcu;
1044 char *name;
1045 MemoryRegion *root;
1046
1047 /* Accessed via RCU. */
1048 struct FlatView *current_map;
1049
1050 int ioeventfd_nb;
1051 struct MemoryRegionIoeventfd *ioeventfds;
1052 QTAILQ_HEAD(, MemoryListener) listeners;
1053 QTAILQ_ENTRY(AddressSpace) address_spaces_link;
1054 };
1055
1056 typedef struct AddressSpaceDispatch AddressSpaceDispatch;
1057 typedef struct FlatRange FlatRange;
1058
1059 /* Flattened global view of current active memory hierarchy. Kept in sorted
1060 * order.
1061 */
1062 struct FlatView {
1063 struct rcu_head rcu;
1064 unsigned ref;
1065 FlatRange *ranges;
1066 unsigned nr;
1067 unsigned nr_allocated;
1068 struct AddressSpaceDispatch *dispatch;
1069 MemoryRegion *root;
1070 };
1071
1072 static inline FlatView *address_space_to_flatview(AddressSpace *as)
1073 {
1074 return qatomic_rcu_read(&as->current_map);
1075 }
1076
1077 /**
1078 * typedef flatview_cb: callback for flatview_for_each_range()
1079 *
1080 * @start: start address of the range within the FlatView
1081 * @len: length of the range in bytes
1082 * @mr: MemoryRegion covering this range
1083 * @offset_in_region: offset of the first byte of the range within @mr
1084 * @opaque: data pointer passed to flatview_for_each_range()
1085 *
1086 * Returns: true to stop the iteration, false to keep going.
1087 */
1088 typedef bool (*flatview_cb)(Int128 start,
1089 Int128 len,
1090 const MemoryRegion *mr,
1091 hwaddr offset_in_region,
1092 void *opaque);
1093
1094 /**
1095 * flatview_for_each_range: Iterate through a FlatView
1096 * @fv: the FlatView to iterate through
1097 * @cb: function to call for each range
1098 * @opaque: opaque data pointer to pass to @cb
1099 *
1100 * A FlatView is made up of a list of non-overlapping ranges, each of
1101 * which is a slice of a MemoryRegion. This function iterates through
1102 * each range in @fv, calling @cb. The callback function can terminate
1103 * iteration early by returning 'true'.
1104 */
1105 void flatview_for_each_range(FlatView *fv, flatview_cb cb, void *opaque);
1106
1107 static inline bool MemoryRegionSection_eq(MemoryRegionSection *a,
1108 MemoryRegionSection *b)
1109 {
1110 return a->mr == b->mr &&
1111 a->fv == b->fv &&
1112 a->offset_within_region == b->offset_within_region &&
1113 a->offset_within_address_space == b->offset_within_address_space &&
1114 int128_eq(a->size, b->size) &&
1115 a->readonly == b->readonly &&
1116 a->nonvolatile == b->nonvolatile;
1117 }
1118
1119 /**
1120 * memory_region_section_new_copy: Copy a memory region section
1121 *
1122 * Allocate memory for a new copy, copy the memory region section, and
1123 * properly take a reference on all relevant members.
1124 *
1125 * @s: the #MemoryRegionSection to copy
1126 */
1127 MemoryRegionSection *memory_region_section_new_copy(MemoryRegionSection *s);
1128
1129 /**
1130 * memory_region_section_new_copy: Free a copied memory region section
1131 *
1132 * Free a copy of a memory section created via memory_region_section_new_copy().
1133 * properly dropping references on all relevant members.
1134 *
1135 * @s: the #MemoryRegionSection to copy
1136 */
1137 void memory_region_section_free_copy(MemoryRegionSection *s);
1138
1139 /**
1140 * memory_region_init: Initialize a memory region
1141 *
1142 * The region typically acts as a container for other memory regions. Use
1143 * memory_region_add_subregion() to add subregions.
1144 *
1145 * @mr: the #MemoryRegion to be initialized
1146 * @owner: the object that tracks the region's reference count
1147 * @name: used for debugging; not visible to the user or ABI
1148 * @size: size of the region; any subregions beyond this size will be clipped
1149 */
1150 void memory_region_init(MemoryRegion *mr,
1151 Object *owner,
1152 const char *name,
1153 uint64_t size);
1154
1155 /**
1156 * memory_region_ref: Add 1 to a memory region's reference count
1157 *
1158 * Whenever memory regions are accessed outside the BQL, they need to be
1159 * preserved against hot-unplug. MemoryRegions actually do not have their
1160 * own reference count; they piggyback on a QOM object, their "owner".
1161 * This function adds a reference to the owner.
1162 *
1163 * All MemoryRegions must have an owner if they can disappear, even if the
1164 * device they belong to operates exclusively under the BQL. This is because
1165 * the region could be returned at any time by memory_region_find, and this
1166 * is usually under guest control.
1167 *
1168 * @mr: the #MemoryRegion
1169 */
1170 void memory_region_ref(MemoryRegion *mr);
1171
1172 /**
1173 * memory_region_unref: Remove 1 to a memory region's reference count
1174 *
1175 * Whenever memory regions are accessed outside the BQL, they need to be
1176 * preserved against hot-unplug. MemoryRegions actually do not have their
1177 * own reference count; they piggyback on a QOM object, their "owner".
1178 * This function removes a reference to the owner and possibly destroys it.
1179 *
1180 * @mr: the #MemoryRegion
1181 */
1182 void memory_region_unref(MemoryRegion *mr);
1183
1184 /**
1185 * memory_region_init_io: Initialize an I/O memory region.
1186 *
1187 * Accesses into the region will cause the callbacks in @ops to be called.
1188 * if @size is nonzero, subregions will be clipped to @size.
1189 *
1190 * @mr: the #MemoryRegion to be initialized.
1191 * @owner: the object that tracks the region's reference count
1192 * @ops: a structure containing read and write callbacks to be used when
1193 * I/O is performed on the region.
1194 * @opaque: passed to the read and write callbacks of the @ops structure.
1195 * @name: used for debugging; not visible to the user or ABI
1196 * @size: size of the region.
1197 */
1198 void memory_region_init_io(MemoryRegion *mr,
1199 Object *owner,
1200 const MemoryRegionOps *ops,
1201 void *opaque,
1202 const char *name,
1203 uint64_t size);
1204
1205 /**
1206 * memory_region_init_ram_nomigrate: Initialize RAM memory region. Accesses
1207 * into the region will modify memory
1208 * directly.
1209 *
1210 * @mr: the #MemoryRegion to be initialized.
1211 * @owner: the object that tracks the region's reference count
1212 * @name: Region name, becomes part of RAMBlock name used in migration stream
1213 * must be unique within any device
1214 * @size: size of the region.
1215 * @errp: pointer to Error*, to store an error if it happens.
1216 *
1217 * Note that this function does not do anything to cause the data in the
1218 * RAM memory region to be migrated; that is the responsibility of the caller.
1219 */
1220 void memory_region_init_ram_nomigrate(MemoryRegion *mr,
1221 Object *owner,
1222 const char *name,
1223 uint64_t size,
1224 Error **errp);
1225
1226 /**
1227 * memory_region_init_ram_flags_nomigrate: Initialize RAM memory region.
1228 * Accesses into the region will
1229 * modify memory directly.
1230 *
1231 * @mr: the #MemoryRegion to be initialized.
1232 * @owner: the object that tracks the region's reference count
1233 * @name: Region name, becomes part of RAMBlock name used in migration stream
1234 * must be unique within any device
1235 * @size: size of the region.
1236 * @ram_flags: RamBlock flags. Supported flags: RAM_SHARED, RAM_NORESERVE.
1237 * @errp: pointer to Error*, to store an error if it happens.
1238 *
1239 * Note that this function does not do anything to cause the data in the
1240 * RAM memory region to be migrated; that is the responsibility of the caller.
1241 */
1242 void memory_region_init_ram_flags_nomigrate(MemoryRegion *mr,
1243 Object *owner,
1244 const char *name,
1245 uint64_t size,
1246 uint32_t ram_flags,
1247 Error **errp);
1248
1249 /**
1250 * memory_region_init_resizeable_ram: Initialize memory region with resizeable
1251 * RAM. Accesses into the region will
1252 * modify memory directly. Only an initial
1253 * portion of this RAM is actually used.
1254 * Changing the size while migrating
1255 * can result in the migration being
1256 * canceled.
1257 *
1258 * @mr: the #MemoryRegion to be initialized.
1259 * @owner: the object that tracks the region's reference count
1260 * @name: Region name, becomes part of RAMBlock name used in migration stream
1261 * must be unique within any device
1262 * @size: used size of the region.
1263 * @max_size: max size of the region.
1264 * @resized: callback to notify owner about used size change.
1265 * @errp: pointer to Error*, to store an error if it happens.
1266 *
1267 * Note that this function does not do anything to cause the data in the
1268 * RAM memory region to be migrated; that is the responsibility of the caller.
1269 */
1270 void memory_region_init_resizeable_ram(MemoryRegion *mr,
1271 Object *owner,
1272 const char *name,
1273 uint64_t size,
1274 uint64_t max_size,
1275 void (*resized)(const char*,
1276 uint64_t length,
1277 void *host),
1278 Error **errp);
1279 #ifdef CONFIG_POSIX
1280
1281 /**
1282 * memory_region_init_ram_from_file: Initialize RAM memory region with a
1283 * mmap-ed backend.
1284 *
1285 * @mr: the #MemoryRegion to be initialized.
1286 * @owner: the object that tracks the region's reference count
1287 * @name: Region name, becomes part of RAMBlock name used in migration stream
1288 * must be unique within any device
1289 * @size: size of the region.
1290 * @align: alignment of the region base address; if 0, the default alignment
1291 * (getpagesize()) will be used.
1292 * @ram_flags: RamBlock flags. Supported flags: RAM_SHARED, RAM_PMEM,
1293 * RAM_NORESERVE,
1294 * @path: the path in which to allocate the RAM.
1295 * @readonly: true to open @path for reading, false for read/write.
1296 * @errp: pointer to Error*, to store an error if it happens.
1297 *
1298 * Note that this function does not do anything to cause the data in the
1299 * RAM memory region to be migrated; that is the responsibility of the caller.
1300 */
1301 void memory_region_init_ram_from_file(MemoryRegion *mr,
1302 Object *owner,
1303 const char *name,
1304 uint64_t size,
1305 uint64_t align,
1306 uint32_t ram_flags,
1307 const char *path,
1308 bool readonly,
1309 Error **errp);
1310
1311 /**
1312 * memory_region_init_ram_from_fd: Initialize RAM memory region with a
1313 * mmap-ed backend.
1314 *
1315 * @mr: the #MemoryRegion to be initialized.
1316 * @owner: the object that tracks the region's reference count
1317 * @name: the name of the region.
1318 * @size: size of the region.
1319 * @ram_flags: RamBlock flags. Supported flags: RAM_SHARED, RAM_PMEM,
1320 * RAM_NORESERVE, RAM_PROTECTED.
1321 * @fd: the fd to mmap.
1322 * @offset: offset within the file referenced by fd
1323 * @errp: pointer to Error*, to store an error if it happens.
1324 *
1325 * Note that this function does not do anything to cause the data in the
1326 * RAM memory region to be migrated; that is the responsibility of the caller.
1327 */
1328 void memory_region_init_ram_from_fd(MemoryRegion *mr,
1329 Object *owner,
1330 const char *name,
1331 uint64_t size,
1332 uint32_t ram_flags,
1333 int fd,
1334 ram_addr_t offset,
1335 Error **errp);
1336 #endif
1337
1338 /**
1339 * memory_region_init_ram_ptr: Initialize RAM memory region from a
1340 * user-provided pointer. Accesses into the
1341 * region will modify memory directly.
1342 *
1343 * @mr: the #MemoryRegion to be initialized.
1344 * @owner: the object that tracks the region's reference count
1345 * @name: Region name, becomes part of RAMBlock name used in migration stream
1346 * must be unique within any device
1347 * @size: size of the region.
1348 * @ptr: memory to be mapped; must contain at least @size bytes.
1349 *
1350 * Note that this function does not do anything to cause the data in the
1351 * RAM memory region to be migrated; that is the responsibility of the caller.
1352 */
1353 void memory_region_init_ram_ptr(MemoryRegion *mr,
1354 Object *owner,
1355 const char *name,
1356 uint64_t size,
1357 void *ptr);
1358
1359 /**
1360 * memory_region_init_ram_device_ptr: Initialize RAM device memory region from
1361 * a user-provided pointer.
1362 *
1363 * A RAM device represents a mapping to a physical device, such as to a PCI
1364 * MMIO BAR of an vfio-pci assigned device. The memory region may be mapped
1365 * into the VM address space and access to the region will modify memory
1366 * directly. However, the memory region should not be included in a memory
1367 * dump (device may not be enabled/mapped at the time of the dump), and
1368 * operations incompatible with manipulating MMIO should be avoided. Replaces
1369 * skip_dump flag.
1370 *
1371 * @mr: the #MemoryRegion to be initialized.
1372 * @owner: the object that tracks the region's reference count
1373 * @name: the name of the region.
1374 * @size: size of the region.
1375 * @ptr: memory to be mapped; must contain at least @size bytes.
1376 *
1377 * Note that this function does not do anything to cause the data in the
1378 * RAM memory region to be migrated; that is the responsibility of the caller.
1379 * (For RAM device memory regions, migrating the contents rarely makes sense.)
1380 */
1381 void memory_region_init_ram_device_ptr(MemoryRegion *mr,
1382 Object *owner,
1383 const char *name,
1384 uint64_t size,
1385 void *ptr);
1386
1387 /**
1388 * memory_region_init_alias: Initialize a memory region that aliases all or a
1389 * part of another memory region.
1390 *
1391 * @mr: the #MemoryRegion to be initialized.
1392 * @owner: the object that tracks the region's reference count
1393 * @name: used for debugging; not visible to the user or ABI
1394 * @orig: the region to be referenced; @mr will be equivalent to
1395 * @orig between @offset and @offset + @size - 1.
1396 * @offset: start of the section in @orig to be referenced.
1397 * @size: size of the region.
1398 */
1399 void memory_region_init_alias(MemoryRegion *mr,
1400 Object *owner,
1401 const char *name,
1402 MemoryRegion *orig,
1403 hwaddr offset,
1404 uint64_t size);
1405
1406 /**
1407 * memory_region_init_rom_nomigrate: Initialize a ROM memory region.
1408 *
1409 * This has the same effect as calling memory_region_init_ram_nomigrate()
1410 * and then marking the resulting region read-only with
1411 * memory_region_set_readonly().
1412 *
1413 * Note that this function does not do anything to cause the data in the
1414 * RAM side of the memory region to be migrated; that is the responsibility
1415 * of the caller.
1416 *
1417 * @mr: the #MemoryRegion to be initialized.
1418 * @owner: the object that tracks the region's reference count
1419 * @name: Region name, becomes part of RAMBlock name used in migration stream
1420 * must be unique within any device
1421 * @size: size of the region.
1422 * @errp: pointer to Error*, to store an error if it happens.
1423 */
1424 void memory_region_init_rom_nomigrate(MemoryRegion *mr,
1425 Object *owner,
1426 const char *name,
1427 uint64_t size,
1428 Error **errp);
1429
1430 /**
1431 * memory_region_init_rom_device_nomigrate: Initialize a ROM memory region.
1432 * Writes are handled via callbacks.
1433 *
1434 * Note that this function does not do anything to cause the data in the
1435 * RAM side of the memory region to be migrated; that is the responsibility
1436 * of the caller.
1437 *
1438 * @mr: the #MemoryRegion to be initialized.
1439 * @owner: the object that tracks the region's reference count
1440 * @ops: callbacks for write access handling (must not be NULL).
1441 * @opaque: passed to the read and write callbacks of the @ops structure.
1442 * @name: Region name, becomes part of RAMBlock name used in migration stream
1443 * must be unique within any device
1444 * @size: size of the region.
1445 * @errp: pointer to Error*, to store an error if it happens.
1446 */
1447 void memory_region_init_rom_device_nomigrate(MemoryRegion *mr,
1448 Object *owner,
1449 const MemoryRegionOps *ops,
1450 void *opaque,
1451 const char *name,
1452 uint64_t size,
1453 Error **errp);
1454
1455 /**
1456 * memory_region_init_iommu: Initialize a memory region of a custom type
1457 * that translates addresses
1458 *
1459 * An IOMMU region translates addresses and forwards accesses to a target
1460 * memory region.
1461 *
1462 * The IOMMU implementation must define a subclass of TYPE_IOMMU_MEMORY_REGION.
1463 * @_iommu_mr should be a pointer to enough memory for an instance of
1464 * that subclass, @instance_size is the size of that subclass, and
1465 * @mrtypename is its name. This function will initialize @_iommu_mr as an
1466 * instance of the subclass, and its methods will then be called to handle
1467 * accesses to the memory region. See the documentation of
1468 * #IOMMUMemoryRegionClass for further details.
1469 *
1470 * @_iommu_mr: the #IOMMUMemoryRegion to be initialized
1471 * @instance_size: the IOMMUMemoryRegion subclass instance size
1472 * @mrtypename: the type name of the #IOMMUMemoryRegion
1473 * @owner: the object that tracks the region's reference count
1474 * @name: used for debugging; not visible to the user or ABI
1475 * @size: size of the region.
1476 */
1477 void memory_region_init_iommu(void *_iommu_mr,
1478 size_t instance_size,
1479 const char *mrtypename,
1480 Object *owner,
1481 const char *name,
1482 uint64_t size);
1483
1484 /**
1485 * memory_region_init_ram - Initialize RAM memory region. Accesses into the
1486 * region will modify memory directly.
1487 *
1488 * @mr: the #MemoryRegion to be initialized
1489 * @owner: the object that tracks the region's reference count (must be
1490 * TYPE_DEVICE or a subclass of TYPE_DEVICE, or NULL)
1491 * @name: name of the memory region
1492 * @size: size of the region in bytes
1493 * @errp: pointer to Error*, to store an error if it happens.
1494 *
1495 * This function allocates RAM for a board model or device, and
1496 * arranges for it to be migrated (by calling vmstate_register_ram()
1497 * if @owner is a DeviceState, or vmstate_register_ram_global() if
1498 * @owner is NULL).
1499 *
1500 * TODO: Currently we restrict @owner to being either NULL (for
1501 * global RAM regions with no owner) or devices, so that we can
1502 * give the RAM block a unique name for migration purposes.
1503 * We should lift this restriction and allow arbitrary Objects.
1504 * If you pass a non-NULL non-device @owner then we will assert.
1505 */
1506 void memory_region_init_ram(MemoryRegion *mr,
1507 Object *owner,
1508 const char *name,
1509 uint64_t size,
1510 Error **errp);
1511
1512 /**
1513 * memory_region_init_rom: Initialize a ROM memory region.
1514 *
1515 * This has the same effect as calling memory_region_init_ram()
1516 * and then marking the resulting region read-only with
1517 * memory_region_set_readonly(). This includes arranging for the
1518 * contents to be migrated.
1519 *
1520 * TODO: Currently we restrict @owner to being either NULL (for
1521 * global RAM regions with no owner) or devices, so that we can
1522 * give the RAM block a unique name for migration purposes.
1523 * We should lift this restriction and allow arbitrary Objects.
1524 * If you pass a non-NULL non-device @owner then we will assert.
1525 *
1526 * @mr: the #MemoryRegion to be initialized.
1527 * @owner: the object that tracks the region's reference count
1528 * @name: Region name, becomes part of RAMBlock name used in migration stream
1529 * must be unique within any device
1530 * @size: size of the region.
1531 * @errp: pointer to Error*, to store an error if it happens.
1532 */
1533 void memory_region_init_rom(MemoryRegion *mr,
1534 Object *owner,
1535 const char *name,
1536 uint64_t size,
1537 Error **errp);
1538
1539 /**
1540 * memory_region_init_rom_device: Initialize a ROM memory region.
1541 * Writes are handled via callbacks.
1542 *
1543 * This function initializes a memory region backed by RAM for reads
1544 * and callbacks for writes, and arranges for the RAM backing to
1545 * be migrated (by calling vmstate_register_ram()
1546 * if @owner is a DeviceState, or vmstate_register_ram_global() if
1547 * @owner is NULL).
1548 *
1549 * TODO: Currently we restrict @owner to being either NULL (for
1550 * global RAM regions with no owner) or devices, so that we can
1551 * give the RAM block a unique name for migration purposes.
1552 * We should lift this restriction and allow arbitrary Objects.
1553 * If you pass a non-NULL non-device @owner then we will assert.
1554 *
1555 * @mr: the #MemoryRegion to be initialized.
1556 * @owner: the object that tracks the region's reference count
1557 * @ops: callbacks for write access handling (must not be NULL).
1558 * @opaque: passed to the read and write callbacks of the @ops structure.
1559 * @name: Region name, becomes part of RAMBlock name used in migration stream
1560 * must be unique within any device
1561 * @size: size of the region.
1562 * @errp: pointer to Error*, to store an error if it happens.
1563 */
1564 void memory_region_init_rom_device(MemoryRegion *mr,
1565 Object *owner,
1566 const MemoryRegionOps *ops,
1567 void *opaque,
1568 const char *name,
1569 uint64_t size,
1570 Error **errp);
1571
1572
1573 /**
1574 * memory_region_owner: get a memory region's owner.
1575 *
1576 * @mr: the memory region being queried.
1577 */
1578 Object *memory_region_owner(MemoryRegion *mr);
1579
1580 /**
1581 * memory_region_size: get a memory region's size.
1582 *
1583 * @mr: the memory region being queried.
1584 */
1585 uint64_t memory_region_size(MemoryRegion *mr);
1586
1587 /**
1588 * memory_region_is_ram: check whether a memory region is random access
1589 *
1590 * Returns %true if a memory region is random access.
1591 *
1592 * @mr: the memory region being queried
1593 */
1594 static inline bool memory_region_is_ram(MemoryRegion *mr)
1595 {
1596 return mr->ram;
1597 }
1598
1599 /**
1600 * memory_region_is_ram_device: check whether a memory region is a ram device
1601 *
1602 * Returns %true if a memory region is a device backed ram region
1603 *
1604 * @mr: the memory region being queried
1605 */
1606 bool memory_region_is_ram_device(MemoryRegion *mr);
1607
1608 /**
1609 * memory_region_is_romd: check whether a memory region is in ROMD mode
1610 *
1611 * Returns %true if a memory region is a ROM device and currently set to allow
1612 * direct reads.
1613 *
1614 * @mr: the memory region being queried
1615 */
1616 static inline bool memory_region_is_romd(MemoryRegion *mr)
1617 {
1618 return mr->rom_device && mr->romd_mode;
1619 }
1620
1621 /**
1622 * memory_region_is_protected: check whether a memory region is protected
1623 *
1624 * Returns %true if a memory region is protected RAM and cannot be accessed
1625 * via standard mechanisms, e.g. DMA.
1626 *
1627 * @mr: the memory region being queried
1628 */
1629 bool memory_region_is_protected(MemoryRegion *mr);
1630
1631 /**
1632 * memory_region_get_iommu: check whether a memory region is an iommu
1633 *
1634 * Returns pointer to IOMMUMemoryRegion if a memory region is an iommu,
1635 * otherwise NULL.
1636 *
1637 * @mr: the memory region being queried
1638 */
1639 static inline IOMMUMemoryRegion *memory_region_get_iommu(MemoryRegion *mr)
1640 {
1641 if (mr->alias) {
1642 return memory_region_get_iommu(mr->alias);
1643 }
1644 if (mr->is_iommu) {
1645 return (IOMMUMemoryRegion *) mr;
1646 }
1647 return NULL;
1648 }
1649
1650 /**
1651 * memory_region_get_iommu_class_nocheck: returns iommu memory region class
1652 * if an iommu or NULL if not
1653 *
1654 * Returns pointer to IOMMUMemoryRegionClass if a memory region is an iommu,
1655 * otherwise NULL. This is fast path avoiding QOM checking, use with caution.
1656 *
1657 * @iommu_mr: the memory region being queried
1658 */
1659 static inline IOMMUMemoryRegionClass *memory_region_get_iommu_class_nocheck(
1660 IOMMUMemoryRegion *iommu_mr)
1661 {
1662 return (IOMMUMemoryRegionClass *) (((Object *)iommu_mr)->class);
1663 }
1664
1665 #define memory_region_is_iommu(mr) (memory_region_get_iommu(mr) != NULL)
1666
1667 /**
1668 * memory_region_iommu_get_min_page_size: get minimum supported page size
1669 * for an iommu
1670 *
1671 * Returns minimum supported page size for an iommu.
1672 *
1673 * @iommu_mr: the memory region being queried
1674 */
1675 uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion *iommu_mr);
1676
1677 /**
1678 * memory_region_notify_iommu: notify a change in an IOMMU translation entry.
1679 *
1680 * Note: for any IOMMU implementation, an in-place mapping change
1681 * should be notified with an UNMAP followed by a MAP.
1682 *
1683 * @iommu_mr: the memory region that was changed
1684 * @iommu_idx: the IOMMU index for the translation table which has changed
1685 * @event: TLB event with the new entry in the IOMMU translation table.
1686 * The entry replaces all old entries for the same virtual I/O address
1687 * range.
1688 */
1689 void memory_region_notify_iommu(IOMMUMemoryRegion *iommu_mr,
1690 int iommu_idx,
1691 IOMMUTLBEvent event);
1692
1693 /**
1694 * memory_region_notify_iommu_one: notify a change in an IOMMU translation
1695 * entry to a single notifier
1696 *
1697 * This works just like memory_region_notify_iommu(), but it only
1698 * notifies a specific notifier, not all of them.
1699 *
1700 * @notifier: the notifier to be notified
1701 * @event: TLB event with the new entry in the IOMMU translation table.
1702 * The entry replaces all old entries for the same virtual I/O address
1703 * range.
1704 */
1705 void memory_region_notify_iommu_one(IOMMUNotifier *notifier,
1706 IOMMUTLBEvent *event);
1707
1708 /**
1709 * memory_region_register_iommu_notifier: register a notifier for changes to
1710 * IOMMU translation entries.
1711 *
1712 * Returns 0 on success, or a negative errno otherwise. In particular,
1713 * -EINVAL indicates that at least one of the attributes of the notifier
1714 * is not supported (flag/range) by the IOMMU memory region. In case of error
1715 * the error object must be created.
1716 *
1717 * @mr: the memory region to observe
1718 * @n: the IOMMUNotifier to be added; the notify callback receives a
1719 * pointer to an #IOMMUTLBEntry as the opaque value; the pointer
1720 * ceases to be valid on exit from the notifier.
1721 * @errp: pointer to Error*, to store an error if it happens.
1722 */
1723 int memory_region_register_iommu_notifier(MemoryRegion *mr,
1724 IOMMUNotifier *n, Error **errp);
1725
1726 /**
1727 * memory_region_iommu_replay: replay existing IOMMU translations to
1728 * a notifier with the minimum page granularity returned by
1729 * mr->iommu_ops->get_page_size().
1730 *
1731 * Note: this is not related to record-and-replay functionality.
1732 *
1733 * @iommu_mr: the memory region to observe
1734 * @n: the notifier to which to replay iommu mappings
1735 */
1736 void memory_region_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n);
1737
1738 /**
1739 * memory_region_unregister_iommu_notifier: unregister a notifier for
1740 * changes to IOMMU translation entries.
1741 *
1742 * @mr: the memory region which was observed and for which notity_stopped()
1743 * needs to be called
1744 * @n: the notifier to be removed.
1745 */
1746 void memory_region_unregister_iommu_notifier(MemoryRegion *mr,
1747 IOMMUNotifier *n);
1748
1749 /**
1750 * memory_region_iommu_get_attr: return an IOMMU attr if get_attr() is
1751 * defined on the IOMMU.
1752 *
1753 * Returns 0 on success, or a negative errno otherwise. In particular,
1754 * -EINVAL indicates that the IOMMU does not support the requested
1755 * attribute.
1756 *
1757 * @iommu_mr: the memory region
1758 * @attr: the requested attribute
1759 * @data: a pointer to the requested attribute data
1760 */
1761 int memory_region_iommu_get_attr(IOMMUMemoryRegion *iommu_mr,
1762 enum IOMMUMemoryRegionAttr attr,
1763 void *data);
1764
1765 /**
1766 * memory_region_iommu_attrs_to_index: return the IOMMU index to
1767 * use for translations with the given memory transaction attributes.
1768 *
1769 * @iommu_mr: the memory region
1770 * @attrs: the memory transaction attributes
1771 */
1772 int memory_region_iommu_attrs_to_index(IOMMUMemoryRegion *iommu_mr,
1773 MemTxAttrs attrs);
1774
1775 /**
1776 * memory_region_iommu_num_indexes: return the total number of IOMMU
1777 * indexes that this IOMMU supports.
1778 *
1779 * @iommu_mr: the memory region
1780 */
1781 int memory_region_iommu_num_indexes(IOMMUMemoryRegion *iommu_mr);
1782
1783 /**
1784 * memory_region_iommu_set_page_size_mask: set the supported page
1785 * sizes for a given IOMMU memory region
1786 *
1787 * @iommu_mr: IOMMU memory region
1788 * @page_size_mask: supported page size mask
1789 * @errp: pointer to Error*, to store an error if it happens.
1790 */
1791 int memory_region_iommu_set_page_size_mask(IOMMUMemoryRegion *iommu_mr,
1792 uint64_t page_size_mask,
1793 Error **errp);
1794
1795 /**
1796 * memory_region_name: get a memory region's name
1797 *
1798 * Returns the string that was used to initialize the memory region.
1799 *
1800 * @mr: the memory region being queried
1801 */
1802 const char *memory_region_name(const MemoryRegion *mr);
1803
1804 /**
1805 * memory_region_is_logging: return whether a memory region is logging writes
1806 *
1807 * Returns %true if the memory region is logging writes for the given client
1808 *
1809 * @mr: the memory region being queried
1810 * @client: the client being queried
1811 */
1812 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client);
1813
1814 /**
1815 * memory_region_get_dirty_log_mask: return the clients for which a
1816 * memory region is logging writes.
1817 *
1818 * Returns a bitmap of clients, in which the DIRTY_MEMORY_* constants
1819 * are the bit indices.
1820 *
1821 * @mr: the memory region being queried
1822 */
1823 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr);
1824
1825 /**
1826 * memory_region_is_rom: check whether a memory region is ROM
1827 *
1828 * Returns %true if a memory region is read-only memory.
1829 *
1830 * @mr: the memory region being queried
1831 */
1832 static inline bool memory_region_is_rom(MemoryRegion *mr)
1833 {
1834 return mr->ram && mr->readonly;
1835 }
1836
1837 /**
1838 * memory_region_is_nonvolatile: check whether a memory region is non-volatile
1839 *
1840 * Returns %true is a memory region is non-volatile memory.
1841 *
1842 * @mr: the memory region being queried
1843 */
1844 static inline bool memory_region_is_nonvolatile(MemoryRegion *mr)
1845 {
1846 return mr->nonvolatile;
1847 }
1848
1849 /**
1850 * memory_region_get_fd: Get a file descriptor backing a RAM memory region.
1851 *
1852 * Returns a file descriptor backing a file-based RAM memory region,
1853 * or -1 if the region is not a file-based RAM memory region.
1854 *
1855 * @mr: the RAM or alias memory region being queried.
1856 */
1857 int memory_region_get_fd(MemoryRegion *mr);
1858
1859 /**
1860 * memory_region_from_host: Convert a pointer into a RAM memory region
1861 * and an offset within it.
1862 *
1863 * Given a host pointer inside a RAM memory region (created with
1864 * memory_region_init_ram() or memory_region_init_ram_ptr()), return
1865 * the MemoryRegion and the offset within it.
1866 *
1867 * Use with care; by the time this function returns, the returned pointer is
1868 * not protected by RCU anymore. If the caller is not within an RCU critical
1869 * section and does not hold the iothread lock, it must have other means of
1870 * protecting the pointer, such as a reference to the region that includes
1871 * the incoming ram_addr_t.
1872 *
1873 * @ptr: the host pointer to be converted
1874 * @offset: the offset within memory region
1875 */
1876 MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset);
1877
1878 /**
1879 * memory_region_get_ram_ptr: Get a pointer into a RAM memory region.
1880 *
1881 * Returns a host pointer to a RAM memory region (created with
1882 * memory_region_init_ram() or memory_region_init_ram_ptr()).
1883 *
1884 * Use with care; by the time this function returns, the returned pointer is
1885 * not protected by RCU anymore. If the caller is not within an RCU critical
1886 * section and does not hold the iothread lock, it must have other means of
1887 * protecting the pointer, such as a reference to the region that includes
1888 * the incoming ram_addr_t.
1889 *
1890 * @mr: the memory region being queried.
1891 */
1892 void *memory_region_get_ram_ptr(MemoryRegion *mr);
1893
1894 /* memory_region_ram_resize: Resize a RAM region.
1895 *
1896 * Resizing RAM while migrating can result in the migration being canceled.
1897 * Care has to be taken if the guest might have already detected the memory.
1898 *
1899 * @mr: a memory region created with @memory_region_init_resizeable_ram.
1900 * @newsize: the new size the region
1901 * @errp: pointer to Error*, to store an error if it happens.
1902 */
1903 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize,
1904 Error **errp);
1905
1906 /**
1907 * memory_region_msync: Synchronize selected address range of
1908 * a memory mapped region
1909 *
1910 * @mr: the memory region to be msync
1911 * @addr: the initial address of the range to be sync
1912 * @size: the size of the range to be sync
1913 */
1914 void memory_region_msync(MemoryRegion *mr, hwaddr addr, hwaddr size);
1915
1916 /**
1917 * memory_region_writeback: Trigger cache writeback for
1918 * selected address range
1919 *
1920 * @mr: the memory region to be updated
1921 * @addr: the initial address of the range to be written back
1922 * @size: the size of the range to be written back
1923 */
1924 void memory_region_writeback(MemoryRegion *mr, hwaddr addr, hwaddr size);
1925
1926 /**
1927 * memory_region_set_log: Turn dirty logging on or off for a region.
1928 *
1929 * Turns dirty logging on or off for a specified client (display, migration).
1930 * Only meaningful for RAM regions.
1931 *
1932 * @mr: the memory region being updated.
1933 * @log: whether dirty logging is to be enabled or disabled.
1934 * @client: the user of the logging information; %DIRTY_MEMORY_VGA only.
1935 */
1936 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client);
1937
1938 /**
1939 * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region.
1940 *
1941 * Marks a range of bytes as dirty, after it has been dirtied outside
1942 * guest code.
1943 *
1944 * @mr: the memory region being dirtied.
1945 * @addr: the address (relative to the start of the region) being dirtied.
1946 * @size: size of the range being dirtied.
1947 */
1948 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
1949 hwaddr size);
1950
1951 /**
1952 * memory_region_clear_dirty_bitmap - clear dirty bitmap for memory range
1953 *
1954 * This function is called when the caller wants to clear the remote
1955 * dirty bitmap of a memory range within the memory region. This can
1956 * be used by e.g. KVM to manually clear dirty log when
1957 * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT is declared support by the host
1958 * kernel.
1959 *
1960 * @mr: the memory region to clear the dirty log upon
1961 * @start: start address offset within the memory region
1962 * @len: length of the memory region to clear dirty bitmap
1963 */
1964 void memory_region_clear_dirty_bitmap(MemoryRegion *mr, hwaddr start,
1965 hwaddr len);
1966
1967 /**
1968 * memory_region_snapshot_and_clear_dirty: Get a snapshot of the dirty
1969 * bitmap and clear it.
1970 *
1971 * Creates a snapshot of the dirty bitmap, clears the dirty bitmap and
1972 * returns the snapshot. The snapshot can then be used to query dirty
1973 * status, using memory_region_snapshot_get_dirty. Snapshotting allows
1974 * querying the same page multiple times, which is especially useful for
1975 * display updates where the scanlines often are not page aligned.
1976 *
1977 * The dirty bitmap region which gets copied into the snapshot (and
1978 * cleared afterwards) can be larger than requested. The boundaries
1979 * are rounded up/down so complete bitmap longs (covering 64 pages on
1980 * 64bit hosts) can be copied over into the bitmap snapshot. Which
1981 * isn't a problem for display updates as the extra pages are outside
1982 * the visible area, and in case the visible area changes a full
1983 * display redraw is due anyway. Should other use cases for this
1984 * function emerge we might have to revisit this implementation
1985 * detail.
1986 *
1987 * Use g_free to release DirtyBitmapSnapshot.
1988 *
1989 * @mr: the memory region being queried.
1990 * @addr: the address (relative to the start of the region) being queried.
1991 * @size: the size of the range being queried.
1992 * @client: the user of the logging information; typically %DIRTY_MEMORY_VGA.
1993 */
1994 DirtyBitmapSnapshot *memory_region_snapshot_and_clear_dirty(MemoryRegion *mr,
1995 hwaddr addr,
1996 hwaddr size,
1997 unsigned client);
1998
1999 /**
2000 * memory_region_snapshot_get_dirty: Check whether a range of bytes is dirty
2001 * in the specified dirty bitmap snapshot.
2002 *
2003 * @mr: the memory region being queried.
2004 * @snap: the dirty bitmap snapshot
2005 * @addr: the address (relative to the start of the region) being queried.
2006 * @size: the size of the range being queried.
2007 */
2008 bool memory_region_snapshot_get_dirty(MemoryRegion *mr,
2009 DirtyBitmapSnapshot *snap,
2010 hwaddr addr, hwaddr size);
2011
2012 /**
2013 * memory_region_reset_dirty: Mark a range of pages as clean, for a specified
2014 * client.
2015 *
2016 * Marks a range of pages as no longer dirty.
2017 *
2018 * @mr: the region being updated.
2019 * @addr: the start of the subrange being cleaned.
2020 * @size: the size of the subrange being cleaned.
2021 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
2022 * %DIRTY_MEMORY_VGA.
2023 */
2024 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
2025 hwaddr size, unsigned client);
2026
2027 /**
2028 * memory_region_flush_rom_device: Mark a range of pages dirty and invalidate
2029 * TBs (for self-modifying code).
2030 *
2031 * The MemoryRegionOps->write() callback of a ROM device must use this function
2032 * to mark byte ranges that have been modified internally, such as by directly
2033 * accessing the memory returned by memory_region_get_ram_ptr().
2034 *
2035 * This function marks the range dirty and invalidates TBs so that TCG can
2036 * detect self-modifying code.
2037 *
2038 * @mr: the region being flushed.
2039 * @addr: the start, relative to the start of the region, of the range being
2040 * flushed.
2041 * @size: the size, in bytes, of the range being flushed.
2042 */
2043 void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size);
2044
2045 /**
2046 * memory_region_set_readonly: Turn a memory region read-only (or read-write)
2047 *
2048 * Allows a memory region to be marked as read-only (turning it into a ROM).
2049 * only useful on RAM regions.
2050 *
2051 * @mr: the region being updated.
2052 * @readonly: whether rhe region is to be ROM or RAM.
2053 */
2054 void memory_region_set_readonly(MemoryRegion *mr, bool readonly);
2055
2056 /**
2057 * memory_region_set_nonvolatile: Turn a memory region non-volatile
2058 *
2059 * Allows a memory region to be marked as non-volatile.
2060 * only useful on RAM regions.
2061 *
2062 * @mr: the region being updated.
2063 * @nonvolatile: whether rhe region is to be non-volatile.
2064 */
2065 void memory_region_set_nonvolatile(MemoryRegion *mr, bool nonvolatile);
2066
2067 /**
2068 * memory_region_rom_device_set_romd: enable/disable ROMD mode
2069 *
2070 * Allows a ROM device (initialized with memory_region_init_rom_device() to
2071 * set to ROMD mode (default) or MMIO mode. When it is in ROMD mode, the
2072 * device is mapped to guest memory and satisfies read access directly.
2073 * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function.
2074 * Writes are always handled by the #MemoryRegion.write function.
2075 *
2076 * @mr: the memory region to be updated
2077 * @romd_mode: %true to put the region into ROMD mode
2078 */
2079 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode);
2080
2081 /**
2082 * memory_region_set_coalescing: Enable memory coalescing for the region.
2083 *
2084 * Enabled writes to a region to be queued for later processing. MMIO ->write
2085 * callbacks may be delayed until a non-coalesced MMIO is issued.
2086 * Only useful for IO regions. Roughly similar to write-combining hardware.
2087 *
2088 * @mr: the memory region to be write coalesced
2089 */
2090 void memory_region_set_coalescing(MemoryRegion *mr);
2091
2092 /**
2093 * memory_region_add_coalescing: Enable memory coalescing for a sub-range of
2094 * a region.
2095 *
2096 * Like memory_region_set_coalescing(), but works on a sub-range of a region.
2097 * Multiple calls can be issued coalesced disjoint ranges.
2098 *
2099 * @mr: the memory region to be updated.
2100 * @offset: the start of the range within the region to be coalesced.
2101 * @size: the size of the subrange to be coalesced.
2102 */
2103 void memory_region_add_coalescing(MemoryRegion *mr,
2104 hwaddr offset,
2105 uint64_t size);
2106
2107 /**
2108 * memory_region_clear_coalescing: Disable MMIO coalescing for the region.
2109 *
2110 * Disables any coalescing caused by memory_region_set_coalescing() or
2111 * memory_region_add_coalescing(). Roughly equivalent to uncacheble memory
2112 * hardware.
2113 *
2114 * @mr: the memory region to be updated.
2115 */
2116 void memory_region_clear_coalescing(MemoryRegion *mr);
2117
2118 /**
2119 * memory_region_set_flush_coalesced: Enforce memory coalescing flush before
2120 * accesses.
2121 *
2122 * Ensure that pending coalesced MMIO request are flushed before the memory
2123 * region is accessed. This property is automatically enabled for all regions
2124 * passed to memory_region_set_coalescing() and memory_region_add_coalescing().
2125 *
2126 * @mr: the memory region to be updated.
2127 */
2128 void memory_region_set_flush_coalesced(MemoryRegion *mr);
2129
2130 /**
2131 * memory_region_clear_flush_coalesced: Disable memory coalescing flush before
2132 * accesses.
2133 *
2134 * Clear the automatic coalesced MMIO flushing enabled via
2135 * memory_region_set_flush_coalesced. Note that this service has no effect on
2136 * memory regions that have MMIO coalescing enabled for themselves. For them,
2137 * automatic flushing will stop once coalescing is disabled.
2138 *
2139 * @mr: the memory region to be updated.
2140 */
2141 void memory_region_clear_flush_coalesced(MemoryRegion *mr);
2142
2143 /**
2144 * memory_region_add_eventfd: Request an eventfd to be triggered when a word
2145 * is written to a location.
2146 *
2147 * Marks a word in an IO region (initialized with memory_region_init_io())
2148 * as a trigger for an eventfd event. The I/O callback will not be called.
2149 * The caller must be prepared to handle failure (that is, take the required
2150 * action if the callback _is_ called).
2151 *
2152 * @mr: the memory region being updated.
2153 * @addr: the address within @mr that is to be monitored
2154 * @size: the size of the access to trigger the eventfd
2155 * @match_data: whether to match against @data, instead of just @addr
2156 * @data: the data to match against the guest write
2157 * @e: event notifier to be triggered when @addr, @size, and @data all match.
2158 **/
2159 void memory_region_add_eventfd(MemoryRegion *mr,
2160 hwaddr addr,
2161 unsigned size,
2162 bool match_data,
2163 uint64_t data,
2164 EventNotifier *e);
2165
2166 /**
2167 * memory_region_del_eventfd: Cancel an eventfd.
2168 *
2169 * Cancels an eventfd trigger requested by a previous
2170 * memory_region_add_eventfd() call.
2171 *
2172 * @mr: the memory region being updated.
2173 * @addr: the address within @mr that is to be monitored
2174 * @size: the size of the access to trigger the eventfd
2175 * @match_data: whether to match against @data, instead of just @addr
2176 * @data: the data to match against the guest write
2177 * @e: event notifier to be triggered when @addr, @size, and @data all match.
2178 */
2179 void memory_region_del_eventfd(MemoryRegion *mr,
2180 hwaddr addr,
2181 unsigned size,
2182 bool match_data,
2183 uint64_t data,
2184 EventNotifier *e);
2185
2186 /**
2187 * memory_region_add_subregion: Add a subregion to a container.
2188 *
2189 * Adds a subregion at @offset. The subregion may not overlap with other
2190 * subregions (except for those explicitly marked as overlapping). A region
2191 * may only be added once as a subregion (unless removed with
2192 * memory_region_del_subregion()); use memory_region_init_alias() if you
2193 * want a region to be a subregion in multiple locations.
2194 *
2195 * @mr: the region to contain the new subregion; must be a container
2196 * initialized with memory_region_init().
2197 * @offset: the offset relative to @mr where @subregion is added.
2198 * @subregion: the subregion to be added.
2199 */
2200 void memory_region_add_subregion(MemoryRegion *mr,
2201 hwaddr offset,
2202 MemoryRegion *subregion);
2203 /**
2204 * memory_region_add_subregion_overlap: Add a subregion to a container
2205 * with overlap.
2206 *
2207 * Adds a subregion at @offset. The subregion may overlap with other
2208 * subregions. Conflicts are resolved by having a higher @priority hide a
2209 * lower @priority. Subregions without priority are taken as @priority 0.
2210 * A region may only be added once as a subregion (unless removed with
2211 * memory_region_del_subregion()); use memory_region_init_alias() if you
2212 * want a region to be a subregion in multiple locations.
2213 *
2214 * @mr: the region to contain the new subregion; must be a container
2215 * initialized with memory_region_init().
2216 * @offset: the offset relative to @mr where @subregion is added.
2217 * @subregion: the subregion to be added.
2218 * @priority: used for resolving overlaps; highest priority wins.
2219 */
2220 void memory_region_add_subregion_overlap(MemoryRegion *mr,
2221 hwaddr offset,
2222 MemoryRegion *subregion,
2223 int priority);
2224
2225 /**
2226 * memory_region_get_ram_addr: Get the ram address associated with a memory
2227 * region
2228 *
2229 * @mr: the region to be queried
2230 */
2231 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr);
2232
2233 uint64_t memory_region_get_alignment(const MemoryRegion *mr);
2234 /**
2235 * memory_region_del_subregion: Remove a subregion.
2236 *
2237 * Removes a subregion from its container.
2238 *
2239 * @mr: the container to be updated.
2240 * @subregion: the region being removed; must be a current subregion of @mr.
2241 */
2242 void memory_region_del_subregion(MemoryRegion *mr,
2243 MemoryRegion *subregion);
2244
2245 /*
2246 * memory_region_set_enabled: dynamically enable or disable a region
2247 *
2248 * Enables or disables a memory region. A disabled memory region
2249 * ignores all accesses to itself and its subregions. It does not
2250 * obscure sibling subregions with lower priority - it simply behaves as
2251 * if it was removed from the hierarchy.
2252 *
2253 * Regions default to being enabled.
2254 *
2255 * @mr: the region to be updated
2256 * @enabled: whether to enable or disable the region
2257 */
2258 void memory_region_set_enabled(MemoryRegion *mr, bool enabled);
2259
2260 /*
2261 * memory_region_set_address: dynamically update the address of a region
2262 *
2263 * Dynamically updates the address of a region, relative to its container.
2264 * May be used on regions are currently part of a memory hierarchy.
2265 *
2266 * @mr: the region to be updated
2267 * @addr: new address, relative to container region
2268 */
2269 void memory_region_set_address(MemoryRegion *mr, hwaddr addr);
2270
2271 /*
2272 * memory_region_set_size: dynamically update the size of a region.
2273 *
2274 * Dynamically updates the size of a region.
2275 *
2276 * @mr: the region to be updated
2277 * @size: used size of the region.
2278 */
2279 void memory_region_set_size(MemoryRegion *mr, uint64_t size);
2280
2281 /*
2282 * memory_region_set_alias_offset: dynamically update a memory alias's offset
2283 *
2284 * Dynamically updates the offset into the target region that an alias points
2285 * to, as if the fourth argument to memory_region_init_alias() has changed.
2286 *
2287 * @mr: the #MemoryRegion to be updated; should be an alias.
2288 * @offset: the new offset into the target memory region
2289 */
2290 void memory_region_set_alias_offset(MemoryRegion *mr,
2291 hwaddr offset);
2292
2293 /**
2294 * memory_region_present: checks if an address relative to a @container
2295 * translates into #MemoryRegion within @container
2296 *
2297 * Answer whether a #MemoryRegion within @container covers the address
2298 * @addr.
2299 *
2300 * @container: a #MemoryRegion within which @addr is a relative address
2301 * @addr: the area within @container to be searched
2302 */
2303 bool memory_region_present(MemoryRegion *container, hwaddr addr);
2304
2305 /**
2306 * memory_region_is_mapped: returns true if #MemoryRegion is mapped
2307 * into another memory region, which does not necessarily imply that it is
2308 * mapped into an address space.
2309 *
2310 * @mr: a #MemoryRegion which should be checked if it's mapped
2311 */
2312 bool memory_region_is_mapped(MemoryRegion *mr);
2313
2314 /**
2315 * memory_region_get_ram_discard_manager: get the #RamDiscardManager for a
2316 * #MemoryRegion
2317 *
2318 * The #RamDiscardManager cannot change while a memory region is mapped.
2319 *
2320 * @mr: the #MemoryRegion
2321 */
2322 RamDiscardManager *memory_region_get_ram_discard_manager(MemoryRegion *mr);
2323
2324 /**
2325 * memory_region_has_ram_discard_manager: check whether a #MemoryRegion has a
2326 * #RamDiscardManager assigned
2327 *
2328 * @mr: the #MemoryRegion
2329 */
2330 static inline bool memory_region_has_ram_discard_manager(MemoryRegion *mr)
2331 {
2332 return !!memory_region_get_ram_discard_manager(mr);
2333 }
2334
2335 /**
2336 * memory_region_set_ram_discard_manager: set the #RamDiscardManager for a
2337 * #MemoryRegion
2338 *
2339 * This function must not be called for a mapped #MemoryRegion, a #MemoryRegion
2340 * that does not cover RAM, or a #MemoryRegion that already has a
2341 * #RamDiscardManager assigned.
2342 *
2343 * @mr: the #MemoryRegion
2344 * @rdm: #RamDiscardManager to set
2345 */
2346 void memory_region_set_ram_discard_manager(MemoryRegion *mr,
2347 RamDiscardManager *rdm);
2348
2349 /**
2350 * memory_region_find: translate an address/size relative to a
2351 * MemoryRegion into a #MemoryRegionSection.
2352 *
2353 * Locates the first #MemoryRegion within @mr that overlaps the range
2354 * given by @addr and @size.
2355 *
2356 * Returns a #MemoryRegionSection that describes a contiguous overlap.
2357 * It will have the following characteristics:
2358 * - @size = 0 iff no overlap was found
2359 * - @mr is non-%NULL iff an overlap was found
2360 *
2361 * Remember that in the return value the @offset_within_region is
2362 * relative to the returned region (in the .@mr field), not to the
2363 * @mr argument.
2364 *
2365 * Similarly, the .@offset_within_address_space is relative to the
2366 * address space that contains both regions, the passed and the
2367 * returned one. However, in the special case where the @mr argument
2368 * has no container (and thus is the root of the address space), the
2369 * following will hold:
2370 * - @offset_within_address_space >= @addr
2371 * - @offset_within_address_space + .@size <= @addr + @size
2372 *
2373 * @mr: a MemoryRegion within which @addr is a relative address
2374 * @addr: start of the area within @as to be searched
2375 * @size: size of the area to be searched
2376 */
2377 MemoryRegionSection memory_region_find(MemoryRegion *mr,
2378 hwaddr addr, uint64_t size);
2379
2380 /**
2381 * memory_global_dirty_log_sync: synchronize the dirty log for all memory
2382 *
2383 * Synchronizes the dirty page log for all address spaces.
2384 */
2385 void memory_global_dirty_log_sync(void);
2386
2387 /**
2388 * memory_global_dirty_log_sync: synchronize the dirty log for all memory
2389 *
2390 * Synchronizes the vCPUs with a thread that is reading the dirty bitmap.
2391 * This function must be called after the dirty log bitmap is cleared, and
2392 * before dirty guest memory pages are read. If you are using
2393 * #DirtyBitmapSnapshot, memory_region_snapshot_and_clear_dirty() takes
2394 * care of doing this.
2395 */
2396 void memory_global_after_dirty_log_sync(void);
2397
2398 /**
2399 * memory_region_transaction_begin: Start a transaction.
2400 *
2401 * During a transaction, changes will be accumulated and made visible
2402 * only when the transaction ends (is committed).
2403 */
2404 void memory_region_transaction_begin(void);
2405
2406 /**
2407 * memory_region_transaction_commit: Commit a transaction and make changes
2408 * visible to the guest.
2409 */
2410 void memory_region_transaction_commit(void);
2411
2412 /**
2413 * memory_listener_register: register callbacks to be called when memory
2414 * sections are mapped or unmapped into an address
2415 * space
2416 *
2417 * @listener: an object containing the callbacks to be called
2418 * @filter: if non-%NULL, only regions in this address space will be observed
2419 */
2420 void memory_listener_register(MemoryListener *listener, AddressSpace *filter);
2421
2422 /**
2423 * memory_listener_unregister: undo the effect of memory_listener_register()
2424 *
2425 * @listener: an object containing the callbacks to be removed
2426 */
2427 void memory_listener_unregister(MemoryListener *listener);
2428
2429 /**
2430 * memory_global_dirty_log_start: begin dirty logging for all regions
2431 *
2432 * @flags: purpose of starting dirty log, migration or dirty rate
2433 */
2434 void memory_global_dirty_log_start(unsigned int flags);
2435
2436 /**
2437 * memory_global_dirty_log_stop: end dirty logging for all regions
2438 *
2439 * @flags: purpose of stopping dirty log, migration or dirty rate
2440 */
2441 void memory_global_dirty_log_stop(unsigned int flags);
2442
2443 void mtree_info(bool flatview, bool dispatch_tree, bool owner, bool disabled);
2444
2445 /**
2446 * memory_region_dispatch_read: perform a read directly to the specified
2447 * MemoryRegion.
2448 *
2449 * @mr: #MemoryRegion to access
2450 * @addr: address within that region
2451 * @pval: pointer to uint64_t which the data is written to
2452 * @op: size, sign, and endianness of the memory operation
2453 * @attrs: memory transaction attributes to use for the access
2454 */
2455 MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
2456 hwaddr addr,
2457 uint64_t *pval,
2458 MemOp op,
2459 MemTxAttrs attrs);
2460 /**
2461 * memory_region_dispatch_write: perform a write directly to the specified
2462 * MemoryRegion.
2463 *
2464 * @mr: #MemoryRegion to access
2465 * @addr: address within that region
2466 * @data: data to write
2467 * @op: size, sign, and endianness of the memory operation
2468 * @attrs: memory transaction attributes to use for the access
2469 */
2470 MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
2471 hwaddr addr,
2472 uint64_t data,
2473 MemOp op,
2474 MemTxAttrs attrs);
2475
2476 /**
2477 * address_space_init: initializes an address space
2478 *
2479 * @as: an uninitialized #AddressSpace
2480 * @root: a #MemoryRegion that routes addresses for the address space
2481 * @name: an address space name. The name is only used for debugging
2482 * output.
2483 */
2484 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name);
2485
2486 /**
2487 * address_space_destroy: destroy an address space
2488 *
2489 * Releases all resources associated with an address space. After an address space
2490 * is destroyed, its root memory region (given by address_space_init()) may be destroyed
2491 * as well.
2492 *
2493 * @as: address space to be destroyed
2494 */
2495 void address_space_destroy(AddressSpace *as);
2496
2497 /**
2498 * address_space_remove_listeners: unregister all listeners of an address space
2499 *
2500 * Removes all callbacks previously registered with memory_listener_register()
2501 * for @as.
2502 *
2503 * @as: an initialized #AddressSpace
2504 */
2505 void address_space_remove_listeners(AddressSpace *as);
2506
2507 /**
2508 * address_space_rw: read from or write to an address space.
2509 *
2510 * Return a MemTxResult indicating whether the operation succeeded
2511 * or failed (eg unassigned memory, device rejected the transaction,
2512 * IOMMU fault).
2513 *
2514 * @as: #AddressSpace to be accessed
2515 * @addr: address within that address space
2516 * @attrs: memory transaction attributes
2517 * @buf: buffer with the data transferred
2518 * @len: the number of bytes to read or write
2519 * @is_write: indicates the transfer direction
2520 */
2521 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr,
2522 MemTxAttrs attrs, void *buf,
2523 hwaddr len, bool is_write);
2524
2525 /**
2526 * address_space_write: write to address space.
2527 *
2528 * Return a MemTxResult indicating whether the operation succeeded
2529 * or failed (eg unassigned memory, device rejected the transaction,
2530 * IOMMU fault).
2531 *
2532 * @as: #AddressSpace to be accessed
2533 * @addr: address within that address space
2534 * @attrs: memory transaction attributes
2535 * @buf: buffer with the data transferred
2536 * @len: the number of bytes to write
2537 */
2538 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
2539 MemTxAttrs attrs,
2540 const void *buf, hwaddr len);
2541
2542 /**
2543 * address_space_write_rom: write to address space, including ROM.
2544 *
2545 * This function writes to the specified address space, but will
2546 * write data to both ROM and RAM. This is used for non-guest
2547 * writes like writes from the gdb debug stub or initial loading
2548 * of ROM contents.
2549 *
2550 * Note that portions of the write which attempt to write data to
2551 * a device will be silently ignored -- only real RAM and ROM will
2552 * be written to.
2553 *
2554 * Return a MemTxResult indicating whether the operation succeeded
2555 * or failed (eg unassigned memory, device rejected the transaction,
2556 * IOMMU fault).
2557 *
2558 * @as: #AddressSpace to be accessed
2559 * @addr: address within that address space
2560 * @attrs: memory transaction attributes
2561 * @buf: buffer with the data transferred
2562 * @len: the number of bytes to write
2563 */
2564 MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
2565 MemTxAttrs attrs,
2566 const void *buf, hwaddr len);
2567
2568 /* address_space_ld*: load from an address space
2569 * address_space_st*: store to an address space
2570 *
2571 * These functions perform a load or store of the byte, word,
2572 * longword or quad to the specified address within the AddressSpace.
2573 * The _le suffixed functions treat the data as little endian;
2574 * _be indicates big endian; no suffix indicates "same endianness
2575 * as guest CPU".
2576 *
2577 * The "guest CPU endianness" accessors are deprecated for use outside
2578 * target-* code; devices should be CPU-agnostic and use either the LE
2579 * or the BE accessors.
2580 *
2581 * @as #AddressSpace to be accessed
2582 * @addr: address within that address space
2583 * @val: data value, for stores
2584 * @attrs: memory transaction attributes
2585 * @result: location to write the success/failure of the transaction;
2586 * if NULL, this information is discarded
2587 */
2588
2589 #define SUFFIX
2590 #define ARG1 as
2591 #define ARG1_DECL AddressSpace *as
2592 #include "exec/memory_ldst.h.inc"
2593
2594 #define SUFFIX
2595 #define ARG1 as
2596 #define ARG1_DECL AddressSpace *as
2597 #include "exec/memory_ldst_phys.h.inc"
2598
2599 struct MemoryRegionCache {
2600 void *ptr;
2601 hwaddr xlat;
2602 hwaddr len;
2603 FlatView *fv;
2604 MemoryRegionSection mrs;
2605 bool is_write;
2606 };
2607
2608 #define MEMORY_REGION_CACHE_INVALID ((MemoryRegionCache) { .mrs.mr = NULL })
2609
2610
2611 /* address_space_ld*_cached: load from a cached #MemoryRegion
2612 * address_space_st*_cached: store into a cached #MemoryRegion
2613 *
2614 * These functions perform a load or store of the byte, word,
2615 * longword or quad to the specified address. The address is
2616 * a physical address in the AddressSpace, but it must lie within
2617 * a #MemoryRegion that was mapped with address_space_cache_init.
2618 *
2619 * The _le suffixed functions treat the data as little endian;
2620 * _be indicates big endian; no suffix indicates "same endianness
2621 * as guest CPU".
2622 *
2623 * The "guest CPU endianness" accessors are deprecated for use outside
2624 * target-* code; devices should be CPU-agnostic and use either the LE
2625 * or the BE accessors.
2626 *
2627 * @cache: previously initialized #MemoryRegionCache to be accessed
2628 * @addr: address within the address space
2629 * @val: data value, for stores
2630 * @attrs: memory transaction attributes
2631 * @result: location to write the success/failure of the transaction;
2632 * if NULL, this information is discarded
2633 */
2634
2635 #define SUFFIX _cached_slow
2636 #define ARG1 cache
2637 #define ARG1_DECL MemoryRegionCache *cache
2638 #include "exec/memory_ldst.h.inc"
2639
2640 /* Inline fast path for direct RAM access. */
2641 static inline uint8_t address_space_ldub_cached(MemoryRegionCache *cache,
2642 hwaddr addr, MemTxAttrs attrs, MemTxResult *result)
2643 {
2644 assert(addr < cache->len);
2645 if (likely(cache->ptr)) {
2646 return ldub_p(cache->ptr + addr);
2647 } else {
2648 return address_space_ldub_cached_slow(cache, addr, attrs, result);
2649 }
2650 }
2651
2652 static inline void address_space_stb_cached(MemoryRegionCache *cache,
2653 hwaddr addr, uint8_t val, MemTxAttrs attrs, MemTxResult *result)
2654 {
2655 assert(addr < cache->len);
2656 if (likely(cache->ptr)) {
2657 stb_p(cache->ptr + addr, val);
2658 } else {
2659 address_space_stb_cached_slow(cache, addr, val, attrs, result);
2660 }
2661 }
2662
2663 #define ENDIANNESS _le
2664 #include "exec/memory_ldst_cached.h.inc"
2665
2666 #define ENDIANNESS _be
2667 #include "exec/memory_ldst_cached.h.inc"
2668
2669 #define SUFFIX _cached
2670 #define ARG1 cache
2671 #define ARG1_DECL MemoryRegionCache *cache
2672 #include "exec/memory_ldst_phys.h.inc"
2673
2674 /* address_space_cache_init: prepare for repeated access to a physical
2675 * memory region
2676 *
2677 * @cache: #MemoryRegionCache to be filled
2678 * @as: #AddressSpace to be accessed
2679 * @addr: address within that address space
2680 * @len: length of buffer
2681 * @is_write: indicates the transfer direction
2682 *
2683 * Will only work with RAM, and may map a subset of the requested range by
2684 * returning a value that is less than @len. On failure, return a negative
2685 * errno value.
2686 *
2687 * Because it only works with RAM, this function can be used for
2688 * read-modify-write operations. In this case, is_write should be %true.
2689 *
2690 * Note that addresses passed to the address_space_*_cached functions
2691 * are relative to @addr.
2692 */
2693 int64_t address_space_cache_init(MemoryRegionCache *cache,
2694 AddressSpace *as,
2695 hwaddr addr,
2696 hwaddr len,
2697 bool is_write);
2698
2699 /**
2700 * address_space_cache_invalidate: complete a write to a #MemoryRegionCache
2701 *
2702 * @cache: The #MemoryRegionCache to operate on.
2703 * @addr: The first physical address that was written, relative to the
2704 * address that was passed to @address_space_cache_init.
2705 * @access_len: The number of bytes that were written starting at @addr.
2706 */
2707 void address_space_cache_invalidate(MemoryRegionCache *cache,
2708 hwaddr addr,
2709 hwaddr access_len);
2710
2711 /**
2712 * address_space_cache_destroy: free a #MemoryRegionCache
2713 *
2714 * @cache: The #MemoryRegionCache whose memory should be released.
2715 */
2716 void address_space_cache_destroy(MemoryRegionCache *cache);
2717
2718 /* address_space_get_iotlb_entry: translate an address into an IOTLB
2719 * entry. Should be called from an RCU critical section.
2720 */
2721 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
2722 bool is_write, MemTxAttrs attrs);
2723
2724 /* address_space_translate: translate an address range into an address space
2725 * into a MemoryRegion and an address range into that section. Should be
2726 * called from an RCU critical section, to avoid that the last reference
2727 * to the returned region disappears after address_space_translate returns.
2728 *
2729 * @fv: #FlatView to be accessed
2730 * @addr: address within that address space
2731 * @xlat: pointer to address within the returned memory region section's
2732 * #MemoryRegion.
2733 * @len: pointer to length
2734 * @is_write: indicates the transfer direction
2735 * @attrs: memory attributes
2736 */
2737 MemoryRegion *flatview_translate(FlatView *fv,
2738 hwaddr addr, hwaddr *xlat,
2739 hwaddr *len, bool is_write,
2740 MemTxAttrs attrs);
2741
2742 static inline MemoryRegion *address_space_translate(AddressSpace *as,
2743 hwaddr addr, hwaddr *xlat,
2744 hwaddr *len, bool is_write,
2745 MemTxAttrs attrs)
2746 {
2747 return flatview_translate(address_space_to_flatview(as),
2748 addr, xlat, len, is_write, attrs);
2749 }
2750
2751 /* address_space_access_valid: check for validity of accessing an address
2752 * space range
2753 *
2754 * Check whether memory is assigned to the given address space range, and
2755 * access is permitted by any IOMMU regions that are active for the address
2756 * space.
2757 *
2758 * For now, addr and len should be aligned to a page size. This limitation
2759 * will be lifted in the future.
2760 *
2761 * @as: #AddressSpace to be accessed
2762 * @addr: address within that address space
2763 * @len: length of the area to be checked
2764 * @is_write: indicates the transfer direction
2765 * @attrs: memory attributes
2766 */
2767 bool address_space_access_valid(AddressSpace *as, hwaddr addr, hwaddr len,
2768 bool is_write, MemTxAttrs attrs);
2769
2770 /* address_space_map: map a physical memory region into a host virtual address
2771 *
2772 * May map a subset of the requested range, given by and returned in @plen.
2773 * May return %NULL and set *@plen to zero(0), if resources needed to perform
2774 * the mapping are exhausted.
2775 * Use only for reads OR writes - not for read-modify-write operations.
2776 * Use cpu_register_map_client() to know when retrying the map operation is
2777 * likely to succeed.
2778 *
2779 * @as: #AddressSpace to be accessed
2780 * @addr: address within that address space
2781 * @plen: pointer to length of buffer; updated on return
2782 * @is_write: indicates the transfer direction
2783 * @attrs: memory attributes
2784 */
2785 void *address_space_map(AddressSpace *as, hwaddr addr,
2786 hwaddr *plen, bool is_write, MemTxAttrs attrs);
2787
2788 /* address_space_unmap: Unmaps a memory region previously mapped by address_space_map()
2789 *
2790 * Will also mark the memory as dirty if @is_write == %true. @access_len gives
2791 * the amount of memory that was actually read or written by the caller.
2792 *
2793 * @as: #AddressSpace used
2794 * @buffer: host pointer as returned by address_space_map()
2795 * @len: buffer length as returned by address_space_map()
2796 * @access_len: amount of data actually transferred
2797 * @is_write: indicates the transfer direction
2798 */
2799 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
2800 bool is_write, hwaddr access_len);
2801
2802
2803 /* Internal functions, part of the implementation of address_space_read. */
2804 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
2805 MemTxAttrs attrs, void *buf, hwaddr len);
2806 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
2807 MemTxAttrs attrs, void *buf,
2808 hwaddr len, hwaddr addr1, hwaddr l,
2809 MemoryRegion *mr);
2810 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr);
2811
2812 /* Internal functions, part of the implementation of address_space_read_cached
2813 * and address_space_write_cached. */
2814 MemTxResult address_space_read_cached_slow(MemoryRegionCache *cache,
2815 hwaddr addr, void *buf, hwaddr len);
2816 MemTxResult address_space_write_cached_slow(MemoryRegionCache *cache,
2817 hwaddr addr, const void *buf,
2818 hwaddr len);
2819
2820 int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr);
2821 bool prepare_mmio_access(MemoryRegion *mr);
2822
2823 static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write)
2824 {
2825 if (is_write) {
2826 return memory_region_is_ram(mr) && !mr->readonly &&
2827 !mr->rom_device && !memory_region_is_ram_device(mr);
2828 } else {
2829 return (memory_region_is_ram(mr) && !memory_region_is_ram_device(mr)) ||
2830 memory_region_is_romd(mr);
2831 }
2832 }
2833
2834 /**
2835 * address_space_read: read from an address space.
2836 *
2837 * Return a MemTxResult indicating whether the operation succeeded
2838 * or failed (eg unassigned memory, device rejected the transaction,
2839 * IOMMU fault). Called within RCU critical section.
2840 *
2841 * @as: #AddressSpace to be accessed
2842 * @addr: address within that address space
2843 * @attrs: memory transaction attributes
2844 * @buf: buffer with the data transferred
2845 * @len: length of the data transferred
2846 */
2847 static inline __attribute__((__always_inline__))
2848 MemTxResult address_space_read(AddressSpace *as, hwaddr addr,
2849 MemTxAttrs attrs, void *buf,
2850 hwaddr len)
2851 {
2852 MemTxResult result = MEMTX_OK;
2853 hwaddr l, addr1;
2854 void *ptr;
2855 MemoryRegion *mr;
2856 FlatView *fv;
2857
2858 if (__builtin_constant_p(len)) {
2859 if (len) {
2860 RCU_READ_LOCK_GUARD();
2861 fv = address_space_to_flatview(as);
2862 l = len;
2863 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
2864 if (len == l && memory_access_is_direct(mr, false)) {
2865 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
2866 memcpy(buf, ptr, len);
2867 } else {
2868 result = flatview_read_continue(fv, addr, attrs, buf, len,
2869 addr1, l, mr);
2870 }
2871 }
2872 } else {
2873 result = address_space_read_full(as, addr, attrs, buf, len);
2874 }
2875 return result;
2876 }
2877
2878 /**
2879 * address_space_read_cached: read from a cached RAM region
2880 *
2881 * @cache: Cached region to be addressed
2882 * @addr: address relative to the base of the RAM region
2883 * @buf: buffer with the data transferred
2884 * @len: length of the data transferred
2885 */
2886 static inline MemTxResult
2887 address_space_read_cached(MemoryRegionCache *cache, hwaddr addr,
2888 void *buf, hwaddr len)
2889 {
2890 assert(addr < cache->len && len <= cache->len - addr);
2891 fuzz_dma_read_cb(cache->xlat + addr, len, cache->mrs.mr);
2892 if (likely(cache->ptr)) {
2893 memcpy(buf, cache->ptr + addr, len);
2894 return MEMTX_OK;
2895 } else {
2896 return address_space_read_cached_slow(cache, addr, buf, len);
2897 }
2898 }
2899
2900 /**
2901 * address_space_write_cached: write to a cached RAM region
2902 *
2903 * @cache: Cached region to be addressed
2904 * @addr: address relative to the base of the RAM region
2905 * @buf: buffer with the data transferred
2906 * @len: length of the data transferred
2907 */
2908 static inline MemTxResult
2909 address_space_write_cached(MemoryRegionCache *cache, hwaddr addr,
2910 const void *buf, hwaddr len)
2911 {
2912 assert(addr < cache->len && len <= cache->len - addr);
2913 if (likely(cache->ptr)) {
2914 memcpy(cache->ptr + addr, buf, len);
2915 return MEMTX_OK;
2916 } else {
2917 return address_space_write_cached_slow(cache, addr, buf, len);
2918 }
2919 }
2920
2921 /**
2922 * address_space_set: Fill address space with a constant byte.
2923 *
2924 * Return a MemTxResult indicating whether the operation succeeded
2925 * or failed (eg unassigned memory, device rejected the transaction,
2926 * IOMMU fault).
2927 *
2928 * @as: #AddressSpace to be accessed
2929 * @addr: address within that address space
2930 * @c: constant byte to fill the memory
2931 * @len: the number of bytes to fill with the constant byte
2932 * @attrs: memory transaction attributes
2933 */
2934 MemTxResult address_space_set(AddressSpace *as, hwaddr addr,
2935 uint8_t c, hwaddr len, MemTxAttrs attrs);
2936
2937 #ifdef NEED_CPU_H
2938 /* enum device_endian to MemOp. */
2939 static inline MemOp devend_memop(enum device_endian end)
2940 {
2941 QEMU_BUILD_BUG_ON(DEVICE_HOST_ENDIAN != DEVICE_LITTLE_ENDIAN &&
2942 DEVICE_HOST_ENDIAN != DEVICE_BIG_ENDIAN);
2943
2944 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN
2945 /* Swap if non-host endianness or native (target) endianness */
2946 return (end == DEVICE_HOST_ENDIAN) ? 0 : MO_BSWAP;
2947 #else
2948 const int non_host_endianness =
2949 DEVICE_LITTLE_ENDIAN ^ DEVICE_BIG_ENDIAN ^ DEVICE_HOST_ENDIAN;
2950
2951 /* In this case, native (target) endianness needs no swap. */
2952 return (end == non_host_endianness) ? MO_BSWAP : 0;
2953 #endif
2954 }
2955 #endif
2956
2957 /*
2958 * Inhibit technologies that require discarding of pages in RAM blocks, e.g.,
2959 * to manage the actual amount of memory consumed by the VM (then, the memory
2960 * provided by RAM blocks might be bigger than the desired memory consumption).
2961 * This *must* be set if:
2962 * - Discarding parts of a RAM blocks does not result in the change being
2963 * reflected in the VM and the pages getting freed.
2964 * - All memory in RAM blocks is pinned or duplicated, invaldiating any previous
2965 * discards blindly.
2966 * - Discarding parts of a RAM blocks will result in integrity issues (e.g.,
2967 * encrypted VMs).
2968 * Technologies that only temporarily pin the current working set of a
2969 * driver are fine, because we don't expect such pages to be discarded
2970 * (esp. based on guest action like balloon inflation).
2971 *
2972 * This is *not* to be used to protect from concurrent discards (esp.,
2973 * postcopy).
2974 *
2975 * Returns 0 if successful. Returns -EBUSY if a technology that relies on
2976 * discards to work reliably is active.
2977 */
2978 int ram_block_discard_disable(bool state);
2979
2980 /*
2981 * See ram_block_discard_disable(): only disable uncoordinated discards,
2982 * keeping coordinated discards (via the RamDiscardManager) enabled.
2983 */
2984 int ram_block_uncoordinated_discard_disable(bool state);
2985
2986 /*
2987 * Inhibit technologies that disable discarding of pages in RAM blocks.
2988 *
2989 * Returns 0 if successful. Returns -EBUSY if discards are already set to
2990 * broken.
2991 */
2992 int ram_block_discard_require(bool state);
2993
2994 /*
2995 * See ram_block_discard_require(): only inhibit technologies that disable
2996 * uncoordinated discarding of pages in RAM blocks, allowing co-existance with
2997 * technologies that only inhibit uncoordinated discards (via the
2998 * RamDiscardManager).
2999 */
3000 int ram_block_coordinated_discard_require(bool state);
3001
3002 /*
3003 * Test if any discarding of memory in ram blocks is disabled.
3004 */
3005 bool ram_block_discard_is_disabled(void);
3006
3007 /*
3008 * Test if any discarding of memory in ram blocks is required to work reliably.
3009 */
3010 bool ram_block_discard_is_required(void);
3011
3012 #endif
3013
3014 #endif