]> git.proxmox.com Git - mirror_qemu.git/blob - include/fpu/softfloat.h
fpu: Replace int32 typedef with int32_t
[mirror_qemu.git] / include / fpu / softfloat.h
1 /*
2 * QEMU float support
3 *
4 * The code in this source file is derived from release 2a of the SoftFloat
5 * IEC/IEEE Floating-point Arithmetic Package. Those parts of the code (and
6 * some later contributions) are provided under that license, as detailed below.
7 * It has subsequently been modified by contributors to the QEMU Project,
8 * so some portions are provided under:
9 * the SoftFloat-2a license
10 * the BSD license
11 * GPL-v2-or-later
12 *
13 * Any future contributions to this file after December 1st 2014 will be
14 * taken to be licensed under the Softfloat-2a license unless specifically
15 * indicated otherwise.
16 */
17
18 /*
19 ===============================================================================
20 This C header file is part of the SoftFloat IEC/IEEE Floating-point
21 Arithmetic Package, Release 2a.
22
23 Written by John R. Hauser. This work was made possible in part by the
24 International Computer Science Institute, located at Suite 600, 1947 Center
25 Street, Berkeley, California 94704. Funding was partially provided by the
26 National Science Foundation under grant MIP-9311980. The original version
27 of this code was written as part of a project to build a fixed-point vector
28 processor in collaboration with the University of California at Berkeley,
29 overseen by Profs. Nelson Morgan and John Wawrzynek. More information
30 is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
31 arithmetic/SoftFloat.html'.
32
33 THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort
34 has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
35 TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO
36 PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
37 AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
38
39 Derivative works are acceptable, even for commercial purposes, so long as
40 (1) they include prominent notice that the work is derivative, and (2) they
41 include prominent notice akin to these four paragraphs for those parts of
42 this code that are retained.
43
44 ===============================================================================
45 */
46
47 /* BSD licensing:
48 * Copyright (c) 2006, Fabrice Bellard
49 * All rights reserved.
50 *
51 * Redistribution and use in source and binary forms, with or without
52 * modification, are permitted provided that the following conditions are met:
53 *
54 * 1. Redistributions of source code must retain the above copyright notice,
55 * this list of conditions and the following disclaimer.
56 *
57 * 2. Redistributions in binary form must reproduce the above copyright notice,
58 * this list of conditions and the following disclaimer in the documentation
59 * and/or other materials provided with the distribution.
60 *
61 * 3. Neither the name of the copyright holder nor the names of its contributors
62 * may be used to endorse or promote products derived from this software without
63 * specific prior written permission.
64 *
65 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
66 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
67 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
68 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
69 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
70 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
71 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
72 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
73 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
74 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
75 * THE POSSIBILITY OF SUCH DAMAGE.
76 */
77
78 /* Portions of this work are licensed under the terms of the GNU GPL,
79 * version 2 or later. See the COPYING file in the top-level directory.
80 */
81
82 #ifndef SOFTFLOAT_H
83 #define SOFTFLOAT_H
84
85 #if defined(CONFIG_SOLARIS) && defined(CONFIG_NEEDS_LIBSUNMATH)
86 #include <sunmath.h>
87 #endif
88
89 #include <inttypes.h>
90 #include "config-host.h"
91 #include "qemu/osdep.h"
92
93 /*----------------------------------------------------------------------------
94 | Each of the following `typedef's defines the most convenient type that holds
95 | integers of at least as many bits as specified. For example, `uint8' should
96 | be the most convenient type that can hold unsigned integers of as many as
97 | 8 bits. The `flag' type must be able to hold either a 0 or 1. For most
98 | implementations of C, `flag', `uint8', and `int8' should all be `typedef'ed
99 | to the same as `int'.
100 *----------------------------------------------------------------------------*/
101 typedef uint8_t flag;
102 typedef uint8_t uint8;
103 typedef int8_t int8;
104 typedef unsigned int uint32;
105 typedef signed int int32_t;
106
107 #define LIT64( a ) a##LL
108
109 /*----------------------------------------------------------------------------
110 | Software IEC/IEEE floating-point ordering relations
111 *----------------------------------------------------------------------------*/
112 enum {
113 float_relation_less = -1,
114 float_relation_equal = 0,
115 float_relation_greater = 1,
116 float_relation_unordered = 2
117 };
118
119 /*----------------------------------------------------------------------------
120 | Software IEC/IEEE floating-point types.
121 *----------------------------------------------------------------------------*/
122 /* Use structures for soft-float types. This prevents accidentally mixing
123 them with native int/float types. A sufficiently clever compiler and
124 sane ABI should be able to see though these structs. However
125 x86/gcc 3.x seems to struggle a bit, so leave them disabled by default. */
126 //#define USE_SOFTFLOAT_STRUCT_TYPES
127 #ifdef USE_SOFTFLOAT_STRUCT_TYPES
128 typedef struct {
129 uint16_t v;
130 } float16;
131 #define float16_val(x) (((float16)(x)).v)
132 #define make_float16(x) __extension__ ({ float16 f16_val = {x}; f16_val; })
133 #define const_float16(x) { x }
134 typedef struct {
135 uint32_t v;
136 } float32;
137 /* The cast ensures an error if the wrong type is passed. */
138 #define float32_val(x) (((float32)(x)).v)
139 #define make_float32(x) __extension__ ({ float32 f32_val = {x}; f32_val; })
140 #define const_float32(x) { x }
141 typedef struct {
142 uint64_t v;
143 } float64;
144 #define float64_val(x) (((float64)(x)).v)
145 #define make_float64(x) __extension__ ({ float64 f64_val = {x}; f64_val; })
146 #define const_float64(x) { x }
147 #else
148 typedef uint16_t float16;
149 typedef uint32_t float32;
150 typedef uint64_t float64;
151 #define float16_val(x) (x)
152 #define float32_val(x) (x)
153 #define float64_val(x) (x)
154 #define make_float16(x) (x)
155 #define make_float32(x) (x)
156 #define make_float64(x) (x)
157 #define const_float16(x) (x)
158 #define const_float32(x) (x)
159 #define const_float64(x) (x)
160 #endif
161 typedef struct {
162 uint64_t low;
163 uint16_t high;
164 } floatx80;
165 #define make_floatx80(exp, mant) ((floatx80) { mant, exp })
166 #define make_floatx80_init(exp, mant) { .low = mant, .high = exp }
167 typedef struct {
168 #ifdef HOST_WORDS_BIGENDIAN
169 uint64_t high, low;
170 #else
171 uint64_t low, high;
172 #endif
173 } float128;
174 #define make_float128(high_, low_) ((float128) { .high = high_, .low = low_ })
175 #define make_float128_init(high_, low_) { .high = high_, .low = low_ }
176
177 /*----------------------------------------------------------------------------
178 | Software IEC/IEEE floating-point underflow tininess-detection mode.
179 *----------------------------------------------------------------------------*/
180 enum {
181 float_tininess_after_rounding = 0,
182 float_tininess_before_rounding = 1
183 };
184
185 /*----------------------------------------------------------------------------
186 | Software IEC/IEEE floating-point rounding mode.
187 *----------------------------------------------------------------------------*/
188 enum {
189 float_round_nearest_even = 0,
190 float_round_down = 1,
191 float_round_up = 2,
192 float_round_to_zero = 3,
193 float_round_ties_away = 4,
194 };
195
196 /*----------------------------------------------------------------------------
197 | Software IEC/IEEE floating-point exception flags.
198 *----------------------------------------------------------------------------*/
199 enum {
200 float_flag_invalid = 1,
201 float_flag_divbyzero = 4,
202 float_flag_overflow = 8,
203 float_flag_underflow = 16,
204 float_flag_inexact = 32,
205 float_flag_input_denormal = 64,
206 float_flag_output_denormal = 128
207 };
208
209 typedef struct float_status {
210 signed char float_detect_tininess;
211 signed char float_rounding_mode;
212 signed char float_exception_flags;
213 signed char floatx80_rounding_precision;
214 /* should denormalised results go to zero and set the inexact flag? */
215 flag flush_to_zero;
216 /* should denormalised inputs go to zero and set the input_denormal flag? */
217 flag flush_inputs_to_zero;
218 flag default_nan_mode;
219 } float_status;
220
221 static inline void set_float_detect_tininess(int val, float_status *status)
222 {
223 status->float_detect_tininess = val;
224 }
225 static inline void set_float_rounding_mode(int val, float_status *status)
226 {
227 status->float_rounding_mode = val;
228 }
229 static inline void set_float_exception_flags(int val, float_status *status)
230 {
231 status->float_exception_flags = val;
232 }
233 static inline void set_floatx80_rounding_precision(int val,
234 float_status *status)
235 {
236 status->floatx80_rounding_precision = val;
237 }
238 static inline void set_flush_to_zero(flag val, float_status *status)
239 {
240 status->flush_to_zero = val;
241 }
242 static inline void set_flush_inputs_to_zero(flag val, float_status *status)
243 {
244 status->flush_inputs_to_zero = val;
245 }
246 static inline void set_default_nan_mode(flag val, float_status *status)
247 {
248 status->default_nan_mode = val;
249 }
250 static inline int get_float_detect_tininess(float_status *status)
251 {
252 return status->float_detect_tininess;
253 }
254 static inline int get_float_rounding_mode(float_status *status)
255 {
256 return status->float_rounding_mode;
257 }
258 static inline int get_float_exception_flags(float_status *status)
259 {
260 return status->float_exception_flags;
261 }
262 static inline int get_floatx80_rounding_precision(float_status *status)
263 {
264 return status->floatx80_rounding_precision;
265 }
266 static inline flag get_flush_to_zero(float_status *status)
267 {
268 return status->flush_to_zero;
269 }
270 static inline flag get_flush_inputs_to_zero(float_status *status)
271 {
272 return status->flush_inputs_to_zero;
273 }
274 static inline flag get_default_nan_mode(float_status *status)
275 {
276 return status->default_nan_mode;
277 }
278
279 /*----------------------------------------------------------------------------
280 | Routine to raise any or all of the software IEC/IEEE floating-point
281 | exception flags.
282 *----------------------------------------------------------------------------*/
283 void float_raise(int8 flags, float_status *status);
284
285 /*----------------------------------------------------------------------------
286 | If `a' is denormal and we are in flush-to-zero mode then set the
287 | input-denormal exception and return zero. Otherwise just return the value.
288 *----------------------------------------------------------------------------*/
289 float32 float32_squash_input_denormal(float32 a, float_status *status);
290 float64 float64_squash_input_denormal(float64 a, float_status *status);
291
292 /*----------------------------------------------------------------------------
293 | Options to indicate which negations to perform in float*_muladd()
294 | Using these differs from negating an input or output before calling
295 | the muladd function in that this means that a NaN doesn't have its
296 | sign bit inverted before it is propagated.
297 | We also support halving the result before rounding, as a special
298 | case to support the ARM fused-sqrt-step instruction FRSQRTS.
299 *----------------------------------------------------------------------------*/
300 enum {
301 float_muladd_negate_c = 1,
302 float_muladd_negate_product = 2,
303 float_muladd_negate_result = 4,
304 float_muladd_halve_result = 8,
305 };
306
307 /*----------------------------------------------------------------------------
308 | Software IEC/IEEE integer-to-floating-point conversion routines.
309 *----------------------------------------------------------------------------*/
310 float32 int32_to_float32(int32_t, float_status *status);
311 float64 int32_to_float64(int32_t, float_status *status);
312 float32 uint32_to_float32(uint32_t, float_status *status);
313 float64 uint32_to_float64(uint32_t, float_status *status);
314 floatx80 int32_to_floatx80(int32_t, float_status *status);
315 float128 int32_to_float128(int32_t, float_status *status);
316 float32 int64_to_float32(int64_t, float_status *status);
317 float64 int64_to_float64(int64_t, float_status *status);
318 floatx80 int64_to_floatx80(int64_t, float_status *status);
319 float128 int64_to_float128(int64_t, float_status *status);
320 float32 uint64_to_float32(uint64_t, float_status *status);
321 float64 uint64_to_float64(uint64_t, float_status *status);
322 float128 uint64_to_float128(uint64_t, float_status *status);
323
324 /* We provide the int16 versions for symmetry of API with float-to-int */
325 static inline float32 int16_to_float32(int16_t v, float_status *status)
326 {
327 return int32_to_float32(v, status);
328 }
329
330 static inline float32 uint16_to_float32(uint16_t v, float_status *status)
331 {
332 return uint32_to_float32(v, status);
333 }
334
335 static inline float64 int16_to_float64(int16_t v, float_status *status)
336 {
337 return int32_to_float64(v, status);
338 }
339
340 static inline float64 uint16_to_float64(uint16_t v, float_status *status)
341 {
342 return uint32_to_float64(v, status);
343 }
344
345 /*----------------------------------------------------------------------------
346 | Software half-precision conversion routines.
347 *----------------------------------------------------------------------------*/
348 float16 float32_to_float16(float32, flag, float_status *status);
349 float32 float16_to_float32(float16, flag, float_status *status);
350 float16 float64_to_float16(float64 a, flag ieee, float_status *status);
351 float64 float16_to_float64(float16 a, flag ieee, float_status *status);
352
353 /*----------------------------------------------------------------------------
354 | Software half-precision operations.
355 *----------------------------------------------------------------------------*/
356 int float16_is_quiet_nan( float16 );
357 int float16_is_signaling_nan( float16 );
358 float16 float16_maybe_silence_nan( float16 );
359
360 static inline int float16_is_any_nan(float16 a)
361 {
362 return ((float16_val(a) & ~0x8000) > 0x7c00);
363 }
364
365 /*----------------------------------------------------------------------------
366 | The pattern for a default generated half-precision NaN.
367 *----------------------------------------------------------------------------*/
368 extern const float16 float16_default_nan;
369
370 /*----------------------------------------------------------------------------
371 | Software IEC/IEEE single-precision conversion routines.
372 *----------------------------------------------------------------------------*/
373 int_fast16_t float32_to_int16(float32, float_status *status);
374 uint_fast16_t float32_to_uint16(float32, float_status *status);
375 int_fast16_t float32_to_int16_round_to_zero(float32, float_status *status);
376 uint_fast16_t float32_to_uint16_round_to_zero(float32, float_status *status);
377 int32_t float32_to_int32(float32, float_status *status);
378 int32_t float32_to_int32_round_to_zero(float32, float_status *status);
379 uint32 float32_to_uint32(float32, float_status *status);
380 uint32 float32_to_uint32_round_to_zero(float32, float_status *status);
381 int64_t float32_to_int64(float32, float_status *status);
382 uint64_t float32_to_uint64(float32, float_status *status);
383 uint64_t float32_to_uint64_round_to_zero(float32, float_status *status);
384 int64_t float32_to_int64_round_to_zero(float32, float_status *status);
385 float64 float32_to_float64(float32, float_status *status);
386 floatx80 float32_to_floatx80(float32, float_status *status);
387 float128 float32_to_float128(float32, float_status *status);
388
389 /*----------------------------------------------------------------------------
390 | Software IEC/IEEE single-precision operations.
391 *----------------------------------------------------------------------------*/
392 float32 float32_round_to_int(float32, float_status *status);
393 float32 float32_add(float32, float32, float_status *status);
394 float32 float32_sub(float32, float32, float_status *status);
395 float32 float32_mul(float32, float32, float_status *status);
396 float32 float32_div(float32, float32, float_status *status);
397 float32 float32_rem(float32, float32, float_status *status);
398 float32 float32_muladd(float32, float32, float32, int, float_status *status);
399 float32 float32_sqrt(float32, float_status *status);
400 float32 float32_exp2(float32, float_status *status);
401 float32 float32_log2(float32, float_status *status);
402 int float32_eq(float32, float32, float_status *status);
403 int float32_le(float32, float32, float_status *status);
404 int float32_lt(float32, float32, float_status *status);
405 int float32_unordered(float32, float32, float_status *status);
406 int float32_eq_quiet(float32, float32, float_status *status);
407 int float32_le_quiet(float32, float32, float_status *status);
408 int float32_lt_quiet(float32, float32, float_status *status);
409 int float32_unordered_quiet(float32, float32, float_status *status);
410 int float32_compare(float32, float32, float_status *status);
411 int float32_compare_quiet(float32, float32, float_status *status);
412 float32 float32_min(float32, float32, float_status *status);
413 float32 float32_max(float32, float32, float_status *status);
414 float32 float32_minnum(float32, float32, float_status *status);
415 float32 float32_maxnum(float32, float32, float_status *status);
416 float32 float32_minnummag(float32, float32, float_status *status);
417 float32 float32_maxnummag(float32, float32, float_status *status);
418 int float32_is_quiet_nan( float32 );
419 int float32_is_signaling_nan( float32 );
420 float32 float32_maybe_silence_nan( float32 );
421 float32 float32_scalbn(float32, int, float_status *status);
422
423 static inline float32 float32_abs(float32 a)
424 {
425 /* Note that abs does *not* handle NaN specially, nor does
426 * it flush denormal inputs to zero.
427 */
428 return make_float32(float32_val(a) & 0x7fffffff);
429 }
430
431 static inline float32 float32_chs(float32 a)
432 {
433 /* Note that chs does *not* handle NaN specially, nor does
434 * it flush denormal inputs to zero.
435 */
436 return make_float32(float32_val(a) ^ 0x80000000);
437 }
438
439 static inline int float32_is_infinity(float32 a)
440 {
441 return (float32_val(a) & 0x7fffffff) == 0x7f800000;
442 }
443
444 static inline int float32_is_neg(float32 a)
445 {
446 return float32_val(a) >> 31;
447 }
448
449 static inline int float32_is_zero(float32 a)
450 {
451 return (float32_val(a) & 0x7fffffff) == 0;
452 }
453
454 static inline int float32_is_any_nan(float32 a)
455 {
456 return ((float32_val(a) & ~(1 << 31)) > 0x7f800000UL);
457 }
458
459 static inline int float32_is_zero_or_denormal(float32 a)
460 {
461 return (float32_val(a) & 0x7f800000) == 0;
462 }
463
464 static inline float32 float32_set_sign(float32 a, int sign)
465 {
466 return make_float32((float32_val(a) & 0x7fffffff) | (sign << 31));
467 }
468
469 #define float32_zero make_float32(0)
470 #define float32_one make_float32(0x3f800000)
471 #define float32_ln2 make_float32(0x3f317218)
472 #define float32_pi make_float32(0x40490fdb)
473 #define float32_half make_float32(0x3f000000)
474 #define float32_infinity make_float32(0x7f800000)
475
476
477 /*----------------------------------------------------------------------------
478 | The pattern for a default generated single-precision NaN.
479 *----------------------------------------------------------------------------*/
480 extern const float32 float32_default_nan;
481
482 /*----------------------------------------------------------------------------
483 | Software IEC/IEEE double-precision conversion routines.
484 *----------------------------------------------------------------------------*/
485 int_fast16_t float64_to_int16(float64, float_status *status);
486 uint_fast16_t float64_to_uint16(float64, float_status *status);
487 int_fast16_t float64_to_int16_round_to_zero(float64, float_status *status);
488 uint_fast16_t float64_to_uint16_round_to_zero(float64, float_status *status);
489 int32_t float64_to_int32(float64, float_status *status);
490 int32_t float64_to_int32_round_to_zero(float64, float_status *status);
491 uint32 float64_to_uint32(float64, float_status *status);
492 uint32 float64_to_uint32_round_to_zero(float64, float_status *status);
493 int64_t float64_to_int64(float64, float_status *status);
494 int64_t float64_to_int64_round_to_zero(float64, float_status *status);
495 uint64_t float64_to_uint64(float64 a, float_status *status);
496 uint64_t float64_to_uint64_round_to_zero(float64 a, float_status *status);
497 float32 float64_to_float32(float64, float_status *status);
498 floatx80 float64_to_floatx80(float64, float_status *status);
499 float128 float64_to_float128(float64, float_status *status);
500
501 /*----------------------------------------------------------------------------
502 | Software IEC/IEEE double-precision operations.
503 *----------------------------------------------------------------------------*/
504 float64 float64_round_to_int(float64, float_status *status);
505 float64 float64_trunc_to_int(float64, float_status *status);
506 float64 float64_add(float64, float64, float_status *status);
507 float64 float64_sub(float64, float64, float_status *status);
508 float64 float64_mul(float64, float64, float_status *status);
509 float64 float64_div(float64, float64, float_status *status);
510 float64 float64_rem(float64, float64, float_status *status);
511 float64 float64_muladd(float64, float64, float64, int, float_status *status);
512 float64 float64_sqrt(float64, float_status *status);
513 float64 float64_log2(float64, float_status *status);
514 int float64_eq(float64, float64, float_status *status);
515 int float64_le(float64, float64, float_status *status);
516 int float64_lt(float64, float64, float_status *status);
517 int float64_unordered(float64, float64, float_status *status);
518 int float64_eq_quiet(float64, float64, float_status *status);
519 int float64_le_quiet(float64, float64, float_status *status);
520 int float64_lt_quiet(float64, float64, float_status *status);
521 int float64_unordered_quiet(float64, float64, float_status *status);
522 int float64_compare(float64, float64, float_status *status);
523 int float64_compare_quiet(float64, float64, float_status *status);
524 float64 float64_min(float64, float64, float_status *status);
525 float64 float64_max(float64, float64, float_status *status);
526 float64 float64_minnum(float64, float64, float_status *status);
527 float64 float64_maxnum(float64, float64, float_status *status);
528 float64 float64_minnummag(float64, float64, float_status *status);
529 float64 float64_maxnummag(float64, float64, float_status *status);
530 int float64_is_quiet_nan( float64 a );
531 int float64_is_signaling_nan( float64 );
532 float64 float64_maybe_silence_nan( float64 );
533 float64 float64_scalbn(float64, int, float_status *status);
534
535 static inline float64 float64_abs(float64 a)
536 {
537 /* Note that abs does *not* handle NaN specially, nor does
538 * it flush denormal inputs to zero.
539 */
540 return make_float64(float64_val(a) & 0x7fffffffffffffffLL);
541 }
542
543 static inline float64 float64_chs(float64 a)
544 {
545 /* Note that chs does *not* handle NaN specially, nor does
546 * it flush denormal inputs to zero.
547 */
548 return make_float64(float64_val(a) ^ 0x8000000000000000LL);
549 }
550
551 static inline int float64_is_infinity(float64 a)
552 {
553 return (float64_val(a) & 0x7fffffffffffffffLL ) == 0x7ff0000000000000LL;
554 }
555
556 static inline int float64_is_neg(float64 a)
557 {
558 return float64_val(a) >> 63;
559 }
560
561 static inline int float64_is_zero(float64 a)
562 {
563 return (float64_val(a) & 0x7fffffffffffffffLL) == 0;
564 }
565
566 static inline int float64_is_any_nan(float64 a)
567 {
568 return ((float64_val(a) & ~(1ULL << 63)) > 0x7ff0000000000000ULL);
569 }
570
571 static inline int float64_is_zero_or_denormal(float64 a)
572 {
573 return (float64_val(a) & 0x7ff0000000000000LL) == 0;
574 }
575
576 static inline float64 float64_set_sign(float64 a, int sign)
577 {
578 return make_float64((float64_val(a) & 0x7fffffffffffffffULL)
579 | ((int64_t)sign << 63));
580 }
581
582 #define float64_zero make_float64(0)
583 #define float64_one make_float64(0x3ff0000000000000LL)
584 #define float64_ln2 make_float64(0x3fe62e42fefa39efLL)
585 #define float64_pi make_float64(0x400921fb54442d18LL)
586 #define float64_half make_float64(0x3fe0000000000000LL)
587 #define float64_infinity make_float64(0x7ff0000000000000LL)
588
589 /*----------------------------------------------------------------------------
590 | The pattern for a default generated double-precision NaN.
591 *----------------------------------------------------------------------------*/
592 extern const float64 float64_default_nan;
593
594 /*----------------------------------------------------------------------------
595 | Software IEC/IEEE extended double-precision conversion routines.
596 *----------------------------------------------------------------------------*/
597 int32_t floatx80_to_int32(floatx80, float_status *status);
598 int32_t floatx80_to_int32_round_to_zero(floatx80, float_status *status);
599 int64_t floatx80_to_int64(floatx80, float_status *status);
600 int64_t floatx80_to_int64_round_to_zero(floatx80, float_status *status);
601 float32 floatx80_to_float32(floatx80, float_status *status);
602 float64 floatx80_to_float64(floatx80, float_status *status);
603 float128 floatx80_to_float128(floatx80, float_status *status);
604
605 /*----------------------------------------------------------------------------
606 | Software IEC/IEEE extended double-precision operations.
607 *----------------------------------------------------------------------------*/
608 floatx80 floatx80_round_to_int(floatx80, float_status *status);
609 floatx80 floatx80_add(floatx80, floatx80, float_status *status);
610 floatx80 floatx80_sub(floatx80, floatx80, float_status *status);
611 floatx80 floatx80_mul(floatx80, floatx80, float_status *status);
612 floatx80 floatx80_div(floatx80, floatx80, float_status *status);
613 floatx80 floatx80_rem(floatx80, floatx80, float_status *status);
614 floatx80 floatx80_sqrt(floatx80, float_status *status);
615 int floatx80_eq(floatx80, floatx80, float_status *status);
616 int floatx80_le(floatx80, floatx80, float_status *status);
617 int floatx80_lt(floatx80, floatx80, float_status *status);
618 int floatx80_unordered(floatx80, floatx80, float_status *status);
619 int floatx80_eq_quiet(floatx80, floatx80, float_status *status);
620 int floatx80_le_quiet(floatx80, floatx80, float_status *status);
621 int floatx80_lt_quiet(floatx80, floatx80, float_status *status);
622 int floatx80_unordered_quiet(floatx80, floatx80, float_status *status);
623 int floatx80_compare(floatx80, floatx80, float_status *status);
624 int floatx80_compare_quiet(floatx80, floatx80, float_status *status);
625 int floatx80_is_quiet_nan( floatx80 );
626 int floatx80_is_signaling_nan( floatx80 );
627 floatx80 floatx80_maybe_silence_nan( floatx80 );
628 floatx80 floatx80_scalbn(floatx80, int, float_status *status);
629
630 static inline floatx80 floatx80_abs(floatx80 a)
631 {
632 a.high &= 0x7fff;
633 return a;
634 }
635
636 static inline floatx80 floatx80_chs(floatx80 a)
637 {
638 a.high ^= 0x8000;
639 return a;
640 }
641
642 static inline int floatx80_is_infinity(floatx80 a)
643 {
644 return (a.high & 0x7fff) == 0x7fff && a.low == 0x8000000000000000LL;
645 }
646
647 static inline int floatx80_is_neg(floatx80 a)
648 {
649 return a.high >> 15;
650 }
651
652 static inline int floatx80_is_zero(floatx80 a)
653 {
654 return (a.high & 0x7fff) == 0 && a.low == 0;
655 }
656
657 static inline int floatx80_is_zero_or_denormal(floatx80 a)
658 {
659 return (a.high & 0x7fff) == 0;
660 }
661
662 static inline int floatx80_is_any_nan(floatx80 a)
663 {
664 return ((a.high & 0x7fff) == 0x7fff) && (a.low<<1);
665 }
666
667 #define floatx80_zero make_floatx80(0x0000, 0x0000000000000000LL)
668 #define floatx80_one make_floatx80(0x3fff, 0x8000000000000000LL)
669 #define floatx80_ln2 make_floatx80(0x3ffe, 0xb17217f7d1cf79acLL)
670 #define floatx80_pi make_floatx80(0x4000, 0xc90fdaa22168c235LL)
671 #define floatx80_half make_floatx80(0x3ffe, 0x8000000000000000LL)
672 #define floatx80_infinity make_floatx80(0x7fff, 0x8000000000000000LL)
673
674 /*----------------------------------------------------------------------------
675 | The pattern for a default generated extended double-precision NaN.
676 *----------------------------------------------------------------------------*/
677 extern const floatx80 floatx80_default_nan;
678
679 /*----------------------------------------------------------------------------
680 | Software IEC/IEEE quadruple-precision conversion routines.
681 *----------------------------------------------------------------------------*/
682 int32_t float128_to_int32(float128, float_status *status);
683 int32_t float128_to_int32_round_to_zero(float128, float_status *status);
684 int64_t float128_to_int64(float128, float_status *status);
685 int64_t float128_to_int64_round_to_zero(float128, float_status *status);
686 float32 float128_to_float32(float128, float_status *status);
687 float64 float128_to_float64(float128, float_status *status);
688 floatx80 float128_to_floatx80(float128, float_status *status);
689
690 /*----------------------------------------------------------------------------
691 | Software IEC/IEEE quadruple-precision operations.
692 *----------------------------------------------------------------------------*/
693 float128 float128_round_to_int(float128, float_status *status);
694 float128 float128_add(float128, float128, float_status *status);
695 float128 float128_sub(float128, float128, float_status *status);
696 float128 float128_mul(float128, float128, float_status *status);
697 float128 float128_div(float128, float128, float_status *status);
698 float128 float128_rem(float128, float128, float_status *status);
699 float128 float128_sqrt(float128, float_status *status);
700 int float128_eq(float128, float128, float_status *status);
701 int float128_le(float128, float128, float_status *status);
702 int float128_lt(float128, float128, float_status *status);
703 int float128_unordered(float128, float128, float_status *status);
704 int float128_eq_quiet(float128, float128, float_status *status);
705 int float128_le_quiet(float128, float128, float_status *status);
706 int float128_lt_quiet(float128, float128, float_status *status);
707 int float128_unordered_quiet(float128, float128, float_status *status);
708 int float128_compare(float128, float128, float_status *status);
709 int float128_compare_quiet(float128, float128, float_status *status);
710 int float128_is_quiet_nan( float128 );
711 int float128_is_signaling_nan( float128 );
712 float128 float128_maybe_silence_nan( float128 );
713 float128 float128_scalbn(float128, int, float_status *status);
714
715 static inline float128 float128_abs(float128 a)
716 {
717 a.high &= 0x7fffffffffffffffLL;
718 return a;
719 }
720
721 static inline float128 float128_chs(float128 a)
722 {
723 a.high ^= 0x8000000000000000LL;
724 return a;
725 }
726
727 static inline int float128_is_infinity(float128 a)
728 {
729 return (a.high & 0x7fffffffffffffffLL) == 0x7fff000000000000LL && a.low == 0;
730 }
731
732 static inline int float128_is_neg(float128 a)
733 {
734 return a.high >> 63;
735 }
736
737 static inline int float128_is_zero(float128 a)
738 {
739 return (a.high & 0x7fffffffffffffffLL) == 0 && a.low == 0;
740 }
741
742 static inline int float128_is_zero_or_denormal(float128 a)
743 {
744 return (a.high & 0x7fff000000000000LL) == 0;
745 }
746
747 static inline int float128_is_any_nan(float128 a)
748 {
749 return ((a.high >> 48) & 0x7fff) == 0x7fff &&
750 ((a.low != 0) || ((a.high & 0xffffffffffffLL) != 0));
751 }
752
753 #define float128_zero make_float128(0, 0)
754
755 /*----------------------------------------------------------------------------
756 | The pattern for a default generated quadruple-precision NaN.
757 *----------------------------------------------------------------------------*/
758 extern const float128 float128_default_nan;
759
760 #endif /* !SOFTFLOAT_H */