]> git.proxmox.com Git - mirror_qemu.git/blob - include/fpu/softfloat.h
softfloat: Revert and reimplement remaining portions of 75d62a5856 and 3430b0be36f
[mirror_qemu.git] / include / fpu / softfloat.h
1 /*
2 * QEMU float support
3 *
4 * Derived from SoftFloat.
5 */
6
7 /*
8 ===============================================================================
9 This C header file is part of the SoftFloat IEC/IEEE Floating-point
10 Arithmetic Package, Release 2a.
11
12 Written by John R. Hauser. This work was made possible in part by the
13 International Computer Science Institute, located at Suite 600, 1947 Center
14 Street, Berkeley, California 94704. Funding was partially provided by the
15 National Science Foundation under grant MIP-9311980. The original version
16 of this code was written as part of a project to build a fixed-point vector
17 processor in collaboration with the University of California at Berkeley,
18 overseen by Profs. Nelson Morgan and John Wawrzynek. More information
19 is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
20 arithmetic/SoftFloat.html'.
21
22 THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort
23 has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
24 TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO
25 PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
26 AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
27
28 Derivative works are acceptable, even for commercial purposes, so long as
29 (1) they include prominent notice that the work is derivative, and (2) they
30 include prominent notice akin to these four paragraphs for those parts of
31 this code that are retained.
32
33 ===============================================================================
34 */
35
36 #ifndef SOFTFLOAT_H
37 #define SOFTFLOAT_H
38
39 #if defined(CONFIG_SOLARIS) && defined(CONFIG_NEEDS_LIBSUNMATH)
40 #include <sunmath.h>
41 #endif
42
43 #include <inttypes.h>
44 #include "config-host.h"
45 #include "qemu/osdep.h"
46
47 /*----------------------------------------------------------------------------
48 | Each of the following `typedef's defines the most convenient type that holds
49 | integers of at least as many bits as specified. For example, `uint8' should
50 | be the most convenient type that can hold unsigned integers of as many as
51 | 8 bits. The `flag' type must be able to hold either a 0 or 1. For most
52 | implementations of C, `flag', `uint8', and `int8' should all be `typedef'ed
53 | to the same as `int'.
54 *----------------------------------------------------------------------------*/
55 typedef uint8_t flag;
56 typedef uint8_t uint8;
57 typedef int8_t int8;
58 typedef unsigned int uint32;
59 typedef signed int int32;
60 typedef uint64_t uint64;
61 typedef int64_t int64;
62
63 #define LIT64( a ) a##LL
64
65 #define STATUS_PARAM , float_status *status
66 #define STATUS(field) status->field
67 #define STATUS_VAR , status
68
69 /*----------------------------------------------------------------------------
70 | Software IEC/IEEE floating-point ordering relations
71 *----------------------------------------------------------------------------*/
72 enum {
73 float_relation_less = -1,
74 float_relation_equal = 0,
75 float_relation_greater = 1,
76 float_relation_unordered = 2
77 };
78
79 /*----------------------------------------------------------------------------
80 | Software IEC/IEEE floating-point types.
81 *----------------------------------------------------------------------------*/
82 /* Use structures for soft-float types. This prevents accidentally mixing
83 them with native int/float types. A sufficiently clever compiler and
84 sane ABI should be able to see though these structs. However
85 x86/gcc 3.x seems to struggle a bit, so leave them disabled by default. */
86 //#define USE_SOFTFLOAT_STRUCT_TYPES
87 #ifdef USE_SOFTFLOAT_STRUCT_TYPES
88 typedef struct {
89 uint16_t v;
90 } float16;
91 #define float16_val(x) (((float16)(x)).v)
92 #define make_float16(x) __extension__ ({ float16 f16_val = {x}; f16_val; })
93 #define const_float16(x) { x }
94 typedef struct {
95 uint32_t v;
96 } float32;
97 /* The cast ensures an error if the wrong type is passed. */
98 #define float32_val(x) (((float32)(x)).v)
99 #define make_float32(x) __extension__ ({ float32 f32_val = {x}; f32_val; })
100 #define const_float32(x) { x }
101 typedef struct {
102 uint64_t v;
103 } float64;
104 #define float64_val(x) (((float64)(x)).v)
105 #define make_float64(x) __extension__ ({ float64 f64_val = {x}; f64_val; })
106 #define const_float64(x) { x }
107 #else
108 typedef uint16_t float16;
109 typedef uint32_t float32;
110 typedef uint64_t float64;
111 #define float16_val(x) (x)
112 #define float32_val(x) (x)
113 #define float64_val(x) (x)
114 #define make_float16(x) (x)
115 #define make_float32(x) (x)
116 #define make_float64(x) (x)
117 #define const_float16(x) (x)
118 #define const_float32(x) (x)
119 #define const_float64(x) (x)
120 #endif
121 typedef struct {
122 uint64_t low;
123 uint16_t high;
124 } floatx80;
125 #define make_floatx80(exp, mant) ((floatx80) { mant, exp })
126 #define make_floatx80_init(exp, mant) { .low = mant, .high = exp }
127 typedef struct {
128 #ifdef HOST_WORDS_BIGENDIAN
129 uint64_t high, low;
130 #else
131 uint64_t low, high;
132 #endif
133 } float128;
134 #define make_float128(high_, low_) ((float128) { .high = high_, .low = low_ })
135 #define make_float128_init(high_, low_) { .high = high_, .low = low_ }
136
137 /*----------------------------------------------------------------------------
138 | Software IEC/IEEE floating-point underflow tininess-detection mode.
139 *----------------------------------------------------------------------------*/
140 enum {
141 float_tininess_after_rounding = 0,
142 float_tininess_before_rounding = 1
143 };
144
145 /*----------------------------------------------------------------------------
146 | Software IEC/IEEE floating-point rounding mode.
147 *----------------------------------------------------------------------------*/
148 enum {
149 float_round_nearest_even = 0,
150 float_round_down = 1,
151 float_round_up = 2,
152 float_round_to_zero = 3,
153 float_round_ties_away = 4,
154 };
155
156 /*----------------------------------------------------------------------------
157 | Software IEC/IEEE floating-point exception flags.
158 *----------------------------------------------------------------------------*/
159 enum {
160 float_flag_invalid = 1,
161 float_flag_divbyzero = 4,
162 float_flag_overflow = 8,
163 float_flag_underflow = 16,
164 float_flag_inexact = 32,
165 float_flag_input_denormal = 64,
166 float_flag_output_denormal = 128
167 };
168
169 typedef struct float_status {
170 signed char float_detect_tininess;
171 signed char float_rounding_mode;
172 signed char float_exception_flags;
173 signed char floatx80_rounding_precision;
174 /* should denormalised results go to zero and set the inexact flag? */
175 flag flush_to_zero;
176 /* should denormalised inputs go to zero and set the input_denormal flag? */
177 flag flush_inputs_to_zero;
178 flag default_nan_mode;
179 } float_status;
180
181 static inline void set_float_detect_tininess(int val STATUS_PARAM)
182 {
183 STATUS(float_detect_tininess) = val;
184 }
185 static inline void set_float_rounding_mode(int val STATUS_PARAM)
186 {
187 STATUS(float_rounding_mode) = val;
188 }
189 static inline void set_float_exception_flags(int val STATUS_PARAM)
190 {
191 STATUS(float_exception_flags) = val;
192 }
193 static inline void set_floatx80_rounding_precision(int val STATUS_PARAM)
194 {
195 STATUS(floatx80_rounding_precision) = val;
196 }
197 static inline void set_flush_to_zero(flag val STATUS_PARAM)
198 {
199 STATUS(flush_to_zero) = val;
200 }
201 static inline void set_flush_inputs_to_zero(flag val STATUS_PARAM)
202 {
203 STATUS(flush_inputs_to_zero) = val;
204 }
205 static inline void set_default_nan_mode(flag val STATUS_PARAM)
206 {
207 STATUS(default_nan_mode) = val;
208 }
209 static inline int get_float_detect_tininess(float_status *status)
210 {
211 return STATUS(float_detect_tininess);
212 }
213 static inline int get_float_rounding_mode(float_status *status)
214 {
215 return STATUS(float_rounding_mode);
216 }
217 static inline int get_float_exception_flags(float_status *status)
218 {
219 return STATUS(float_exception_flags);
220 }
221 static inline int get_floatx80_rounding_precision(float_status *status)
222 {
223 return STATUS(floatx80_rounding_precision);
224 }
225 static inline flag get_flush_to_zero(float_status *status)
226 {
227 return STATUS(flush_to_zero);
228 }
229 static inline flag get_flush_inputs_to_zero(float_status *status)
230 {
231 return STATUS(flush_inputs_to_zero);
232 }
233 static inline flag get_default_nan_mode(float_status *status)
234 {
235 return STATUS(default_nan_mode);
236 }
237
238 /*----------------------------------------------------------------------------
239 | Routine to raise any or all of the software IEC/IEEE floating-point
240 | exception flags.
241 *----------------------------------------------------------------------------*/
242 void float_raise( int8 flags STATUS_PARAM);
243
244 /*----------------------------------------------------------------------------
245 | If `a' is denormal and we are in flush-to-zero mode then set the
246 | input-denormal exception and return zero. Otherwise just return the value.
247 *----------------------------------------------------------------------------*/
248 float32 float32_squash_input_denormal(float32 a STATUS_PARAM);
249 float64 float64_squash_input_denormal(float64 a STATUS_PARAM);
250
251 /*----------------------------------------------------------------------------
252 | Options to indicate which negations to perform in float*_muladd()
253 | Using these differs from negating an input or output before calling
254 | the muladd function in that this means that a NaN doesn't have its
255 | sign bit inverted before it is propagated.
256 | We also support halving the result before rounding, as a special
257 | case to support the ARM fused-sqrt-step instruction FRSQRTS.
258 *----------------------------------------------------------------------------*/
259 enum {
260 float_muladd_negate_c = 1,
261 float_muladd_negate_product = 2,
262 float_muladd_negate_result = 4,
263 float_muladd_halve_result = 8,
264 };
265
266 /*----------------------------------------------------------------------------
267 | Software IEC/IEEE integer-to-floating-point conversion routines.
268 *----------------------------------------------------------------------------*/
269 float32 int32_to_float32(int32_t STATUS_PARAM);
270 float64 int32_to_float64(int32_t STATUS_PARAM);
271 float32 uint32_to_float32(uint32_t STATUS_PARAM);
272 float64 uint32_to_float64(uint32_t STATUS_PARAM);
273 floatx80 int32_to_floatx80(int32_t STATUS_PARAM);
274 float128 int32_to_float128(int32_t STATUS_PARAM);
275 float32 int64_to_float32(int64_t STATUS_PARAM);
276 float64 int64_to_float64(int64_t STATUS_PARAM);
277 floatx80 int64_to_floatx80(int64_t STATUS_PARAM);
278 float128 int64_to_float128(int64_t STATUS_PARAM);
279 float32 uint64_to_float32(uint64_t STATUS_PARAM);
280 float64 uint64_to_float64(uint64_t STATUS_PARAM);
281 float128 uint64_to_float128(uint64_t STATUS_PARAM);
282
283 /* We provide the int16 versions for symmetry of API with float-to-int */
284 static inline float32 int16_to_float32(int16_t v STATUS_PARAM)
285 {
286 return int32_to_float32(v STATUS_VAR);
287 }
288
289 static inline float32 uint16_to_float32(uint16_t v STATUS_PARAM)
290 {
291 return uint32_to_float32(v STATUS_VAR);
292 }
293
294 static inline float64 int16_to_float64(int16_t v STATUS_PARAM)
295 {
296 return int32_to_float64(v STATUS_VAR);
297 }
298
299 static inline float64 uint16_to_float64(uint16_t v STATUS_PARAM)
300 {
301 return uint32_to_float64(v STATUS_VAR);
302 }
303
304 /*----------------------------------------------------------------------------
305 | Software half-precision conversion routines.
306 *----------------------------------------------------------------------------*/
307 float16 float32_to_float16( float32, flag STATUS_PARAM );
308 float32 float16_to_float32( float16, flag STATUS_PARAM );
309 float16 float64_to_float16(float64 a, flag ieee STATUS_PARAM);
310 float64 float16_to_float64(float16 a, flag ieee STATUS_PARAM);
311
312 /*----------------------------------------------------------------------------
313 | Software half-precision operations.
314 *----------------------------------------------------------------------------*/
315 int float16_is_quiet_nan( float16 );
316 int float16_is_signaling_nan( float16 );
317 float16 float16_maybe_silence_nan( float16 );
318
319 static inline int float16_is_any_nan(float16 a)
320 {
321 return ((float16_val(a) & ~0x8000) > 0x7c00);
322 }
323
324 /*----------------------------------------------------------------------------
325 | The pattern for a default generated half-precision NaN.
326 *----------------------------------------------------------------------------*/
327 extern const float16 float16_default_nan;
328
329 /*----------------------------------------------------------------------------
330 | Software IEC/IEEE single-precision conversion routines.
331 *----------------------------------------------------------------------------*/
332 int_fast16_t float32_to_int16(float32 STATUS_PARAM);
333 uint_fast16_t float32_to_uint16(float32 STATUS_PARAM);
334 int_fast16_t float32_to_int16_round_to_zero(float32 STATUS_PARAM);
335 uint_fast16_t float32_to_uint16_round_to_zero(float32 STATUS_PARAM);
336 int32 float32_to_int32( float32 STATUS_PARAM );
337 int32 float32_to_int32_round_to_zero( float32 STATUS_PARAM );
338 uint32 float32_to_uint32( float32 STATUS_PARAM );
339 uint32 float32_to_uint32_round_to_zero( float32 STATUS_PARAM );
340 int64 float32_to_int64( float32 STATUS_PARAM );
341 uint64 float32_to_uint64(float32 STATUS_PARAM);
342 uint64 float32_to_uint64_round_to_zero(float32 STATUS_PARAM);
343 int64 float32_to_int64_round_to_zero( float32 STATUS_PARAM );
344 float64 float32_to_float64( float32 STATUS_PARAM );
345 floatx80 float32_to_floatx80( float32 STATUS_PARAM );
346 float128 float32_to_float128( float32 STATUS_PARAM );
347
348 /*----------------------------------------------------------------------------
349 | Software IEC/IEEE single-precision operations.
350 *----------------------------------------------------------------------------*/
351 float32 float32_round_to_int( float32 STATUS_PARAM );
352 float32 float32_add( float32, float32 STATUS_PARAM );
353 float32 float32_sub( float32, float32 STATUS_PARAM );
354 float32 float32_mul( float32, float32 STATUS_PARAM );
355 float32 float32_div( float32, float32 STATUS_PARAM );
356 float32 float32_rem( float32, float32 STATUS_PARAM );
357 float32 float32_muladd(float32, float32, float32, int STATUS_PARAM);
358 float32 float32_sqrt( float32 STATUS_PARAM );
359 float32 float32_exp2( float32 STATUS_PARAM );
360 float32 float32_log2( float32 STATUS_PARAM );
361 int float32_eq( float32, float32 STATUS_PARAM );
362 int float32_le( float32, float32 STATUS_PARAM );
363 int float32_lt( float32, float32 STATUS_PARAM );
364 int float32_unordered( float32, float32 STATUS_PARAM );
365 int float32_eq_quiet( float32, float32 STATUS_PARAM );
366 int float32_le_quiet( float32, float32 STATUS_PARAM );
367 int float32_lt_quiet( float32, float32 STATUS_PARAM );
368 int float32_unordered_quiet( float32, float32 STATUS_PARAM );
369 int float32_compare( float32, float32 STATUS_PARAM );
370 int float32_compare_quiet( float32, float32 STATUS_PARAM );
371 float32 float32_min(float32, float32 STATUS_PARAM);
372 float32 float32_max(float32, float32 STATUS_PARAM);
373 float32 float32_minnum(float32, float32 STATUS_PARAM);
374 float32 float32_maxnum(float32, float32 STATUS_PARAM);
375 float32 float32_minnummag(float32, float32 STATUS_PARAM);
376 float32 float32_maxnummag(float32, float32 STATUS_PARAM);
377 int float32_is_quiet_nan( float32 );
378 int float32_is_signaling_nan( float32 );
379 float32 float32_maybe_silence_nan( float32 );
380 float32 float32_scalbn( float32, int STATUS_PARAM );
381
382 static inline float32 float32_abs(float32 a)
383 {
384 /* Note that abs does *not* handle NaN specially, nor does
385 * it flush denormal inputs to zero.
386 */
387 return make_float32(float32_val(a) & 0x7fffffff);
388 }
389
390 static inline float32 float32_chs(float32 a)
391 {
392 /* Note that chs does *not* handle NaN specially, nor does
393 * it flush denormal inputs to zero.
394 */
395 return make_float32(float32_val(a) ^ 0x80000000);
396 }
397
398 static inline int float32_is_infinity(float32 a)
399 {
400 return (float32_val(a) & 0x7fffffff) == 0x7f800000;
401 }
402
403 static inline int float32_is_neg(float32 a)
404 {
405 return float32_val(a) >> 31;
406 }
407
408 static inline int float32_is_zero(float32 a)
409 {
410 return (float32_val(a) & 0x7fffffff) == 0;
411 }
412
413 static inline int float32_is_any_nan(float32 a)
414 {
415 return ((float32_val(a) & ~(1 << 31)) > 0x7f800000UL);
416 }
417
418 static inline int float32_is_zero_or_denormal(float32 a)
419 {
420 return (float32_val(a) & 0x7f800000) == 0;
421 }
422
423 static inline float32 float32_set_sign(float32 a, int sign)
424 {
425 return make_float32((float32_val(a) & 0x7fffffff) | (sign << 31));
426 }
427
428 #define float32_zero make_float32(0)
429 #define float32_one make_float32(0x3f800000)
430 #define float32_ln2 make_float32(0x3f317218)
431 #define float32_pi make_float32(0x40490fdb)
432 #define float32_half make_float32(0x3f000000)
433 #define float32_infinity make_float32(0x7f800000)
434
435
436 /*----------------------------------------------------------------------------
437 | The pattern for a default generated single-precision NaN.
438 *----------------------------------------------------------------------------*/
439 extern const float32 float32_default_nan;
440
441 /*----------------------------------------------------------------------------
442 | Software IEC/IEEE double-precision conversion routines.
443 *----------------------------------------------------------------------------*/
444 int_fast16_t float64_to_int16(float64 STATUS_PARAM);
445 uint_fast16_t float64_to_uint16(float64 STATUS_PARAM);
446 int_fast16_t float64_to_int16_round_to_zero(float64 STATUS_PARAM);
447 uint_fast16_t float64_to_uint16_round_to_zero(float64 STATUS_PARAM);
448 int32 float64_to_int32( float64 STATUS_PARAM );
449 int32 float64_to_int32_round_to_zero( float64 STATUS_PARAM );
450 uint32 float64_to_uint32( float64 STATUS_PARAM );
451 uint32 float64_to_uint32_round_to_zero( float64 STATUS_PARAM );
452 int64 float64_to_int64( float64 STATUS_PARAM );
453 int64 float64_to_int64_round_to_zero( float64 STATUS_PARAM );
454 uint64 float64_to_uint64 (float64 a STATUS_PARAM);
455 uint64 float64_to_uint64_round_to_zero (float64 a STATUS_PARAM);
456 float32 float64_to_float32( float64 STATUS_PARAM );
457 floatx80 float64_to_floatx80( float64 STATUS_PARAM );
458 float128 float64_to_float128( float64 STATUS_PARAM );
459
460 /*----------------------------------------------------------------------------
461 | Software IEC/IEEE double-precision operations.
462 *----------------------------------------------------------------------------*/
463 float64 float64_round_to_int( float64 STATUS_PARAM );
464 float64 float64_trunc_to_int( float64 STATUS_PARAM );
465 float64 float64_add( float64, float64 STATUS_PARAM );
466 float64 float64_sub( float64, float64 STATUS_PARAM );
467 float64 float64_mul( float64, float64 STATUS_PARAM );
468 float64 float64_div( float64, float64 STATUS_PARAM );
469 float64 float64_rem( float64, float64 STATUS_PARAM );
470 float64 float64_muladd(float64, float64, float64, int STATUS_PARAM);
471 float64 float64_sqrt( float64 STATUS_PARAM );
472 float64 float64_log2( float64 STATUS_PARAM );
473 int float64_eq( float64, float64 STATUS_PARAM );
474 int float64_le( float64, float64 STATUS_PARAM );
475 int float64_lt( float64, float64 STATUS_PARAM );
476 int float64_unordered( float64, float64 STATUS_PARAM );
477 int float64_eq_quiet( float64, float64 STATUS_PARAM );
478 int float64_le_quiet( float64, float64 STATUS_PARAM );
479 int float64_lt_quiet( float64, float64 STATUS_PARAM );
480 int float64_unordered_quiet( float64, float64 STATUS_PARAM );
481 int float64_compare( float64, float64 STATUS_PARAM );
482 int float64_compare_quiet( float64, float64 STATUS_PARAM );
483 float64 float64_min(float64, float64 STATUS_PARAM);
484 float64 float64_max(float64, float64 STATUS_PARAM);
485 float64 float64_minnum(float64, float64 STATUS_PARAM);
486 float64 float64_maxnum(float64, float64 STATUS_PARAM);
487 float64 float64_minnummag(float64, float64 STATUS_PARAM);
488 float64 float64_maxnummag(float64, float64 STATUS_PARAM);
489 int float64_is_quiet_nan( float64 a );
490 int float64_is_signaling_nan( float64 );
491 float64 float64_maybe_silence_nan( float64 );
492 float64 float64_scalbn( float64, int STATUS_PARAM );
493
494 static inline float64 float64_abs(float64 a)
495 {
496 /* Note that abs does *not* handle NaN specially, nor does
497 * it flush denormal inputs to zero.
498 */
499 return make_float64(float64_val(a) & 0x7fffffffffffffffLL);
500 }
501
502 static inline float64 float64_chs(float64 a)
503 {
504 /* Note that chs does *not* handle NaN specially, nor does
505 * it flush denormal inputs to zero.
506 */
507 return make_float64(float64_val(a) ^ 0x8000000000000000LL);
508 }
509
510 static inline int float64_is_infinity(float64 a)
511 {
512 return (float64_val(a) & 0x7fffffffffffffffLL ) == 0x7ff0000000000000LL;
513 }
514
515 static inline int float64_is_neg(float64 a)
516 {
517 return float64_val(a) >> 63;
518 }
519
520 static inline int float64_is_zero(float64 a)
521 {
522 return (float64_val(a) & 0x7fffffffffffffffLL) == 0;
523 }
524
525 static inline int float64_is_any_nan(float64 a)
526 {
527 return ((float64_val(a) & ~(1ULL << 63)) > 0x7ff0000000000000ULL);
528 }
529
530 static inline int float64_is_zero_or_denormal(float64 a)
531 {
532 return (float64_val(a) & 0x7ff0000000000000LL) == 0;
533 }
534
535 static inline float64 float64_set_sign(float64 a, int sign)
536 {
537 return make_float64((float64_val(a) & 0x7fffffffffffffffULL)
538 | ((int64_t)sign << 63));
539 }
540
541 #define float64_zero make_float64(0)
542 #define float64_one make_float64(0x3ff0000000000000LL)
543 #define float64_ln2 make_float64(0x3fe62e42fefa39efLL)
544 #define float64_pi make_float64(0x400921fb54442d18LL)
545 #define float64_half make_float64(0x3fe0000000000000LL)
546 #define float64_infinity make_float64(0x7ff0000000000000LL)
547
548 /*----------------------------------------------------------------------------
549 | The pattern for a default generated double-precision NaN.
550 *----------------------------------------------------------------------------*/
551 extern const float64 float64_default_nan;
552
553 /*----------------------------------------------------------------------------
554 | Software IEC/IEEE extended double-precision conversion routines.
555 *----------------------------------------------------------------------------*/
556 int32 floatx80_to_int32( floatx80 STATUS_PARAM );
557 int32 floatx80_to_int32_round_to_zero( floatx80 STATUS_PARAM );
558 int64 floatx80_to_int64( floatx80 STATUS_PARAM );
559 int64 floatx80_to_int64_round_to_zero( floatx80 STATUS_PARAM );
560 float32 floatx80_to_float32( floatx80 STATUS_PARAM );
561 float64 floatx80_to_float64( floatx80 STATUS_PARAM );
562 float128 floatx80_to_float128( floatx80 STATUS_PARAM );
563
564 /*----------------------------------------------------------------------------
565 | Software IEC/IEEE extended double-precision operations.
566 *----------------------------------------------------------------------------*/
567 floatx80 floatx80_round_to_int( floatx80 STATUS_PARAM );
568 floatx80 floatx80_add( floatx80, floatx80 STATUS_PARAM );
569 floatx80 floatx80_sub( floatx80, floatx80 STATUS_PARAM );
570 floatx80 floatx80_mul( floatx80, floatx80 STATUS_PARAM );
571 floatx80 floatx80_div( floatx80, floatx80 STATUS_PARAM );
572 floatx80 floatx80_rem( floatx80, floatx80 STATUS_PARAM );
573 floatx80 floatx80_sqrt( floatx80 STATUS_PARAM );
574 int floatx80_eq( floatx80, floatx80 STATUS_PARAM );
575 int floatx80_le( floatx80, floatx80 STATUS_PARAM );
576 int floatx80_lt( floatx80, floatx80 STATUS_PARAM );
577 int floatx80_unordered( floatx80, floatx80 STATUS_PARAM );
578 int floatx80_eq_quiet( floatx80, floatx80 STATUS_PARAM );
579 int floatx80_le_quiet( floatx80, floatx80 STATUS_PARAM );
580 int floatx80_lt_quiet( floatx80, floatx80 STATUS_PARAM );
581 int floatx80_unordered_quiet( floatx80, floatx80 STATUS_PARAM );
582 int floatx80_compare( floatx80, floatx80 STATUS_PARAM );
583 int floatx80_compare_quiet( floatx80, floatx80 STATUS_PARAM );
584 int floatx80_is_quiet_nan( floatx80 );
585 int floatx80_is_signaling_nan( floatx80 );
586 floatx80 floatx80_maybe_silence_nan( floatx80 );
587 floatx80 floatx80_scalbn( floatx80, int STATUS_PARAM );
588
589 static inline floatx80 floatx80_abs(floatx80 a)
590 {
591 a.high &= 0x7fff;
592 return a;
593 }
594
595 static inline floatx80 floatx80_chs(floatx80 a)
596 {
597 a.high ^= 0x8000;
598 return a;
599 }
600
601 static inline int floatx80_is_infinity(floatx80 a)
602 {
603 return (a.high & 0x7fff) == 0x7fff && a.low == 0x8000000000000000LL;
604 }
605
606 static inline int floatx80_is_neg(floatx80 a)
607 {
608 return a.high >> 15;
609 }
610
611 static inline int floatx80_is_zero(floatx80 a)
612 {
613 return (a.high & 0x7fff) == 0 && a.low == 0;
614 }
615
616 static inline int floatx80_is_zero_or_denormal(floatx80 a)
617 {
618 return (a.high & 0x7fff) == 0;
619 }
620
621 static inline int floatx80_is_any_nan(floatx80 a)
622 {
623 return ((a.high & 0x7fff) == 0x7fff) && (a.low<<1);
624 }
625
626 #define floatx80_zero make_floatx80(0x0000, 0x0000000000000000LL)
627 #define floatx80_one make_floatx80(0x3fff, 0x8000000000000000LL)
628 #define floatx80_ln2 make_floatx80(0x3ffe, 0xb17217f7d1cf79acLL)
629 #define floatx80_pi make_floatx80(0x4000, 0xc90fdaa22168c235LL)
630 #define floatx80_half make_floatx80(0x3ffe, 0x8000000000000000LL)
631 #define floatx80_infinity make_floatx80(0x7fff, 0x8000000000000000LL)
632
633 /*----------------------------------------------------------------------------
634 | The pattern for a default generated extended double-precision NaN.
635 *----------------------------------------------------------------------------*/
636 extern const floatx80 floatx80_default_nan;
637
638 /*----------------------------------------------------------------------------
639 | Software IEC/IEEE quadruple-precision conversion routines.
640 *----------------------------------------------------------------------------*/
641 int32 float128_to_int32( float128 STATUS_PARAM );
642 int32 float128_to_int32_round_to_zero( float128 STATUS_PARAM );
643 int64 float128_to_int64( float128 STATUS_PARAM );
644 int64 float128_to_int64_round_to_zero( float128 STATUS_PARAM );
645 float32 float128_to_float32( float128 STATUS_PARAM );
646 float64 float128_to_float64( float128 STATUS_PARAM );
647 floatx80 float128_to_floatx80( float128 STATUS_PARAM );
648
649 /*----------------------------------------------------------------------------
650 | Software IEC/IEEE quadruple-precision operations.
651 *----------------------------------------------------------------------------*/
652 float128 float128_round_to_int( float128 STATUS_PARAM );
653 float128 float128_add( float128, float128 STATUS_PARAM );
654 float128 float128_sub( float128, float128 STATUS_PARAM );
655 float128 float128_mul( float128, float128 STATUS_PARAM );
656 float128 float128_div( float128, float128 STATUS_PARAM );
657 float128 float128_rem( float128, float128 STATUS_PARAM );
658 float128 float128_sqrt( float128 STATUS_PARAM );
659 int float128_eq( float128, float128 STATUS_PARAM );
660 int float128_le( float128, float128 STATUS_PARAM );
661 int float128_lt( float128, float128 STATUS_PARAM );
662 int float128_unordered( float128, float128 STATUS_PARAM );
663 int float128_eq_quiet( float128, float128 STATUS_PARAM );
664 int float128_le_quiet( float128, float128 STATUS_PARAM );
665 int float128_lt_quiet( float128, float128 STATUS_PARAM );
666 int float128_unordered_quiet( float128, float128 STATUS_PARAM );
667 int float128_compare( float128, float128 STATUS_PARAM );
668 int float128_compare_quiet( float128, float128 STATUS_PARAM );
669 int float128_is_quiet_nan( float128 );
670 int float128_is_signaling_nan( float128 );
671 float128 float128_maybe_silence_nan( float128 );
672 float128 float128_scalbn( float128, int STATUS_PARAM );
673
674 static inline float128 float128_abs(float128 a)
675 {
676 a.high &= 0x7fffffffffffffffLL;
677 return a;
678 }
679
680 static inline float128 float128_chs(float128 a)
681 {
682 a.high ^= 0x8000000000000000LL;
683 return a;
684 }
685
686 static inline int float128_is_infinity(float128 a)
687 {
688 return (a.high & 0x7fffffffffffffffLL) == 0x7fff000000000000LL && a.low == 0;
689 }
690
691 static inline int float128_is_neg(float128 a)
692 {
693 return a.high >> 63;
694 }
695
696 static inline int float128_is_zero(float128 a)
697 {
698 return (a.high & 0x7fffffffffffffffLL) == 0 && a.low == 0;
699 }
700
701 static inline int float128_is_zero_or_denormal(float128 a)
702 {
703 return (a.high & 0x7fff000000000000LL) == 0;
704 }
705
706 static inline int float128_is_any_nan(float128 a)
707 {
708 return ((a.high >> 48) & 0x7fff) == 0x7fff &&
709 ((a.low != 0) || ((a.high & 0xffffffffffffLL) != 0));
710 }
711
712 #define float128_zero make_float128(0, 0)
713
714 /*----------------------------------------------------------------------------
715 | The pattern for a default generated quadruple-precision NaN.
716 *----------------------------------------------------------------------------*/
717 extern const float128 float128_default_nan;
718
719 #endif /* !SOFTFLOAT_H */