]> git.proxmox.com Git - mirror_qemu.git/blob - include/fpu/softfloat.h
softfloat: expand out STATUS_VAR
[mirror_qemu.git] / include / fpu / softfloat.h
1 /*
2 * QEMU float support
3 *
4 * The code in this source file is derived from release 2a of the SoftFloat
5 * IEC/IEEE Floating-point Arithmetic Package. Those parts of the code (and
6 * some later contributions) are provided under that license, as detailed below.
7 * It has subsequently been modified by contributors to the QEMU Project,
8 * so some portions are provided under:
9 * the SoftFloat-2a license
10 * the BSD license
11 * GPL-v2-or-later
12 *
13 * Any future contributions to this file after December 1st 2014 will be
14 * taken to be licensed under the Softfloat-2a license unless specifically
15 * indicated otherwise.
16 */
17
18 /*
19 ===============================================================================
20 This C header file is part of the SoftFloat IEC/IEEE Floating-point
21 Arithmetic Package, Release 2a.
22
23 Written by John R. Hauser. This work was made possible in part by the
24 International Computer Science Institute, located at Suite 600, 1947 Center
25 Street, Berkeley, California 94704. Funding was partially provided by the
26 National Science Foundation under grant MIP-9311980. The original version
27 of this code was written as part of a project to build a fixed-point vector
28 processor in collaboration with the University of California at Berkeley,
29 overseen by Profs. Nelson Morgan and John Wawrzynek. More information
30 is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
31 arithmetic/SoftFloat.html'.
32
33 THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort
34 has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
35 TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO
36 PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
37 AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
38
39 Derivative works are acceptable, even for commercial purposes, so long as
40 (1) they include prominent notice that the work is derivative, and (2) they
41 include prominent notice akin to these four paragraphs for those parts of
42 this code that are retained.
43
44 ===============================================================================
45 */
46
47 /* BSD licensing:
48 * Copyright (c) 2006, Fabrice Bellard
49 * All rights reserved.
50 *
51 * Redistribution and use in source and binary forms, with or without
52 * modification, are permitted provided that the following conditions are met:
53 *
54 * 1. Redistributions of source code must retain the above copyright notice,
55 * this list of conditions and the following disclaimer.
56 *
57 * 2. Redistributions in binary form must reproduce the above copyright notice,
58 * this list of conditions and the following disclaimer in the documentation
59 * and/or other materials provided with the distribution.
60 *
61 * 3. Neither the name of the copyright holder nor the names of its contributors
62 * may be used to endorse or promote products derived from this software without
63 * specific prior written permission.
64 *
65 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
66 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
67 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
68 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
69 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
70 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
71 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
72 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
73 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
74 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
75 * THE POSSIBILITY OF SUCH DAMAGE.
76 */
77
78 /* Portions of this work are licensed under the terms of the GNU GPL,
79 * version 2 or later. See the COPYING file in the top-level directory.
80 */
81
82 #ifndef SOFTFLOAT_H
83 #define SOFTFLOAT_H
84
85 #if defined(CONFIG_SOLARIS) && defined(CONFIG_NEEDS_LIBSUNMATH)
86 #include <sunmath.h>
87 #endif
88
89 #include <inttypes.h>
90 #include "config-host.h"
91 #include "qemu/osdep.h"
92
93 /*----------------------------------------------------------------------------
94 | Each of the following `typedef's defines the most convenient type that holds
95 | integers of at least as many bits as specified. For example, `uint8' should
96 | be the most convenient type that can hold unsigned integers of as many as
97 | 8 bits. The `flag' type must be able to hold either a 0 or 1. For most
98 | implementations of C, `flag', `uint8', and `int8' should all be `typedef'ed
99 | to the same as `int'.
100 *----------------------------------------------------------------------------*/
101 typedef uint8_t flag;
102 typedef uint8_t uint8;
103 typedef int8_t int8;
104 typedef unsigned int uint32;
105 typedef signed int int32;
106 typedef uint64_t uint64;
107 typedef int64_t int64;
108
109 #define LIT64( a ) a##LL
110
111 #define STATUS(field) status->field
112
113 /*----------------------------------------------------------------------------
114 | Software IEC/IEEE floating-point ordering relations
115 *----------------------------------------------------------------------------*/
116 enum {
117 float_relation_less = -1,
118 float_relation_equal = 0,
119 float_relation_greater = 1,
120 float_relation_unordered = 2
121 };
122
123 /*----------------------------------------------------------------------------
124 | Software IEC/IEEE floating-point types.
125 *----------------------------------------------------------------------------*/
126 /* Use structures for soft-float types. This prevents accidentally mixing
127 them with native int/float types. A sufficiently clever compiler and
128 sane ABI should be able to see though these structs. However
129 x86/gcc 3.x seems to struggle a bit, so leave them disabled by default. */
130 //#define USE_SOFTFLOAT_STRUCT_TYPES
131 #ifdef USE_SOFTFLOAT_STRUCT_TYPES
132 typedef struct {
133 uint16_t v;
134 } float16;
135 #define float16_val(x) (((float16)(x)).v)
136 #define make_float16(x) __extension__ ({ float16 f16_val = {x}; f16_val; })
137 #define const_float16(x) { x }
138 typedef struct {
139 uint32_t v;
140 } float32;
141 /* The cast ensures an error if the wrong type is passed. */
142 #define float32_val(x) (((float32)(x)).v)
143 #define make_float32(x) __extension__ ({ float32 f32_val = {x}; f32_val; })
144 #define const_float32(x) { x }
145 typedef struct {
146 uint64_t v;
147 } float64;
148 #define float64_val(x) (((float64)(x)).v)
149 #define make_float64(x) __extension__ ({ float64 f64_val = {x}; f64_val; })
150 #define const_float64(x) { x }
151 #else
152 typedef uint16_t float16;
153 typedef uint32_t float32;
154 typedef uint64_t float64;
155 #define float16_val(x) (x)
156 #define float32_val(x) (x)
157 #define float64_val(x) (x)
158 #define make_float16(x) (x)
159 #define make_float32(x) (x)
160 #define make_float64(x) (x)
161 #define const_float16(x) (x)
162 #define const_float32(x) (x)
163 #define const_float64(x) (x)
164 #endif
165 typedef struct {
166 uint64_t low;
167 uint16_t high;
168 } floatx80;
169 #define make_floatx80(exp, mant) ((floatx80) { mant, exp })
170 #define make_floatx80_init(exp, mant) { .low = mant, .high = exp }
171 typedef struct {
172 #ifdef HOST_WORDS_BIGENDIAN
173 uint64_t high, low;
174 #else
175 uint64_t low, high;
176 #endif
177 } float128;
178 #define make_float128(high_, low_) ((float128) { .high = high_, .low = low_ })
179 #define make_float128_init(high_, low_) { .high = high_, .low = low_ }
180
181 /*----------------------------------------------------------------------------
182 | Software IEC/IEEE floating-point underflow tininess-detection mode.
183 *----------------------------------------------------------------------------*/
184 enum {
185 float_tininess_after_rounding = 0,
186 float_tininess_before_rounding = 1
187 };
188
189 /*----------------------------------------------------------------------------
190 | Software IEC/IEEE floating-point rounding mode.
191 *----------------------------------------------------------------------------*/
192 enum {
193 float_round_nearest_even = 0,
194 float_round_down = 1,
195 float_round_up = 2,
196 float_round_to_zero = 3,
197 float_round_ties_away = 4,
198 };
199
200 /*----------------------------------------------------------------------------
201 | Software IEC/IEEE floating-point exception flags.
202 *----------------------------------------------------------------------------*/
203 enum {
204 float_flag_invalid = 1,
205 float_flag_divbyzero = 4,
206 float_flag_overflow = 8,
207 float_flag_underflow = 16,
208 float_flag_inexact = 32,
209 float_flag_input_denormal = 64,
210 float_flag_output_denormal = 128
211 };
212
213 typedef struct float_status {
214 signed char float_detect_tininess;
215 signed char float_rounding_mode;
216 signed char float_exception_flags;
217 signed char floatx80_rounding_precision;
218 /* should denormalised results go to zero and set the inexact flag? */
219 flag flush_to_zero;
220 /* should denormalised inputs go to zero and set the input_denormal flag? */
221 flag flush_inputs_to_zero;
222 flag default_nan_mode;
223 } float_status;
224
225 static inline void set_float_detect_tininess(int val, float_status *status)
226 {
227 STATUS(float_detect_tininess) = val;
228 }
229 static inline void set_float_rounding_mode(int val, float_status *status)
230 {
231 STATUS(float_rounding_mode) = val;
232 }
233 static inline void set_float_exception_flags(int val, float_status *status)
234 {
235 STATUS(float_exception_flags) = val;
236 }
237 static inline void set_floatx80_rounding_precision(int val,
238 float_status *status)
239 {
240 STATUS(floatx80_rounding_precision) = val;
241 }
242 static inline void set_flush_to_zero(flag val, float_status *status)
243 {
244 STATUS(flush_to_zero) = val;
245 }
246 static inline void set_flush_inputs_to_zero(flag val, float_status *status)
247 {
248 STATUS(flush_inputs_to_zero) = val;
249 }
250 static inline void set_default_nan_mode(flag val, float_status *status)
251 {
252 STATUS(default_nan_mode) = val;
253 }
254 static inline int get_float_detect_tininess(float_status *status)
255 {
256 return STATUS(float_detect_tininess);
257 }
258 static inline int get_float_rounding_mode(float_status *status)
259 {
260 return STATUS(float_rounding_mode);
261 }
262 static inline int get_float_exception_flags(float_status *status)
263 {
264 return STATUS(float_exception_flags);
265 }
266 static inline int get_floatx80_rounding_precision(float_status *status)
267 {
268 return STATUS(floatx80_rounding_precision);
269 }
270 static inline flag get_flush_to_zero(float_status *status)
271 {
272 return STATUS(flush_to_zero);
273 }
274 static inline flag get_flush_inputs_to_zero(float_status *status)
275 {
276 return STATUS(flush_inputs_to_zero);
277 }
278 static inline flag get_default_nan_mode(float_status *status)
279 {
280 return STATUS(default_nan_mode);
281 }
282
283 /*----------------------------------------------------------------------------
284 | Routine to raise any or all of the software IEC/IEEE floating-point
285 | exception flags.
286 *----------------------------------------------------------------------------*/
287 void float_raise(int8 flags, float_status *status);
288
289 /*----------------------------------------------------------------------------
290 | If `a' is denormal and we are in flush-to-zero mode then set the
291 | input-denormal exception and return zero. Otherwise just return the value.
292 *----------------------------------------------------------------------------*/
293 float32 float32_squash_input_denormal(float32 a, float_status *status);
294 float64 float64_squash_input_denormal(float64 a, float_status *status);
295
296 /*----------------------------------------------------------------------------
297 | Options to indicate which negations to perform in float*_muladd()
298 | Using these differs from negating an input or output before calling
299 | the muladd function in that this means that a NaN doesn't have its
300 | sign bit inverted before it is propagated.
301 | We also support halving the result before rounding, as a special
302 | case to support the ARM fused-sqrt-step instruction FRSQRTS.
303 *----------------------------------------------------------------------------*/
304 enum {
305 float_muladd_negate_c = 1,
306 float_muladd_negate_product = 2,
307 float_muladd_negate_result = 4,
308 float_muladd_halve_result = 8,
309 };
310
311 /*----------------------------------------------------------------------------
312 | Software IEC/IEEE integer-to-floating-point conversion routines.
313 *----------------------------------------------------------------------------*/
314 float32 int32_to_float32(int32_t, float_status *status);
315 float64 int32_to_float64(int32_t, float_status *status);
316 float32 uint32_to_float32(uint32_t, float_status *status);
317 float64 uint32_to_float64(uint32_t, float_status *status);
318 floatx80 int32_to_floatx80(int32_t, float_status *status);
319 float128 int32_to_float128(int32_t, float_status *status);
320 float32 int64_to_float32(int64_t, float_status *status);
321 float64 int64_to_float64(int64_t, float_status *status);
322 floatx80 int64_to_floatx80(int64_t, float_status *status);
323 float128 int64_to_float128(int64_t, float_status *status);
324 float32 uint64_to_float32(uint64_t, float_status *status);
325 float64 uint64_to_float64(uint64_t, float_status *status);
326 float128 uint64_to_float128(uint64_t, float_status *status);
327
328 /* We provide the int16 versions for symmetry of API with float-to-int */
329 static inline float32 int16_to_float32(int16_t v, float_status *status)
330 {
331 return int32_to_float32(v, status);
332 }
333
334 static inline float32 uint16_to_float32(uint16_t v, float_status *status)
335 {
336 return uint32_to_float32(v, status);
337 }
338
339 static inline float64 int16_to_float64(int16_t v, float_status *status)
340 {
341 return int32_to_float64(v, status);
342 }
343
344 static inline float64 uint16_to_float64(uint16_t v, float_status *status)
345 {
346 return uint32_to_float64(v, status);
347 }
348
349 /*----------------------------------------------------------------------------
350 | Software half-precision conversion routines.
351 *----------------------------------------------------------------------------*/
352 float16 float32_to_float16(float32, flag, float_status *status);
353 float32 float16_to_float32(float16, flag, float_status *status);
354 float16 float64_to_float16(float64 a, flag ieee, float_status *status);
355 float64 float16_to_float64(float16 a, flag ieee, float_status *status);
356
357 /*----------------------------------------------------------------------------
358 | Software half-precision operations.
359 *----------------------------------------------------------------------------*/
360 int float16_is_quiet_nan( float16 );
361 int float16_is_signaling_nan( float16 );
362 float16 float16_maybe_silence_nan( float16 );
363
364 static inline int float16_is_any_nan(float16 a)
365 {
366 return ((float16_val(a) & ~0x8000) > 0x7c00);
367 }
368
369 /*----------------------------------------------------------------------------
370 | The pattern for a default generated half-precision NaN.
371 *----------------------------------------------------------------------------*/
372 extern const float16 float16_default_nan;
373
374 /*----------------------------------------------------------------------------
375 | Software IEC/IEEE single-precision conversion routines.
376 *----------------------------------------------------------------------------*/
377 int_fast16_t float32_to_int16(float32, float_status *status);
378 uint_fast16_t float32_to_uint16(float32, float_status *status);
379 int_fast16_t float32_to_int16_round_to_zero(float32, float_status *status);
380 uint_fast16_t float32_to_uint16_round_to_zero(float32, float_status *status);
381 int32 float32_to_int32(float32, float_status *status);
382 int32 float32_to_int32_round_to_zero(float32, float_status *status);
383 uint32 float32_to_uint32(float32, float_status *status);
384 uint32 float32_to_uint32_round_to_zero(float32, float_status *status);
385 int64 float32_to_int64(float32, float_status *status);
386 uint64 float32_to_uint64(float32, float_status *status);
387 uint64 float32_to_uint64_round_to_zero(float32, float_status *status);
388 int64 float32_to_int64_round_to_zero(float32, float_status *status);
389 float64 float32_to_float64(float32, float_status *status);
390 floatx80 float32_to_floatx80(float32, float_status *status);
391 float128 float32_to_float128(float32, float_status *status);
392
393 /*----------------------------------------------------------------------------
394 | Software IEC/IEEE single-precision operations.
395 *----------------------------------------------------------------------------*/
396 float32 float32_round_to_int(float32, float_status *status);
397 float32 float32_add(float32, float32, float_status *status);
398 float32 float32_sub(float32, float32, float_status *status);
399 float32 float32_mul(float32, float32, float_status *status);
400 float32 float32_div(float32, float32, float_status *status);
401 float32 float32_rem(float32, float32, float_status *status);
402 float32 float32_muladd(float32, float32, float32, int, float_status *status);
403 float32 float32_sqrt(float32, float_status *status);
404 float32 float32_exp2(float32, float_status *status);
405 float32 float32_log2(float32, float_status *status);
406 int float32_eq(float32, float32, float_status *status);
407 int float32_le(float32, float32, float_status *status);
408 int float32_lt(float32, float32, float_status *status);
409 int float32_unordered(float32, float32, float_status *status);
410 int float32_eq_quiet(float32, float32, float_status *status);
411 int float32_le_quiet(float32, float32, float_status *status);
412 int float32_lt_quiet(float32, float32, float_status *status);
413 int float32_unordered_quiet(float32, float32, float_status *status);
414 int float32_compare(float32, float32, float_status *status);
415 int float32_compare_quiet(float32, float32, float_status *status);
416 float32 float32_min(float32, float32, float_status *status);
417 float32 float32_max(float32, float32, float_status *status);
418 float32 float32_minnum(float32, float32, float_status *status);
419 float32 float32_maxnum(float32, float32, float_status *status);
420 float32 float32_minnummag(float32, float32, float_status *status);
421 float32 float32_maxnummag(float32, float32, float_status *status);
422 int float32_is_quiet_nan( float32 );
423 int float32_is_signaling_nan( float32 );
424 float32 float32_maybe_silence_nan( float32 );
425 float32 float32_scalbn(float32, int, float_status *status);
426
427 static inline float32 float32_abs(float32 a)
428 {
429 /* Note that abs does *not* handle NaN specially, nor does
430 * it flush denormal inputs to zero.
431 */
432 return make_float32(float32_val(a) & 0x7fffffff);
433 }
434
435 static inline float32 float32_chs(float32 a)
436 {
437 /* Note that chs does *not* handle NaN specially, nor does
438 * it flush denormal inputs to zero.
439 */
440 return make_float32(float32_val(a) ^ 0x80000000);
441 }
442
443 static inline int float32_is_infinity(float32 a)
444 {
445 return (float32_val(a) & 0x7fffffff) == 0x7f800000;
446 }
447
448 static inline int float32_is_neg(float32 a)
449 {
450 return float32_val(a) >> 31;
451 }
452
453 static inline int float32_is_zero(float32 a)
454 {
455 return (float32_val(a) & 0x7fffffff) == 0;
456 }
457
458 static inline int float32_is_any_nan(float32 a)
459 {
460 return ((float32_val(a) & ~(1 << 31)) > 0x7f800000UL);
461 }
462
463 static inline int float32_is_zero_or_denormal(float32 a)
464 {
465 return (float32_val(a) & 0x7f800000) == 0;
466 }
467
468 static inline float32 float32_set_sign(float32 a, int sign)
469 {
470 return make_float32((float32_val(a) & 0x7fffffff) | (sign << 31));
471 }
472
473 #define float32_zero make_float32(0)
474 #define float32_one make_float32(0x3f800000)
475 #define float32_ln2 make_float32(0x3f317218)
476 #define float32_pi make_float32(0x40490fdb)
477 #define float32_half make_float32(0x3f000000)
478 #define float32_infinity make_float32(0x7f800000)
479
480
481 /*----------------------------------------------------------------------------
482 | The pattern for a default generated single-precision NaN.
483 *----------------------------------------------------------------------------*/
484 extern const float32 float32_default_nan;
485
486 /*----------------------------------------------------------------------------
487 | Software IEC/IEEE double-precision conversion routines.
488 *----------------------------------------------------------------------------*/
489 int_fast16_t float64_to_int16(float64, float_status *status);
490 uint_fast16_t float64_to_uint16(float64, float_status *status);
491 int_fast16_t float64_to_int16_round_to_zero(float64, float_status *status);
492 uint_fast16_t float64_to_uint16_round_to_zero(float64, float_status *status);
493 int32 float64_to_int32(float64, float_status *status);
494 int32 float64_to_int32_round_to_zero(float64, float_status *status);
495 uint32 float64_to_uint32(float64, float_status *status);
496 uint32 float64_to_uint32_round_to_zero(float64, float_status *status);
497 int64 float64_to_int64(float64, float_status *status);
498 int64 float64_to_int64_round_to_zero(float64, float_status *status);
499 uint64 float64_to_uint64(float64 a, float_status *status);
500 uint64 float64_to_uint64_round_to_zero(float64 a, float_status *status);
501 float32 float64_to_float32(float64, float_status *status);
502 floatx80 float64_to_floatx80(float64, float_status *status);
503 float128 float64_to_float128(float64, float_status *status);
504
505 /*----------------------------------------------------------------------------
506 | Software IEC/IEEE double-precision operations.
507 *----------------------------------------------------------------------------*/
508 float64 float64_round_to_int(float64, float_status *status);
509 float64 float64_trunc_to_int(float64, float_status *status);
510 float64 float64_add(float64, float64, float_status *status);
511 float64 float64_sub(float64, float64, float_status *status);
512 float64 float64_mul(float64, float64, float_status *status);
513 float64 float64_div(float64, float64, float_status *status);
514 float64 float64_rem(float64, float64, float_status *status);
515 float64 float64_muladd(float64, float64, float64, int, float_status *status);
516 float64 float64_sqrt(float64, float_status *status);
517 float64 float64_log2(float64, float_status *status);
518 int float64_eq(float64, float64, float_status *status);
519 int float64_le(float64, float64, float_status *status);
520 int float64_lt(float64, float64, float_status *status);
521 int float64_unordered(float64, float64, float_status *status);
522 int float64_eq_quiet(float64, float64, float_status *status);
523 int float64_le_quiet(float64, float64, float_status *status);
524 int float64_lt_quiet(float64, float64, float_status *status);
525 int float64_unordered_quiet(float64, float64, float_status *status);
526 int float64_compare(float64, float64, float_status *status);
527 int float64_compare_quiet(float64, float64, float_status *status);
528 float64 float64_min(float64, float64, float_status *status);
529 float64 float64_max(float64, float64, float_status *status);
530 float64 float64_minnum(float64, float64, float_status *status);
531 float64 float64_maxnum(float64, float64, float_status *status);
532 float64 float64_minnummag(float64, float64, float_status *status);
533 float64 float64_maxnummag(float64, float64, float_status *status);
534 int float64_is_quiet_nan( float64 a );
535 int float64_is_signaling_nan( float64 );
536 float64 float64_maybe_silence_nan( float64 );
537 float64 float64_scalbn(float64, int, float_status *status);
538
539 static inline float64 float64_abs(float64 a)
540 {
541 /* Note that abs does *not* handle NaN specially, nor does
542 * it flush denormal inputs to zero.
543 */
544 return make_float64(float64_val(a) & 0x7fffffffffffffffLL);
545 }
546
547 static inline float64 float64_chs(float64 a)
548 {
549 /* Note that chs does *not* handle NaN specially, nor does
550 * it flush denormal inputs to zero.
551 */
552 return make_float64(float64_val(a) ^ 0x8000000000000000LL);
553 }
554
555 static inline int float64_is_infinity(float64 a)
556 {
557 return (float64_val(a) & 0x7fffffffffffffffLL ) == 0x7ff0000000000000LL;
558 }
559
560 static inline int float64_is_neg(float64 a)
561 {
562 return float64_val(a) >> 63;
563 }
564
565 static inline int float64_is_zero(float64 a)
566 {
567 return (float64_val(a) & 0x7fffffffffffffffLL) == 0;
568 }
569
570 static inline int float64_is_any_nan(float64 a)
571 {
572 return ((float64_val(a) & ~(1ULL << 63)) > 0x7ff0000000000000ULL);
573 }
574
575 static inline int float64_is_zero_or_denormal(float64 a)
576 {
577 return (float64_val(a) & 0x7ff0000000000000LL) == 0;
578 }
579
580 static inline float64 float64_set_sign(float64 a, int sign)
581 {
582 return make_float64((float64_val(a) & 0x7fffffffffffffffULL)
583 | ((int64_t)sign << 63));
584 }
585
586 #define float64_zero make_float64(0)
587 #define float64_one make_float64(0x3ff0000000000000LL)
588 #define float64_ln2 make_float64(0x3fe62e42fefa39efLL)
589 #define float64_pi make_float64(0x400921fb54442d18LL)
590 #define float64_half make_float64(0x3fe0000000000000LL)
591 #define float64_infinity make_float64(0x7ff0000000000000LL)
592
593 /*----------------------------------------------------------------------------
594 | The pattern for a default generated double-precision NaN.
595 *----------------------------------------------------------------------------*/
596 extern const float64 float64_default_nan;
597
598 /*----------------------------------------------------------------------------
599 | Software IEC/IEEE extended double-precision conversion routines.
600 *----------------------------------------------------------------------------*/
601 int32 floatx80_to_int32(floatx80, float_status *status);
602 int32 floatx80_to_int32_round_to_zero(floatx80, float_status *status);
603 int64 floatx80_to_int64(floatx80, float_status *status);
604 int64 floatx80_to_int64_round_to_zero(floatx80, float_status *status);
605 float32 floatx80_to_float32(floatx80, float_status *status);
606 float64 floatx80_to_float64(floatx80, float_status *status);
607 float128 floatx80_to_float128(floatx80, float_status *status);
608
609 /*----------------------------------------------------------------------------
610 | Software IEC/IEEE extended double-precision operations.
611 *----------------------------------------------------------------------------*/
612 floatx80 floatx80_round_to_int(floatx80, float_status *status);
613 floatx80 floatx80_add(floatx80, floatx80, float_status *status);
614 floatx80 floatx80_sub(floatx80, floatx80, float_status *status);
615 floatx80 floatx80_mul(floatx80, floatx80, float_status *status);
616 floatx80 floatx80_div(floatx80, floatx80, float_status *status);
617 floatx80 floatx80_rem(floatx80, floatx80, float_status *status);
618 floatx80 floatx80_sqrt(floatx80, float_status *status);
619 int floatx80_eq(floatx80, floatx80, float_status *status);
620 int floatx80_le(floatx80, floatx80, float_status *status);
621 int floatx80_lt(floatx80, floatx80, float_status *status);
622 int floatx80_unordered(floatx80, floatx80, float_status *status);
623 int floatx80_eq_quiet(floatx80, floatx80, float_status *status);
624 int floatx80_le_quiet(floatx80, floatx80, float_status *status);
625 int floatx80_lt_quiet(floatx80, floatx80, float_status *status);
626 int floatx80_unordered_quiet(floatx80, floatx80, float_status *status);
627 int floatx80_compare(floatx80, floatx80, float_status *status);
628 int floatx80_compare_quiet(floatx80, floatx80, float_status *status);
629 int floatx80_is_quiet_nan( floatx80 );
630 int floatx80_is_signaling_nan( floatx80 );
631 floatx80 floatx80_maybe_silence_nan( floatx80 );
632 floatx80 floatx80_scalbn(floatx80, int, float_status *status);
633
634 static inline floatx80 floatx80_abs(floatx80 a)
635 {
636 a.high &= 0x7fff;
637 return a;
638 }
639
640 static inline floatx80 floatx80_chs(floatx80 a)
641 {
642 a.high ^= 0x8000;
643 return a;
644 }
645
646 static inline int floatx80_is_infinity(floatx80 a)
647 {
648 return (a.high & 0x7fff) == 0x7fff && a.low == 0x8000000000000000LL;
649 }
650
651 static inline int floatx80_is_neg(floatx80 a)
652 {
653 return a.high >> 15;
654 }
655
656 static inline int floatx80_is_zero(floatx80 a)
657 {
658 return (a.high & 0x7fff) == 0 && a.low == 0;
659 }
660
661 static inline int floatx80_is_zero_or_denormal(floatx80 a)
662 {
663 return (a.high & 0x7fff) == 0;
664 }
665
666 static inline int floatx80_is_any_nan(floatx80 a)
667 {
668 return ((a.high & 0x7fff) == 0x7fff) && (a.low<<1);
669 }
670
671 #define floatx80_zero make_floatx80(0x0000, 0x0000000000000000LL)
672 #define floatx80_one make_floatx80(0x3fff, 0x8000000000000000LL)
673 #define floatx80_ln2 make_floatx80(0x3ffe, 0xb17217f7d1cf79acLL)
674 #define floatx80_pi make_floatx80(0x4000, 0xc90fdaa22168c235LL)
675 #define floatx80_half make_floatx80(0x3ffe, 0x8000000000000000LL)
676 #define floatx80_infinity make_floatx80(0x7fff, 0x8000000000000000LL)
677
678 /*----------------------------------------------------------------------------
679 | The pattern for a default generated extended double-precision NaN.
680 *----------------------------------------------------------------------------*/
681 extern const floatx80 floatx80_default_nan;
682
683 /*----------------------------------------------------------------------------
684 | Software IEC/IEEE quadruple-precision conversion routines.
685 *----------------------------------------------------------------------------*/
686 int32 float128_to_int32(float128, float_status *status);
687 int32 float128_to_int32_round_to_zero(float128, float_status *status);
688 int64 float128_to_int64(float128, float_status *status);
689 int64 float128_to_int64_round_to_zero(float128, float_status *status);
690 float32 float128_to_float32(float128, float_status *status);
691 float64 float128_to_float64(float128, float_status *status);
692 floatx80 float128_to_floatx80(float128, float_status *status);
693
694 /*----------------------------------------------------------------------------
695 | Software IEC/IEEE quadruple-precision operations.
696 *----------------------------------------------------------------------------*/
697 float128 float128_round_to_int(float128, float_status *status);
698 float128 float128_add(float128, float128, float_status *status);
699 float128 float128_sub(float128, float128, float_status *status);
700 float128 float128_mul(float128, float128, float_status *status);
701 float128 float128_div(float128, float128, float_status *status);
702 float128 float128_rem(float128, float128, float_status *status);
703 float128 float128_sqrt(float128, float_status *status);
704 int float128_eq(float128, float128, float_status *status);
705 int float128_le(float128, float128, float_status *status);
706 int float128_lt(float128, float128, float_status *status);
707 int float128_unordered(float128, float128, float_status *status);
708 int float128_eq_quiet(float128, float128, float_status *status);
709 int float128_le_quiet(float128, float128, float_status *status);
710 int float128_lt_quiet(float128, float128, float_status *status);
711 int float128_unordered_quiet(float128, float128, float_status *status);
712 int float128_compare(float128, float128, float_status *status);
713 int float128_compare_quiet(float128, float128, float_status *status);
714 int float128_is_quiet_nan( float128 );
715 int float128_is_signaling_nan( float128 );
716 float128 float128_maybe_silence_nan( float128 );
717 float128 float128_scalbn(float128, int, float_status *status);
718
719 static inline float128 float128_abs(float128 a)
720 {
721 a.high &= 0x7fffffffffffffffLL;
722 return a;
723 }
724
725 static inline float128 float128_chs(float128 a)
726 {
727 a.high ^= 0x8000000000000000LL;
728 return a;
729 }
730
731 static inline int float128_is_infinity(float128 a)
732 {
733 return (a.high & 0x7fffffffffffffffLL) == 0x7fff000000000000LL && a.low == 0;
734 }
735
736 static inline int float128_is_neg(float128 a)
737 {
738 return a.high >> 63;
739 }
740
741 static inline int float128_is_zero(float128 a)
742 {
743 return (a.high & 0x7fffffffffffffffLL) == 0 && a.low == 0;
744 }
745
746 static inline int float128_is_zero_or_denormal(float128 a)
747 {
748 return (a.high & 0x7fff000000000000LL) == 0;
749 }
750
751 static inline int float128_is_any_nan(float128 a)
752 {
753 return ((a.high >> 48) & 0x7fff) == 0x7fff &&
754 ((a.low != 0) || ((a.high & 0xffffffffffffLL) != 0));
755 }
756
757 #define float128_zero make_float128(0, 0)
758
759 /*----------------------------------------------------------------------------
760 | The pattern for a default generated quadruple-precision NaN.
761 *----------------------------------------------------------------------------*/
762 extern const float128 float128_default_nan;
763
764 #endif /* !SOFTFLOAT_H */