]> git.proxmox.com Git - mirror_qemu.git/blob - include/exec/memory.h
Merge tag 'pull-qapi-2023-08-02' of https://repo.or.cz/qemu/armbru into staging
[mirror_qemu.git] / include / exec / memory.h
1 /*
2 * Physical memory management API
3 *
4 * Copyright 2011 Red Hat, Inc. and/or its affiliates
5 *
6 * Authors:
7 * Avi Kivity <avi@redhat.com>
8 *
9 * This work is licensed under the terms of the GNU GPL, version 2. See
10 * the COPYING file in the top-level directory.
11 *
12 */
13
14 #ifndef MEMORY_H
15 #define MEMORY_H
16
17 #ifndef CONFIG_USER_ONLY
18
19 #include "exec/cpu-common.h"
20 #include "exec/hwaddr.h"
21 #include "exec/memattrs.h"
22 #include "exec/memop.h"
23 #include "exec/ramlist.h"
24 #include "qemu/bswap.h"
25 #include "qemu/queue.h"
26 #include "qemu/int128.h"
27 #include "qemu/notify.h"
28 #include "qom/object.h"
29 #include "qemu/rcu.h"
30
31 #define RAM_ADDR_INVALID (~(ram_addr_t)0)
32
33 #define MAX_PHYS_ADDR_SPACE_BITS 62
34 #define MAX_PHYS_ADDR (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1)
35
36 #define TYPE_MEMORY_REGION "memory-region"
37 DECLARE_INSTANCE_CHECKER(MemoryRegion, MEMORY_REGION,
38 TYPE_MEMORY_REGION)
39
40 #define TYPE_IOMMU_MEMORY_REGION "iommu-memory-region"
41 typedef struct IOMMUMemoryRegionClass IOMMUMemoryRegionClass;
42 DECLARE_OBJ_CHECKERS(IOMMUMemoryRegion, IOMMUMemoryRegionClass,
43 IOMMU_MEMORY_REGION, TYPE_IOMMU_MEMORY_REGION)
44
45 #define TYPE_RAM_DISCARD_MANAGER "qemu:ram-discard-manager"
46 typedef struct RamDiscardManagerClass RamDiscardManagerClass;
47 typedef struct RamDiscardManager RamDiscardManager;
48 DECLARE_OBJ_CHECKERS(RamDiscardManager, RamDiscardManagerClass,
49 RAM_DISCARD_MANAGER, TYPE_RAM_DISCARD_MANAGER);
50
51 #ifdef CONFIG_FUZZ
52 void fuzz_dma_read_cb(size_t addr,
53 size_t len,
54 MemoryRegion *mr);
55 #else
56 static inline void fuzz_dma_read_cb(size_t addr,
57 size_t len,
58 MemoryRegion *mr)
59 {
60 /* Do Nothing */
61 }
62 #endif
63
64 /* Possible bits for global_dirty_log_{start|stop} */
65
66 /* Dirty tracking enabled because migration is running */
67 #define GLOBAL_DIRTY_MIGRATION (1U << 0)
68
69 /* Dirty tracking enabled because measuring dirty rate */
70 #define GLOBAL_DIRTY_DIRTY_RATE (1U << 1)
71
72 /* Dirty tracking enabled because dirty limit */
73 #define GLOBAL_DIRTY_LIMIT (1U << 2)
74
75 #define GLOBAL_DIRTY_MASK (0x7)
76
77 extern unsigned int global_dirty_tracking;
78
79 typedef struct MemoryRegionOps MemoryRegionOps;
80
81 struct ReservedRegion {
82 hwaddr low;
83 hwaddr high;
84 unsigned type;
85 };
86
87 /**
88 * struct MemoryRegionSection: describes a fragment of a #MemoryRegion
89 *
90 * @mr: the region, or %NULL if empty
91 * @fv: the flat view of the address space the region is mapped in
92 * @offset_within_region: the beginning of the section, relative to @mr's start
93 * @size: the size of the section; will not exceed @mr's boundaries
94 * @offset_within_address_space: the address of the first byte of the section
95 * relative to the region's address space
96 * @readonly: writes to this section are ignored
97 * @nonvolatile: this section is non-volatile
98 */
99 struct MemoryRegionSection {
100 Int128 size;
101 MemoryRegion *mr;
102 FlatView *fv;
103 hwaddr offset_within_region;
104 hwaddr offset_within_address_space;
105 bool readonly;
106 bool nonvolatile;
107 };
108
109 typedef struct IOMMUTLBEntry IOMMUTLBEntry;
110
111 /* See address_space_translate: bit 0 is read, bit 1 is write. */
112 typedef enum {
113 IOMMU_NONE = 0,
114 IOMMU_RO = 1,
115 IOMMU_WO = 2,
116 IOMMU_RW = 3,
117 } IOMMUAccessFlags;
118
119 #define IOMMU_ACCESS_FLAG(r, w) (((r) ? IOMMU_RO : 0) | ((w) ? IOMMU_WO : 0))
120
121 struct IOMMUTLBEntry {
122 AddressSpace *target_as;
123 hwaddr iova;
124 hwaddr translated_addr;
125 hwaddr addr_mask; /* 0xfff = 4k translation */
126 IOMMUAccessFlags perm;
127 };
128
129 /*
130 * Bitmap for different IOMMUNotifier capabilities. Each notifier can
131 * register with one or multiple IOMMU Notifier capability bit(s).
132 *
133 * Normally there're two use cases for the notifiers:
134 *
135 * (1) When the device needs accurate synchronizations of the vIOMMU page
136 * tables, it needs to register with both MAP|UNMAP notifies (which
137 * is defined as IOMMU_NOTIFIER_IOTLB_EVENTS below).
138 *
139 * Regarding to accurate synchronization, it's when the notified
140 * device maintains a shadow page table and must be notified on each
141 * guest MAP (page table entry creation) and UNMAP (invalidation)
142 * events (e.g. VFIO). Both notifications must be accurate so that
143 * the shadow page table is fully in sync with the guest view.
144 *
145 * (2) When the device doesn't need accurate synchronizations of the
146 * vIOMMU page tables, it needs to register only with UNMAP or
147 * DEVIOTLB_UNMAP notifies.
148 *
149 * It's when the device maintains a cache of IOMMU translations
150 * (IOTLB) and is able to fill that cache by requesting translations
151 * from the vIOMMU through a protocol similar to ATS (Address
152 * Translation Service).
153 *
154 * Note that in this mode the vIOMMU will not maintain a shadowed
155 * page table for the address space, and the UNMAP messages can cover
156 * more than the pages that used to get mapped. The IOMMU notifiee
157 * should be able to take care of over-sized invalidations.
158 */
159 typedef enum {
160 IOMMU_NOTIFIER_NONE = 0,
161 /* Notify cache invalidations */
162 IOMMU_NOTIFIER_UNMAP = 0x1,
163 /* Notify entry changes (newly created entries) */
164 IOMMU_NOTIFIER_MAP = 0x2,
165 /* Notify changes on device IOTLB entries */
166 IOMMU_NOTIFIER_DEVIOTLB_UNMAP = 0x04,
167 } IOMMUNotifierFlag;
168
169 #define IOMMU_NOTIFIER_IOTLB_EVENTS (IOMMU_NOTIFIER_MAP | IOMMU_NOTIFIER_UNMAP)
170 #define IOMMU_NOTIFIER_DEVIOTLB_EVENTS IOMMU_NOTIFIER_DEVIOTLB_UNMAP
171 #define IOMMU_NOTIFIER_ALL (IOMMU_NOTIFIER_IOTLB_EVENTS | \
172 IOMMU_NOTIFIER_DEVIOTLB_EVENTS)
173
174 struct IOMMUNotifier;
175 typedef void (*IOMMUNotify)(struct IOMMUNotifier *notifier,
176 IOMMUTLBEntry *data);
177
178 struct IOMMUNotifier {
179 IOMMUNotify notify;
180 IOMMUNotifierFlag notifier_flags;
181 /* Notify for address space range start <= addr <= end */
182 hwaddr start;
183 hwaddr end;
184 int iommu_idx;
185 QLIST_ENTRY(IOMMUNotifier) node;
186 };
187 typedef struct IOMMUNotifier IOMMUNotifier;
188
189 typedef struct IOMMUTLBEvent {
190 IOMMUNotifierFlag type;
191 IOMMUTLBEntry entry;
192 } IOMMUTLBEvent;
193
194 /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
195 #define RAM_PREALLOC (1 << 0)
196
197 /* RAM is mmap-ed with MAP_SHARED */
198 #define RAM_SHARED (1 << 1)
199
200 /* Only a portion of RAM (used_length) is actually used, and migrated.
201 * Resizing RAM while migrating can result in the migration being canceled.
202 */
203 #define RAM_RESIZEABLE (1 << 2)
204
205 /* UFFDIO_ZEROPAGE is available on this RAMBlock to atomically
206 * zero the page and wake waiting processes.
207 * (Set during postcopy)
208 */
209 #define RAM_UF_ZEROPAGE (1 << 3)
210
211 /* RAM can be migrated */
212 #define RAM_MIGRATABLE (1 << 4)
213
214 /* RAM is a persistent kind memory */
215 #define RAM_PMEM (1 << 5)
216
217
218 /*
219 * UFFDIO_WRITEPROTECT is used on this RAMBlock to
220 * support 'write-tracking' migration type.
221 * Implies ram_state->ram_wt_enabled.
222 */
223 #define RAM_UF_WRITEPROTECT (1 << 6)
224
225 /*
226 * RAM is mmap-ed with MAP_NORESERVE. When set, reserving swap space (or huge
227 * pages if applicable) is skipped: will bail out if not supported. When not
228 * set, the OS will do the reservation, if supported for the memory type.
229 */
230 #define RAM_NORESERVE (1 << 7)
231
232 /* RAM that isn't accessible through normal means. */
233 #define RAM_PROTECTED (1 << 8)
234
235 /* RAM is an mmap-ed named file */
236 #define RAM_NAMED_FILE (1 << 9)
237
238 static inline void iommu_notifier_init(IOMMUNotifier *n, IOMMUNotify fn,
239 IOMMUNotifierFlag flags,
240 hwaddr start, hwaddr end,
241 int iommu_idx)
242 {
243 n->notify = fn;
244 n->notifier_flags = flags;
245 n->start = start;
246 n->end = end;
247 n->iommu_idx = iommu_idx;
248 }
249
250 /*
251 * Memory region callbacks
252 */
253 struct MemoryRegionOps {
254 /* Read from the memory region. @addr is relative to @mr; @size is
255 * in bytes. */
256 uint64_t (*read)(void *opaque,
257 hwaddr addr,
258 unsigned size);
259 /* Write to the memory region. @addr is relative to @mr; @size is
260 * in bytes. */
261 void (*write)(void *opaque,
262 hwaddr addr,
263 uint64_t data,
264 unsigned size);
265
266 MemTxResult (*read_with_attrs)(void *opaque,
267 hwaddr addr,
268 uint64_t *data,
269 unsigned size,
270 MemTxAttrs attrs);
271 MemTxResult (*write_with_attrs)(void *opaque,
272 hwaddr addr,
273 uint64_t data,
274 unsigned size,
275 MemTxAttrs attrs);
276
277 enum device_endian endianness;
278 /* Guest-visible constraints: */
279 struct {
280 /* If nonzero, specify bounds on access sizes beyond which a machine
281 * check is thrown.
282 */
283 unsigned min_access_size;
284 unsigned max_access_size;
285 /* If true, unaligned accesses are supported. Otherwise unaligned
286 * accesses throw machine checks.
287 */
288 bool unaligned;
289 /*
290 * If present, and returns #false, the transaction is not accepted
291 * by the device (and results in machine dependent behaviour such
292 * as a machine check exception).
293 */
294 bool (*accepts)(void *opaque, hwaddr addr,
295 unsigned size, bool is_write,
296 MemTxAttrs attrs);
297 } valid;
298 /* Internal implementation constraints: */
299 struct {
300 /* If nonzero, specifies the minimum size implemented. Smaller sizes
301 * will be rounded upwards and a partial result will be returned.
302 */
303 unsigned min_access_size;
304 /* If nonzero, specifies the maximum size implemented. Larger sizes
305 * will be done as a series of accesses with smaller sizes.
306 */
307 unsigned max_access_size;
308 /* If true, unaligned accesses are supported. Otherwise all accesses
309 * are converted to (possibly multiple) naturally aligned accesses.
310 */
311 bool unaligned;
312 } impl;
313 };
314
315 typedef struct MemoryRegionClass {
316 /* private */
317 ObjectClass parent_class;
318 } MemoryRegionClass;
319
320
321 enum IOMMUMemoryRegionAttr {
322 IOMMU_ATTR_SPAPR_TCE_FD
323 };
324
325 /*
326 * IOMMUMemoryRegionClass:
327 *
328 * All IOMMU implementations need to subclass TYPE_IOMMU_MEMORY_REGION
329 * and provide an implementation of at least the @translate method here
330 * to handle requests to the memory region. Other methods are optional.
331 *
332 * The IOMMU implementation must use the IOMMU notifier infrastructure
333 * to report whenever mappings are changed, by calling
334 * memory_region_notify_iommu() (or, if necessary, by calling
335 * memory_region_notify_iommu_one() for each registered notifier).
336 *
337 * Conceptually an IOMMU provides a mapping from input address
338 * to an output TLB entry. If the IOMMU is aware of memory transaction
339 * attributes and the output TLB entry depends on the transaction
340 * attributes, we represent this using IOMMU indexes. Each index
341 * selects a particular translation table that the IOMMU has:
342 *
343 * @attrs_to_index returns the IOMMU index for a set of transaction attributes
344 *
345 * @translate takes an input address and an IOMMU index
346 *
347 * and the mapping returned can only depend on the input address and the
348 * IOMMU index.
349 *
350 * Most IOMMUs don't care about the transaction attributes and support
351 * only a single IOMMU index. A more complex IOMMU might have one index
352 * for secure transactions and one for non-secure transactions.
353 */
354 struct IOMMUMemoryRegionClass {
355 /* private: */
356 MemoryRegionClass parent_class;
357
358 /* public: */
359 /**
360 * @translate:
361 *
362 * Return a TLB entry that contains a given address.
363 *
364 * The IOMMUAccessFlags indicated via @flag are optional and may
365 * be specified as IOMMU_NONE to indicate that the caller needs
366 * the full translation information for both reads and writes. If
367 * the access flags are specified then the IOMMU implementation
368 * may use this as an optimization, to stop doing a page table
369 * walk as soon as it knows that the requested permissions are not
370 * allowed. If IOMMU_NONE is passed then the IOMMU must do the
371 * full page table walk and report the permissions in the returned
372 * IOMMUTLBEntry. (Note that this implies that an IOMMU may not
373 * return different mappings for reads and writes.)
374 *
375 * The returned information remains valid while the caller is
376 * holding the big QEMU lock or is inside an RCU critical section;
377 * if the caller wishes to cache the mapping beyond that it must
378 * register an IOMMU notifier so it can invalidate its cached
379 * information when the IOMMU mapping changes.
380 *
381 * @iommu: the IOMMUMemoryRegion
382 *
383 * @hwaddr: address to be translated within the memory region
384 *
385 * @flag: requested access permission
386 *
387 * @iommu_idx: IOMMU index for the translation
388 */
389 IOMMUTLBEntry (*translate)(IOMMUMemoryRegion *iommu, hwaddr addr,
390 IOMMUAccessFlags flag, int iommu_idx);
391 /**
392 * @get_min_page_size:
393 *
394 * Returns minimum supported page size in bytes.
395 *
396 * If this method is not provided then the minimum is assumed to
397 * be TARGET_PAGE_SIZE.
398 *
399 * @iommu: the IOMMUMemoryRegion
400 */
401 uint64_t (*get_min_page_size)(IOMMUMemoryRegion *iommu);
402 /**
403 * @notify_flag_changed:
404 *
405 * Called when IOMMU Notifier flag changes (ie when the set of
406 * events which IOMMU users are requesting notification for changes).
407 * Optional method -- need not be provided if the IOMMU does not
408 * need to know exactly which events must be notified.
409 *
410 * @iommu: the IOMMUMemoryRegion
411 *
412 * @old_flags: events which previously needed to be notified
413 *
414 * @new_flags: events which now need to be notified
415 *
416 * Returns 0 on success, or a negative errno; in particular
417 * returns -EINVAL if the new flag bitmap is not supported by the
418 * IOMMU memory region. In case of failure, the error object
419 * must be created
420 */
421 int (*notify_flag_changed)(IOMMUMemoryRegion *iommu,
422 IOMMUNotifierFlag old_flags,
423 IOMMUNotifierFlag new_flags,
424 Error **errp);
425 /**
426 * @replay:
427 *
428 * Called to handle memory_region_iommu_replay().
429 *
430 * The default implementation of memory_region_iommu_replay() is to
431 * call the IOMMU translate method for every page in the address space
432 * with flag == IOMMU_NONE and then call the notifier if translate
433 * returns a valid mapping. If this method is implemented then it
434 * overrides the default behaviour, and must provide the full semantics
435 * of memory_region_iommu_replay(), by calling @notifier for every
436 * translation present in the IOMMU.
437 *
438 * Optional method -- an IOMMU only needs to provide this method
439 * if the default is inefficient or produces undesirable side effects.
440 *
441 * Note: this is not related to record-and-replay functionality.
442 */
443 void (*replay)(IOMMUMemoryRegion *iommu, IOMMUNotifier *notifier);
444
445 /**
446 * @get_attr:
447 *
448 * Get IOMMU misc attributes. This is an optional method that
449 * can be used to allow users of the IOMMU to get implementation-specific
450 * information. The IOMMU implements this method to handle calls
451 * by IOMMU users to memory_region_iommu_get_attr() by filling in
452 * the arbitrary data pointer for any IOMMUMemoryRegionAttr values that
453 * the IOMMU supports. If the method is unimplemented then
454 * memory_region_iommu_get_attr() will always return -EINVAL.
455 *
456 * @iommu: the IOMMUMemoryRegion
457 *
458 * @attr: attribute being queried
459 *
460 * @data: memory to fill in with the attribute data
461 *
462 * Returns 0 on success, or a negative errno; in particular
463 * returns -EINVAL for unrecognized or unimplemented attribute types.
464 */
465 int (*get_attr)(IOMMUMemoryRegion *iommu, enum IOMMUMemoryRegionAttr attr,
466 void *data);
467
468 /**
469 * @attrs_to_index:
470 *
471 * Return the IOMMU index to use for a given set of transaction attributes.
472 *
473 * Optional method: if an IOMMU only supports a single IOMMU index then
474 * the default implementation of memory_region_iommu_attrs_to_index()
475 * will return 0.
476 *
477 * The indexes supported by an IOMMU must be contiguous, starting at 0.
478 *
479 * @iommu: the IOMMUMemoryRegion
480 * @attrs: memory transaction attributes
481 */
482 int (*attrs_to_index)(IOMMUMemoryRegion *iommu, MemTxAttrs attrs);
483
484 /**
485 * @num_indexes:
486 *
487 * Return the number of IOMMU indexes this IOMMU supports.
488 *
489 * Optional method: if this method is not provided, then
490 * memory_region_iommu_num_indexes() will return 1, indicating that
491 * only a single IOMMU index is supported.
492 *
493 * @iommu: the IOMMUMemoryRegion
494 */
495 int (*num_indexes)(IOMMUMemoryRegion *iommu);
496
497 /**
498 * @iommu_set_page_size_mask:
499 *
500 * Restrict the page size mask that can be supported with a given IOMMU
501 * memory region. Used for example to propagate host physical IOMMU page
502 * size mask limitations to the virtual IOMMU.
503 *
504 * Optional method: if this method is not provided, then the default global
505 * page mask is used.
506 *
507 * @iommu: the IOMMUMemoryRegion
508 *
509 * @page_size_mask: a bitmask of supported page sizes. At least one bit,
510 * representing the smallest page size, must be set. Additional set bits
511 * represent supported block sizes. For example a host physical IOMMU that
512 * uses page tables with a page size of 4kB, and supports 2MB and 4GB
513 * blocks, will set mask 0x40201000. A granule of 4kB with indiscriminate
514 * block sizes is specified with mask 0xfffffffffffff000.
515 *
516 * Returns 0 on success, or a negative error. In case of failure, the error
517 * object must be created.
518 */
519 int (*iommu_set_page_size_mask)(IOMMUMemoryRegion *iommu,
520 uint64_t page_size_mask,
521 Error **errp);
522 };
523
524 typedef struct RamDiscardListener RamDiscardListener;
525 typedef int (*NotifyRamPopulate)(RamDiscardListener *rdl,
526 MemoryRegionSection *section);
527 typedef void (*NotifyRamDiscard)(RamDiscardListener *rdl,
528 MemoryRegionSection *section);
529
530 struct RamDiscardListener {
531 /*
532 * @notify_populate:
533 *
534 * Notification that previously discarded memory is about to get populated.
535 * Listeners are able to object. If any listener objects, already
536 * successfully notified listeners are notified about a discard again.
537 *
538 * @rdl: the #RamDiscardListener getting notified
539 * @section: the #MemoryRegionSection to get populated. The section
540 * is aligned within the memory region to the minimum granularity
541 * unless it would exceed the registered section.
542 *
543 * Returns 0 on success. If the notification is rejected by the listener,
544 * an error is returned.
545 */
546 NotifyRamPopulate notify_populate;
547
548 /*
549 * @notify_discard:
550 *
551 * Notification that previously populated memory was discarded successfully
552 * and listeners should drop all references to such memory and prevent
553 * new population (e.g., unmap).
554 *
555 * @rdl: the #RamDiscardListener getting notified
556 * @section: the #MemoryRegionSection to get populated. The section
557 * is aligned within the memory region to the minimum granularity
558 * unless it would exceed the registered section.
559 */
560 NotifyRamDiscard notify_discard;
561
562 /*
563 * @double_discard_supported:
564 *
565 * The listener suppors getting @notify_discard notifications that span
566 * already discarded parts.
567 */
568 bool double_discard_supported;
569
570 MemoryRegionSection *section;
571 QLIST_ENTRY(RamDiscardListener) next;
572 };
573
574 static inline void ram_discard_listener_init(RamDiscardListener *rdl,
575 NotifyRamPopulate populate_fn,
576 NotifyRamDiscard discard_fn,
577 bool double_discard_supported)
578 {
579 rdl->notify_populate = populate_fn;
580 rdl->notify_discard = discard_fn;
581 rdl->double_discard_supported = double_discard_supported;
582 }
583
584 typedef int (*ReplayRamPopulate)(MemoryRegionSection *section, void *opaque);
585 typedef void (*ReplayRamDiscard)(MemoryRegionSection *section, void *opaque);
586
587 /*
588 * RamDiscardManagerClass:
589 *
590 * A #RamDiscardManager coordinates which parts of specific RAM #MemoryRegion
591 * regions are currently populated to be used/accessed by the VM, notifying
592 * after parts were discarded (freeing up memory) and before parts will be
593 * populated (consuming memory), to be used/accessed by the VM.
594 *
595 * A #RamDiscardManager can only be set for a RAM #MemoryRegion while the
596 * #MemoryRegion isn't mapped yet; it cannot change while the #MemoryRegion is
597 * mapped.
598 *
599 * The #RamDiscardManager is intended to be used by technologies that are
600 * incompatible with discarding of RAM (e.g., VFIO, which may pin all
601 * memory inside a #MemoryRegion), and require proper coordination to only
602 * map the currently populated parts, to hinder parts that are expected to
603 * remain discarded from silently getting populated and consuming memory.
604 * Technologies that support discarding of RAM don't have to bother and can
605 * simply map the whole #MemoryRegion.
606 *
607 * An example #RamDiscardManager is virtio-mem, which logically (un)plugs
608 * memory within an assigned RAM #MemoryRegion, coordinated with the VM.
609 * Logically unplugging memory consists of discarding RAM. The VM agreed to not
610 * access unplugged (discarded) memory - especially via DMA. virtio-mem will
611 * properly coordinate with listeners before memory is plugged (populated),
612 * and after memory is unplugged (discarded).
613 *
614 * Listeners are called in multiples of the minimum granularity (unless it
615 * would exceed the registered range) and changes are aligned to the minimum
616 * granularity within the #MemoryRegion. Listeners have to prepare for memory
617 * becoming discarded in a different granularity than it was populated and the
618 * other way around.
619 */
620 struct RamDiscardManagerClass {
621 /* private */
622 InterfaceClass parent_class;
623
624 /* public */
625
626 /**
627 * @get_min_granularity:
628 *
629 * Get the minimum granularity in which listeners will get notified
630 * about changes within the #MemoryRegion via the #RamDiscardManager.
631 *
632 * @rdm: the #RamDiscardManager
633 * @mr: the #MemoryRegion
634 *
635 * Returns the minimum granularity.
636 */
637 uint64_t (*get_min_granularity)(const RamDiscardManager *rdm,
638 const MemoryRegion *mr);
639
640 /**
641 * @is_populated:
642 *
643 * Check whether the given #MemoryRegionSection is completely populated
644 * (i.e., no parts are currently discarded) via the #RamDiscardManager.
645 * There are no alignment requirements.
646 *
647 * @rdm: the #RamDiscardManager
648 * @section: the #MemoryRegionSection
649 *
650 * Returns whether the given range is completely populated.
651 */
652 bool (*is_populated)(const RamDiscardManager *rdm,
653 const MemoryRegionSection *section);
654
655 /**
656 * @replay_populated:
657 *
658 * Call the #ReplayRamPopulate callback for all populated parts within the
659 * #MemoryRegionSection via the #RamDiscardManager.
660 *
661 * In case any call fails, no further calls are made.
662 *
663 * @rdm: the #RamDiscardManager
664 * @section: the #MemoryRegionSection
665 * @replay_fn: the #ReplayRamPopulate callback
666 * @opaque: pointer to forward to the callback
667 *
668 * Returns 0 on success, or a negative error if any notification failed.
669 */
670 int (*replay_populated)(const RamDiscardManager *rdm,
671 MemoryRegionSection *section,
672 ReplayRamPopulate replay_fn, void *opaque);
673
674 /**
675 * @replay_discarded:
676 *
677 * Call the #ReplayRamDiscard callback for all discarded parts within the
678 * #MemoryRegionSection via the #RamDiscardManager.
679 *
680 * @rdm: the #RamDiscardManager
681 * @section: the #MemoryRegionSection
682 * @replay_fn: the #ReplayRamDiscard callback
683 * @opaque: pointer to forward to the callback
684 */
685 void (*replay_discarded)(const RamDiscardManager *rdm,
686 MemoryRegionSection *section,
687 ReplayRamDiscard replay_fn, void *opaque);
688
689 /**
690 * @register_listener:
691 *
692 * Register a #RamDiscardListener for the given #MemoryRegionSection and
693 * immediately notify the #RamDiscardListener about all populated parts
694 * within the #MemoryRegionSection via the #RamDiscardManager.
695 *
696 * In case any notification fails, no further notifications are triggered
697 * and an error is logged.
698 *
699 * @rdm: the #RamDiscardManager
700 * @rdl: the #RamDiscardListener
701 * @section: the #MemoryRegionSection
702 */
703 void (*register_listener)(RamDiscardManager *rdm,
704 RamDiscardListener *rdl,
705 MemoryRegionSection *section);
706
707 /**
708 * @unregister_listener:
709 *
710 * Unregister a previously registered #RamDiscardListener via the
711 * #RamDiscardManager after notifying the #RamDiscardListener about all
712 * populated parts becoming unpopulated within the registered
713 * #MemoryRegionSection.
714 *
715 * @rdm: the #RamDiscardManager
716 * @rdl: the #RamDiscardListener
717 */
718 void (*unregister_listener)(RamDiscardManager *rdm,
719 RamDiscardListener *rdl);
720 };
721
722 uint64_t ram_discard_manager_get_min_granularity(const RamDiscardManager *rdm,
723 const MemoryRegion *mr);
724
725 bool ram_discard_manager_is_populated(const RamDiscardManager *rdm,
726 const MemoryRegionSection *section);
727
728 int ram_discard_manager_replay_populated(const RamDiscardManager *rdm,
729 MemoryRegionSection *section,
730 ReplayRamPopulate replay_fn,
731 void *opaque);
732
733 void ram_discard_manager_replay_discarded(const RamDiscardManager *rdm,
734 MemoryRegionSection *section,
735 ReplayRamDiscard replay_fn,
736 void *opaque);
737
738 void ram_discard_manager_register_listener(RamDiscardManager *rdm,
739 RamDiscardListener *rdl,
740 MemoryRegionSection *section);
741
742 void ram_discard_manager_unregister_listener(RamDiscardManager *rdm,
743 RamDiscardListener *rdl);
744
745 bool memory_get_xlat_addr(IOMMUTLBEntry *iotlb, void **vaddr,
746 ram_addr_t *ram_addr, bool *read_only,
747 bool *mr_has_discard_manager);
748
749 typedef struct CoalescedMemoryRange CoalescedMemoryRange;
750 typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd;
751
752 /** MemoryRegion:
753 *
754 * A struct representing a memory region.
755 */
756 struct MemoryRegion {
757 Object parent_obj;
758
759 /* private: */
760
761 /* The following fields should fit in a cache line */
762 bool romd_mode;
763 bool ram;
764 bool subpage;
765 bool readonly; /* For RAM regions */
766 bool nonvolatile;
767 bool rom_device;
768 bool flush_coalesced_mmio;
769 uint8_t dirty_log_mask;
770 bool is_iommu;
771 RAMBlock *ram_block;
772 Object *owner;
773 /* owner as TYPE_DEVICE. Used for re-entrancy checks in MR access hotpath */
774 DeviceState *dev;
775
776 const MemoryRegionOps *ops;
777 void *opaque;
778 MemoryRegion *container;
779 int mapped_via_alias; /* Mapped via an alias, container might be NULL */
780 Int128 size;
781 hwaddr addr;
782 void (*destructor)(MemoryRegion *mr);
783 uint64_t align;
784 bool terminates;
785 bool ram_device;
786 bool enabled;
787 bool warning_printed; /* For reservations */
788 uint8_t vga_logging_count;
789 MemoryRegion *alias;
790 hwaddr alias_offset;
791 int32_t priority;
792 QTAILQ_HEAD(, MemoryRegion) subregions;
793 QTAILQ_ENTRY(MemoryRegion) subregions_link;
794 QTAILQ_HEAD(, CoalescedMemoryRange) coalesced;
795 const char *name;
796 unsigned ioeventfd_nb;
797 MemoryRegionIoeventfd *ioeventfds;
798 RamDiscardManager *rdm; /* Only for RAM */
799
800 /* For devices designed to perform re-entrant IO into their own IO MRs */
801 bool disable_reentrancy_guard;
802 };
803
804 struct IOMMUMemoryRegion {
805 MemoryRegion parent_obj;
806
807 QLIST_HEAD(, IOMMUNotifier) iommu_notify;
808 IOMMUNotifierFlag iommu_notify_flags;
809 };
810
811 #define IOMMU_NOTIFIER_FOREACH(n, mr) \
812 QLIST_FOREACH((n), &(mr)->iommu_notify, node)
813
814 #define MEMORY_LISTENER_PRIORITY_MIN 0
815 #define MEMORY_LISTENER_PRIORITY_ACCEL 10
816 #define MEMORY_LISTENER_PRIORITY_DEV_BACKEND 10
817
818 /**
819 * struct MemoryListener: callbacks structure for updates to the physical memory map
820 *
821 * Allows a component to adjust to changes in the guest-visible memory map.
822 * Use with memory_listener_register() and memory_listener_unregister().
823 */
824 struct MemoryListener {
825 /**
826 * @begin:
827 *
828 * Called at the beginning of an address space update transaction.
829 * Followed by calls to #MemoryListener.region_add(),
830 * #MemoryListener.region_del(), #MemoryListener.region_nop(),
831 * #MemoryListener.log_start() and #MemoryListener.log_stop() in
832 * increasing address order.
833 *
834 * @listener: The #MemoryListener.
835 */
836 void (*begin)(MemoryListener *listener);
837
838 /**
839 * @commit:
840 *
841 * Called at the end of an address space update transaction,
842 * after the last call to #MemoryListener.region_add(),
843 * #MemoryListener.region_del() or #MemoryListener.region_nop(),
844 * #MemoryListener.log_start() and #MemoryListener.log_stop().
845 *
846 * @listener: The #MemoryListener.
847 */
848 void (*commit)(MemoryListener *listener);
849
850 /**
851 * @region_add:
852 *
853 * Called during an address space update transaction,
854 * for a section of the address space that is new in this address space
855 * space since the last transaction.
856 *
857 * @listener: The #MemoryListener.
858 * @section: The new #MemoryRegionSection.
859 */
860 void (*region_add)(MemoryListener *listener, MemoryRegionSection *section);
861
862 /**
863 * @region_del:
864 *
865 * Called during an address space update transaction,
866 * for a section of the address space that has disappeared in the address
867 * space since the last transaction.
868 *
869 * @listener: The #MemoryListener.
870 * @section: The old #MemoryRegionSection.
871 */
872 void (*region_del)(MemoryListener *listener, MemoryRegionSection *section);
873
874 /**
875 * @region_nop:
876 *
877 * Called during an address space update transaction,
878 * for a section of the address space that is in the same place in the address
879 * space as in the last transaction.
880 *
881 * @listener: The #MemoryListener.
882 * @section: The #MemoryRegionSection.
883 */
884 void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section);
885
886 /**
887 * @log_start:
888 *
889 * Called during an address space update transaction, after
890 * one of #MemoryListener.region_add(), #MemoryListener.region_del() or
891 * #MemoryListener.region_nop(), if dirty memory logging clients have
892 * become active since the last transaction.
893 *
894 * @listener: The #MemoryListener.
895 * @section: The #MemoryRegionSection.
896 * @old: A bitmap of dirty memory logging clients that were active in
897 * the previous transaction.
898 * @new: A bitmap of dirty memory logging clients that are active in
899 * the current transaction.
900 */
901 void (*log_start)(MemoryListener *listener, MemoryRegionSection *section,
902 int old, int new);
903
904 /**
905 * @log_stop:
906 *
907 * Called during an address space update transaction, after
908 * one of #MemoryListener.region_add(), #MemoryListener.region_del() or
909 * #MemoryListener.region_nop() and possibly after
910 * #MemoryListener.log_start(), if dirty memory logging clients have
911 * become inactive since the last transaction.
912 *
913 * @listener: The #MemoryListener.
914 * @section: The #MemoryRegionSection.
915 * @old: A bitmap of dirty memory logging clients that were active in
916 * the previous transaction.
917 * @new: A bitmap of dirty memory logging clients that are active in
918 * the current transaction.
919 */
920 void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section,
921 int old, int new);
922
923 /**
924 * @log_sync:
925 *
926 * Called by memory_region_snapshot_and_clear_dirty() and
927 * memory_global_dirty_log_sync(), before accessing QEMU's "official"
928 * copy of the dirty memory bitmap for a #MemoryRegionSection.
929 *
930 * @listener: The #MemoryListener.
931 * @section: The #MemoryRegionSection.
932 */
933 void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section);
934
935 /**
936 * @log_sync_global:
937 *
938 * This is the global version of @log_sync when the listener does
939 * not have a way to synchronize the log with finer granularity.
940 * When the listener registers with @log_sync_global defined, then
941 * its @log_sync must be NULL. Vice versa.
942 *
943 * @listener: The #MemoryListener.
944 * @last_stage: The last stage to synchronize the log during migration.
945 * The caller should guarantee that the synchronization with true for
946 * @last_stage is triggered for once after all VCPUs have been stopped.
947 */
948 void (*log_sync_global)(MemoryListener *listener, bool last_stage);
949
950 /**
951 * @log_clear:
952 *
953 * Called before reading the dirty memory bitmap for a
954 * #MemoryRegionSection.
955 *
956 * @listener: The #MemoryListener.
957 * @section: The #MemoryRegionSection.
958 */
959 void (*log_clear)(MemoryListener *listener, MemoryRegionSection *section);
960
961 /**
962 * @log_global_start:
963 *
964 * Called by memory_global_dirty_log_start(), which
965 * enables the %DIRTY_LOG_MIGRATION client on all memory regions in
966 * the address space. #MemoryListener.log_global_start() is also
967 * called when a #MemoryListener is added, if global dirty logging is
968 * active at that time.
969 *
970 * @listener: The #MemoryListener.
971 */
972 void (*log_global_start)(MemoryListener *listener);
973
974 /**
975 * @log_global_stop:
976 *
977 * Called by memory_global_dirty_log_stop(), which
978 * disables the %DIRTY_LOG_MIGRATION client on all memory regions in
979 * the address space.
980 *
981 * @listener: The #MemoryListener.
982 */
983 void (*log_global_stop)(MemoryListener *listener);
984
985 /**
986 * @log_global_after_sync:
987 *
988 * Called after reading the dirty memory bitmap
989 * for any #MemoryRegionSection.
990 *
991 * @listener: The #MemoryListener.
992 */
993 void (*log_global_after_sync)(MemoryListener *listener);
994
995 /**
996 * @eventfd_add:
997 *
998 * Called during an address space update transaction,
999 * for a section of the address space that has had a new ioeventfd
1000 * registration since the last transaction.
1001 *
1002 * @listener: The #MemoryListener.
1003 * @section: The new #MemoryRegionSection.
1004 * @match_data: The @match_data parameter for the new ioeventfd.
1005 * @data: The @data parameter for the new ioeventfd.
1006 * @e: The #EventNotifier parameter for the new ioeventfd.
1007 */
1008 void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section,
1009 bool match_data, uint64_t data, EventNotifier *e);
1010
1011 /**
1012 * @eventfd_del:
1013 *
1014 * Called during an address space update transaction,
1015 * for a section of the address space that has dropped an ioeventfd
1016 * registration since the last transaction.
1017 *
1018 * @listener: The #MemoryListener.
1019 * @section: The new #MemoryRegionSection.
1020 * @match_data: The @match_data parameter for the dropped ioeventfd.
1021 * @data: The @data parameter for the dropped ioeventfd.
1022 * @e: The #EventNotifier parameter for the dropped ioeventfd.
1023 */
1024 void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section,
1025 bool match_data, uint64_t data, EventNotifier *e);
1026
1027 /**
1028 * @coalesced_io_add:
1029 *
1030 * Called during an address space update transaction,
1031 * for a section of the address space that has had a new coalesced
1032 * MMIO range registration since the last transaction.
1033 *
1034 * @listener: The #MemoryListener.
1035 * @section: The new #MemoryRegionSection.
1036 * @addr: The starting address for the coalesced MMIO range.
1037 * @len: The length of the coalesced MMIO range.
1038 */
1039 void (*coalesced_io_add)(MemoryListener *listener, MemoryRegionSection *section,
1040 hwaddr addr, hwaddr len);
1041
1042 /**
1043 * @coalesced_io_del:
1044 *
1045 * Called during an address space update transaction,
1046 * for a section of the address space that has dropped a coalesced
1047 * MMIO range since the last transaction.
1048 *
1049 * @listener: The #MemoryListener.
1050 * @section: The new #MemoryRegionSection.
1051 * @addr: The starting address for the coalesced MMIO range.
1052 * @len: The length of the coalesced MMIO range.
1053 */
1054 void (*coalesced_io_del)(MemoryListener *listener, MemoryRegionSection *section,
1055 hwaddr addr, hwaddr len);
1056 /**
1057 * @priority:
1058 *
1059 * Govern the order in which memory listeners are invoked. Lower priorities
1060 * are invoked earlier for "add" or "start" callbacks, and later for "delete"
1061 * or "stop" callbacks.
1062 */
1063 unsigned priority;
1064
1065 /**
1066 * @name:
1067 *
1068 * Name of the listener. It can be used in contexts where we'd like to
1069 * identify one memory listener with the rest.
1070 */
1071 const char *name;
1072
1073 /* private: */
1074 AddressSpace *address_space;
1075 QTAILQ_ENTRY(MemoryListener) link;
1076 QTAILQ_ENTRY(MemoryListener) link_as;
1077 };
1078
1079 /**
1080 * struct AddressSpace: describes a mapping of addresses to #MemoryRegion objects
1081 */
1082 struct AddressSpace {
1083 /* private: */
1084 struct rcu_head rcu;
1085 char *name;
1086 MemoryRegion *root;
1087
1088 /* Accessed via RCU. */
1089 struct FlatView *current_map;
1090
1091 int ioeventfd_nb;
1092 struct MemoryRegionIoeventfd *ioeventfds;
1093 QTAILQ_HEAD(, MemoryListener) listeners;
1094 QTAILQ_ENTRY(AddressSpace) address_spaces_link;
1095 };
1096
1097 typedef struct AddressSpaceDispatch AddressSpaceDispatch;
1098 typedef struct FlatRange FlatRange;
1099
1100 /* Flattened global view of current active memory hierarchy. Kept in sorted
1101 * order.
1102 */
1103 struct FlatView {
1104 struct rcu_head rcu;
1105 unsigned ref;
1106 FlatRange *ranges;
1107 unsigned nr;
1108 unsigned nr_allocated;
1109 struct AddressSpaceDispatch *dispatch;
1110 MemoryRegion *root;
1111 };
1112
1113 static inline FlatView *address_space_to_flatview(AddressSpace *as)
1114 {
1115 return qatomic_rcu_read(&as->current_map);
1116 }
1117
1118 /**
1119 * typedef flatview_cb: callback for flatview_for_each_range()
1120 *
1121 * @start: start address of the range within the FlatView
1122 * @len: length of the range in bytes
1123 * @mr: MemoryRegion covering this range
1124 * @offset_in_region: offset of the first byte of the range within @mr
1125 * @opaque: data pointer passed to flatview_for_each_range()
1126 *
1127 * Returns: true to stop the iteration, false to keep going.
1128 */
1129 typedef bool (*flatview_cb)(Int128 start,
1130 Int128 len,
1131 const MemoryRegion *mr,
1132 hwaddr offset_in_region,
1133 void *opaque);
1134
1135 /**
1136 * flatview_for_each_range: Iterate through a FlatView
1137 * @fv: the FlatView to iterate through
1138 * @cb: function to call for each range
1139 * @opaque: opaque data pointer to pass to @cb
1140 *
1141 * A FlatView is made up of a list of non-overlapping ranges, each of
1142 * which is a slice of a MemoryRegion. This function iterates through
1143 * each range in @fv, calling @cb. The callback function can terminate
1144 * iteration early by returning 'true'.
1145 */
1146 void flatview_for_each_range(FlatView *fv, flatview_cb cb, void *opaque);
1147
1148 static inline bool MemoryRegionSection_eq(MemoryRegionSection *a,
1149 MemoryRegionSection *b)
1150 {
1151 return a->mr == b->mr &&
1152 a->fv == b->fv &&
1153 a->offset_within_region == b->offset_within_region &&
1154 a->offset_within_address_space == b->offset_within_address_space &&
1155 int128_eq(a->size, b->size) &&
1156 a->readonly == b->readonly &&
1157 a->nonvolatile == b->nonvolatile;
1158 }
1159
1160 /**
1161 * memory_region_section_new_copy: Copy a memory region section
1162 *
1163 * Allocate memory for a new copy, copy the memory region section, and
1164 * properly take a reference on all relevant members.
1165 *
1166 * @s: the #MemoryRegionSection to copy
1167 */
1168 MemoryRegionSection *memory_region_section_new_copy(MemoryRegionSection *s);
1169
1170 /**
1171 * memory_region_section_new_copy: Free a copied memory region section
1172 *
1173 * Free a copy of a memory section created via memory_region_section_new_copy().
1174 * properly dropping references on all relevant members.
1175 *
1176 * @s: the #MemoryRegionSection to copy
1177 */
1178 void memory_region_section_free_copy(MemoryRegionSection *s);
1179
1180 /**
1181 * memory_region_init: Initialize a memory region
1182 *
1183 * The region typically acts as a container for other memory regions. Use
1184 * memory_region_add_subregion() to add subregions.
1185 *
1186 * @mr: the #MemoryRegion to be initialized
1187 * @owner: the object that tracks the region's reference count
1188 * @name: used for debugging; not visible to the user or ABI
1189 * @size: size of the region; any subregions beyond this size will be clipped
1190 */
1191 void memory_region_init(MemoryRegion *mr,
1192 Object *owner,
1193 const char *name,
1194 uint64_t size);
1195
1196 /**
1197 * memory_region_ref: Add 1 to a memory region's reference count
1198 *
1199 * Whenever memory regions are accessed outside the BQL, they need to be
1200 * preserved against hot-unplug. MemoryRegions actually do not have their
1201 * own reference count; they piggyback on a QOM object, their "owner".
1202 * This function adds a reference to the owner.
1203 *
1204 * All MemoryRegions must have an owner if they can disappear, even if the
1205 * device they belong to operates exclusively under the BQL. This is because
1206 * the region could be returned at any time by memory_region_find, and this
1207 * is usually under guest control.
1208 *
1209 * @mr: the #MemoryRegion
1210 */
1211 void memory_region_ref(MemoryRegion *mr);
1212
1213 /**
1214 * memory_region_unref: Remove 1 to a memory region's reference count
1215 *
1216 * Whenever memory regions are accessed outside the BQL, they need to be
1217 * preserved against hot-unplug. MemoryRegions actually do not have their
1218 * own reference count; they piggyback on a QOM object, their "owner".
1219 * This function removes a reference to the owner and possibly destroys it.
1220 *
1221 * @mr: the #MemoryRegion
1222 */
1223 void memory_region_unref(MemoryRegion *mr);
1224
1225 /**
1226 * memory_region_init_io: Initialize an I/O memory region.
1227 *
1228 * Accesses into the region will cause the callbacks in @ops to be called.
1229 * if @size is nonzero, subregions will be clipped to @size.
1230 *
1231 * @mr: the #MemoryRegion to be initialized.
1232 * @owner: the object that tracks the region's reference count
1233 * @ops: a structure containing read and write callbacks to be used when
1234 * I/O is performed on the region.
1235 * @opaque: passed to the read and write callbacks of the @ops structure.
1236 * @name: used for debugging; not visible to the user or ABI
1237 * @size: size of the region.
1238 */
1239 void memory_region_init_io(MemoryRegion *mr,
1240 Object *owner,
1241 const MemoryRegionOps *ops,
1242 void *opaque,
1243 const char *name,
1244 uint64_t size);
1245
1246 /**
1247 * memory_region_init_ram_nomigrate: Initialize RAM memory region. Accesses
1248 * into the region will modify memory
1249 * directly.
1250 *
1251 * @mr: the #MemoryRegion to be initialized.
1252 * @owner: the object that tracks the region's reference count
1253 * @name: Region name, becomes part of RAMBlock name used in migration stream
1254 * must be unique within any device
1255 * @size: size of the region.
1256 * @errp: pointer to Error*, to store an error if it happens.
1257 *
1258 * Note that this function does not do anything to cause the data in the
1259 * RAM memory region to be migrated; that is the responsibility of the caller.
1260 */
1261 void memory_region_init_ram_nomigrate(MemoryRegion *mr,
1262 Object *owner,
1263 const char *name,
1264 uint64_t size,
1265 Error **errp);
1266
1267 /**
1268 * memory_region_init_ram_flags_nomigrate: Initialize RAM memory region.
1269 * Accesses into the region will
1270 * modify memory directly.
1271 *
1272 * @mr: the #MemoryRegion to be initialized.
1273 * @owner: the object that tracks the region's reference count
1274 * @name: Region name, becomes part of RAMBlock name used in migration stream
1275 * must be unique within any device
1276 * @size: size of the region.
1277 * @ram_flags: RamBlock flags. Supported flags: RAM_SHARED, RAM_NORESERVE.
1278 * @errp: pointer to Error*, to store an error if it happens.
1279 *
1280 * Note that this function does not do anything to cause the data in the
1281 * RAM memory region to be migrated; that is the responsibility of the caller.
1282 */
1283 void memory_region_init_ram_flags_nomigrate(MemoryRegion *mr,
1284 Object *owner,
1285 const char *name,
1286 uint64_t size,
1287 uint32_t ram_flags,
1288 Error **errp);
1289
1290 /**
1291 * memory_region_init_resizeable_ram: Initialize memory region with resizable
1292 * RAM. Accesses into the region will
1293 * modify memory directly. Only an initial
1294 * portion of this RAM is actually used.
1295 * Changing the size while migrating
1296 * can result in the migration being
1297 * canceled.
1298 *
1299 * @mr: the #MemoryRegion to be initialized.
1300 * @owner: the object that tracks the region's reference count
1301 * @name: Region name, becomes part of RAMBlock name used in migration stream
1302 * must be unique within any device
1303 * @size: used size of the region.
1304 * @max_size: max size of the region.
1305 * @resized: callback to notify owner about used size change.
1306 * @errp: pointer to Error*, to store an error if it happens.
1307 *
1308 * Note that this function does not do anything to cause the data in the
1309 * RAM memory region to be migrated; that is the responsibility of the caller.
1310 */
1311 void memory_region_init_resizeable_ram(MemoryRegion *mr,
1312 Object *owner,
1313 const char *name,
1314 uint64_t size,
1315 uint64_t max_size,
1316 void (*resized)(const char*,
1317 uint64_t length,
1318 void *host),
1319 Error **errp);
1320 #ifdef CONFIG_POSIX
1321
1322 /**
1323 * memory_region_init_ram_from_file: Initialize RAM memory region with a
1324 * mmap-ed backend.
1325 *
1326 * @mr: the #MemoryRegion to be initialized.
1327 * @owner: the object that tracks the region's reference count
1328 * @name: Region name, becomes part of RAMBlock name used in migration stream
1329 * must be unique within any device
1330 * @size: size of the region.
1331 * @align: alignment of the region base address; if 0, the default alignment
1332 * (getpagesize()) will be used.
1333 * @ram_flags: RamBlock flags. Supported flags: RAM_SHARED, RAM_PMEM,
1334 * RAM_NORESERVE,
1335 * @path: the path in which to allocate the RAM.
1336 * @offset: offset within the file referenced by path
1337 * @readonly: true to open @path for reading, false for read/write.
1338 * @errp: pointer to Error*, to store an error if it happens.
1339 *
1340 * Note that this function does not do anything to cause the data in the
1341 * RAM memory region to be migrated; that is the responsibility of the caller.
1342 */
1343 void memory_region_init_ram_from_file(MemoryRegion *mr,
1344 Object *owner,
1345 const char *name,
1346 uint64_t size,
1347 uint64_t align,
1348 uint32_t ram_flags,
1349 const char *path,
1350 ram_addr_t offset,
1351 bool readonly,
1352 Error **errp);
1353
1354 /**
1355 * memory_region_init_ram_from_fd: Initialize RAM memory region with a
1356 * mmap-ed backend.
1357 *
1358 * @mr: the #MemoryRegion to be initialized.
1359 * @owner: the object that tracks the region's reference count
1360 * @name: the name of the region.
1361 * @size: size of the region.
1362 * @ram_flags: RamBlock flags. Supported flags: RAM_SHARED, RAM_PMEM,
1363 * RAM_NORESERVE, RAM_PROTECTED.
1364 * @fd: the fd to mmap.
1365 * @offset: offset within the file referenced by fd
1366 * @errp: pointer to Error*, to store an error if it happens.
1367 *
1368 * Note that this function does not do anything to cause the data in the
1369 * RAM memory region to be migrated; that is the responsibility of the caller.
1370 */
1371 void memory_region_init_ram_from_fd(MemoryRegion *mr,
1372 Object *owner,
1373 const char *name,
1374 uint64_t size,
1375 uint32_t ram_flags,
1376 int fd,
1377 ram_addr_t offset,
1378 Error **errp);
1379 #endif
1380
1381 /**
1382 * memory_region_init_ram_ptr: Initialize RAM memory region from a
1383 * user-provided pointer. Accesses into the
1384 * region will modify memory directly.
1385 *
1386 * @mr: the #MemoryRegion to be initialized.
1387 * @owner: the object that tracks the region's reference count
1388 * @name: Region name, becomes part of RAMBlock name used in migration stream
1389 * must be unique within any device
1390 * @size: size of the region.
1391 * @ptr: memory to be mapped; must contain at least @size bytes.
1392 *
1393 * Note that this function does not do anything to cause the data in the
1394 * RAM memory region to be migrated; that is the responsibility of the caller.
1395 */
1396 void memory_region_init_ram_ptr(MemoryRegion *mr,
1397 Object *owner,
1398 const char *name,
1399 uint64_t size,
1400 void *ptr);
1401
1402 /**
1403 * memory_region_init_ram_device_ptr: Initialize RAM device memory region from
1404 * a user-provided pointer.
1405 *
1406 * A RAM device represents a mapping to a physical device, such as to a PCI
1407 * MMIO BAR of an vfio-pci assigned device. The memory region may be mapped
1408 * into the VM address space and access to the region will modify memory
1409 * directly. However, the memory region should not be included in a memory
1410 * dump (device may not be enabled/mapped at the time of the dump), and
1411 * operations incompatible with manipulating MMIO should be avoided. Replaces
1412 * skip_dump flag.
1413 *
1414 * @mr: the #MemoryRegion to be initialized.
1415 * @owner: the object that tracks the region's reference count
1416 * @name: the name of the region.
1417 * @size: size of the region.
1418 * @ptr: memory to be mapped; must contain at least @size bytes.
1419 *
1420 * Note that this function does not do anything to cause the data in the
1421 * RAM memory region to be migrated; that is the responsibility of the caller.
1422 * (For RAM device memory regions, migrating the contents rarely makes sense.)
1423 */
1424 void memory_region_init_ram_device_ptr(MemoryRegion *mr,
1425 Object *owner,
1426 const char *name,
1427 uint64_t size,
1428 void *ptr);
1429
1430 /**
1431 * memory_region_init_alias: Initialize a memory region that aliases all or a
1432 * part of another memory region.
1433 *
1434 * @mr: the #MemoryRegion to be initialized.
1435 * @owner: the object that tracks the region's reference count
1436 * @name: used for debugging; not visible to the user or ABI
1437 * @orig: the region to be referenced; @mr will be equivalent to
1438 * @orig between @offset and @offset + @size - 1.
1439 * @offset: start of the section in @orig to be referenced.
1440 * @size: size of the region.
1441 */
1442 void memory_region_init_alias(MemoryRegion *mr,
1443 Object *owner,
1444 const char *name,
1445 MemoryRegion *orig,
1446 hwaddr offset,
1447 uint64_t size);
1448
1449 /**
1450 * memory_region_init_rom_nomigrate: Initialize a ROM memory region.
1451 *
1452 * This has the same effect as calling memory_region_init_ram_nomigrate()
1453 * and then marking the resulting region read-only with
1454 * memory_region_set_readonly().
1455 *
1456 * Note that this function does not do anything to cause the data in the
1457 * RAM side of the memory region to be migrated; that is the responsibility
1458 * of the caller.
1459 *
1460 * @mr: the #MemoryRegion to be initialized.
1461 * @owner: the object that tracks the region's reference count
1462 * @name: Region name, becomes part of RAMBlock name used in migration stream
1463 * must be unique within any device
1464 * @size: size of the region.
1465 * @errp: pointer to Error*, to store an error if it happens.
1466 */
1467 void memory_region_init_rom_nomigrate(MemoryRegion *mr,
1468 Object *owner,
1469 const char *name,
1470 uint64_t size,
1471 Error **errp);
1472
1473 /**
1474 * memory_region_init_rom_device_nomigrate: Initialize a ROM memory region.
1475 * Writes are handled via callbacks.
1476 *
1477 * Note that this function does not do anything to cause the data in the
1478 * RAM side of the memory region to be migrated; that is the responsibility
1479 * of the caller.
1480 *
1481 * @mr: the #MemoryRegion to be initialized.
1482 * @owner: the object that tracks the region's reference count
1483 * @ops: callbacks for write access handling (must not be NULL).
1484 * @opaque: passed to the read and write callbacks of the @ops structure.
1485 * @name: Region name, becomes part of RAMBlock name used in migration stream
1486 * must be unique within any device
1487 * @size: size of the region.
1488 * @errp: pointer to Error*, to store an error if it happens.
1489 */
1490 void memory_region_init_rom_device_nomigrate(MemoryRegion *mr,
1491 Object *owner,
1492 const MemoryRegionOps *ops,
1493 void *opaque,
1494 const char *name,
1495 uint64_t size,
1496 Error **errp);
1497
1498 /**
1499 * memory_region_init_iommu: Initialize a memory region of a custom type
1500 * that translates addresses
1501 *
1502 * An IOMMU region translates addresses and forwards accesses to a target
1503 * memory region.
1504 *
1505 * The IOMMU implementation must define a subclass of TYPE_IOMMU_MEMORY_REGION.
1506 * @_iommu_mr should be a pointer to enough memory for an instance of
1507 * that subclass, @instance_size is the size of that subclass, and
1508 * @mrtypename is its name. This function will initialize @_iommu_mr as an
1509 * instance of the subclass, and its methods will then be called to handle
1510 * accesses to the memory region. See the documentation of
1511 * #IOMMUMemoryRegionClass for further details.
1512 *
1513 * @_iommu_mr: the #IOMMUMemoryRegion to be initialized
1514 * @instance_size: the IOMMUMemoryRegion subclass instance size
1515 * @mrtypename: the type name of the #IOMMUMemoryRegion
1516 * @owner: the object that tracks the region's reference count
1517 * @name: used for debugging; not visible to the user or ABI
1518 * @size: size of the region.
1519 */
1520 void memory_region_init_iommu(void *_iommu_mr,
1521 size_t instance_size,
1522 const char *mrtypename,
1523 Object *owner,
1524 const char *name,
1525 uint64_t size);
1526
1527 /**
1528 * memory_region_init_ram - Initialize RAM memory region. Accesses into the
1529 * region will modify memory directly.
1530 *
1531 * @mr: the #MemoryRegion to be initialized
1532 * @owner: the object that tracks the region's reference count (must be
1533 * TYPE_DEVICE or a subclass of TYPE_DEVICE, or NULL)
1534 * @name: name of the memory region
1535 * @size: size of the region in bytes
1536 * @errp: pointer to Error*, to store an error if it happens.
1537 *
1538 * This function allocates RAM for a board model or device, and
1539 * arranges for it to be migrated (by calling vmstate_register_ram()
1540 * if @owner is a DeviceState, or vmstate_register_ram_global() if
1541 * @owner is NULL).
1542 *
1543 * TODO: Currently we restrict @owner to being either NULL (for
1544 * global RAM regions with no owner) or devices, so that we can
1545 * give the RAM block a unique name for migration purposes.
1546 * We should lift this restriction and allow arbitrary Objects.
1547 * If you pass a non-NULL non-device @owner then we will assert.
1548 */
1549 void memory_region_init_ram(MemoryRegion *mr,
1550 Object *owner,
1551 const char *name,
1552 uint64_t size,
1553 Error **errp);
1554
1555 /**
1556 * memory_region_init_rom: Initialize a ROM memory region.
1557 *
1558 * This has the same effect as calling memory_region_init_ram()
1559 * and then marking the resulting region read-only with
1560 * memory_region_set_readonly(). This includes arranging for the
1561 * contents to be migrated.
1562 *
1563 * TODO: Currently we restrict @owner to being either NULL (for
1564 * global RAM regions with no owner) or devices, so that we can
1565 * give the RAM block a unique name for migration purposes.
1566 * We should lift this restriction and allow arbitrary Objects.
1567 * If you pass a non-NULL non-device @owner then we will assert.
1568 *
1569 * @mr: the #MemoryRegion to be initialized.
1570 * @owner: the object that tracks the region's reference count
1571 * @name: Region name, becomes part of RAMBlock name used in migration stream
1572 * must be unique within any device
1573 * @size: size of the region.
1574 * @errp: pointer to Error*, to store an error if it happens.
1575 */
1576 void memory_region_init_rom(MemoryRegion *mr,
1577 Object *owner,
1578 const char *name,
1579 uint64_t size,
1580 Error **errp);
1581
1582 /**
1583 * memory_region_init_rom_device: Initialize a ROM memory region.
1584 * Writes are handled via callbacks.
1585 *
1586 * This function initializes a memory region backed by RAM for reads
1587 * and callbacks for writes, and arranges for the RAM backing to
1588 * be migrated (by calling vmstate_register_ram()
1589 * if @owner is a DeviceState, or vmstate_register_ram_global() if
1590 * @owner is NULL).
1591 *
1592 * TODO: Currently we restrict @owner to being either NULL (for
1593 * global RAM regions with no owner) or devices, so that we can
1594 * give the RAM block a unique name for migration purposes.
1595 * We should lift this restriction and allow arbitrary Objects.
1596 * If you pass a non-NULL non-device @owner then we will assert.
1597 *
1598 * @mr: the #MemoryRegion to be initialized.
1599 * @owner: the object that tracks the region's reference count
1600 * @ops: callbacks for write access handling (must not be NULL).
1601 * @opaque: passed to the read and write callbacks of the @ops structure.
1602 * @name: Region name, becomes part of RAMBlock name used in migration stream
1603 * must be unique within any device
1604 * @size: size of the region.
1605 * @errp: pointer to Error*, to store an error if it happens.
1606 */
1607 void memory_region_init_rom_device(MemoryRegion *mr,
1608 Object *owner,
1609 const MemoryRegionOps *ops,
1610 void *opaque,
1611 const char *name,
1612 uint64_t size,
1613 Error **errp);
1614
1615
1616 /**
1617 * memory_region_owner: get a memory region's owner.
1618 *
1619 * @mr: the memory region being queried.
1620 */
1621 Object *memory_region_owner(MemoryRegion *mr);
1622
1623 /**
1624 * memory_region_size: get a memory region's size.
1625 *
1626 * @mr: the memory region being queried.
1627 */
1628 uint64_t memory_region_size(MemoryRegion *mr);
1629
1630 /**
1631 * memory_region_is_ram: check whether a memory region is random access
1632 *
1633 * Returns %true if a memory region is random access.
1634 *
1635 * @mr: the memory region being queried
1636 */
1637 static inline bool memory_region_is_ram(MemoryRegion *mr)
1638 {
1639 return mr->ram;
1640 }
1641
1642 /**
1643 * memory_region_is_ram_device: check whether a memory region is a ram device
1644 *
1645 * Returns %true if a memory region is a device backed ram region
1646 *
1647 * @mr: the memory region being queried
1648 */
1649 bool memory_region_is_ram_device(MemoryRegion *mr);
1650
1651 /**
1652 * memory_region_is_romd: check whether a memory region is in ROMD mode
1653 *
1654 * Returns %true if a memory region is a ROM device and currently set to allow
1655 * direct reads.
1656 *
1657 * @mr: the memory region being queried
1658 */
1659 static inline bool memory_region_is_romd(MemoryRegion *mr)
1660 {
1661 return mr->rom_device && mr->romd_mode;
1662 }
1663
1664 /**
1665 * memory_region_is_protected: check whether a memory region is protected
1666 *
1667 * Returns %true if a memory region is protected RAM and cannot be accessed
1668 * via standard mechanisms, e.g. DMA.
1669 *
1670 * @mr: the memory region being queried
1671 */
1672 bool memory_region_is_protected(MemoryRegion *mr);
1673
1674 /**
1675 * memory_region_get_iommu: check whether a memory region is an iommu
1676 *
1677 * Returns pointer to IOMMUMemoryRegion if a memory region is an iommu,
1678 * otherwise NULL.
1679 *
1680 * @mr: the memory region being queried
1681 */
1682 static inline IOMMUMemoryRegion *memory_region_get_iommu(MemoryRegion *mr)
1683 {
1684 if (mr->alias) {
1685 return memory_region_get_iommu(mr->alias);
1686 }
1687 if (mr->is_iommu) {
1688 return (IOMMUMemoryRegion *) mr;
1689 }
1690 return NULL;
1691 }
1692
1693 /**
1694 * memory_region_get_iommu_class_nocheck: returns iommu memory region class
1695 * if an iommu or NULL if not
1696 *
1697 * Returns pointer to IOMMUMemoryRegionClass if a memory region is an iommu,
1698 * otherwise NULL. This is fast path avoiding QOM checking, use with caution.
1699 *
1700 * @iommu_mr: the memory region being queried
1701 */
1702 static inline IOMMUMemoryRegionClass *memory_region_get_iommu_class_nocheck(
1703 IOMMUMemoryRegion *iommu_mr)
1704 {
1705 return (IOMMUMemoryRegionClass *) (((Object *)iommu_mr)->class);
1706 }
1707
1708 #define memory_region_is_iommu(mr) (memory_region_get_iommu(mr) != NULL)
1709
1710 /**
1711 * memory_region_iommu_get_min_page_size: get minimum supported page size
1712 * for an iommu
1713 *
1714 * Returns minimum supported page size for an iommu.
1715 *
1716 * @iommu_mr: the memory region being queried
1717 */
1718 uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion *iommu_mr);
1719
1720 /**
1721 * memory_region_notify_iommu: notify a change in an IOMMU translation entry.
1722 *
1723 * Note: for any IOMMU implementation, an in-place mapping change
1724 * should be notified with an UNMAP followed by a MAP.
1725 *
1726 * @iommu_mr: the memory region that was changed
1727 * @iommu_idx: the IOMMU index for the translation table which has changed
1728 * @event: TLB event with the new entry in the IOMMU translation table.
1729 * The entry replaces all old entries for the same virtual I/O address
1730 * range.
1731 */
1732 void memory_region_notify_iommu(IOMMUMemoryRegion *iommu_mr,
1733 int iommu_idx,
1734 IOMMUTLBEvent event);
1735
1736 /**
1737 * memory_region_notify_iommu_one: notify a change in an IOMMU translation
1738 * entry to a single notifier
1739 *
1740 * This works just like memory_region_notify_iommu(), but it only
1741 * notifies a specific notifier, not all of them.
1742 *
1743 * @notifier: the notifier to be notified
1744 * @event: TLB event with the new entry in the IOMMU translation table.
1745 * The entry replaces all old entries for the same virtual I/O address
1746 * range.
1747 */
1748 void memory_region_notify_iommu_one(IOMMUNotifier *notifier,
1749 IOMMUTLBEvent *event);
1750
1751 /**
1752 * memory_region_unmap_iommu_notifier_range: notify a unmap for an IOMMU
1753 * translation that covers the
1754 * range of a notifier
1755 *
1756 * @notifier: the notifier to be notified
1757 */
1758 void memory_region_unmap_iommu_notifier_range(IOMMUNotifier *notifier);
1759
1760
1761 /**
1762 * memory_region_register_iommu_notifier: register a notifier for changes to
1763 * IOMMU translation entries.
1764 *
1765 * Returns 0 on success, or a negative errno otherwise. In particular,
1766 * -EINVAL indicates that at least one of the attributes of the notifier
1767 * is not supported (flag/range) by the IOMMU memory region. In case of error
1768 * the error object must be created.
1769 *
1770 * @mr: the memory region to observe
1771 * @n: the IOMMUNotifier to be added; the notify callback receives a
1772 * pointer to an #IOMMUTLBEntry as the opaque value; the pointer
1773 * ceases to be valid on exit from the notifier.
1774 * @errp: pointer to Error*, to store an error if it happens.
1775 */
1776 int memory_region_register_iommu_notifier(MemoryRegion *mr,
1777 IOMMUNotifier *n, Error **errp);
1778
1779 /**
1780 * memory_region_iommu_replay: replay existing IOMMU translations to
1781 * a notifier with the minimum page granularity returned by
1782 * mr->iommu_ops->get_page_size().
1783 *
1784 * Note: this is not related to record-and-replay functionality.
1785 *
1786 * @iommu_mr: the memory region to observe
1787 * @n: the notifier to which to replay iommu mappings
1788 */
1789 void memory_region_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n);
1790
1791 /**
1792 * memory_region_unregister_iommu_notifier: unregister a notifier for
1793 * changes to IOMMU translation entries.
1794 *
1795 * @mr: the memory region which was observed and for which notity_stopped()
1796 * needs to be called
1797 * @n: the notifier to be removed.
1798 */
1799 void memory_region_unregister_iommu_notifier(MemoryRegion *mr,
1800 IOMMUNotifier *n);
1801
1802 /**
1803 * memory_region_iommu_get_attr: return an IOMMU attr if get_attr() is
1804 * defined on the IOMMU.
1805 *
1806 * Returns 0 on success, or a negative errno otherwise. In particular,
1807 * -EINVAL indicates that the IOMMU does not support the requested
1808 * attribute.
1809 *
1810 * @iommu_mr: the memory region
1811 * @attr: the requested attribute
1812 * @data: a pointer to the requested attribute data
1813 */
1814 int memory_region_iommu_get_attr(IOMMUMemoryRegion *iommu_mr,
1815 enum IOMMUMemoryRegionAttr attr,
1816 void *data);
1817
1818 /**
1819 * memory_region_iommu_attrs_to_index: return the IOMMU index to
1820 * use for translations with the given memory transaction attributes.
1821 *
1822 * @iommu_mr: the memory region
1823 * @attrs: the memory transaction attributes
1824 */
1825 int memory_region_iommu_attrs_to_index(IOMMUMemoryRegion *iommu_mr,
1826 MemTxAttrs attrs);
1827
1828 /**
1829 * memory_region_iommu_num_indexes: return the total number of IOMMU
1830 * indexes that this IOMMU supports.
1831 *
1832 * @iommu_mr: the memory region
1833 */
1834 int memory_region_iommu_num_indexes(IOMMUMemoryRegion *iommu_mr);
1835
1836 /**
1837 * memory_region_iommu_set_page_size_mask: set the supported page
1838 * sizes for a given IOMMU memory region
1839 *
1840 * @iommu_mr: IOMMU memory region
1841 * @page_size_mask: supported page size mask
1842 * @errp: pointer to Error*, to store an error if it happens.
1843 */
1844 int memory_region_iommu_set_page_size_mask(IOMMUMemoryRegion *iommu_mr,
1845 uint64_t page_size_mask,
1846 Error **errp);
1847
1848 /**
1849 * memory_region_name: get a memory region's name
1850 *
1851 * Returns the string that was used to initialize the memory region.
1852 *
1853 * @mr: the memory region being queried
1854 */
1855 const char *memory_region_name(const MemoryRegion *mr);
1856
1857 /**
1858 * memory_region_is_logging: return whether a memory region is logging writes
1859 *
1860 * Returns %true if the memory region is logging writes for the given client
1861 *
1862 * @mr: the memory region being queried
1863 * @client: the client being queried
1864 */
1865 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client);
1866
1867 /**
1868 * memory_region_get_dirty_log_mask: return the clients for which a
1869 * memory region is logging writes.
1870 *
1871 * Returns a bitmap of clients, in which the DIRTY_MEMORY_* constants
1872 * are the bit indices.
1873 *
1874 * @mr: the memory region being queried
1875 */
1876 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr);
1877
1878 /**
1879 * memory_region_is_rom: check whether a memory region is ROM
1880 *
1881 * Returns %true if a memory region is read-only memory.
1882 *
1883 * @mr: the memory region being queried
1884 */
1885 static inline bool memory_region_is_rom(MemoryRegion *mr)
1886 {
1887 return mr->ram && mr->readonly;
1888 }
1889
1890 /**
1891 * memory_region_is_nonvolatile: check whether a memory region is non-volatile
1892 *
1893 * Returns %true is a memory region is non-volatile memory.
1894 *
1895 * @mr: the memory region being queried
1896 */
1897 static inline bool memory_region_is_nonvolatile(MemoryRegion *mr)
1898 {
1899 return mr->nonvolatile;
1900 }
1901
1902 /**
1903 * memory_region_get_fd: Get a file descriptor backing a RAM memory region.
1904 *
1905 * Returns a file descriptor backing a file-based RAM memory region,
1906 * or -1 if the region is not a file-based RAM memory region.
1907 *
1908 * @mr: the RAM or alias memory region being queried.
1909 */
1910 int memory_region_get_fd(MemoryRegion *mr);
1911
1912 /**
1913 * memory_region_from_host: Convert a pointer into a RAM memory region
1914 * and an offset within it.
1915 *
1916 * Given a host pointer inside a RAM memory region (created with
1917 * memory_region_init_ram() or memory_region_init_ram_ptr()), return
1918 * the MemoryRegion and the offset within it.
1919 *
1920 * Use with care; by the time this function returns, the returned pointer is
1921 * not protected by RCU anymore. If the caller is not within an RCU critical
1922 * section and does not hold the iothread lock, it must have other means of
1923 * protecting the pointer, such as a reference to the region that includes
1924 * the incoming ram_addr_t.
1925 *
1926 * @ptr: the host pointer to be converted
1927 * @offset: the offset within memory region
1928 */
1929 MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset);
1930
1931 /**
1932 * memory_region_get_ram_ptr: Get a pointer into a RAM memory region.
1933 *
1934 * Returns a host pointer to a RAM memory region (created with
1935 * memory_region_init_ram() or memory_region_init_ram_ptr()).
1936 *
1937 * Use with care; by the time this function returns, the returned pointer is
1938 * not protected by RCU anymore. If the caller is not within an RCU critical
1939 * section and does not hold the iothread lock, it must have other means of
1940 * protecting the pointer, such as a reference to the region that includes
1941 * the incoming ram_addr_t.
1942 *
1943 * @mr: the memory region being queried.
1944 */
1945 void *memory_region_get_ram_ptr(MemoryRegion *mr);
1946
1947 /* memory_region_ram_resize: Resize a RAM region.
1948 *
1949 * Resizing RAM while migrating can result in the migration being canceled.
1950 * Care has to be taken if the guest might have already detected the memory.
1951 *
1952 * @mr: a memory region created with @memory_region_init_resizeable_ram.
1953 * @newsize: the new size the region
1954 * @errp: pointer to Error*, to store an error if it happens.
1955 */
1956 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize,
1957 Error **errp);
1958
1959 /**
1960 * memory_region_msync: Synchronize selected address range of
1961 * a memory mapped region
1962 *
1963 * @mr: the memory region to be msync
1964 * @addr: the initial address of the range to be sync
1965 * @size: the size of the range to be sync
1966 */
1967 void memory_region_msync(MemoryRegion *mr, hwaddr addr, hwaddr size);
1968
1969 /**
1970 * memory_region_writeback: Trigger cache writeback for
1971 * selected address range
1972 *
1973 * @mr: the memory region to be updated
1974 * @addr: the initial address of the range to be written back
1975 * @size: the size of the range to be written back
1976 */
1977 void memory_region_writeback(MemoryRegion *mr, hwaddr addr, hwaddr size);
1978
1979 /**
1980 * memory_region_set_log: Turn dirty logging on or off for a region.
1981 *
1982 * Turns dirty logging on or off for a specified client (display, migration).
1983 * Only meaningful for RAM regions.
1984 *
1985 * @mr: the memory region being updated.
1986 * @log: whether dirty logging is to be enabled or disabled.
1987 * @client: the user of the logging information; %DIRTY_MEMORY_VGA only.
1988 */
1989 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client);
1990
1991 /**
1992 * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region.
1993 *
1994 * Marks a range of bytes as dirty, after it has been dirtied outside
1995 * guest code.
1996 *
1997 * @mr: the memory region being dirtied.
1998 * @addr: the address (relative to the start of the region) being dirtied.
1999 * @size: size of the range being dirtied.
2000 */
2001 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
2002 hwaddr size);
2003
2004 /**
2005 * memory_region_clear_dirty_bitmap - clear dirty bitmap for memory range
2006 *
2007 * This function is called when the caller wants to clear the remote
2008 * dirty bitmap of a memory range within the memory region. This can
2009 * be used by e.g. KVM to manually clear dirty log when
2010 * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT is declared support by the host
2011 * kernel.
2012 *
2013 * @mr: the memory region to clear the dirty log upon
2014 * @start: start address offset within the memory region
2015 * @len: length of the memory region to clear dirty bitmap
2016 */
2017 void memory_region_clear_dirty_bitmap(MemoryRegion *mr, hwaddr start,
2018 hwaddr len);
2019
2020 /**
2021 * memory_region_snapshot_and_clear_dirty: Get a snapshot of the dirty
2022 * bitmap and clear it.
2023 *
2024 * Creates a snapshot of the dirty bitmap, clears the dirty bitmap and
2025 * returns the snapshot. The snapshot can then be used to query dirty
2026 * status, using memory_region_snapshot_get_dirty. Snapshotting allows
2027 * querying the same page multiple times, which is especially useful for
2028 * display updates where the scanlines often are not page aligned.
2029 *
2030 * The dirty bitmap region which gets copied into the snapshot (and
2031 * cleared afterwards) can be larger than requested. The boundaries
2032 * are rounded up/down so complete bitmap longs (covering 64 pages on
2033 * 64bit hosts) can be copied over into the bitmap snapshot. Which
2034 * isn't a problem for display updates as the extra pages are outside
2035 * the visible area, and in case the visible area changes a full
2036 * display redraw is due anyway. Should other use cases for this
2037 * function emerge we might have to revisit this implementation
2038 * detail.
2039 *
2040 * Use g_free to release DirtyBitmapSnapshot.
2041 *
2042 * @mr: the memory region being queried.
2043 * @addr: the address (relative to the start of the region) being queried.
2044 * @size: the size of the range being queried.
2045 * @client: the user of the logging information; typically %DIRTY_MEMORY_VGA.
2046 */
2047 DirtyBitmapSnapshot *memory_region_snapshot_and_clear_dirty(MemoryRegion *mr,
2048 hwaddr addr,
2049 hwaddr size,
2050 unsigned client);
2051
2052 /**
2053 * memory_region_snapshot_get_dirty: Check whether a range of bytes is dirty
2054 * in the specified dirty bitmap snapshot.
2055 *
2056 * @mr: the memory region being queried.
2057 * @snap: the dirty bitmap snapshot
2058 * @addr: the address (relative to the start of the region) being queried.
2059 * @size: the size of the range being queried.
2060 */
2061 bool memory_region_snapshot_get_dirty(MemoryRegion *mr,
2062 DirtyBitmapSnapshot *snap,
2063 hwaddr addr, hwaddr size);
2064
2065 /**
2066 * memory_region_reset_dirty: Mark a range of pages as clean, for a specified
2067 * client.
2068 *
2069 * Marks a range of pages as no longer dirty.
2070 *
2071 * @mr: the region being updated.
2072 * @addr: the start of the subrange being cleaned.
2073 * @size: the size of the subrange being cleaned.
2074 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
2075 * %DIRTY_MEMORY_VGA.
2076 */
2077 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
2078 hwaddr size, unsigned client);
2079
2080 /**
2081 * memory_region_flush_rom_device: Mark a range of pages dirty and invalidate
2082 * TBs (for self-modifying code).
2083 *
2084 * The MemoryRegionOps->write() callback of a ROM device must use this function
2085 * to mark byte ranges that have been modified internally, such as by directly
2086 * accessing the memory returned by memory_region_get_ram_ptr().
2087 *
2088 * This function marks the range dirty and invalidates TBs so that TCG can
2089 * detect self-modifying code.
2090 *
2091 * @mr: the region being flushed.
2092 * @addr: the start, relative to the start of the region, of the range being
2093 * flushed.
2094 * @size: the size, in bytes, of the range being flushed.
2095 */
2096 void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size);
2097
2098 /**
2099 * memory_region_set_readonly: Turn a memory region read-only (or read-write)
2100 *
2101 * Allows a memory region to be marked as read-only (turning it into a ROM).
2102 * only useful on RAM regions.
2103 *
2104 * @mr: the region being updated.
2105 * @readonly: whether rhe region is to be ROM or RAM.
2106 */
2107 void memory_region_set_readonly(MemoryRegion *mr, bool readonly);
2108
2109 /**
2110 * memory_region_set_nonvolatile: Turn a memory region non-volatile
2111 *
2112 * Allows a memory region to be marked as non-volatile.
2113 * only useful on RAM regions.
2114 *
2115 * @mr: the region being updated.
2116 * @nonvolatile: whether rhe region is to be non-volatile.
2117 */
2118 void memory_region_set_nonvolatile(MemoryRegion *mr, bool nonvolatile);
2119
2120 /**
2121 * memory_region_rom_device_set_romd: enable/disable ROMD mode
2122 *
2123 * Allows a ROM device (initialized with memory_region_init_rom_device() to
2124 * set to ROMD mode (default) or MMIO mode. When it is in ROMD mode, the
2125 * device is mapped to guest memory and satisfies read access directly.
2126 * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function.
2127 * Writes are always handled by the #MemoryRegion.write function.
2128 *
2129 * @mr: the memory region to be updated
2130 * @romd_mode: %true to put the region into ROMD mode
2131 */
2132 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode);
2133
2134 /**
2135 * memory_region_set_coalescing: Enable memory coalescing for the region.
2136 *
2137 * Enabled writes to a region to be queued for later processing. MMIO ->write
2138 * callbacks may be delayed until a non-coalesced MMIO is issued.
2139 * Only useful for IO regions. Roughly similar to write-combining hardware.
2140 *
2141 * @mr: the memory region to be write coalesced
2142 */
2143 void memory_region_set_coalescing(MemoryRegion *mr);
2144
2145 /**
2146 * memory_region_add_coalescing: Enable memory coalescing for a sub-range of
2147 * a region.
2148 *
2149 * Like memory_region_set_coalescing(), but works on a sub-range of a region.
2150 * Multiple calls can be issued coalesced disjoint ranges.
2151 *
2152 * @mr: the memory region to be updated.
2153 * @offset: the start of the range within the region to be coalesced.
2154 * @size: the size of the subrange to be coalesced.
2155 */
2156 void memory_region_add_coalescing(MemoryRegion *mr,
2157 hwaddr offset,
2158 uint64_t size);
2159
2160 /**
2161 * memory_region_clear_coalescing: Disable MMIO coalescing for the region.
2162 *
2163 * Disables any coalescing caused by memory_region_set_coalescing() or
2164 * memory_region_add_coalescing(). Roughly equivalent to uncacheble memory
2165 * hardware.
2166 *
2167 * @mr: the memory region to be updated.
2168 */
2169 void memory_region_clear_coalescing(MemoryRegion *mr);
2170
2171 /**
2172 * memory_region_set_flush_coalesced: Enforce memory coalescing flush before
2173 * accesses.
2174 *
2175 * Ensure that pending coalesced MMIO request are flushed before the memory
2176 * region is accessed. This property is automatically enabled for all regions
2177 * passed to memory_region_set_coalescing() and memory_region_add_coalescing().
2178 *
2179 * @mr: the memory region to be updated.
2180 */
2181 void memory_region_set_flush_coalesced(MemoryRegion *mr);
2182
2183 /**
2184 * memory_region_clear_flush_coalesced: Disable memory coalescing flush before
2185 * accesses.
2186 *
2187 * Clear the automatic coalesced MMIO flushing enabled via
2188 * memory_region_set_flush_coalesced. Note that this service has no effect on
2189 * memory regions that have MMIO coalescing enabled for themselves. For them,
2190 * automatic flushing will stop once coalescing is disabled.
2191 *
2192 * @mr: the memory region to be updated.
2193 */
2194 void memory_region_clear_flush_coalesced(MemoryRegion *mr);
2195
2196 /**
2197 * memory_region_add_eventfd: Request an eventfd to be triggered when a word
2198 * is written to a location.
2199 *
2200 * Marks a word in an IO region (initialized with memory_region_init_io())
2201 * as a trigger for an eventfd event. The I/O callback will not be called.
2202 * The caller must be prepared to handle failure (that is, take the required
2203 * action if the callback _is_ called).
2204 *
2205 * @mr: the memory region being updated.
2206 * @addr: the address within @mr that is to be monitored
2207 * @size: the size of the access to trigger the eventfd
2208 * @match_data: whether to match against @data, instead of just @addr
2209 * @data: the data to match against the guest write
2210 * @e: event notifier to be triggered when @addr, @size, and @data all match.
2211 **/
2212 void memory_region_add_eventfd(MemoryRegion *mr,
2213 hwaddr addr,
2214 unsigned size,
2215 bool match_data,
2216 uint64_t data,
2217 EventNotifier *e);
2218
2219 /**
2220 * memory_region_del_eventfd: Cancel an eventfd.
2221 *
2222 * Cancels an eventfd trigger requested by a previous
2223 * memory_region_add_eventfd() call.
2224 *
2225 * @mr: the memory region being updated.
2226 * @addr: the address within @mr that is to be monitored
2227 * @size: the size of the access to trigger the eventfd
2228 * @match_data: whether to match against @data, instead of just @addr
2229 * @data: the data to match against the guest write
2230 * @e: event notifier to be triggered when @addr, @size, and @data all match.
2231 */
2232 void memory_region_del_eventfd(MemoryRegion *mr,
2233 hwaddr addr,
2234 unsigned size,
2235 bool match_data,
2236 uint64_t data,
2237 EventNotifier *e);
2238
2239 /**
2240 * memory_region_add_subregion: Add a subregion to a container.
2241 *
2242 * Adds a subregion at @offset. The subregion may not overlap with other
2243 * subregions (except for those explicitly marked as overlapping). A region
2244 * may only be added once as a subregion (unless removed with
2245 * memory_region_del_subregion()); use memory_region_init_alias() if you
2246 * want a region to be a subregion in multiple locations.
2247 *
2248 * @mr: the region to contain the new subregion; must be a container
2249 * initialized with memory_region_init().
2250 * @offset: the offset relative to @mr where @subregion is added.
2251 * @subregion: the subregion to be added.
2252 */
2253 void memory_region_add_subregion(MemoryRegion *mr,
2254 hwaddr offset,
2255 MemoryRegion *subregion);
2256 /**
2257 * memory_region_add_subregion_overlap: Add a subregion to a container
2258 * with overlap.
2259 *
2260 * Adds a subregion at @offset. The subregion may overlap with other
2261 * subregions. Conflicts are resolved by having a higher @priority hide a
2262 * lower @priority. Subregions without priority are taken as @priority 0.
2263 * A region may only be added once as a subregion (unless removed with
2264 * memory_region_del_subregion()); use memory_region_init_alias() if you
2265 * want a region to be a subregion in multiple locations.
2266 *
2267 * @mr: the region to contain the new subregion; must be a container
2268 * initialized with memory_region_init().
2269 * @offset: the offset relative to @mr where @subregion is added.
2270 * @subregion: the subregion to be added.
2271 * @priority: used for resolving overlaps; highest priority wins.
2272 */
2273 void memory_region_add_subregion_overlap(MemoryRegion *mr,
2274 hwaddr offset,
2275 MemoryRegion *subregion,
2276 int priority);
2277
2278 /**
2279 * memory_region_get_ram_addr: Get the ram address associated with a memory
2280 * region
2281 *
2282 * @mr: the region to be queried
2283 */
2284 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr);
2285
2286 uint64_t memory_region_get_alignment(const MemoryRegion *mr);
2287 /**
2288 * memory_region_del_subregion: Remove a subregion.
2289 *
2290 * Removes a subregion from its container.
2291 *
2292 * @mr: the container to be updated.
2293 * @subregion: the region being removed; must be a current subregion of @mr.
2294 */
2295 void memory_region_del_subregion(MemoryRegion *mr,
2296 MemoryRegion *subregion);
2297
2298 /*
2299 * memory_region_set_enabled: dynamically enable or disable a region
2300 *
2301 * Enables or disables a memory region. A disabled memory region
2302 * ignores all accesses to itself and its subregions. It does not
2303 * obscure sibling subregions with lower priority - it simply behaves as
2304 * if it was removed from the hierarchy.
2305 *
2306 * Regions default to being enabled.
2307 *
2308 * @mr: the region to be updated
2309 * @enabled: whether to enable or disable the region
2310 */
2311 void memory_region_set_enabled(MemoryRegion *mr, bool enabled);
2312
2313 /*
2314 * memory_region_set_address: dynamically update the address of a region
2315 *
2316 * Dynamically updates the address of a region, relative to its container.
2317 * May be used on regions are currently part of a memory hierarchy.
2318 *
2319 * @mr: the region to be updated
2320 * @addr: new address, relative to container region
2321 */
2322 void memory_region_set_address(MemoryRegion *mr, hwaddr addr);
2323
2324 /*
2325 * memory_region_set_size: dynamically update the size of a region.
2326 *
2327 * Dynamically updates the size of a region.
2328 *
2329 * @mr: the region to be updated
2330 * @size: used size of the region.
2331 */
2332 void memory_region_set_size(MemoryRegion *mr, uint64_t size);
2333
2334 /*
2335 * memory_region_set_alias_offset: dynamically update a memory alias's offset
2336 *
2337 * Dynamically updates the offset into the target region that an alias points
2338 * to, as if the fourth argument to memory_region_init_alias() has changed.
2339 *
2340 * @mr: the #MemoryRegion to be updated; should be an alias.
2341 * @offset: the new offset into the target memory region
2342 */
2343 void memory_region_set_alias_offset(MemoryRegion *mr,
2344 hwaddr offset);
2345
2346 /**
2347 * memory_region_present: checks if an address relative to a @container
2348 * translates into #MemoryRegion within @container
2349 *
2350 * Answer whether a #MemoryRegion within @container covers the address
2351 * @addr.
2352 *
2353 * @container: a #MemoryRegion within which @addr is a relative address
2354 * @addr: the area within @container to be searched
2355 */
2356 bool memory_region_present(MemoryRegion *container, hwaddr addr);
2357
2358 /**
2359 * memory_region_is_mapped: returns true if #MemoryRegion is mapped
2360 * into another memory region, which does not necessarily imply that it is
2361 * mapped into an address space.
2362 *
2363 * @mr: a #MemoryRegion which should be checked if it's mapped
2364 */
2365 bool memory_region_is_mapped(MemoryRegion *mr);
2366
2367 /**
2368 * memory_region_get_ram_discard_manager: get the #RamDiscardManager for a
2369 * #MemoryRegion
2370 *
2371 * The #RamDiscardManager cannot change while a memory region is mapped.
2372 *
2373 * @mr: the #MemoryRegion
2374 */
2375 RamDiscardManager *memory_region_get_ram_discard_manager(MemoryRegion *mr);
2376
2377 /**
2378 * memory_region_has_ram_discard_manager: check whether a #MemoryRegion has a
2379 * #RamDiscardManager assigned
2380 *
2381 * @mr: the #MemoryRegion
2382 */
2383 static inline bool memory_region_has_ram_discard_manager(MemoryRegion *mr)
2384 {
2385 return !!memory_region_get_ram_discard_manager(mr);
2386 }
2387
2388 /**
2389 * memory_region_set_ram_discard_manager: set the #RamDiscardManager for a
2390 * #MemoryRegion
2391 *
2392 * This function must not be called for a mapped #MemoryRegion, a #MemoryRegion
2393 * that does not cover RAM, or a #MemoryRegion that already has a
2394 * #RamDiscardManager assigned.
2395 *
2396 * @mr: the #MemoryRegion
2397 * @rdm: #RamDiscardManager to set
2398 */
2399 void memory_region_set_ram_discard_manager(MemoryRegion *mr,
2400 RamDiscardManager *rdm);
2401
2402 /**
2403 * memory_region_find: translate an address/size relative to a
2404 * MemoryRegion into a #MemoryRegionSection.
2405 *
2406 * Locates the first #MemoryRegion within @mr that overlaps the range
2407 * given by @addr and @size.
2408 *
2409 * Returns a #MemoryRegionSection that describes a contiguous overlap.
2410 * It will have the following characteristics:
2411 * - @size = 0 iff no overlap was found
2412 * - @mr is non-%NULL iff an overlap was found
2413 *
2414 * Remember that in the return value the @offset_within_region is
2415 * relative to the returned region (in the .@mr field), not to the
2416 * @mr argument.
2417 *
2418 * Similarly, the .@offset_within_address_space is relative to the
2419 * address space that contains both regions, the passed and the
2420 * returned one. However, in the special case where the @mr argument
2421 * has no container (and thus is the root of the address space), the
2422 * following will hold:
2423 * - @offset_within_address_space >= @addr
2424 * - @offset_within_address_space + .@size <= @addr + @size
2425 *
2426 * @mr: a MemoryRegion within which @addr is a relative address
2427 * @addr: start of the area within @as to be searched
2428 * @size: size of the area to be searched
2429 */
2430 MemoryRegionSection memory_region_find(MemoryRegion *mr,
2431 hwaddr addr, uint64_t size);
2432
2433 /**
2434 * memory_global_dirty_log_sync: synchronize the dirty log for all memory
2435 *
2436 * Synchronizes the dirty page log for all address spaces.
2437 *
2438 * @last_stage: whether this is the last stage of live migration
2439 */
2440 void memory_global_dirty_log_sync(bool last_stage);
2441
2442 /**
2443 * memory_global_dirty_log_sync: synchronize the dirty log for all memory
2444 *
2445 * Synchronizes the vCPUs with a thread that is reading the dirty bitmap.
2446 * This function must be called after the dirty log bitmap is cleared, and
2447 * before dirty guest memory pages are read. If you are using
2448 * #DirtyBitmapSnapshot, memory_region_snapshot_and_clear_dirty() takes
2449 * care of doing this.
2450 */
2451 void memory_global_after_dirty_log_sync(void);
2452
2453 /**
2454 * memory_region_transaction_begin: Start a transaction.
2455 *
2456 * During a transaction, changes will be accumulated and made visible
2457 * only when the transaction ends (is committed).
2458 */
2459 void memory_region_transaction_begin(void);
2460
2461 /**
2462 * memory_region_transaction_commit: Commit a transaction and make changes
2463 * visible to the guest.
2464 */
2465 void memory_region_transaction_commit(void);
2466
2467 /**
2468 * memory_listener_register: register callbacks to be called when memory
2469 * sections are mapped or unmapped into an address
2470 * space
2471 *
2472 * @listener: an object containing the callbacks to be called
2473 * @filter: if non-%NULL, only regions in this address space will be observed
2474 */
2475 void memory_listener_register(MemoryListener *listener, AddressSpace *filter);
2476
2477 /**
2478 * memory_listener_unregister: undo the effect of memory_listener_register()
2479 *
2480 * @listener: an object containing the callbacks to be removed
2481 */
2482 void memory_listener_unregister(MemoryListener *listener);
2483
2484 /**
2485 * memory_global_dirty_log_start: begin dirty logging for all regions
2486 *
2487 * @flags: purpose of starting dirty log, migration or dirty rate
2488 */
2489 void memory_global_dirty_log_start(unsigned int flags);
2490
2491 /**
2492 * memory_global_dirty_log_stop: end dirty logging for all regions
2493 *
2494 * @flags: purpose of stopping dirty log, migration or dirty rate
2495 */
2496 void memory_global_dirty_log_stop(unsigned int flags);
2497
2498 void mtree_info(bool flatview, bool dispatch_tree, bool owner, bool disabled);
2499
2500 bool memory_region_access_valid(MemoryRegion *mr, hwaddr addr,
2501 unsigned size, bool is_write,
2502 MemTxAttrs attrs);
2503
2504 /**
2505 * memory_region_dispatch_read: perform a read directly to the specified
2506 * MemoryRegion.
2507 *
2508 * @mr: #MemoryRegion to access
2509 * @addr: address within that region
2510 * @pval: pointer to uint64_t which the data is written to
2511 * @op: size, sign, and endianness of the memory operation
2512 * @attrs: memory transaction attributes to use for the access
2513 */
2514 MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
2515 hwaddr addr,
2516 uint64_t *pval,
2517 MemOp op,
2518 MemTxAttrs attrs);
2519 /**
2520 * memory_region_dispatch_write: perform a write directly to the specified
2521 * MemoryRegion.
2522 *
2523 * @mr: #MemoryRegion to access
2524 * @addr: address within that region
2525 * @data: data to write
2526 * @op: size, sign, and endianness of the memory operation
2527 * @attrs: memory transaction attributes to use for the access
2528 */
2529 MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
2530 hwaddr addr,
2531 uint64_t data,
2532 MemOp op,
2533 MemTxAttrs attrs);
2534
2535 /**
2536 * address_space_init: initializes an address space
2537 *
2538 * @as: an uninitialized #AddressSpace
2539 * @root: a #MemoryRegion that routes addresses for the address space
2540 * @name: an address space name. The name is only used for debugging
2541 * output.
2542 */
2543 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name);
2544
2545 /**
2546 * address_space_destroy: destroy an address space
2547 *
2548 * Releases all resources associated with an address space. After an address space
2549 * is destroyed, its root memory region (given by address_space_init()) may be destroyed
2550 * as well.
2551 *
2552 * @as: address space to be destroyed
2553 */
2554 void address_space_destroy(AddressSpace *as);
2555
2556 /**
2557 * address_space_remove_listeners: unregister all listeners of an address space
2558 *
2559 * Removes all callbacks previously registered with memory_listener_register()
2560 * for @as.
2561 *
2562 * @as: an initialized #AddressSpace
2563 */
2564 void address_space_remove_listeners(AddressSpace *as);
2565
2566 /**
2567 * address_space_rw: read from or write to an address space.
2568 *
2569 * Return a MemTxResult indicating whether the operation succeeded
2570 * or failed (eg unassigned memory, device rejected the transaction,
2571 * IOMMU fault).
2572 *
2573 * @as: #AddressSpace to be accessed
2574 * @addr: address within that address space
2575 * @attrs: memory transaction attributes
2576 * @buf: buffer with the data transferred
2577 * @len: the number of bytes to read or write
2578 * @is_write: indicates the transfer direction
2579 */
2580 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr,
2581 MemTxAttrs attrs, void *buf,
2582 hwaddr len, bool is_write);
2583
2584 /**
2585 * address_space_write: write to address space.
2586 *
2587 * Return a MemTxResult indicating whether the operation succeeded
2588 * or failed (eg unassigned memory, device rejected the transaction,
2589 * IOMMU fault).
2590 *
2591 * @as: #AddressSpace to be accessed
2592 * @addr: address within that address space
2593 * @attrs: memory transaction attributes
2594 * @buf: buffer with the data transferred
2595 * @len: the number of bytes to write
2596 */
2597 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
2598 MemTxAttrs attrs,
2599 const void *buf, hwaddr len);
2600
2601 /**
2602 * address_space_write_rom: write to address space, including ROM.
2603 *
2604 * This function writes to the specified address space, but will
2605 * write data to both ROM and RAM. This is used for non-guest
2606 * writes like writes from the gdb debug stub or initial loading
2607 * of ROM contents.
2608 *
2609 * Note that portions of the write which attempt to write data to
2610 * a device will be silently ignored -- only real RAM and ROM will
2611 * be written to.
2612 *
2613 * Return a MemTxResult indicating whether the operation succeeded
2614 * or failed (eg unassigned memory, device rejected the transaction,
2615 * IOMMU fault).
2616 *
2617 * @as: #AddressSpace to be accessed
2618 * @addr: address within that address space
2619 * @attrs: memory transaction attributes
2620 * @buf: buffer with the data transferred
2621 * @len: the number of bytes to write
2622 */
2623 MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
2624 MemTxAttrs attrs,
2625 const void *buf, hwaddr len);
2626
2627 /* address_space_ld*: load from an address space
2628 * address_space_st*: store to an address space
2629 *
2630 * These functions perform a load or store of the byte, word,
2631 * longword or quad to the specified address within the AddressSpace.
2632 * The _le suffixed functions treat the data as little endian;
2633 * _be indicates big endian; no suffix indicates "same endianness
2634 * as guest CPU".
2635 *
2636 * The "guest CPU endianness" accessors are deprecated for use outside
2637 * target-* code; devices should be CPU-agnostic and use either the LE
2638 * or the BE accessors.
2639 *
2640 * @as #AddressSpace to be accessed
2641 * @addr: address within that address space
2642 * @val: data value, for stores
2643 * @attrs: memory transaction attributes
2644 * @result: location to write the success/failure of the transaction;
2645 * if NULL, this information is discarded
2646 */
2647
2648 #define SUFFIX
2649 #define ARG1 as
2650 #define ARG1_DECL AddressSpace *as
2651 #include "exec/memory_ldst.h.inc"
2652
2653 #define SUFFIX
2654 #define ARG1 as
2655 #define ARG1_DECL AddressSpace *as
2656 #include "exec/memory_ldst_phys.h.inc"
2657
2658 struct MemoryRegionCache {
2659 void *ptr;
2660 hwaddr xlat;
2661 hwaddr len;
2662 FlatView *fv;
2663 MemoryRegionSection mrs;
2664 bool is_write;
2665 };
2666
2667 #define MEMORY_REGION_CACHE_INVALID ((MemoryRegionCache) { .mrs.mr = NULL })
2668
2669
2670 /* address_space_ld*_cached: load from a cached #MemoryRegion
2671 * address_space_st*_cached: store into a cached #MemoryRegion
2672 *
2673 * These functions perform a load or store of the byte, word,
2674 * longword or quad to the specified address. The address is
2675 * a physical address in the AddressSpace, but it must lie within
2676 * a #MemoryRegion that was mapped with address_space_cache_init.
2677 *
2678 * The _le suffixed functions treat the data as little endian;
2679 * _be indicates big endian; no suffix indicates "same endianness
2680 * as guest CPU".
2681 *
2682 * The "guest CPU endianness" accessors are deprecated for use outside
2683 * target-* code; devices should be CPU-agnostic and use either the LE
2684 * or the BE accessors.
2685 *
2686 * @cache: previously initialized #MemoryRegionCache to be accessed
2687 * @addr: address within the address space
2688 * @val: data value, for stores
2689 * @attrs: memory transaction attributes
2690 * @result: location to write the success/failure of the transaction;
2691 * if NULL, this information is discarded
2692 */
2693
2694 #define SUFFIX _cached_slow
2695 #define ARG1 cache
2696 #define ARG1_DECL MemoryRegionCache *cache
2697 #include "exec/memory_ldst.h.inc"
2698
2699 /* Inline fast path for direct RAM access. */
2700 static inline uint8_t address_space_ldub_cached(MemoryRegionCache *cache,
2701 hwaddr addr, MemTxAttrs attrs, MemTxResult *result)
2702 {
2703 assert(addr < cache->len);
2704 if (likely(cache->ptr)) {
2705 return ldub_p(cache->ptr + addr);
2706 } else {
2707 return address_space_ldub_cached_slow(cache, addr, attrs, result);
2708 }
2709 }
2710
2711 static inline void address_space_stb_cached(MemoryRegionCache *cache,
2712 hwaddr addr, uint8_t val, MemTxAttrs attrs, MemTxResult *result)
2713 {
2714 assert(addr < cache->len);
2715 if (likely(cache->ptr)) {
2716 stb_p(cache->ptr + addr, val);
2717 } else {
2718 address_space_stb_cached_slow(cache, addr, val, attrs, result);
2719 }
2720 }
2721
2722 #define ENDIANNESS _le
2723 #include "exec/memory_ldst_cached.h.inc"
2724
2725 #define ENDIANNESS _be
2726 #include "exec/memory_ldst_cached.h.inc"
2727
2728 #define SUFFIX _cached
2729 #define ARG1 cache
2730 #define ARG1_DECL MemoryRegionCache *cache
2731 #include "exec/memory_ldst_phys.h.inc"
2732
2733 /* address_space_cache_init: prepare for repeated access to a physical
2734 * memory region
2735 *
2736 * @cache: #MemoryRegionCache to be filled
2737 * @as: #AddressSpace to be accessed
2738 * @addr: address within that address space
2739 * @len: length of buffer
2740 * @is_write: indicates the transfer direction
2741 *
2742 * Will only work with RAM, and may map a subset of the requested range by
2743 * returning a value that is less than @len. On failure, return a negative
2744 * errno value.
2745 *
2746 * Because it only works with RAM, this function can be used for
2747 * read-modify-write operations. In this case, is_write should be %true.
2748 *
2749 * Note that addresses passed to the address_space_*_cached functions
2750 * are relative to @addr.
2751 */
2752 int64_t address_space_cache_init(MemoryRegionCache *cache,
2753 AddressSpace *as,
2754 hwaddr addr,
2755 hwaddr len,
2756 bool is_write);
2757
2758 /**
2759 * address_space_cache_invalidate: complete a write to a #MemoryRegionCache
2760 *
2761 * @cache: The #MemoryRegionCache to operate on.
2762 * @addr: The first physical address that was written, relative to the
2763 * address that was passed to @address_space_cache_init.
2764 * @access_len: The number of bytes that were written starting at @addr.
2765 */
2766 void address_space_cache_invalidate(MemoryRegionCache *cache,
2767 hwaddr addr,
2768 hwaddr access_len);
2769
2770 /**
2771 * address_space_cache_destroy: free a #MemoryRegionCache
2772 *
2773 * @cache: The #MemoryRegionCache whose memory should be released.
2774 */
2775 void address_space_cache_destroy(MemoryRegionCache *cache);
2776
2777 /* address_space_get_iotlb_entry: translate an address into an IOTLB
2778 * entry. Should be called from an RCU critical section.
2779 */
2780 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
2781 bool is_write, MemTxAttrs attrs);
2782
2783 /* address_space_translate: translate an address range into an address space
2784 * into a MemoryRegion and an address range into that section. Should be
2785 * called from an RCU critical section, to avoid that the last reference
2786 * to the returned region disappears after address_space_translate returns.
2787 *
2788 * @fv: #FlatView to be accessed
2789 * @addr: address within that address space
2790 * @xlat: pointer to address within the returned memory region section's
2791 * #MemoryRegion.
2792 * @len: pointer to length
2793 * @is_write: indicates the transfer direction
2794 * @attrs: memory attributes
2795 */
2796 MemoryRegion *flatview_translate(FlatView *fv,
2797 hwaddr addr, hwaddr *xlat,
2798 hwaddr *len, bool is_write,
2799 MemTxAttrs attrs);
2800
2801 static inline MemoryRegion *address_space_translate(AddressSpace *as,
2802 hwaddr addr, hwaddr *xlat,
2803 hwaddr *len, bool is_write,
2804 MemTxAttrs attrs)
2805 {
2806 return flatview_translate(address_space_to_flatview(as),
2807 addr, xlat, len, is_write, attrs);
2808 }
2809
2810 /* address_space_access_valid: check for validity of accessing an address
2811 * space range
2812 *
2813 * Check whether memory is assigned to the given address space range, and
2814 * access is permitted by any IOMMU regions that are active for the address
2815 * space.
2816 *
2817 * For now, addr and len should be aligned to a page size. This limitation
2818 * will be lifted in the future.
2819 *
2820 * @as: #AddressSpace to be accessed
2821 * @addr: address within that address space
2822 * @len: length of the area to be checked
2823 * @is_write: indicates the transfer direction
2824 * @attrs: memory attributes
2825 */
2826 bool address_space_access_valid(AddressSpace *as, hwaddr addr, hwaddr len,
2827 bool is_write, MemTxAttrs attrs);
2828
2829 /* address_space_map: map a physical memory region into a host virtual address
2830 *
2831 * May map a subset of the requested range, given by and returned in @plen.
2832 * May return %NULL and set *@plen to zero(0), if resources needed to perform
2833 * the mapping are exhausted.
2834 * Use only for reads OR writes - not for read-modify-write operations.
2835 * Use cpu_register_map_client() to know when retrying the map operation is
2836 * likely to succeed.
2837 *
2838 * @as: #AddressSpace to be accessed
2839 * @addr: address within that address space
2840 * @plen: pointer to length of buffer; updated on return
2841 * @is_write: indicates the transfer direction
2842 * @attrs: memory attributes
2843 */
2844 void *address_space_map(AddressSpace *as, hwaddr addr,
2845 hwaddr *plen, bool is_write, MemTxAttrs attrs);
2846
2847 /* address_space_unmap: Unmaps a memory region previously mapped by address_space_map()
2848 *
2849 * Will also mark the memory as dirty if @is_write == %true. @access_len gives
2850 * the amount of memory that was actually read or written by the caller.
2851 *
2852 * @as: #AddressSpace used
2853 * @buffer: host pointer as returned by address_space_map()
2854 * @len: buffer length as returned by address_space_map()
2855 * @access_len: amount of data actually transferred
2856 * @is_write: indicates the transfer direction
2857 */
2858 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
2859 bool is_write, hwaddr access_len);
2860
2861
2862 /* Internal functions, part of the implementation of address_space_read. */
2863 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
2864 MemTxAttrs attrs, void *buf, hwaddr len);
2865 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
2866 MemTxAttrs attrs, void *buf,
2867 hwaddr len, hwaddr addr1, hwaddr l,
2868 MemoryRegion *mr);
2869 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr);
2870
2871 /* Internal functions, part of the implementation of address_space_read_cached
2872 * and address_space_write_cached. */
2873 MemTxResult address_space_read_cached_slow(MemoryRegionCache *cache,
2874 hwaddr addr, void *buf, hwaddr len);
2875 MemTxResult address_space_write_cached_slow(MemoryRegionCache *cache,
2876 hwaddr addr, const void *buf,
2877 hwaddr len);
2878
2879 int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr);
2880 bool prepare_mmio_access(MemoryRegion *mr);
2881
2882 static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write)
2883 {
2884 if (is_write) {
2885 return memory_region_is_ram(mr) && !mr->readonly &&
2886 !mr->rom_device && !memory_region_is_ram_device(mr);
2887 } else {
2888 return (memory_region_is_ram(mr) && !memory_region_is_ram_device(mr)) ||
2889 memory_region_is_romd(mr);
2890 }
2891 }
2892
2893 /**
2894 * address_space_read: read from an address space.
2895 *
2896 * Return a MemTxResult indicating whether the operation succeeded
2897 * or failed (eg unassigned memory, device rejected the transaction,
2898 * IOMMU fault). Called within RCU critical section.
2899 *
2900 * @as: #AddressSpace to be accessed
2901 * @addr: address within that address space
2902 * @attrs: memory transaction attributes
2903 * @buf: buffer with the data transferred
2904 * @len: length of the data transferred
2905 */
2906 static inline __attribute__((__always_inline__))
2907 MemTxResult address_space_read(AddressSpace *as, hwaddr addr,
2908 MemTxAttrs attrs, void *buf,
2909 hwaddr len)
2910 {
2911 MemTxResult result = MEMTX_OK;
2912 hwaddr l, addr1;
2913 void *ptr;
2914 MemoryRegion *mr;
2915 FlatView *fv;
2916
2917 if (__builtin_constant_p(len)) {
2918 if (len) {
2919 RCU_READ_LOCK_GUARD();
2920 fv = address_space_to_flatview(as);
2921 l = len;
2922 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
2923 if (len == l && memory_access_is_direct(mr, false)) {
2924 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
2925 memcpy(buf, ptr, len);
2926 } else {
2927 result = flatview_read_continue(fv, addr, attrs, buf, len,
2928 addr1, l, mr);
2929 }
2930 }
2931 } else {
2932 result = address_space_read_full(as, addr, attrs, buf, len);
2933 }
2934 return result;
2935 }
2936
2937 /**
2938 * address_space_read_cached: read from a cached RAM region
2939 *
2940 * @cache: Cached region to be addressed
2941 * @addr: address relative to the base of the RAM region
2942 * @buf: buffer with the data transferred
2943 * @len: length of the data transferred
2944 */
2945 static inline MemTxResult
2946 address_space_read_cached(MemoryRegionCache *cache, hwaddr addr,
2947 void *buf, hwaddr len)
2948 {
2949 assert(addr < cache->len && len <= cache->len - addr);
2950 fuzz_dma_read_cb(cache->xlat + addr, len, cache->mrs.mr);
2951 if (likely(cache->ptr)) {
2952 memcpy(buf, cache->ptr + addr, len);
2953 return MEMTX_OK;
2954 } else {
2955 return address_space_read_cached_slow(cache, addr, buf, len);
2956 }
2957 }
2958
2959 /**
2960 * address_space_write_cached: write to a cached RAM region
2961 *
2962 * @cache: Cached region to be addressed
2963 * @addr: address relative to the base of the RAM region
2964 * @buf: buffer with the data transferred
2965 * @len: length of the data transferred
2966 */
2967 static inline MemTxResult
2968 address_space_write_cached(MemoryRegionCache *cache, hwaddr addr,
2969 const void *buf, hwaddr len)
2970 {
2971 assert(addr < cache->len && len <= cache->len - addr);
2972 if (likely(cache->ptr)) {
2973 memcpy(cache->ptr + addr, buf, len);
2974 return MEMTX_OK;
2975 } else {
2976 return address_space_write_cached_slow(cache, addr, buf, len);
2977 }
2978 }
2979
2980 /**
2981 * address_space_set: Fill address space with a constant byte.
2982 *
2983 * Return a MemTxResult indicating whether the operation succeeded
2984 * or failed (eg unassigned memory, device rejected the transaction,
2985 * IOMMU fault).
2986 *
2987 * @as: #AddressSpace to be accessed
2988 * @addr: address within that address space
2989 * @c: constant byte to fill the memory
2990 * @len: the number of bytes to fill with the constant byte
2991 * @attrs: memory transaction attributes
2992 */
2993 MemTxResult address_space_set(AddressSpace *as, hwaddr addr,
2994 uint8_t c, hwaddr len, MemTxAttrs attrs);
2995
2996 #ifdef NEED_CPU_H
2997 /* enum device_endian to MemOp. */
2998 static inline MemOp devend_memop(enum device_endian end)
2999 {
3000 QEMU_BUILD_BUG_ON(DEVICE_HOST_ENDIAN != DEVICE_LITTLE_ENDIAN &&
3001 DEVICE_HOST_ENDIAN != DEVICE_BIG_ENDIAN);
3002
3003 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN
3004 /* Swap if non-host endianness or native (target) endianness */
3005 return (end == DEVICE_HOST_ENDIAN) ? 0 : MO_BSWAP;
3006 #else
3007 const int non_host_endianness =
3008 DEVICE_LITTLE_ENDIAN ^ DEVICE_BIG_ENDIAN ^ DEVICE_HOST_ENDIAN;
3009
3010 /* In this case, native (target) endianness needs no swap. */
3011 return (end == non_host_endianness) ? MO_BSWAP : 0;
3012 #endif
3013 }
3014 #endif
3015
3016 /*
3017 * Inhibit technologies that require discarding of pages in RAM blocks, e.g.,
3018 * to manage the actual amount of memory consumed by the VM (then, the memory
3019 * provided by RAM blocks might be bigger than the desired memory consumption).
3020 * This *must* be set if:
3021 * - Discarding parts of a RAM blocks does not result in the change being
3022 * reflected in the VM and the pages getting freed.
3023 * - All memory in RAM blocks is pinned or duplicated, invaldiating any previous
3024 * discards blindly.
3025 * - Discarding parts of a RAM blocks will result in integrity issues (e.g.,
3026 * encrypted VMs).
3027 * Technologies that only temporarily pin the current working set of a
3028 * driver are fine, because we don't expect such pages to be discarded
3029 * (esp. based on guest action like balloon inflation).
3030 *
3031 * This is *not* to be used to protect from concurrent discards (esp.,
3032 * postcopy).
3033 *
3034 * Returns 0 if successful. Returns -EBUSY if a technology that relies on
3035 * discards to work reliably is active.
3036 */
3037 int ram_block_discard_disable(bool state);
3038
3039 /*
3040 * See ram_block_discard_disable(): only disable uncoordinated discards,
3041 * keeping coordinated discards (via the RamDiscardManager) enabled.
3042 */
3043 int ram_block_uncoordinated_discard_disable(bool state);
3044
3045 /*
3046 * Inhibit technologies that disable discarding of pages in RAM blocks.
3047 *
3048 * Returns 0 if successful. Returns -EBUSY if discards are already set to
3049 * broken.
3050 */
3051 int ram_block_discard_require(bool state);
3052
3053 /*
3054 * See ram_block_discard_require(): only inhibit technologies that disable
3055 * uncoordinated discarding of pages in RAM blocks, allowing co-existance with
3056 * technologies that only inhibit uncoordinated discards (via the
3057 * RamDiscardManager).
3058 */
3059 int ram_block_coordinated_discard_require(bool state);
3060
3061 /*
3062 * Test if any discarding of memory in ram blocks is disabled.
3063 */
3064 bool ram_block_discard_is_disabled(void);
3065
3066 /*
3067 * Test if any discarding of memory in ram blocks is required to work reliably.
3068 */
3069 bool ram_block_discard_is_required(void);
3070
3071 #endif
3072
3073 #endif