]> git.proxmox.com Git - mirror_qemu.git/blob - include/exec/memory.h
Merge remote-tracking branch 'remotes/vivier2/tags/linux-user-for-2.13-pull-request...
[mirror_qemu.git] / include / exec / memory.h
1 /*
2 * Physical memory management API
3 *
4 * Copyright 2011 Red Hat, Inc. and/or its affiliates
5 *
6 * Authors:
7 * Avi Kivity <avi@redhat.com>
8 *
9 * This work is licensed under the terms of the GNU GPL, version 2. See
10 * the COPYING file in the top-level directory.
11 *
12 */
13
14 #ifndef MEMORY_H
15 #define MEMORY_H
16
17 #ifndef CONFIG_USER_ONLY
18
19 #include "exec/cpu-common.h"
20 #include "exec/hwaddr.h"
21 #include "exec/memattrs.h"
22 #include "exec/ramlist.h"
23 #include "qemu/queue.h"
24 #include "qemu/int128.h"
25 #include "qemu/notify.h"
26 #include "qom/object.h"
27 #include "qemu/rcu.h"
28 #include "hw/qdev-core.h"
29
30 #define RAM_ADDR_INVALID (~(ram_addr_t)0)
31
32 #define MAX_PHYS_ADDR_SPACE_BITS 62
33 #define MAX_PHYS_ADDR (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1)
34
35 #define TYPE_MEMORY_REGION "qemu:memory-region"
36 #define MEMORY_REGION(obj) \
37 OBJECT_CHECK(MemoryRegion, (obj), TYPE_MEMORY_REGION)
38
39 #define TYPE_IOMMU_MEMORY_REGION "qemu:iommu-memory-region"
40 #define IOMMU_MEMORY_REGION(obj) \
41 OBJECT_CHECK(IOMMUMemoryRegion, (obj), TYPE_IOMMU_MEMORY_REGION)
42 #define IOMMU_MEMORY_REGION_CLASS(klass) \
43 OBJECT_CLASS_CHECK(IOMMUMemoryRegionClass, (klass), \
44 TYPE_IOMMU_MEMORY_REGION)
45 #define IOMMU_MEMORY_REGION_GET_CLASS(obj) \
46 OBJECT_GET_CLASS(IOMMUMemoryRegionClass, (obj), \
47 TYPE_IOMMU_MEMORY_REGION)
48
49 typedef struct MemoryRegionOps MemoryRegionOps;
50 typedef struct MemoryRegionMmio MemoryRegionMmio;
51
52 struct MemoryRegionMmio {
53 CPUReadMemoryFunc *read[3];
54 CPUWriteMemoryFunc *write[3];
55 };
56
57 typedef struct IOMMUTLBEntry IOMMUTLBEntry;
58
59 /* See address_space_translate: bit 0 is read, bit 1 is write. */
60 typedef enum {
61 IOMMU_NONE = 0,
62 IOMMU_RO = 1,
63 IOMMU_WO = 2,
64 IOMMU_RW = 3,
65 } IOMMUAccessFlags;
66
67 #define IOMMU_ACCESS_FLAG(r, w) (((r) ? IOMMU_RO : 0) | ((w) ? IOMMU_WO : 0))
68
69 struct IOMMUTLBEntry {
70 AddressSpace *target_as;
71 hwaddr iova;
72 hwaddr translated_addr;
73 hwaddr addr_mask; /* 0xfff = 4k translation */
74 IOMMUAccessFlags perm;
75 };
76
77 /*
78 * Bitmap for different IOMMUNotifier capabilities. Each notifier can
79 * register with one or multiple IOMMU Notifier capability bit(s).
80 */
81 typedef enum {
82 IOMMU_NOTIFIER_NONE = 0,
83 /* Notify cache invalidations */
84 IOMMU_NOTIFIER_UNMAP = 0x1,
85 /* Notify entry changes (newly created entries) */
86 IOMMU_NOTIFIER_MAP = 0x2,
87 } IOMMUNotifierFlag;
88
89 #define IOMMU_NOTIFIER_ALL (IOMMU_NOTIFIER_MAP | IOMMU_NOTIFIER_UNMAP)
90
91 struct IOMMUNotifier;
92 typedef void (*IOMMUNotify)(struct IOMMUNotifier *notifier,
93 IOMMUTLBEntry *data);
94
95 struct IOMMUNotifier {
96 IOMMUNotify notify;
97 IOMMUNotifierFlag notifier_flags;
98 /* Notify for address space range start <= addr <= end */
99 hwaddr start;
100 hwaddr end;
101 QLIST_ENTRY(IOMMUNotifier) node;
102 };
103 typedef struct IOMMUNotifier IOMMUNotifier;
104
105 static inline void iommu_notifier_init(IOMMUNotifier *n, IOMMUNotify fn,
106 IOMMUNotifierFlag flags,
107 hwaddr start, hwaddr end)
108 {
109 n->notify = fn;
110 n->notifier_flags = flags;
111 n->start = start;
112 n->end = end;
113 }
114
115 /*
116 * Memory region callbacks
117 */
118 struct MemoryRegionOps {
119 /* Read from the memory region. @addr is relative to @mr; @size is
120 * in bytes. */
121 uint64_t (*read)(void *opaque,
122 hwaddr addr,
123 unsigned size);
124 /* Write to the memory region. @addr is relative to @mr; @size is
125 * in bytes. */
126 void (*write)(void *opaque,
127 hwaddr addr,
128 uint64_t data,
129 unsigned size);
130
131 MemTxResult (*read_with_attrs)(void *opaque,
132 hwaddr addr,
133 uint64_t *data,
134 unsigned size,
135 MemTxAttrs attrs);
136 MemTxResult (*write_with_attrs)(void *opaque,
137 hwaddr addr,
138 uint64_t data,
139 unsigned size,
140 MemTxAttrs attrs);
141 /* Instruction execution pre-callback:
142 * @addr is the address of the access relative to the @mr.
143 * @size is the size of the area returned by the callback.
144 * @offset is the location of the pointer inside @mr.
145 *
146 * Returns a pointer to a location which contains guest code.
147 */
148 void *(*request_ptr)(void *opaque, hwaddr addr, unsigned *size,
149 unsigned *offset);
150
151 enum device_endian endianness;
152 /* Guest-visible constraints: */
153 struct {
154 /* If nonzero, specify bounds on access sizes beyond which a machine
155 * check is thrown.
156 */
157 unsigned min_access_size;
158 unsigned max_access_size;
159 /* If true, unaligned accesses are supported. Otherwise unaligned
160 * accesses throw machine checks.
161 */
162 bool unaligned;
163 /*
164 * If present, and returns #false, the transaction is not accepted
165 * by the device (and results in machine dependent behaviour such
166 * as a machine check exception).
167 */
168 bool (*accepts)(void *opaque, hwaddr addr,
169 unsigned size, bool is_write);
170 } valid;
171 /* Internal implementation constraints: */
172 struct {
173 /* If nonzero, specifies the minimum size implemented. Smaller sizes
174 * will be rounded upwards and a partial result will be returned.
175 */
176 unsigned min_access_size;
177 /* If nonzero, specifies the maximum size implemented. Larger sizes
178 * will be done as a series of accesses with smaller sizes.
179 */
180 unsigned max_access_size;
181 /* If true, unaligned accesses are supported. Otherwise all accesses
182 * are converted to (possibly multiple) naturally aligned accesses.
183 */
184 bool unaligned;
185 } impl;
186
187 /* If .read and .write are not present, old_mmio may be used for
188 * backwards compatibility with old mmio registration
189 */
190 const MemoryRegionMmio old_mmio;
191 };
192
193 enum IOMMUMemoryRegionAttr {
194 IOMMU_ATTR_SPAPR_TCE_FD
195 };
196
197 typedef struct IOMMUMemoryRegionClass {
198 /* private */
199 struct DeviceClass parent_class;
200
201 /*
202 * Return a TLB entry that contains a given address. Flag should
203 * be the access permission of this translation operation. We can
204 * set flag to IOMMU_NONE to mean that we don't need any
205 * read/write permission checks, like, when for region replay.
206 */
207 IOMMUTLBEntry (*translate)(IOMMUMemoryRegion *iommu, hwaddr addr,
208 IOMMUAccessFlags flag);
209 /* Returns minimum supported page size */
210 uint64_t (*get_min_page_size)(IOMMUMemoryRegion *iommu);
211 /* Called when IOMMU Notifier flag changed */
212 void (*notify_flag_changed)(IOMMUMemoryRegion *iommu,
213 IOMMUNotifierFlag old_flags,
214 IOMMUNotifierFlag new_flags);
215 /* Set this up to provide customized IOMMU replay function */
216 void (*replay)(IOMMUMemoryRegion *iommu, IOMMUNotifier *notifier);
217
218 /* Get IOMMU misc attributes */
219 int (*get_attr)(IOMMUMemoryRegion *iommu, enum IOMMUMemoryRegionAttr,
220 void *data);
221 } IOMMUMemoryRegionClass;
222
223 typedef struct CoalescedMemoryRange CoalescedMemoryRange;
224 typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd;
225
226 struct MemoryRegion {
227 Object parent_obj;
228
229 /* All fields are private - violators will be prosecuted */
230
231 /* The following fields should fit in a cache line */
232 bool romd_mode;
233 bool ram;
234 bool subpage;
235 bool readonly; /* For RAM regions */
236 bool rom_device;
237 bool flush_coalesced_mmio;
238 bool global_locking;
239 uint8_t dirty_log_mask;
240 bool is_iommu;
241 RAMBlock *ram_block;
242 Object *owner;
243
244 const MemoryRegionOps *ops;
245 void *opaque;
246 MemoryRegion *container;
247 Int128 size;
248 hwaddr addr;
249 void (*destructor)(MemoryRegion *mr);
250 uint64_t align;
251 bool terminates;
252 bool ram_device;
253 bool enabled;
254 bool warning_printed; /* For reservations */
255 uint8_t vga_logging_count;
256 MemoryRegion *alias;
257 hwaddr alias_offset;
258 int32_t priority;
259 QTAILQ_HEAD(subregions, MemoryRegion) subregions;
260 QTAILQ_ENTRY(MemoryRegion) subregions_link;
261 QTAILQ_HEAD(coalesced_ranges, CoalescedMemoryRange) coalesced;
262 const char *name;
263 unsigned ioeventfd_nb;
264 MemoryRegionIoeventfd *ioeventfds;
265 };
266
267 struct IOMMUMemoryRegion {
268 MemoryRegion parent_obj;
269
270 QLIST_HEAD(, IOMMUNotifier) iommu_notify;
271 IOMMUNotifierFlag iommu_notify_flags;
272 };
273
274 #define IOMMU_NOTIFIER_FOREACH(n, mr) \
275 QLIST_FOREACH((n), &(mr)->iommu_notify, node)
276
277 /**
278 * MemoryListener: callbacks structure for updates to the physical memory map
279 *
280 * Allows a component to adjust to changes in the guest-visible memory map.
281 * Use with memory_listener_register() and memory_listener_unregister().
282 */
283 struct MemoryListener {
284 void (*begin)(MemoryListener *listener);
285 void (*commit)(MemoryListener *listener);
286 void (*region_add)(MemoryListener *listener, MemoryRegionSection *section);
287 void (*region_del)(MemoryListener *listener, MemoryRegionSection *section);
288 void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section);
289 void (*log_start)(MemoryListener *listener, MemoryRegionSection *section,
290 int old, int new);
291 void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section,
292 int old, int new);
293 void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section);
294 void (*log_global_start)(MemoryListener *listener);
295 void (*log_global_stop)(MemoryListener *listener);
296 void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section,
297 bool match_data, uint64_t data, EventNotifier *e);
298 void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section,
299 bool match_data, uint64_t data, EventNotifier *e);
300 void (*coalesced_mmio_add)(MemoryListener *listener, MemoryRegionSection *section,
301 hwaddr addr, hwaddr len);
302 void (*coalesced_mmio_del)(MemoryListener *listener, MemoryRegionSection *section,
303 hwaddr addr, hwaddr len);
304 /* Lower = earlier (during add), later (during del) */
305 unsigned priority;
306 AddressSpace *address_space;
307 QTAILQ_ENTRY(MemoryListener) link;
308 QTAILQ_ENTRY(MemoryListener) link_as;
309 };
310
311 /**
312 * AddressSpace: describes a mapping of addresses to #MemoryRegion objects
313 */
314 struct AddressSpace {
315 /* All fields are private. */
316 struct rcu_head rcu;
317 char *name;
318 MemoryRegion *root;
319
320 /* Accessed via RCU. */
321 struct FlatView *current_map;
322
323 int ioeventfd_nb;
324 struct MemoryRegionIoeventfd *ioeventfds;
325 QTAILQ_HEAD(memory_listeners_as, MemoryListener) listeners;
326 QTAILQ_ENTRY(AddressSpace) address_spaces_link;
327 };
328
329 typedef struct AddressSpaceDispatch AddressSpaceDispatch;
330 typedef struct FlatRange FlatRange;
331
332 /* Flattened global view of current active memory hierarchy. Kept in sorted
333 * order.
334 */
335 struct FlatView {
336 struct rcu_head rcu;
337 unsigned ref;
338 FlatRange *ranges;
339 unsigned nr;
340 unsigned nr_allocated;
341 struct AddressSpaceDispatch *dispatch;
342 MemoryRegion *root;
343 };
344
345 static inline FlatView *address_space_to_flatview(AddressSpace *as)
346 {
347 return atomic_rcu_read(&as->current_map);
348 }
349
350
351 /**
352 * MemoryRegionSection: describes a fragment of a #MemoryRegion
353 *
354 * @mr: the region, or %NULL if empty
355 * @fv: the flat view of the address space the region is mapped in
356 * @offset_within_region: the beginning of the section, relative to @mr's start
357 * @size: the size of the section; will not exceed @mr's boundaries
358 * @offset_within_address_space: the address of the first byte of the section
359 * relative to the region's address space
360 * @readonly: writes to this section are ignored
361 */
362 struct MemoryRegionSection {
363 MemoryRegion *mr;
364 FlatView *fv;
365 hwaddr offset_within_region;
366 Int128 size;
367 hwaddr offset_within_address_space;
368 bool readonly;
369 };
370
371 /**
372 * memory_region_init: Initialize a memory region
373 *
374 * The region typically acts as a container for other memory regions. Use
375 * memory_region_add_subregion() to add subregions.
376 *
377 * @mr: the #MemoryRegion to be initialized
378 * @owner: the object that tracks the region's reference count
379 * @name: used for debugging; not visible to the user or ABI
380 * @size: size of the region; any subregions beyond this size will be clipped
381 */
382 void memory_region_init(MemoryRegion *mr,
383 struct Object *owner,
384 const char *name,
385 uint64_t size);
386
387 /**
388 * memory_region_ref: Add 1 to a memory region's reference count
389 *
390 * Whenever memory regions are accessed outside the BQL, they need to be
391 * preserved against hot-unplug. MemoryRegions actually do not have their
392 * own reference count; they piggyback on a QOM object, their "owner".
393 * This function adds a reference to the owner.
394 *
395 * All MemoryRegions must have an owner if they can disappear, even if the
396 * device they belong to operates exclusively under the BQL. This is because
397 * the region could be returned at any time by memory_region_find, and this
398 * is usually under guest control.
399 *
400 * @mr: the #MemoryRegion
401 */
402 void memory_region_ref(MemoryRegion *mr);
403
404 /**
405 * memory_region_unref: Remove 1 to a memory region's reference count
406 *
407 * Whenever memory regions are accessed outside the BQL, they need to be
408 * preserved against hot-unplug. MemoryRegions actually do not have their
409 * own reference count; they piggyback on a QOM object, their "owner".
410 * This function removes a reference to the owner and possibly destroys it.
411 *
412 * @mr: the #MemoryRegion
413 */
414 void memory_region_unref(MemoryRegion *mr);
415
416 /**
417 * memory_region_init_io: Initialize an I/O memory region.
418 *
419 * Accesses into the region will cause the callbacks in @ops to be called.
420 * if @size is nonzero, subregions will be clipped to @size.
421 *
422 * @mr: the #MemoryRegion to be initialized.
423 * @owner: the object that tracks the region's reference count
424 * @ops: a structure containing read and write callbacks to be used when
425 * I/O is performed on the region.
426 * @opaque: passed to the read and write callbacks of the @ops structure.
427 * @name: used for debugging; not visible to the user or ABI
428 * @size: size of the region.
429 */
430 void memory_region_init_io(MemoryRegion *mr,
431 struct Object *owner,
432 const MemoryRegionOps *ops,
433 void *opaque,
434 const char *name,
435 uint64_t size);
436
437 /**
438 * memory_region_init_ram_nomigrate: Initialize RAM memory region. Accesses
439 * into the region will modify memory
440 * directly.
441 *
442 * @mr: the #MemoryRegion to be initialized.
443 * @owner: the object that tracks the region's reference count
444 * @name: Region name, becomes part of RAMBlock name used in migration stream
445 * must be unique within any device
446 * @size: size of the region.
447 * @errp: pointer to Error*, to store an error if it happens.
448 *
449 * Note that this function does not do anything to cause the data in the
450 * RAM memory region to be migrated; that is the responsibility of the caller.
451 */
452 void memory_region_init_ram_nomigrate(MemoryRegion *mr,
453 struct Object *owner,
454 const char *name,
455 uint64_t size,
456 Error **errp);
457
458 /**
459 * memory_region_init_ram_shared_nomigrate: Initialize RAM memory region.
460 * Accesses into the region will
461 * modify memory directly.
462 *
463 * @mr: the #MemoryRegion to be initialized.
464 * @owner: the object that tracks the region's reference count
465 * @name: Region name, becomes part of RAMBlock name used in migration stream
466 * must be unique within any device
467 * @size: size of the region.
468 * @share: allow remapping RAM to different addresses
469 * @errp: pointer to Error*, to store an error if it happens.
470 *
471 * Note that this function is similar to memory_region_init_ram_nomigrate.
472 * The only difference is part of the RAM region can be remapped.
473 */
474 void memory_region_init_ram_shared_nomigrate(MemoryRegion *mr,
475 struct Object *owner,
476 const char *name,
477 uint64_t size,
478 bool share,
479 Error **errp);
480
481 /**
482 * memory_region_init_resizeable_ram: Initialize memory region with resizeable
483 * RAM. Accesses into the region will
484 * modify memory directly. Only an initial
485 * portion of this RAM is actually used.
486 * The used size can change across reboots.
487 *
488 * @mr: the #MemoryRegion to be initialized.
489 * @owner: the object that tracks the region's reference count
490 * @name: Region name, becomes part of RAMBlock name used in migration stream
491 * must be unique within any device
492 * @size: used size of the region.
493 * @max_size: max size of the region.
494 * @resized: callback to notify owner about used size change.
495 * @errp: pointer to Error*, to store an error if it happens.
496 *
497 * Note that this function does not do anything to cause the data in the
498 * RAM memory region to be migrated; that is the responsibility of the caller.
499 */
500 void memory_region_init_resizeable_ram(MemoryRegion *mr,
501 struct Object *owner,
502 const char *name,
503 uint64_t size,
504 uint64_t max_size,
505 void (*resized)(const char*,
506 uint64_t length,
507 void *host),
508 Error **errp);
509 #ifdef __linux__
510 /**
511 * memory_region_init_ram_from_file: Initialize RAM memory region with a
512 * mmap-ed backend.
513 *
514 * @mr: the #MemoryRegion to be initialized.
515 * @owner: the object that tracks the region's reference count
516 * @name: Region name, becomes part of RAMBlock name used in migration stream
517 * must be unique within any device
518 * @size: size of the region.
519 * @align: alignment of the region base address; if 0, the default alignment
520 * (getpagesize()) will be used.
521 * @share: %true if memory must be mmaped with the MAP_SHARED flag
522 * @path: the path in which to allocate the RAM.
523 * @errp: pointer to Error*, to store an error if it happens.
524 *
525 * Note that this function does not do anything to cause the data in the
526 * RAM memory region to be migrated; that is the responsibility of the caller.
527 */
528 void memory_region_init_ram_from_file(MemoryRegion *mr,
529 struct Object *owner,
530 const char *name,
531 uint64_t size,
532 uint64_t align,
533 bool share,
534 const char *path,
535 Error **errp);
536
537 /**
538 * memory_region_init_ram_from_fd: Initialize RAM memory region with a
539 * mmap-ed backend.
540 *
541 * @mr: the #MemoryRegion to be initialized.
542 * @owner: the object that tracks the region's reference count
543 * @name: the name of the region.
544 * @size: size of the region.
545 * @share: %true if memory must be mmaped with the MAP_SHARED flag
546 * @fd: the fd to mmap.
547 * @errp: pointer to Error*, to store an error if it happens.
548 *
549 * Note that this function does not do anything to cause the data in the
550 * RAM memory region to be migrated; that is the responsibility of the caller.
551 */
552 void memory_region_init_ram_from_fd(MemoryRegion *mr,
553 struct Object *owner,
554 const char *name,
555 uint64_t size,
556 bool share,
557 int fd,
558 Error **errp);
559 #endif
560
561 /**
562 * memory_region_init_ram_ptr: Initialize RAM memory region from a
563 * user-provided pointer. Accesses into the
564 * region will modify memory directly.
565 *
566 * @mr: the #MemoryRegion to be initialized.
567 * @owner: the object that tracks the region's reference count
568 * @name: Region name, becomes part of RAMBlock name used in migration stream
569 * must be unique within any device
570 * @size: size of the region.
571 * @ptr: memory to be mapped; must contain at least @size bytes.
572 *
573 * Note that this function does not do anything to cause the data in the
574 * RAM memory region to be migrated; that is the responsibility of the caller.
575 */
576 void memory_region_init_ram_ptr(MemoryRegion *mr,
577 struct Object *owner,
578 const char *name,
579 uint64_t size,
580 void *ptr);
581
582 /**
583 * memory_region_init_ram_device_ptr: Initialize RAM device memory region from
584 * a user-provided pointer.
585 *
586 * A RAM device represents a mapping to a physical device, such as to a PCI
587 * MMIO BAR of an vfio-pci assigned device. The memory region may be mapped
588 * into the VM address space and access to the region will modify memory
589 * directly. However, the memory region should not be included in a memory
590 * dump (device may not be enabled/mapped at the time of the dump), and
591 * operations incompatible with manipulating MMIO should be avoided. Replaces
592 * skip_dump flag.
593 *
594 * @mr: the #MemoryRegion to be initialized.
595 * @owner: the object that tracks the region's reference count
596 * @name: the name of the region.
597 * @size: size of the region.
598 * @ptr: memory to be mapped; must contain at least @size bytes.
599 *
600 * Note that this function does not do anything to cause the data in the
601 * RAM memory region to be migrated; that is the responsibility of the caller.
602 * (For RAM device memory regions, migrating the contents rarely makes sense.)
603 */
604 void memory_region_init_ram_device_ptr(MemoryRegion *mr,
605 struct Object *owner,
606 const char *name,
607 uint64_t size,
608 void *ptr);
609
610 /**
611 * memory_region_init_alias: Initialize a memory region that aliases all or a
612 * part of another memory region.
613 *
614 * @mr: the #MemoryRegion to be initialized.
615 * @owner: the object that tracks the region's reference count
616 * @name: used for debugging; not visible to the user or ABI
617 * @orig: the region to be referenced; @mr will be equivalent to
618 * @orig between @offset and @offset + @size - 1.
619 * @offset: start of the section in @orig to be referenced.
620 * @size: size of the region.
621 */
622 void memory_region_init_alias(MemoryRegion *mr,
623 struct Object *owner,
624 const char *name,
625 MemoryRegion *orig,
626 hwaddr offset,
627 uint64_t size);
628
629 /**
630 * memory_region_init_rom_nomigrate: Initialize a ROM memory region.
631 *
632 * This has the same effect as calling memory_region_init_ram_nomigrate()
633 * and then marking the resulting region read-only with
634 * memory_region_set_readonly().
635 *
636 * Note that this function does not do anything to cause the data in the
637 * RAM side of the memory region to be migrated; that is the responsibility
638 * of the caller.
639 *
640 * @mr: the #MemoryRegion to be initialized.
641 * @owner: the object that tracks the region's reference count
642 * @name: Region name, becomes part of RAMBlock name used in migration stream
643 * must be unique within any device
644 * @size: size of the region.
645 * @errp: pointer to Error*, to store an error if it happens.
646 */
647 void memory_region_init_rom_nomigrate(MemoryRegion *mr,
648 struct Object *owner,
649 const char *name,
650 uint64_t size,
651 Error **errp);
652
653 /**
654 * memory_region_init_rom_device_nomigrate: Initialize a ROM memory region.
655 * Writes are handled via callbacks.
656 *
657 * Note that this function does not do anything to cause the data in the
658 * RAM side of the memory region to be migrated; that is the responsibility
659 * of the caller.
660 *
661 * @mr: the #MemoryRegion to be initialized.
662 * @owner: the object that tracks the region's reference count
663 * @ops: callbacks for write access handling (must not be NULL).
664 * @opaque: passed to the read and write callbacks of the @ops structure.
665 * @name: Region name, becomes part of RAMBlock name used in migration stream
666 * must be unique within any device
667 * @size: size of the region.
668 * @errp: pointer to Error*, to store an error if it happens.
669 */
670 void memory_region_init_rom_device_nomigrate(MemoryRegion *mr,
671 struct Object *owner,
672 const MemoryRegionOps *ops,
673 void *opaque,
674 const char *name,
675 uint64_t size,
676 Error **errp);
677
678 /**
679 * memory_region_init_reservation: Initialize a memory region that reserves
680 * I/O space.
681 *
682 * A reservation region primariy serves debugging purposes. It claims I/O
683 * space that is not supposed to be handled by QEMU itself. Any access via
684 * the memory API will cause an abort().
685 * This function is deprecated. Use memory_region_init_io() with NULL
686 * callbacks instead.
687 *
688 * @mr: the #MemoryRegion to be initialized
689 * @owner: the object that tracks the region's reference count
690 * @name: used for debugging; not visible to the user or ABI
691 * @size: size of the region.
692 */
693 static inline void memory_region_init_reservation(MemoryRegion *mr,
694 Object *owner,
695 const char *name,
696 uint64_t size)
697 {
698 memory_region_init_io(mr, owner, NULL, mr, name, size);
699 }
700
701 /**
702 * memory_region_init_iommu: Initialize a memory region of a custom type
703 * that translates addresses
704 *
705 * An IOMMU region translates addresses and forwards accesses to a target
706 * memory region.
707 *
708 * @_iommu_mr: the #IOMMUMemoryRegion to be initialized
709 * @instance_size: the IOMMUMemoryRegion subclass instance size
710 * @mrtypename: the type name of the #IOMMUMemoryRegion
711 * @owner: the object that tracks the region's reference count
712 * @name: used for debugging; not visible to the user or ABI
713 * @size: size of the region.
714 */
715 void memory_region_init_iommu(void *_iommu_mr,
716 size_t instance_size,
717 const char *mrtypename,
718 Object *owner,
719 const char *name,
720 uint64_t size);
721
722 /**
723 * memory_region_init_ram - Initialize RAM memory region. Accesses into the
724 * region will modify memory directly.
725 *
726 * @mr: the #MemoryRegion to be initialized
727 * @owner: the object that tracks the region's reference count (must be
728 * TYPE_DEVICE or a subclass of TYPE_DEVICE, or NULL)
729 * @name: name of the memory region
730 * @size: size of the region in bytes
731 * @errp: pointer to Error*, to store an error if it happens.
732 *
733 * This function allocates RAM for a board model or device, and
734 * arranges for it to be migrated (by calling vmstate_register_ram()
735 * if @owner is a DeviceState, or vmstate_register_ram_global() if
736 * @owner is NULL).
737 *
738 * TODO: Currently we restrict @owner to being either NULL (for
739 * global RAM regions with no owner) or devices, so that we can
740 * give the RAM block a unique name for migration purposes.
741 * We should lift this restriction and allow arbitrary Objects.
742 * If you pass a non-NULL non-device @owner then we will assert.
743 */
744 void memory_region_init_ram(MemoryRegion *mr,
745 struct Object *owner,
746 const char *name,
747 uint64_t size,
748 Error **errp);
749
750 /**
751 * memory_region_init_rom: Initialize a ROM memory region.
752 *
753 * This has the same effect as calling memory_region_init_ram()
754 * and then marking the resulting region read-only with
755 * memory_region_set_readonly(). This includes arranging for the
756 * contents to be migrated.
757 *
758 * TODO: Currently we restrict @owner to being either NULL (for
759 * global RAM regions with no owner) or devices, so that we can
760 * give the RAM block a unique name for migration purposes.
761 * We should lift this restriction and allow arbitrary Objects.
762 * If you pass a non-NULL non-device @owner then we will assert.
763 *
764 * @mr: the #MemoryRegion to be initialized.
765 * @owner: the object that tracks the region's reference count
766 * @name: Region name, becomes part of RAMBlock name used in migration stream
767 * must be unique within any device
768 * @size: size of the region.
769 * @errp: pointer to Error*, to store an error if it happens.
770 */
771 void memory_region_init_rom(MemoryRegion *mr,
772 struct Object *owner,
773 const char *name,
774 uint64_t size,
775 Error **errp);
776
777 /**
778 * memory_region_init_rom_device: Initialize a ROM memory region.
779 * Writes are handled via callbacks.
780 *
781 * This function initializes a memory region backed by RAM for reads
782 * and callbacks for writes, and arranges for the RAM backing to
783 * be migrated (by calling vmstate_register_ram()
784 * if @owner is a DeviceState, or vmstate_register_ram_global() if
785 * @owner is NULL).
786 *
787 * TODO: Currently we restrict @owner to being either NULL (for
788 * global RAM regions with no owner) or devices, so that we can
789 * give the RAM block a unique name for migration purposes.
790 * We should lift this restriction and allow arbitrary Objects.
791 * If you pass a non-NULL non-device @owner then we will assert.
792 *
793 * @mr: the #MemoryRegion to be initialized.
794 * @owner: the object that tracks the region's reference count
795 * @ops: callbacks for write access handling (must not be NULL).
796 * @name: Region name, becomes part of RAMBlock name used in migration stream
797 * must be unique within any device
798 * @size: size of the region.
799 * @errp: pointer to Error*, to store an error if it happens.
800 */
801 void memory_region_init_rom_device(MemoryRegion *mr,
802 struct Object *owner,
803 const MemoryRegionOps *ops,
804 void *opaque,
805 const char *name,
806 uint64_t size,
807 Error **errp);
808
809
810 /**
811 * memory_region_owner: get a memory region's owner.
812 *
813 * @mr: the memory region being queried.
814 */
815 struct Object *memory_region_owner(MemoryRegion *mr);
816
817 /**
818 * memory_region_size: get a memory region's size.
819 *
820 * @mr: the memory region being queried.
821 */
822 uint64_t memory_region_size(MemoryRegion *mr);
823
824 /**
825 * memory_region_is_ram: check whether a memory region is random access
826 *
827 * Returns %true is a memory region is random access.
828 *
829 * @mr: the memory region being queried
830 */
831 static inline bool memory_region_is_ram(MemoryRegion *mr)
832 {
833 return mr->ram;
834 }
835
836 /**
837 * memory_region_is_ram_device: check whether a memory region is a ram device
838 *
839 * Returns %true is a memory region is a device backed ram region
840 *
841 * @mr: the memory region being queried
842 */
843 bool memory_region_is_ram_device(MemoryRegion *mr);
844
845 /**
846 * memory_region_is_romd: check whether a memory region is in ROMD mode
847 *
848 * Returns %true if a memory region is a ROM device and currently set to allow
849 * direct reads.
850 *
851 * @mr: the memory region being queried
852 */
853 static inline bool memory_region_is_romd(MemoryRegion *mr)
854 {
855 return mr->rom_device && mr->romd_mode;
856 }
857
858 /**
859 * memory_region_get_iommu: check whether a memory region is an iommu
860 *
861 * Returns pointer to IOMMUMemoryRegion if a memory region is an iommu,
862 * otherwise NULL.
863 *
864 * @mr: the memory region being queried
865 */
866 static inline IOMMUMemoryRegion *memory_region_get_iommu(MemoryRegion *mr)
867 {
868 if (mr->alias) {
869 return memory_region_get_iommu(mr->alias);
870 }
871 if (mr->is_iommu) {
872 return (IOMMUMemoryRegion *) mr;
873 }
874 return NULL;
875 }
876
877 /**
878 * memory_region_get_iommu_class_nocheck: returns iommu memory region class
879 * if an iommu or NULL if not
880 *
881 * Returns pointer to IOMMUMemoryRegionClass if a memory region is an iommu,
882 * otherwise NULL. This is fast path avoiding QOM checking, use with caution.
883 *
884 * @mr: the memory region being queried
885 */
886 static inline IOMMUMemoryRegionClass *memory_region_get_iommu_class_nocheck(
887 IOMMUMemoryRegion *iommu_mr)
888 {
889 return (IOMMUMemoryRegionClass *) (((Object *)iommu_mr)->class);
890 }
891
892 #define memory_region_is_iommu(mr) (memory_region_get_iommu(mr) != NULL)
893
894 /**
895 * memory_region_iommu_get_min_page_size: get minimum supported page size
896 * for an iommu
897 *
898 * Returns minimum supported page size for an iommu.
899 *
900 * @iommu_mr: the memory region being queried
901 */
902 uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion *iommu_mr);
903
904 /**
905 * memory_region_notify_iommu: notify a change in an IOMMU translation entry.
906 *
907 * The notification type will be decided by entry.perm bits:
908 *
909 * - For UNMAP (cache invalidation) notifies: set entry.perm to IOMMU_NONE.
910 * - For MAP (newly added entry) notifies: set entry.perm to the
911 * permission of the page (which is definitely !IOMMU_NONE).
912 *
913 * Note: for any IOMMU implementation, an in-place mapping change
914 * should be notified with an UNMAP followed by a MAP.
915 *
916 * @iommu_mr: the memory region that was changed
917 * @entry: the new entry in the IOMMU translation table. The entry
918 * replaces all old entries for the same virtual I/O address range.
919 * Deleted entries have .@perm == 0.
920 */
921 void memory_region_notify_iommu(IOMMUMemoryRegion *iommu_mr,
922 IOMMUTLBEntry entry);
923
924 /**
925 * memory_region_notify_one: notify a change in an IOMMU translation
926 * entry to a single notifier
927 *
928 * This works just like memory_region_notify_iommu(), but it only
929 * notifies a specific notifier, not all of them.
930 *
931 * @notifier: the notifier to be notified
932 * @entry: the new entry in the IOMMU translation table. The entry
933 * replaces all old entries for the same virtual I/O address range.
934 * Deleted entries have .@perm == 0.
935 */
936 void memory_region_notify_one(IOMMUNotifier *notifier,
937 IOMMUTLBEntry *entry);
938
939 /**
940 * memory_region_register_iommu_notifier: register a notifier for changes to
941 * IOMMU translation entries.
942 *
943 * @mr: the memory region to observe
944 * @n: the IOMMUNotifier to be added; the notify callback receives a
945 * pointer to an #IOMMUTLBEntry as the opaque value; the pointer
946 * ceases to be valid on exit from the notifier.
947 */
948 void memory_region_register_iommu_notifier(MemoryRegion *mr,
949 IOMMUNotifier *n);
950
951 /**
952 * memory_region_iommu_replay: replay existing IOMMU translations to
953 * a notifier with the minimum page granularity returned by
954 * mr->iommu_ops->get_page_size().
955 *
956 * @iommu_mr: the memory region to observe
957 * @n: the notifier to which to replay iommu mappings
958 */
959 void memory_region_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n);
960
961 /**
962 * memory_region_iommu_replay_all: replay existing IOMMU translations
963 * to all the notifiers registered.
964 *
965 * @iommu_mr: the memory region to observe
966 */
967 void memory_region_iommu_replay_all(IOMMUMemoryRegion *iommu_mr);
968
969 /**
970 * memory_region_unregister_iommu_notifier: unregister a notifier for
971 * changes to IOMMU translation entries.
972 *
973 * @mr: the memory region which was observed and for which notity_stopped()
974 * needs to be called
975 * @n: the notifier to be removed.
976 */
977 void memory_region_unregister_iommu_notifier(MemoryRegion *mr,
978 IOMMUNotifier *n);
979
980 /**
981 * memory_region_iommu_get_attr: return an IOMMU attr if get_attr() is
982 * defined on the IOMMU.
983 *
984 * Returns 0 if succeded, error code otherwise.
985 *
986 * @iommu_mr: the memory region
987 * @attr: the requested attribute
988 * @data: a pointer to the requested attribute data
989 */
990 int memory_region_iommu_get_attr(IOMMUMemoryRegion *iommu_mr,
991 enum IOMMUMemoryRegionAttr attr,
992 void *data);
993
994 /**
995 * memory_region_name: get a memory region's name
996 *
997 * Returns the string that was used to initialize the memory region.
998 *
999 * @mr: the memory region being queried
1000 */
1001 const char *memory_region_name(const MemoryRegion *mr);
1002
1003 /**
1004 * memory_region_is_logging: return whether a memory region is logging writes
1005 *
1006 * Returns %true if the memory region is logging writes for the given client
1007 *
1008 * @mr: the memory region being queried
1009 * @client: the client being queried
1010 */
1011 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client);
1012
1013 /**
1014 * memory_region_get_dirty_log_mask: return the clients for which a
1015 * memory region is logging writes.
1016 *
1017 * Returns a bitmap of clients, in which the DIRTY_MEMORY_* constants
1018 * are the bit indices.
1019 *
1020 * @mr: the memory region being queried
1021 */
1022 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr);
1023
1024 /**
1025 * memory_region_is_rom: check whether a memory region is ROM
1026 *
1027 * Returns %true is a memory region is read-only memory.
1028 *
1029 * @mr: the memory region being queried
1030 */
1031 static inline bool memory_region_is_rom(MemoryRegion *mr)
1032 {
1033 return mr->ram && mr->readonly;
1034 }
1035
1036
1037 /**
1038 * memory_region_get_fd: Get a file descriptor backing a RAM memory region.
1039 *
1040 * Returns a file descriptor backing a file-based RAM memory region,
1041 * or -1 if the region is not a file-based RAM memory region.
1042 *
1043 * @mr: the RAM or alias memory region being queried.
1044 */
1045 int memory_region_get_fd(MemoryRegion *mr);
1046
1047 /**
1048 * memory_region_from_host: Convert a pointer into a RAM memory region
1049 * and an offset within it.
1050 *
1051 * Given a host pointer inside a RAM memory region (created with
1052 * memory_region_init_ram() or memory_region_init_ram_ptr()), return
1053 * the MemoryRegion and the offset within it.
1054 *
1055 * Use with care; by the time this function returns, the returned pointer is
1056 * not protected by RCU anymore. If the caller is not within an RCU critical
1057 * section and does not hold the iothread lock, it must have other means of
1058 * protecting the pointer, such as a reference to the region that includes
1059 * the incoming ram_addr_t.
1060 *
1061 * @ptr: the host pointer to be converted
1062 * @offset: the offset within memory region
1063 */
1064 MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset);
1065
1066 /**
1067 * memory_region_get_ram_ptr: Get a pointer into a RAM memory region.
1068 *
1069 * Returns a host pointer to a RAM memory region (created with
1070 * memory_region_init_ram() or memory_region_init_ram_ptr()).
1071 *
1072 * Use with care; by the time this function returns, the returned pointer is
1073 * not protected by RCU anymore. If the caller is not within an RCU critical
1074 * section and does not hold the iothread lock, it must have other means of
1075 * protecting the pointer, such as a reference to the region that includes
1076 * the incoming ram_addr_t.
1077 *
1078 * @mr: the memory region being queried.
1079 */
1080 void *memory_region_get_ram_ptr(MemoryRegion *mr);
1081
1082 /* memory_region_ram_resize: Resize a RAM region.
1083 *
1084 * Only legal before guest might have detected the memory size: e.g. on
1085 * incoming migration, or right after reset.
1086 *
1087 * @mr: a memory region created with @memory_region_init_resizeable_ram.
1088 * @newsize: the new size the region
1089 * @errp: pointer to Error*, to store an error if it happens.
1090 */
1091 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize,
1092 Error **errp);
1093
1094 /**
1095 * memory_region_set_log: Turn dirty logging on or off for a region.
1096 *
1097 * Turns dirty logging on or off for a specified client (display, migration).
1098 * Only meaningful for RAM regions.
1099 *
1100 * @mr: the memory region being updated.
1101 * @log: whether dirty logging is to be enabled or disabled.
1102 * @client: the user of the logging information; %DIRTY_MEMORY_VGA only.
1103 */
1104 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client);
1105
1106 /**
1107 * memory_region_get_dirty: Check whether a range of bytes is dirty
1108 * for a specified client.
1109 *
1110 * Checks whether a range of bytes has been written to since the last
1111 * call to memory_region_reset_dirty() with the same @client. Dirty logging
1112 * must be enabled.
1113 *
1114 * @mr: the memory region being queried.
1115 * @addr: the address (relative to the start of the region) being queried.
1116 * @size: the size of the range being queried.
1117 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
1118 * %DIRTY_MEMORY_VGA.
1119 */
1120 bool memory_region_get_dirty(MemoryRegion *mr, hwaddr addr,
1121 hwaddr size, unsigned client);
1122
1123 /**
1124 * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region.
1125 *
1126 * Marks a range of bytes as dirty, after it has been dirtied outside
1127 * guest code.
1128 *
1129 * @mr: the memory region being dirtied.
1130 * @addr: the address (relative to the start of the region) being dirtied.
1131 * @size: size of the range being dirtied.
1132 */
1133 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
1134 hwaddr size);
1135
1136 /**
1137 * memory_region_snapshot_and_clear_dirty: Get a snapshot of the dirty
1138 * bitmap and clear it.
1139 *
1140 * Creates a snapshot of the dirty bitmap, clears the dirty bitmap and
1141 * returns the snapshot. The snapshot can then be used to query dirty
1142 * status, using memory_region_snapshot_get_dirty. Snapshotting allows
1143 * querying the same page multiple times, which is especially useful for
1144 * display updates where the scanlines often are not page aligned.
1145 *
1146 * The dirty bitmap region which gets copyed into the snapshot (and
1147 * cleared afterwards) can be larger than requested. The boundaries
1148 * are rounded up/down so complete bitmap longs (covering 64 pages on
1149 * 64bit hosts) can be copied over into the bitmap snapshot. Which
1150 * isn't a problem for display updates as the extra pages are outside
1151 * the visible area, and in case the visible area changes a full
1152 * display redraw is due anyway. Should other use cases for this
1153 * function emerge we might have to revisit this implementation
1154 * detail.
1155 *
1156 * Use g_free to release DirtyBitmapSnapshot.
1157 *
1158 * @mr: the memory region being queried.
1159 * @addr: the address (relative to the start of the region) being queried.
1160 * @size: the size of the range being queried.
1161 * @client: the user of the logging information; typically %DIRTY_MEMORY_VGA.
1162 */
1163 DirtyBitmapSnapshot *memory_region_snapshot_and_clear_dirty(MemoryRegion *mr,
1164 hwaddr addr,
1165 hwaddr size,
1166 unsigned client);
1167
1168 /**
1169 * memory_region_snapshot_get_dirty: Check whether a range of bytes is dirty
1170 * in the specified dirty bitmap snapshot.
1171 *
1172 * @mr: the memory region being queried.
1173 * @snap: the dirty bitmap snapshot
1174 * @addr: the address (relative to the start of the region) being queried.
1175 * @size: the size of the range being queried.
1176 */
1177 bool memory_region_snapshot_get_dirty(MemoryRegion *mr,
1178 DirtyBitmapSnapshot *snap,
1179 hwaddr addr, hwaddr size);
1180
1181 /**
1182 * memory_region_reset_dirty: Mark a range of pages as clean, for a specified
1183 * client.
1184 *
1185 * Marks a range of pages as no longer dirty.
1186 *
1187 * @mr: the region being updated.
1188 * @addr: the start of the subrange being cleaned.
1189 * @size: the size of the subrange being cleaned.
1190 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
1191 * %DIRTY_MEMORY_VGA.
1192 */
1193 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
1194 hwaddr size, unsigned client);
1195
1196 /**
1197 * memory_region_set_readonly: Turn a memory region read-only (or read-write)
1198 *
1199 * Allows a memory region to be marked as read-only (turning it into a ROM).
1200 * only useful on RAM regions.
1201 *
1202 * @mr: the region being updated.
1203 * @readonly: whether rhe region is to be ROM or RAM.
1204 */
1205 void memory_region_set_readonly(MemoryRegion *mr, bool readonly);
1206
1207 /**
1208 * memory_region_rom_device_set_romd: enable/disable ROMD mode
1209 *
1210 * Allows a ROM device (initialized with memory_region_init_rom_device() to
1211 * set to ROMD mode (default) or MMIO mode. When it is in ROMD mode, the
1212 * device is mapped to guest memory and satisfies read access directly.
1213 * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function.
1214 * Writes are always handled by the #MemoryRegion.write function.
1215 *
1216 * @mr: the memory region to be updated
1217 * @romd_mode: %true to put the region into ROMD mode
1218 */
1219 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode);
1220
1221 /**
1222 * memory_region_set_coalescing: Enable memory coalescing for the region.
1223 *
1224 * Enabled writes to a region to be queued for later processing. MMIO ->write
1225 * callbacks may be delayed until a non-coalesced MMIO is issued.
1226 * Only useful for IO regions. Roughly similar to write-combining hardware.
1227 *
1228 * @mr: the memory region to be write coalesced
1229 */
1230 void memory_region_set_coalescing(MemoryRegion *mr);
1231
1232 /**
1233 * memory_region_add_coalescing: Enable memory coalescing for a sub-range of
1234 * a region.
1235 *
1236 * Like memory_region_set_coalescing(), but works on a sub-range of a region.
1237 * Multiple calls can be issued coalesced disjoint ranges.
1238 *
1239 * @mr: the memory region to be updated.
1240 * @offset: the start of the range within the region to be coalesced.
1241 * @size: the size of the subrange to be coalesced.
1242 */
1243 void memory_region_add_coalescing(MemoryRegion *mr,
1244 hwaddr offset,
1245 uint64_t size);
1246
1247 /**
1248 * memory_region_clear_coalescing: Disable MMIO coalescing for the region.
1249 *
1250 * Disables any coalescing caused by memory_region_set_coalescing() or
1251 * memory_region_add_coalescing(). Roughly equivalent to uncacheble memory
1252 * hardware.
1253 *
1254 * @mr: the memory region to be updated.
1255 */
1256 void memory_region_clear_coalescing(MemoryRegion *mr);
1257
1258 /**
1259 * memory_region_set_flush_coalesced: Enforce memory coalescing flush before
1260 * accesses.
1261 *
1262 * Ensure that pending coalesced MMIO request are flushed before the memory
1263 * region is accessed. This property is automatically enabled for all regions
1264 * passed to memory_region_set_coalescing() and memory_region_add_coalescing().
1265 *
1266 * @mr: the memory region to be updated.
1267 */
1268 void memory_region_set_flush_coalesced(MemoryRegion *mr);
1269
1270 /**
1271 * memory_region_clear_flush_coalesced: Disable memory coalescing flush before
1272 * accesses.
1273 *
1274 * Clear the automatic coalesced MMIO flushing enabled via
1275 * memory_region_set_flush_coalesced. Note that this service has no effect on
1276 * memory regions that have MMIO coalescing enabled for themselves. For them,
1277 * automatic flushing will stop once coalescing is disabled.
1278 *
1279 * @mr: the memory region to be updated.
1280 */
1281 void memory_region_clear_flush_coalesced(MemoryRegion *mr);
1282
1283 /**
1284 * memory_region_clear_global_locking: Declares that access processing does
1285 * not depend on the QEMU global lock.
1286 *
1287 * By clearing this property, accesses to the memory region will be processed
1288 * outside of QEMU's global lock (unless the lock is held on when issuing the
1289 * access request). In this case, the device model implementing the access
1290 * handlers is responsible for synchronization of concurrency.
1291 *
1292 * @mr: the memory region to be updated.
1293 */
1294 void memory_region_clear_global_locking(MemoryRegion *mr);
1295
1296 /**
1297 * memory_region_add_eventfd: Request an eventfd to be triggered when a word
1298 * is written to a location.
1299 *
1300 * Marks a word in an IO region (initialized with memory_region_init_io())
1301 * as a trigger for an eventfd event. The I/O callback will not be called.
1302 * The caller must be prepared to handle failure (that is, take the required
1303 * action if the callback _is_ called).
1304 *
1305 * @mr: the memory region being updated.
1306 * @addr: the address within @mr that is to be monitored
1307 * @size: the size of the access to trigger the eventfd
1308 * @match_data: whether to match against @data, instead of just @addr
1309 * @data: the data to match against the guest write
1310 * @e: event notifier to be triggered when @addr, @size, and @data all match.
1311 **/
1312 void memory_region_add_eventfd(MemoryRegion *mr,
1313 hwaddr addr,
1314 unsigned size,
1315 bool match_data,
1316 uint64_t data,
1317 EventNotifier *e);
1318
1319 /**
1320 * memory_region_del_eventfd: Cancel an eventfd.
1321 *
1322 * Cancels an eventfd trigger requested by a previous
1323 * memory_region_add_eventfd() call.
1324 *
1325 * @mr: the memory region being updated.
1326 * @addr: the address within @mr that is to be monitored
1327 * @size: the size of the access to trigger the eventfd
1328 * @match_data: whether to match against @data, instead of just @addr
1329 * @data: the data to match against the guest write
1330 * @e: event notifier to be triggered when @addr, @size, and @data all match.
1331 */
1332 void memory_region_del_eventfd(MemoryRegion *mr,
1333 hwaddr addr,
1334 unsigned size,
1335 bool match_data,
1336 uint64_t data,
1337 EventNotifier *e);
1338
1339 /**
1340 * memory_region_add_subregion: Add a subregion to a container.
1341 *
1342 * Adds a subregion at @offset. The subregion may not overlap with other
1343 * subregions (except for those explicitly marked as overlapping). A region
1344 * may only be added once as a subregion (unless removed with
1345 * memory_region_del_subregion()); use memory_region_init_alias() if you
1346 * want a region to be a subregion in multiple locations.
1347 *
1348 * @mr: the region to contain the new subregion; must be a container
1349 * initialized with memory_region_init().
1350 * @offset: the offset relative to @mr where @subregion is added.
1351 * @subregion: the subregion to be added.
1352 */
1353 void memory_region_add_subregion(MemoryRegion *mr,
1354 hwaddr offset,
1355 MemoryRegion *subregion);
1356 /**
1357 * memory_region_add_subregion_overlap: Add a subregion to a container
1358 * with overlap.
1359 *
1360 * Adds a subregion at @offset. The subregion may overlap with other
1361 * subregions. Conflicts are resolved by having a higher @priority hide a
1362 * lower @priority. Subregions without priority are taken as @priority 0.
1363 * A region may only be added once as a subregion (unless removed with
1364 * memory_region_del_subregion()); use memory_region_init_alias() if you
1365 * want a region to be a subregion in multiple locations.
1366 *
1367 * @mr: the region to contain the new subregion; must be a container
1368 * initialized with memory_region_init().
1369 * @offset: the offset relative to @mr where @subregion is added.
1370 * @subregion: the subregion to be added.
1371 * @priority: used for resolving overlaps; highest priority wins.
1372 */
1373 void memory_region_add_subregion_overlap(MemoryRegion *mr,
1374 hwaddr offset,
1375 MemoryRegion *subregion,
1376 int priority);
1377
1378 /**
1379 * memory_region_get_ram_addr: Get the ram address associated with a memory
1380 * region
1381 */
1382 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr);
1383
1384 uint64_t memory_region_get_alignment(const MemoryRegion *mr);
1385 /**
1386 * memory_region_del_subregion: Remove a subregion.
1387 *
1388 * Removes a subregion from its container.
1389 *
1390 * @mr: the container to be updated.
1391 * @subregion: the region being removed; must be a current subregion of @mr.
1392 */
1393 void memory_region_del_subregion(MemoryRegion *mr,
1394 MemoryRegion *subregion);
1395
1396 /*
1397 * memory_region_set_enabled: dynamically enable or disable a region
1398 *
1399 * Enables or disables a memory region. A disabled memory region
1400 * ignores all accesses to itself and its subregions. It does not
1401 * obscure sibling subregions with lower priority - it simply behaves as
1402 * if it was removed from the hierarchy.
1403 *
1404 * Regions default to being enabled.
1405 *
1406 * @mr: the region to be updated
1407 * @enabled: whether to enable or disable the region
1408 */
1409 void memory_region_set_enabled(MemoryRegion *mr, bool enabled);
1410
1411 /*
1412 * memory_region_set_address: dynamically update the address of a region
1413 *
1414 * Dynamically updates the address of a region, relative to its container.
1415 * May be used on regions are currently part of a memory hierarchy.
1416 *
1417 * @mr: the region to be updated
1418 * @addr: new address, relative to container region
1419 */
1420 void memory_region_set_address(MemoryRegion *mr, hwaddr addr);
1421
1422 /*
1423 * memory_region_set_size: dynamically update the size of a region.
1424 *
1425 * Dynamically updates the size of a region.
1426 *
1427 * @mr: the region to be updated
1428 * @size: used size of the region.
1429 */
1430 void memory_region_set_size(MemoryRegion *mr, uint64_t size);
1431
1432 /*
1433 * memory_region_set_alias_offset: dynamically update a memory alias's offset
1434 *
1435 * Dynamically updates the offset into the target region that an alias points
1436 * to, as if the fourth argument to memory_region_init_alias() has changed.
1437 *
1438 * @mr: the #MemoryRegion to be updated; should be an alias.
1439 * @offset: the new offset into the target memory region
1440 */
1441 void memory_region_set_alias_offset(MemoryRegion *mr,
1442 hwaddr offset);
1443
1444 /**
1445 * memory_region_present: checks if an address relative to a @container
1446 * translates into #MemoryRegion within @container
1447 *
1448 * Answer whether a #MemoryRegion within @container covers the address
1449 * @addr.
1450 *
1451 * @container: a #MemoryRegion within which @addr is a relative address
1452 * @addr: the area within @container to be searched
1453 */
1454 bool memory_region_present(MemoryRegion *container, hwaddr addr);
1455
1456 /**
1457 * memory_region_is_mapped: returns true if #MemoryRegion is mapped
1458 * into any address space.
1459 *
1460 * @mr: a #MemoryRegion which should be checked if it's mapped
1461 */
1462 bool memory_region_is_mapped(MemoryRegion *mr);
1463
1464 /**
1465 * memory_region_find: translate an address/size relative to a
1466 * MemoryRegion into a #MemoryRegionSection.
1467 *
1468 * Locates the first #MemoryRegion within @mr that overlaps the range
1469 * given by @addr and @size.
1470 *
1471 * Returns a #MemoryRegionSection that describes a contiguous overlap.
1472 * It will have the following characteristics:
1473 * .@size = 0 iff no overlap was found
1474 * .@mr is non-%NULL iff an overlap was found
1475 *
1476 * Remember that in the return value the @offset_within_region is
1477 * relative to the returned region (in the .@mr field), not to the
1478 * @mr argument.
1479 *
1480 * Similarly, the .@offset_within_address_space is relative to the
1481 * address space that contains both regions, the passed and the
1482 * returned one. However, in the special case where the @mr argument
1483 * has no container (and thus is the root of the address space), the
1484 * following will hold:
1485 * .@offset_within_address_space >= @addr
1486 * .@offset_within_address_space + .@size <= @addr + @size
1487 *
1488 * @mr: a MemoryRegion within which @addr is a relative address
1489 * @addr: start of the area within @as to be searched
1490 * @size: size of the area to be searched
1491 */
1492 MemoryRegionSection memory_region_find(MemoryRegion *mr,
1493 hwaddr addr, uint64_t size);
1494
1495 /**
1496 * memory_global_dirty_log_sync: synchronize the dirty log for all memory
1497 *
1498 * Synchronizes the dirty page log for all address spaces.
1499 */
1500 void memory_global_dirty_log_sync(void);
1501
1502 /**
1503 * memory_region_transaction_begin: Start a transaction.
1504 *
1505 * During a transaction, changes will be accumulated and made visible
1506 * only when the transaction ends (is committed).
1507 */
1508 void memory_region_transaction_begin(void);
1509
1510 /**
1511 * memory_region_transaction_commit: Commit a transaction and make changes
1512 * visible to the guest.
1513 */
1514 void memory_region_transaction_commit(void);
1515
1516 /**
1517 * memory_listener_register: register callbacks to be called when memory
1518 * sections are mapped or unmapped into an address
1519 * space
1520 *
1521 * @listener: an object containing the callbacks to be called
1522 * @filter: if non-%NULL, only regions in this address space will be observed
1523 */
1524 void memory_listener_register(MemoryListener *listener, AddressSpace *filter);
1525
1526 /**
1527 * memory_listener_unregister: undo the effect of memory_listener_register()
1528 *
1529 * @listener: an object containing the callbacks to be removed
1530 */
1531 void memory_listener_unregister(MemoryListener *listener);
1532
1533 /**
1534 * memory_global_dirty_log_start: begin dirty logging for all regions
1535 */
1536 void memory_global_dirty_log_start(void);
1537
1538 /**
1539 * memory_global_dirty_log_stop: end dirty logging for all regions
1540 */
1541 void memory_global_dirty_log_stop(void);
1542
1543 void mtree_info(fprintf_function mon_printf, void *f, bool flatview,
1544 bool dispatch_tree);
1545
1546 /**
1547 * memory_region_request_mmio_ptr: request a pointer to an mmio
1548 * MemoryRegion. If it is possible map a RAM MemoryRegion with this pointer.
1549 * When the device wants to invalidate the pointer it will call
1550 * memory_region_invalidate_mmio_ptr.
1551 *
1552 * @mr: #MemoryRegion to check
1553 * @addr: address within that region
1554 *
1555 * Returns true on success, false otherwise.
1556 */
1557 bool memory_region_request_mmio_ptr(MemoryRegion *mr, hwaddr addr);
1558
1559 /**
1560 * memory_region_invalidate_mmio_ptr: invalidate the pointer to an mmio
1561 * previously requested.
1562 * In the end that means that if something wants to execute from this area it
1563 * will need to request the pointer again.
1564 *
1565 * @mr: #MemoryRegion associated to the pointer.
1566 * @offset: offset within the memory region
1567 * @size: size of that area.
1568 */
1569 void memory_region_invalidate_mmio_ptr(MemoryRegion *mr, hwaddr offset,
1570 unsigned size);
1571
1572 /**
1573 * memory_region_dispatch_read: perform a read directly to the specified
1574 * MemoryRegion.
1575 *
1576 * @mr: #MemoryRegion to access
1577 * @addr: address within that region
1578 * @pval: pointer to uint64_t which the data is written to
1579 * @size: size of the access in bytes
1580 * @attrs: memory transaction attributes to use for the access
1581 */
1582 MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
1583 hwaddr addr,
1584 uint64_t *pval,
1585 unsigned size,
1586 MemTxAttrs attrs);
1587 /**
1588 * memory_region_dispatch_write: perform a write directly to the specified
1589 * MemoryRegion.
1590 *
1591 * @mr: #MemoryRegion to access
1592 * @addr: address within that region
1593 * @data: data to write
1594 * @size: size of the access in bytes
1595 * @attrs: memory transaction attributes to use for the access
1596 */
1597 MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
1598 hwaddr addr,
1599 uint64_t data,
1600 unsigned size,
1601 MemTxAttrs attrs);
1602
1603 /**
1604 * address_space_init: initializes an address space
1605 *
1606 * @as: an uninitialized #AddressSpace
1607 * @root: a #MemoryRegion that routes addresses for the address space
1608 * @name: an address space name. The name is only used for debugging
1609 * output.
1610 */
1611 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name);
1612
1613 /**
1614 * address_space_destroy: destroy an address space
1615 *
1616 * Releases all resources associated with an address space. After an address space
1617 * is destroyed, its root memory region (given by address_space_init()) may be destroyed
1618 * as well.
1619 *
1620 * @as: address space to be destroyed
1621 */
1622 void address_space_destroy(AddressSpace *as);
1623
1624 /**
1625 * address_space_rw: read from or write to an address space.
1626 *
1627 * Return a MemTxResult indicating whether the operation succeeded
1628 * or failed (eg unassigned memory, device rejected the transaction,
1629 * IOMMU fault).
1630 *
1631 * @as: #AddressSpace to be accessed
1632 * @addr: address within that address space
1633 * @attrs: memory transaction attributes
1634 * @buf: buffer with the data transferred
1635 * @len: the number of bytes to read or write
1636 * @is_write: indicates the transfer direction
1637 */
1638 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr,
1639 MemTxAttrs attrs, uint8_t *buf,
1640 int len, bool is_write);
1641
1642 /**
1643 * address_space_write: write to address space.
1644 *
1645 * Return a MemTxResult indicating whether the operation succeeded
1646 * or failed (eg unassigned memory, device rejected the transaction,
1647 * IOMMU fault).
1648 *
1649 * @as: #AddressSpace to be accessed
1650 * @addr: address within that address space
1651 * @attrs: memory transaction attributes
1652 * @buf: buffer with the data transferred
1653 * @len: the number of bytes to write
1654 */
1655 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
1656 MemTxAttrs attrs,
1657 const uint8_t *buf, int len);
1658
1659 /* address_space_ld*: load from an address space
1660 * address_space_st*: store to an address space
1661 *
1662 * These functions perform a load or store of the byte, word,
1663 * longword or quad to the specified address within the AddressSpace.
1664 * The _le suffixed functions treat the data as little endian;
1665 * _be indicates big endian; no suffix indicates "same endianness
1666 * as guest CPU".
1667 *
1668 * The "guest CPU endianness" accessors are deprecated for use outside
1669 * target-* code; devices should be CPU-agnostic and use either the LE
1670 * or the BE accessors.
1671 *
1672 * @as #AddressSpace to be accessed
1673 * @addr: address within that address space
1674 * @val: data value, for stores
1675 * @attrs: memory transaction attributes
1676 * @result: location to write the success/failure of the transaction;
1677 * if NULL, this information is discarded
1678 */
1679
1680 #define SUFFIX
1681 #define ARG1 as
1682 #define ARG1_DECL AddressSpace *as
1683 #include "exec/memory_ldst.inc.h"
1684
1685 #define SUFFIX
1686 #define ARG1 as
1687 #define ARG1_DECL AddressSpace *as
1688 #include "exec/memory_ldst_phys.inc.h"
1689
1690 struct MemoryRegionCache {
1691 void *ptr;
1692 hwaddr xlat;
1693 hwaddr len;
1694 FlatView *fv;
1695 MemoryRegionSection mrs;
1696 bool is_write;
1697 };
1698
1699 #define MEMORY_REGION_CACHE_INVALID ((MemoryRegionCache) { .mrs.mr = NULL })
1700
1701
1702 /* address_space_ld*_cached: load from a cached #MemoryRegion
1703 * address_space_st*_cached: store into a cached #MemoryRegion
1704 *
1705 * These functions perform a load or store of the byte, word,
1706 * longword or quad to the specified address. The address is
1707 * a physical address in the AddressSpace, but it must lie within
1708 * a #MemoryRegion that was mapped with address_space_cache_init.
1709 *
1710 * The _le suffixed functions treat the data as little endian;
1711 * _be indicates big endian; no suffix indicates "same endianness
1712 * as guest CPU".
1713 *
1714 * The "guest CPU endianness" accessors are deprecated for use outside
1715 * target-* code; devices should be CPU-agnostic and use either the LE
1716 * or the BE accessors.
1717 *
1718 * @cache: previously initialized #MemoryRegionCache to be accessed
1719 * @addr: address within the address space
1720 * @val: data value, for stores
1721 * @attrs: memory transaction attributes
1722 * @result: location to write the success/failure of the transaction;
1723 * if NULL, this information is discarded
1724 */
1725
1726 #define SUFFIX _cached_slow
1727 #define ARG1 cache
1728 #define ARG1_DECL MemoryRegionCache *cache
1729 #include "exec/memory_ldst.inc.h"
1730
1731 /* Inline fast path for direct RAM access. */
1732 static inline uint8_t address_space_ldub_cached(MemoryRegionCache *cache,
1733 hwaddr addr, MemTxAttrs attrs, MemTxResult *result)
1734 {
1735 assert(addr < cache->len);
1736 if (likely(cache->ptr)) {
1737 return ldub_p(cache->ptr + addr);
1738 } else {
1739 return address_space_ldub_cached_slow(cache, addr, attrs, result);
1740 }
1741 }
1742
1743 static inline void address_space_stb_cached(MemoryRegionCache *cache,
1744 hwaddr addr, uint32_t val, MemTxAttrs attrs, MemTxResult *result)
1745 {
1746 assert(addr < cache->len);
1747 if (likely(cache->ptr)) {
1748 stb_p(cache->ptr + addr, val);
1749 } else {
1750 address_space_stb_cached_slow(cache, addr, val, attrs, result);
1751 }
1752 }
1753
1754 #define ENDIANNESS _le
1755 #include "exec/memory_ldst_cached.inc.h"
1756
1757 #define ENDIANNESS _be
1758 #include "exec/memory_ldst_cached.inc.h"
1759
1760 #define SUFFIX _cached
1761 #define ARG1 cache
1762 #define ARG1_DECL MemoryRegionCache *cache
1763 #include "exec/memory_ldst_phys.inc.h"
1764
1765 /* address_space_cache_init: prepare for repeated access to a physical
1766 * memory region
1767 *
1768 * @cache: #MemoryRegionCache to be filled
1769 * @as: #AddressSpace to be accessed
1770 * @addr: address within that address space
1771 * @len: length of buffer
1772 * @is_write: indicates the transfer direction
1773 *
1774 * Will only work with RAM, and may map a subset of the requested range by
1775 * returning a value that is less than @len. On failure, return a negative
1776 * errno value.
1777 *
1778 * Because it only works with RAM, this function can be used for
1779 * read-modify-write operations. In this case, is_write should be %true.
1780 *
1781 * Note that addresses passed to the address_space_*_cached functions
1782 * are relative to @addr.
1783 */
1784 int64_t address_space_cache_init(MemoryRegionCache *cache,
1785 AddressSpace *as,
1786 hwaddr addr,
1787 hwaddr len,
1788 bool is_write);
1789
1790 /**
1791 * address_space_cache_invalidate: complete a write to a #MemoryRegionCache
1792 *
1793 * @cache: The #MemoryRegionCache to operate on.
1794 * @addr: The first physical address that was written, relative to the
1795 * address that was passed to @address_space_cache_init.
1796 * @access_len: The number of bytes that were written starting at @addr.
1797 */
1798 void address_space_cache_invalidate(MemoryRegionCache *cache,
1799 hwaddr addr,
1800 hwaddr access_len);
1801
1802 /**
1803 * address_space_cache_destroy: free a #MemoryRegionCache
1804 *
1805 * @cache: The #MemoryRegionCache whose memory should be released.
1806 */
1807 void address_space_cache_destroy(MemoryRegionCache *cache);
1808
1809 /* address_space_get_iotlb_entry: translate an address into an IOTLB
1810 * entry. Should be called from an RCU critical section.
1811 */
1812 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
1813 bool is_write);
1814
1815 /* address_space_translate: translate an address range into an address space
1816 * into a MemoryRegion and an address range into that section. Should be
1817 * called from an RCU critical section, to avoid that the last reference
1818 * to the returned region disappears after address_space_translate returns.
1819 *
1820 * @fv: #FlatView to be accessed
1821 * @addr: address within that address space
1822 * @xlat: pointer to address within the returned memory region section's
1823 * #MemoryRegion.
1824 * @len: pointer to length
1825 * @is_write: indicates the transfer direction
1826 */
1827 MemoryRegion *flatview_translate(FlatView *fv,
1828 hwaddr addr, hwaddr *xlat,
1829 hwaddr *len, bool is_write);
1830
1831 static inline MemoryRegion *address_space_translate(AddressSpace *as,
1832 hwaddr addr, hwaddr *xlat,
1833 hwaddr *len, bool is_write)
1834 {
1835 return flatview_translate(address_space_to_flatview(as),
1836 addr, xlat, len, is_write);
1837 }
1838
1839 /* address_space_access_valid: check for validity of accessing an address
1840 * space range
1841 *
1842 * Check whether memory is assigned to the given address space range, and
1843 * access is permitted by any IOMMU regions that are active for the address
1844 * space.
1845 *
1846 * For now, addr and len should be aligned to a page size. This limitation
1847 * will be lifted in the future.
1848 *
1849 * @as: #AddressSpace to be accessed
1850 * @addr: address within that address space
1851 * @len: length of the area to be checked
1852 * @is_write: indicates the transfer direction
1853 */
1854 bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write);
1855
1856 /* address_space_map: map a physical memory region into a host virtual address
1857 *
1858 * May map a subset of the requested range, given by and returned in @plen.
1859 * May return %NULL if resources needed to perform the mapping are exhausted.
1860 * Use only for reads OR writes - not for read-modify-write operations.
1861 * Use cpu_register_map_client() to know when retrying the map operation is
1862 * likely to succeed.
1863 *
1864 * @as: #AddressSpace to be accessed
1865 * @addr: address within that address space
1866 * @plen: pointer to length of buffer; updated on return
1867 * @is_write: indicates the transfer direction
1868 */
1869 void *address_space_map(AddressSpace *as, hwaddr addr,
1870 hwaddr *plen, bool is_write);
1871
1872 /* address_space_unmap: Unmaps a memory region previously mapped by address_space_map()
1873 *
1874 * Will also mark the memory as dirty if @is_write == %true. @access_len gives
1875 * the amount of memory that was actually read or written by the caller.
1876 *
1877 * @as: #AddressSpace used
1878 * @buffer: host pointer as returned by address_space_map()
1879 * @len: buffer length as returned by address_space_map()
1880 * @access_len: amount of data actually transferred
1881 * @is_write: indicates the transfer direction
1882 */
1883 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
1884 int is_write, hwaddr access_len);
1885
1886
1887 /* Internal functions, part of the implementation of address_space_read. */
1888 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
1889 MemTxAttrs attrs, uint8_t *buf, int len);
1890 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
1891 MemTxAttrs attrs, uint8_t *buf,
1892 int len, hwaddr addr1, hwaddr l,
1893 MemoryRegion *mr);
1894 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr);
1895
1896 /* Internal functions, part of the implementation of address_space_read_cached
1897 * and address_space_write_cached. */
1898 void address_space_read_cached_slow(MemoryRegionCache *cache,
1899 hwaddr addr, void *buf, int len);
1900 void address_space_write_cached_slow(MemoryRegionCache *cache,
1901 hwaddr addr, const void *buf, int len);
1902
1903 static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write)
1904 {
1905 if (is_write) {
1906 return memory_region_is_ram(mr) &&
1907 !mr->readonly && !memory_region_is_ram_device(mr);
1908 } else {
1909 return (memory_region_is_ram(mr) && !memory_region_is_ram_device(mr)) ||
1910 memory_region_is_romd(mr);
1911 }
1912 }
1913
1914 /**
1915 * address_space_read: read from an address space.
1916 *
1917 * Return a MemTxResult indicating whether the operation succeeded
1918 * or failed (eg unassigned memory, device rejected the transaction,
1919 * IOMMU fault). Called within RCU critical section.
1920 *
1921 * @as: #AddressSpace to be accessed
1922 * @addr: address within that address space
1923 * @attrs: memory transaction attributes
1924 * @buf: buffer with the data transferred
1925 */
1926 static inline __attribute__((__always_inline__))
1927 MemTxResult address_space_read(AddressSpace *as, hwaddr addr,
1928 MemTxAttrs attrs, uint8_t *buf,
1929 int len)
1930 {
1931 MemTxResult result = MEMTX_OK;
1932 hwaddr l, addr1;
1933 void *ptr;
1934 MemoryRegion *mr;
1935 FlatView *fv;
1936
1937 if (__builtin_constant_p(len)) {
1938 if (len) {
1939 rcu_read_lock();
1940 fv = address_space_to_flatview(as);
1941 l = len;
1942 mr = flatview_translate(fv, addr, &addr1, &l, false);
1943 if (len == l && memory_access_is_direct(mr, false)) {
1944 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
1945 memcpy(buf, ptr, len);
1946 } else {
1947 result = flatview_read_continue(fv, addr, attrs, buf, len,
1948 addr1, l, mr);
1949 }
1950 rcu_read_unlock();
1951 }
1952 } else {
1953 result = address_space_read_full(as, addr, attrs, buf, len);
1954 }
1955 return result;
1956 }
1957
1958 /**
1959 * address_space_read_cached: read from a cached RAM region
1960 *
1961 * @cache: Cached region to be addressed
1962 * @addr: address relative to the base of the RAM region
1963 * @buf: buffer with the data transferred
1964 * @len: length of the data transferred
1965 */
1966 static inline void
1967 address_space_read_cached(MemoryRegionCache *cache, hwaddr addr,
1968 void *buf, int len)
1969 {
1970 assert(addr < cache->len && len <= cache->len - addr);
1971 if (likely(cache->ptr)) {
1972 memcpy(buf, cache->ptr + addr, len);
1973 } else {
1974 address_space_read_cached_slow(cache, addr, buf, len);
1975 }
1976 }
1977
1978 /**
1979 * address_space_write_cached: write to a cached RAM region
1980 *
1981 * @cache: Cached region to be addressed
1982 * @addr: address relative to the base of the RAM region
1983 * @buf: buffer with the data transferred
1984 * @len: length of the data transferred
1985 */
1986 static inline void
1987 address_space_write_cached(MemoryRegionCache *cache, hwaddr addr,
1988 void *buf, int len)
1989 {
1990 assert(addr < cache->len && len <= cache->len - addr);
1991 if (likely(cache->ptr)) {
1992 memcpy(cache->ptr + addr, buf, len);
1993 } else {
1994 address_space_write_cached_slow(cache, addr, buf, len);
1995 }
1996 }
1997
1998 #endif
1999
2000 #endif