]> git.proxmox.com Git - mirror_qemu.git/blob - include/hw/core/cpu.h
Merge tag 'for-upstream' of https://gitlab.com/bonzini/qemu into staging
[mirror_qemu.git] / include / hw / core / cpu.h
1 /*
2 * QEMU CPU model
3 *
4 * Copyright (c) 2012 SUSE LINUX Products GmbH
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version 2
9 * of the License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see
18 * <http://www.gnu.org/licenses/gpl-2.0.html>
19 */
20 #ifndef QEMU_CPU_H
21 #define QEMU_CPU_H
22
23 #include "hw/qdev-core.h"
24 #include "disas/dis-asm.h"
25 #include "exec/cpu-common.h"
26 #include "exec/hwaddr.h"
27 #include "exec/memattrs.h"
28 #include "qapi/qapi-types-run-state.h"
29 #include "qemu/bitmap.h"
30 #include "qemu/rcu_queue.h"
31 #include "qemu/queue.h"
32 #include "qemu/thread.h"
33 #include "qemu/plugin.h"
34 #include "qom/object.h"
35
36 typedef int (*WriteCoreDumpFunction)(const void *buf, size_t size,
37 void *opaque);
38
39 /**
40 * SECTION:cpu
41 * @section_id: QEMU-cpu
42 * @title: CPU Class
43 * @short_description: Base class for all CPUs
44 */
45
46 #define TYPE_CPU "cpu"
47
48 /* Since this macro is used a lot in hot code paths and in conjunction with
49 * FooCPU *foo_env_get_cpu(), we deviate from usual QOM practice by using
50 * an unchecked cast.
51 */
52 #define CPU(obj) ((CPUState *)(obj))
53
54 typedef struct CPUClass CPUClass;
55 DECLARE_CLASS_CHECKERS(CPUClass, CPU,
56 TYPE_CPU)
57
58 /**
59 * OBJECT_DECLARE_CPU_TYPE:
60 * @CpuInstanceType: instance struct name
61 * @CpuClassType: class struct name
62 * @CPU_MODULE_OBJ_NAME: the CPU name in uppercase with underscore separators
63 *
64 * This macro is typically used in "cpu-qom.h" header file, and will:
65 *
66 * - create the typedefs for the CPU object and class structs
67 * - register the type for use with g_autoptr
68 * - provide three standard type cast functions
69 *
70 * The object struct and class struct need to be declared manually.
71 */
72 #define OBJECT_DECLARE_CPU_TYPE(CpuInstanceType, CpuClassType, CPU_MODULE_OBJ_NAME) \
73 typedef struct ArchCPU CpuInstanceType; \
74 OBJECT_DECLARE_TYPE(ArchCPU, CpuClassType, CPU_MODULE_OBJ_NAME);
75
76 typedef enum MMUAccessType {
77 MMU_DATA_LOAD = 0,
78 MMU_DATA_STORE = 1,
79 MMU_INST_FETCH = 2
80 } MMUAccessType;
81
82 typedef struct CPUWatchpoint CPUWatchpoint;
83
84 /* see tcg-cpu-ops.h */
85 struct TCGCPUOps;
86
87 /* see accel-cpu.h */
88 struct AccelCPUClass;
89
90 /* see sysemu-cpu-ops.h */
91 struct SysemuCPUOps;
92
93 /**
94 * CPUClass:
95 * @class_by_name: Callback to map -cpu command line model name to an
96 * instantiatable CPU type.
97 * @parse_features: Callback to parse command line arguments.
98 * @reset_dump_flags: #CPUDumpFlags to use for reset logging.
99 * @has_work: Callback for checking if there is work to do.
100 * @memory_rw_debug: Callback for GDB memory access.
101 * @dump_state: Callback for dumping state.
102 * @get_arch_id: Callback for getting architecture-dependent CPU ID.
103 * @set_pc: Callback for setting the Program Counter register. This
104 * should have the semantics used by the target architecture when
105 * setting the PC from a source such as an ELF file entry point;
106 * for example on Arm it will also set the Thumb mode bit based
107 * on the least significant bit of the new PC value.
108 * If the target behaviour here is anything other than "set
109 * the PC register to the value passed in" then the target must
110 * also implement the synchronize_from_tb hook.
111 * @gdb_read_register: Callback for letting GDB read a register.
112 * @gdb_write_register: Callback for letting GDB write a register.
113 * @gdb_adjust_breakpoint: Callback for adjusting the address of a
114 * breakpoint. Used by AVR to handle a gdb mis-feature with
115 * its Harvard architecture split code and data.
116 * @gdb_num_core_regs: Number of core registers accessible to GDB.
117 * @gdb_core_xml_file: File name for core registers GDB XML description.
118 * @gdb_stop_before_watchpoint: Indicates whether GDB expects the CPU to stop
119 * before the insn which triggers a watchpoint rather than after it.
120 * @gdb_arch_name: Optional callback that returns the architecture name known
121 * to GDB. The caller must free the returned string with g_free.
122 * @gdb_get_dynamic_xml: Callback to return dynamically generated XML for the
123 * gdb stub. Returns a pointer to the XML contents for the specified XML file
124 * or NULL if the CPU doesn't have a dynamically generated content for it.
125 * @disas_set_info: Setup architecture specific components of disassembly info
126 * @adjust_watchpoint_address: Perform a target-specific adjustment to an
127 * address before attempting to match it against watchpoints.
128 * @deprecation_note: If this CPUClass is deprecated, this field provides
129 * related information.
130 *
131 * Represents a CPU family or model.
132 */
133 struct CPUClass {
134 /*< private >*/
135 DeviceClass parent_class;
136 /*< public >*/
137
138 ObjectClass *(*class_by_name)(const char *cpu_model);
139 void (*parse_features)(const char *typename, char *str, Error **errp);
140
141 bool (*has_work)(CPUState *cpu);
142 int (*memory_rw_debug)(CPUState *cpu, vaddr addr,
143 uint8_t *buf, int len, bool is_write);
144 void (*dump_state)(CPUState *cpu, FILE *, int flags);
145 int64_t (*get_arch_id)(CPUState *cpu);
146 void (*set_pc)(CPUState *cpu, vaddr value);
147 int (*gdb_read_register)(CPUState *cpu, GByteArray *buf, int reg);
148 int (*gdb_write_register)(CPUState *cpu, uint8_t *buf, int reg);
149 vaddr (*gdb_adjust_breakpoint)(CPUState *cpu, vaddr addr);
150
151 const char *gdb_core_xml_file;
152 gchar * (*gdb_arch_name)(CPUState *cpu);
153 const char * (*gdb_get_dynamic_xml)(CPUState *cpu, const char *xmlname);
154
155 void (*disas_set_info)(CPUState *cpu, disassemble_info *info);
156
157 const char *deprecation_note;
158 struct AccelCPUClass *accel_cpu;
159
160 /* when system emulation is not available, this pointer is NULL */
161 const struct SysemuCPUOps *sysemu_ops;
162
163 /* when TCG is not available, this pointer is NULL */
164 const struct TCGCPUOps *tcg_ops;
165
166 /*
167 * if not NULL, this is called in order for the CPUClass to initialize
168 * class data that depends on the accelerator, see accel/accel-common.c.
169 */
170 void (*init_accel_cpu)(struct AccelCPUClass *accel_cpu, CPUClass *cc);
171
172 /*
173 * Keep non-pointer data at the end to minimize holes.
174 */
175 int reset_dump_flags;
176 int gdb_num_core_regs;
177 bool gdb_stop_before_watchpoint;
178 };
179
180 /*
181 * Low 16 bits: number of cycles left, used only in icount mode.
182 * High 16 bits: Set to -1 to force TCG to stop executing linked TBs
183 * for this CPU and return to its top level loop (even in non-icount mode).
184 * This allows a single read-compare-cbranch-write sequence to test
185 * for both decrementer underflow and exceptions.
186 */
187 typedef union IcountDecr {
188 uint32_t u32;
189 struct {
190 #if HOST_BIG_ENDIAN
191 uint16_t high;
192 uint16_t low;
193 #else
194 uint16_t low;
195 uint16_t high;
196 #endif
197 } u16;
198 } IcountDecr;
199
200 typedef struct CPUBreakpoint {
201 vaddr pc;
202 int flags; /* BP_* */
203 QTAILQ_ENTRY(CPUBreakpoint) entry;
204 } CPUBreakpoint;
205
206 struct CPUWatchpoint {
207 vaddr vaddr;
208 vaddr len;
209 vaddr hitaddr;
210 MemTxAttrs hitattrs;
211 int flags; /* BP_* */
212 QTAILQ_ENTRY(CPUWatchpoint) entry;
213 };
214
215 #ifdef CONFIG_PLUGIN
216 /*
217 * For plugins we sometime need to save the resolved iotlb data before
218 * the memory regions get moved around by io_writex.
219 */
220 typedef struct SavedIOTLB {
221 hwaddr addr;
222 MemoryRegionSection *section;
223 hwaddr mr_offset;
224 } SavedIOTLB;
225 #endif
226
227 struct KVMState;
228 struct kvm_run;
229
230 struct hax_vcpu_state;
231 struct hvf_vcpu_state;
232
233 #define TB_JMP_CACHE_BITS 12
234 #define TB_JMP_CACHE_SIZE (1 << TB_JMP_CACHE_BITS)
235
236 /* work queue */
237
238 /* The union type allows passing of 64 bit target pointers on 32 bit
239 * hosts in a single parameter
240 */
241 typedef union {
242 int host_int;
243 unsigned long host_ulong;
244 void *host_ptr;
245 vaddr target_ptr;
246 } run_on_cpu_data;
247
248 #define RUN_ON_CPU_HOST_PTR(p) ((run_on_cpu_data){.host_ptr = (p)})
249 #define RUN_ON_CPU_HOST_INT(i) ((run_on_cpu_data){.host_int = (i)})
250 #define RUN_ON_CPU_HOST_ULONG(ul) ((run_on_cpu_data){.host_ulong = (ul)})
251 #define RUN_ON_CPU_TARGET_PTR(v) ((run_on_cpu_data){.target_ptr = (v)})
252 #define RUN_ON_CPU_NULL RUN_ON_CPU_HOST_PTR(NULL)
253
254 typedef void (*run_on_cpu_func)(CPUState *cpu, run_on_cpu_data data);
255
256 struct qemu_work_item;
257
258 #define CPU_UNSET_NUMA_NODE_ID -1
259 #define CPU_TRACE_DSTATE_MAX_EVENTS 32
260
261 /**
262 * CPUState:
263 * @cpu_index: CPU index (informative).
264 * @cluster_index: Identifies which cluster this CPU is in.
265 * For boards which don't define clusters or for "loose" CPUs not assigned
266 * to a cluster this will be UNASSIGNED_CLUSTER_INDEX; otherwise it will
267 * be the same as the cluster-id property of the CPU object's TYPE_CPU_CLUSTER
268 * QOM parent.
269 * @tcg_cflags: Pre-computed cflags for this cpu.
270 * @nr_cores: Number of cores within this CPU package.
271 * @nr_threads: Number of threads within this CPU.
272 * @running: #true if CPU is currently running (lockless).
273 * @has_waiter: #true if a CPU is currently waiting for the cpu_exec_end;
274 * valid under cpu_list_lock.
275 * @created: Indicates whether the CPU thread has been successfully created.
276 * @interrupt_request: Indicates a pending interrupt request.
277 * @halted: Nonzero if the CPU is in suspended state.
278 * @stop: Indicates a pending stop request.
279 * @stopped: Indicates the CPU has been artificially stopped.
280 * @unplug: Indicates a pending CPU unplug request.
281 * @crash_occurred: Indicates the OS reported a crash (panic) for this CPU
282 * @singlestep_enabled: Flags for single-stepping.
283 * @icount_extra: Instructions until next timer event.
284 * @can_do_io: Nonzero if memory-mapped IO is safe. Deterministic execution
285 * requires that IO only be performed on the last instruction of a TB
286 * so that interrupts take effect immediately.
287 * @cpu_ases: Pointer to array of CPUAddressSpaces (which define the
288 * AddressSpaces this CPU has)
289 * @num_ases: number of CPUAddressSpaces in @cpu_ases
290 * @as: Pointer to the first AddressSpace, for the convenience of targets which
291 * only have a single AddressSpace
292 * @env_ptr: Pointer to subclass-specific CPUArchState field.
293 * @icount_decr_ptr: Pointer to IcountDecr field within subclass.
294 * @gdb_regs: Additional GDB registers.
295 * @gdb_num_regs: Number of total registers accessible to GDB.
296 * @gdb_num_g_regs: Number of registers in GDB 'g' packets.
297 * @next_cpu: Next CPU sharing TB cache.
298 * @opaque: User data.
299 * @mem_io_pc: Host Program Counter at which the memory was accessed.
300 * @kvm_fd: vCPU file descriptor for KVM.
301 * @work_mutex: Lock to prevent multiple access to @work_list.
302 * @work_list: List of pending asynchronous work.
303 * @trace_dstate_delayed: Delayed changes to trace_dstate (includes all changes
304 * to @trace_dstate).
305 * @trace_dstate: Dynamic tracing state of events for this vCPU (bitmask).
306 * @plugin_mask: Plugin event bitmap. Modified only via async work.
307 * @ignore_memory_transaction_failures: Cached copy of the MachineState
308 * flag of the same name: allows the board to suppress calling of the
309 * CPU do_transaction_failed hook function.
310 * @kvm_dirty_gfns: Points to the KVM dirty ring for this CPU when KVM dirty
311 * ring is enabled.
312 * @kvm_fetch_index: Keeps the index that we last fetched from the per-vCPU
313 * dirty ring structure.
314 *
315 * State of one CPU core or thread.
316 */
317 struct CPUState {
318 /*< private >*/
319 DeviceState parent_obj;
320 /*< public >*/
321
322 int nr_cores;
323 int nr_threads;
324
325 struct QemuThread *thread;
326 #ifdef _WIN32
327 HANDLE hThread;
328 #endif
329 int thread_id;
330 bool running, has_waiter;
331 struct QemuCond *halt_cond;
332 bool thread_kicked;
333 bool created;
334 bool stop;
335 bool stopped;
336
337 /* Should CPU start in powered-off state? */
338 bool start_powered_off;
339
340 bool unplug;
341 bool crash_occurred;
342 bool exit_request;
343 bool in_exclusive_context;
344 uint32_t cflags_next_tb;
345 /* updates protected by BQL */
346 uint32_t interrupt_request;
347 int singlestep_enabled;
348 int64_t icount_budget;
349 int64_t icount_extra;
350 uint64_t random_seed;
351 sigjmp_buf jmp_env;
352
353 QemuMutex work_mutex;
354 QSIMPLEQ_HEAD(, qemu_work_item) work_list;
355
356 CPUAddressSpace *cpu_ases;
357 int num_ases;
358 AddressSpace *as;
359 MemoryRegion *memory;
360
361 CPUArchState *env_ptr;
362 IcountDecr *icount_decr_ptr;
363
364 /* Accessed in parallel; all accesses must be atomic */
365 TranslationBlock *tb_jmp_cache[TB_JMP_CACHE_SIZE];
366
367 struct GDBRegisterState *gdb_regs;
368 int gdb_num_regs;
369 int gdb_num_g_regs;
370 QTAILQ_ENTRY(CPUState) node;
371
372 /* ice debug support */
373 QTAILQ_HEAD(, CPUBreakpoint) breakpoints;
374
375 QTAILQ_HEAD(, CPUWatchpoint) watchpoints;
376 CPUWatchpoint *watchpoint_hit;
377
378 void *opaque;
379
380 /* In order to avoid passing too many arguments to the MMIO helpers,
381 * we store some rarely used information in the CPU context.
382 */
383 uintptr_t mem_io_pc;
384
385 /* Only used in KVM */
386 int kvm_fd;
387 struct KVMState *kvm_state;
388 struct kvm_run *kvm_run;
389 struct kvm_dirty_gfn *kvm_dirty_gfns;
390 uint32_t kvm_fetch_index;
391 uint64_t dirty_pages;
392
393 /* Used for events with 'vcpu' and *without* the 'disabled' properties */
394 DECLARE_BITMAP(trace_dstate_delayed, CPU_TRACE_DSTATE_MAX_EVENTS);
395 DECLARE_BITMAP(trace_dstate, CPU_TRACE_DSTATE_MAX_EVENTS);
396
397 DECLARE_BITMAP(plugin_mask, QEMU_PLUGIN_EV_MAX);
398
399 #ifdef CONFIG_PLUGIN
400 GArray *plugin_mem_cbs;
401 /* saved iotlb data from io_writex */
402 SavedIOTLB saved_iotlb;
403 #endif
404
405 /* TODO Move common fields from CPUArchState here. */
406 int cpu_index;
407 int cluster_index;
408 uint32_t tcg_cflags;
409 uint32_t halted;
410 uint32_t can_do_io;
411 int32_t exception_index;
412
413 /* shared by kvm, hax and hvf */
414 bool vcpu_dirty;
415
416 /* Used to keep track of an outstanding cpu throttle thread for migration
417 * autoconverge
418 */
419 bool throttle_thread_scheduled;
420
421 bool ignore_memory_transaction_failures;
422
423 /* Used for user-only emulation of prctl(PR_SET_UNALIGN). */
424 bool prctl_unalign_sigbus;
425
426 struct hax_vcpu_state *hax_vcpu;
427
428 struct hvf_vcpu_state *hvf;
429
430 /* track IOMMUs whose translations we've cached in the TCG TLB */
431 GArray *iommu_notifiers;
432 };
433
434 typedef QTAILQ_HEAD(CPUTailQ, CPUState) CPUTailQ;
435 extern CPUTailQ cpus;
436
437 #define first_cpu QTAILQ_FIRST_RCU(&cpus)
438 #define CPU_NEXT(cpu) QTAILQ_NEXT_RCU(cpu, node)
439 #define CPU_FOREACH(cpu) QTAILQ_FOREACH_RCU(cpu, &cpus, node)
440 #define CPU_FOREACH_SAFE(cpu, next_cpu) \
441 QTAILQ_FOREACH_SAFE_RCU(cpu, &cpus, node, next_cpu)
442
443 extern __thread CPUState *current_cpu;
444
445 static inline void cpu_tb_jmp_cache_clear(CPUState *cpu)
446 {
447 unsigned int i;
448
449 for (i = 0; i < TB_JMP_CACHE_SIZE; i++) {
450 qatomic_set(&cpu->tb_jmp_cache[i], NULL);
451 }
452 }
453
454 /**
455 * qemu_tcg_mttcg_enabled:
456 * Check whether we are running MultiThread TCG or not.
457 *
458 * Returns: %true if we are in MTTCG mode %false otherwise.
459 */
460 extern bool mttcg_enabled;
461 #define qemu_tcg_mttcg_enabled() (mttcg_enabled)
462
463 /**
464 * cpu_paging_enabled:
465 * @cpu: The CPU whose state is to be inspected.
466 *
467 * Returns: %true if paging is enabled, %false otherwise.
468 */
469 bool cpu_paging_enabled(const CPUState *cpu);
470
471 /**
472 * cpu_get_memory_mapping:
473 * @cpu: The CPU whose memory mappings are to be obtained.
474 * @list: Where to write the memory mappings to.
475 * @errp: Pointer for reporting an #Error.
476 */
477 void cpu_get_memory_mapping(CPUState *cpu, MemoryMappingList *list,
478 Error **errp);
479
480 #if !defined(CONFIG_USER_ONLY)
481
482 /**
483 * cpu_write_elf64_note:
484 * @f: pointer to a function that writes memory to a file
485 * @cpu: The CPU whose memory is to be dumped
486 * @cpuid: ID number of the CPU
487 * @opaque: pointer to the CPUState struct
488 */
489 int cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cpu,
490 int cpuid, void *opaque);
491
492 /**
493 * cpu_write_elf64_qemunote:
494 * @f: pointer to a function that writes memory to a file
495 * @cpu: The CPU whose memory is to be dumped
496 * @cpuid: ID number of the CPU
497 * @opaque: pointer to the CPUState struct
498 */
499 int cpu_write_elf64_qemunote(WriteCoreDumpFunction f, CPUState *cpu,
500 void *opaque);
501
502 /**
503 * cpu_write_elf32_note:
504 * @f: pointer to a function that writes memory to a file
505 * @cpu: The CPU whose memory is to be dumped
506 * @cpuid: ID number of the CPU
507 * @opaque: pointer to the CPUState struct
508 */
509 int cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cpu,
510 int cpuid, void *opaque);
511
512 /**
513 * cpu_write_elf32_qemunote:
514 * @f: pointer to a function that writes memory to a file
515 * @cpu: The CPU whose memory is to be dumped
516 * @cpuid: ID number of the CPU
517 * @opaque: pointer to the CPUState struct
518 */
519 int cpu_write_elf32_qemunote(WriteCoreDumpFunction f, CPUState *cpu,
520 void *opaque);
521
522 /**
523 * cpu_get_crash_info:
524 * @cpu: The CPU to get crash information for
525 *
526 * Gets the previously saved crash information.
527 * Caller is responsible for freeing the data.
528 */
529 GuestPanicInformation *cpu_get_crash_info(CPUState *cpu);
530
531 #endif /* !CONFIG_USER_ONLY */
532
533 /**
534 * CPUDumpFlags:
535 * @CPU_DUMP_CODE:
536 * @CPU_DUMP_FPU: dump FPU register state, not just integer
537 * @CPU_DUMP_CCOP: dump info about TCG QEMU's condition code optimization state
538 */
539 enum CPUDumpFlags {
540 CPU_DUMP_CODE = 0x00010000,
541 CPU_DUMP_FPU = 0x00020000,
542 CPU_DUMP_CCOP = 0x00040000,
543 };
544
545 /**
546 * cpu_dump_state:
547 * @cpu: The CPU whose state is to be dumped.
548 * @f: If non-null, dump to this stream, else to current print sink.
549 *
550 * Dumps CPU state.
551 */
552 void cpu_dump_state(CPUState *cpu, FILE *f, int flags);
553
554 #ifndef CONFIG_USER_ONLY
555 /**
556 * cpu_get_phys_page_attrs_debug:
557 * @cpu: The CPU to obtain the physical page address for.
558 * @addr: The virtual address.
559 * @attrs: Updated on return with the memory transaction attributes to use
560 * for this access.
561 *
562 * Obtains the physical page corresponding to a virtual one, together
563 * with the corresponding memory transaction attributes to use for the access.
564 * Use it only for debugging because no protection checks are done.
565 *
566 * Returns: Corresponding physical page address or -1 if no page found.
567 */
568 hwaddr cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
569 MemTxAttrs *attrs);
570
571 /**
572 * cpu_get_phys_page_debug:
573 * @cpu: The CPU to obtain the physical page address for.
574 * @addr: The virtual address.
575 *
576 * Obtains the physical page corresponding to a virtual one.
577 * Use it only for debugging because no protection checks are done.
578 *
579 * Returns: Corresponding physical page address or -1 if no page found.
580 */
581 hwaddr cpu_get_phys_page_debug(CPUState *cpu, vaddr addr);
582
583 /** cpu_asidx_from_attrs:
584 * @cpu: CPU
585 * @attrs: memory transaction attributes
586 *
587 * Returns the address space index specifying the CPU AddressSpace
588 * to use for a memory access with the given transaction attributes.
589 */
590 int cpu_asidx_from_attrs(CPUState *cpu, MemTxAttrs attrs);
591
592 /**
593 * cpu_virtio_is_big_endian:
594 * @cpu: CPU
595
596 * Returns %true if a CPU which supports runtime configurable endianness
597 * is currently big-endian.
598 */
599 bool cpu_virtio_is_big_endian(CPUState *cpu);
600
601 #endif /* CONFIG_USER_ONLY */
602
603 /**
604 * cpu_list_add:
605 * @cpu: The CPU to be added to the list of CPUs.
606 */
607 void cpu_list_add(CPUState *cpu);
608
609 /**
610 * cpu_list_remove:
611 * @cpu: The CPU to be removed from the list of CPUs.
612 */
613 void cpu_list_remove(CPUState *cpu);
614
615 /**
616 * cpu_reset:
617 * @cpu: The CPU whose state is to be reset.
618 */
619 void cpu_reset(CPUState *cpu);
620
621 /**
622 * cpu_class_by_name:
623 * @typename: The CPU base type.
624 * @cpu_model: The model string without any parameters.
625 *
626 * Looks up a CPU #ObjectClass matching name @cpu_model.
627 *
628 * Returns: A #CPUClass or %NULL if not matching class is found.
629 */
630 ObjectClass *cpu_class_by_name(const char *typename, const char *cpu_model);
631
632 /**
633 * cpu_create:
634 * @typename: The CPU type.
635 *
636 * Instantiates a CPU and realizes the CPU.
637 *
638 * Returns: A #CPUState or %NULL if an error occurred.
639 */
640 CPUState *cpu_create(const char *typename);
641
642 /**
643 * parse_cpu_option:
644 * @cpu_option: The -cpu option including optional parameters.
645 *
646 * processes optional parameters and registers them as global properties
647 *
648 * Returns: type of CPU to create or prints error and terminates process
649 * if an error occurred.
650 */
651 const char *parse_cpu_option(const char *cpu_option);
652
653 /**
654 * cpu_has_work:
655 * @cpu: The vCPU to check.
656 *
657 * Checks whether the CPU has work to do.
658 *
659 * Returns: %true if the CPU has work, %false otherwise.
660 */
661 static inline bool cpu_has_work(CPUState *cpu)
662 {
663 CPUClass *cc = CPU_GET_CLASS(cpu);
664
665 g_assert(cc->has_work);
666 return cc->has_work(cpu);
667 }
668
669 /**
670 * qemu_cpu_is_self:
671 * @cpu: The vCPU to check against.
672 *
673 * Checks whether the caller is executing on the vCPU thread.
674 *
675 * Returns: %true if called from @cpu's thread, %false otherwise.
676 */
677 bool qemu_cpu_is_self(CPUState *cpu);
678
679 /**
680 * qemu_cpu_kick:
681 * @cpu: The vCPU to kick.
682 *
683 * Kicks @cpu's thread.
684 */
685 void qemu_cpu_kick(CPUState *cpu);
686
687 /**
688 * cpu_is_stopped:
689 * @cpu: The CPU to check.
690 *
691 * Checks whether the CPU is stopped.
692 *
693 * Returns: %true if run state is not running or if artificially stopped;
694 * %false otherwise.
695 */
696 bool cpu_is_stopped(CPUState *cpu);
697
698 /**
699 * do_run_on_cpu:
700 * @cpu: The vCPU to run on.
701 * @func: The function to be executed.
702 * @data: Data to pass to the function.
703 * @mutex: Mutex to release while waiting for @func to run.
704 *
705 * Used internally in the implementation of run_on_cpu.
706 */
707 void do_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data,
708 QemuMutex *mutex);
709
710 /**
711 * run_on_cpu:
712 * @cpu: The vCPU to run on.
713 * @func: The function to be executed.
714 * @data: Data to pass to the function.
715 *
716 * Schedules the function @func for execution on the vCPU @cpu.
717 */
718 void run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data);
719
720 /**
721 * async_run_on_cpu:
722 * @cpu: The vCPU to run on.
723 * @func: The function to be executed.
724 * @data: Data to pass to the function.
725 *
726 * Schedules the function @func for execution on the vCPU @cpu asynchronously.
727 */
728 void async_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data);
729
730 /**
731 * async_safe_run_on_cpu:
732 * @cpu: The vCPU to run on.
733 * @func: The function to be executed.
734 * @data: Data to pass to the function.
735 *
736 * Schedules the function @func for execution on the vCPU @cpu asynchronously,
737 * while all other vCPUs are sleeping.
738 *
739 * Unlike run_on_cpu and async_run_on_cpu, the function is run outside the
740 * BQL.
741 */
742 void async_safe_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data);
743
744 /**
745 * cpu_in_exclusive_context()
746 * @cpu: The vCPU to check
747 *
748 * Returns true if @cpu is an exclusive context, for example running
749 * something which has previously been queued via async_safe_run_on_cpu().
750 */
751 static inline bool cpu_in_exclusive_context(const CPUState *cpu)
752 {
753 return cpu->in_exclusive_context;
754 }
755
756 /**
757 * qemu_get_cpu:
758 * @index: The CPUState@cpu_index value of the CPU to obtain.
759 *
760 * Gets a CPU matching @index.
761 *
762 * Returns: The CPU or %NULL if there is no matching CPU.
763 */
764 CPUState *qemu_get_cpu(int index);
765
766 /**
767 * cpu_exists:
768 * @id: Guest-exposed CPU ID to lookup.
769 *
770 * Search for CPU with specified ID.
771 *
772 * Returns: %true - CPU is found, %false - CPU isn't found.
773 */
774 bool cpu_exists(int64_t id);
775
776 /**
777 * cpu_by_arch_id:
778 * @id: Guest-exposed CPU ID of the CPU to obtain.
779 *
780 * Get a CPU with matching @id.
781 *
782 * Returns: The CPU or %NULL if there is no matching CPU.
783 */
784 CPUState *cpu_by_arch_id(int64_t id);
785
786 /**
787 * cpu_interrupt:
788 * @cpu: The CPU to set an interrupt on.
789 * @mask: The interrupts to set.
790 *
791 * Invokes the interrupt handler.
792 */
793
794 void cpu_interrupt(CPUState *cpu, int mask);
795
796 /**
797 * cpu_set_pc:
798 * @cpu: The CPU to set the program counter for.
799 * @addr: Program counter value.
800 *
801 * Sets the program counter for a CPU.
802 */
803 static inline void cpu_set_pc(CPUState *cpu, vaddr addr)
804 {
805 CPUClass *cc = CPU_GET_CLASS(cpu);
806
807 cc->set_pc(cpu, addr);
808 }
809
810 /**
811 * cpu_reset_interrupt:
812 * @cpu: The CPU to clear the interrupt on.
813 * @mask: The interrupt mask to clear.
814 *
815 * Resets interrupts on the vCPU @cpu.
816 */
817 void cpu_reset_interrupt(CPUState *cpu, int mask);
818
819 /**
820 * cpu_exit:
821 * @cpu: The CPU to exit.
822 *
823 * Requests the CPU @cpu to exit execution.
824 */
825 void cpu_exit(CPUState *cpu);
826
827 /**
828 * cpu_resume:
829 * @cpu: The CPU to resume.
830 *
831 * Resumes CPU, i.e. puts CPU into runnable state.
832 */
833 void cpu_resume(CPUState *cpu);
834
835 /**
836 * cpu_remove_sync:
837 * @cpu: The CPU to remove.
838 *
839 * Requests the CPU to be removed and waits till it is removed.
840 */
841 void cpu_remove_sync(CPUState *cpu);
842
843 /**
844 * process_queued_cpu_work() - process all items on CPU work queue
845 * @cpu: The CPU which work queue to process.
846 */
847 void process_queued_cpu_work(CPUState *cpu);
848
849 /**
850 * cpu_exec_start:
851 * @cpu: The CPU for the current thread.
852 *
853 * Record that a CPU has started execution and can be interrupted with
854 * cpu_exit.
855 */
856 void cpu_exec_start(CPUState *cpu);
857
858 /**
859 * cpu_exec_end:
860 * @cpu: The CPU for the current thread.
861 *
862 * Record that a CPU has stopped execution and exclusive sections
863 * can be executed without interrupting it.
864 */
865 void cpu_exec_end(CPUState *cpu);
866
867 /**
868 * start_exclusive:
869 *
870 * Wait for a concurrent exclusive section to end, and then start
871 * a section of work that is run while other CPUs are not running
872 * between cpu_exec_start and cpu_exec_end. CPUs that are running
873 * cpu_exec are exited immediately. CPUs that call cpu_exec_start
874 * during the exclusive section go to sleep until this CPU calls
875 * end_exclusive.
876 */
877 void start_exclusive(void);
878
879 /**
880 * end_exclusive:
881 *
882 * Concludes an exclusive execution section started by start_exclusive.
883 */
884 void end_exclusive(void);
885
886 /**
887 * qemu_init_vcpu:
888 * @cpu: The vCPU to initialize.
889 *
890 * Initializes a vCPU.
891 */
892 void qemu_init_vcpu(CPUState *cpu);
893
894 #define SSTEP_ENABLE 0x1 /* Enable simulated HW single stepping */
895 #define SSTEP_NOIRQ 0x2 /* Do not use IRQ while single stepping */
896 #define SSTEP_NOTIMER 0x4 /* Do not Timers while single stepping */
897
898 /**
899 * cpu_single_step:
900 * @cpu: CPU to the flags for.
901 * @enabled: Flags to enable.
902 *
903 * Enables or disables single-stepping for @cpu.
904 */
905 void cpu_single_step(CPUState *cpu, int enabled);
906
907 /* Breakpoint/watchpoint flags */
908 #define BP_MEM_READ 0x01
909 #define BP_MEM_WRITE 0x02
910 #define BP_MEM_ACCESS (BP_MEM_READ | BP_MEM_WRITE)
911 #define BP_STOP_BEFORE_ACCESS 0x04
912 /* 0x08 currently unused */
913 #define BP_GDB 0x10
914 #define BP_CPU 0x20
915 #define BP_ANY (BP_GDB | BP_CPU)
916 #define BP_WATCHPOINT_HIT_READ 0x40
917 #define BP_WATCHPOINT_HIT_WRITE 0x80
918 #define BP_WATCHPOINT_HIT (BP_WATCHPOINT_HIT_READ | BP_WATCHPOINT_HIT_WRITE)
919
920 int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
921 CPUBreakpoint **breakpoint);
922 int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags);
923 void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint);
924 void cpu_breakpoint_remove_all(CPUState *cpu, int mask);
925
926 /* Return true if PC matches an installed breakpoint. */
927 static inline bool cpu_breakpoint_test(CPUState *cpu, vaddr pc, int mask)
928 {
929 CPUBreakpoint *bp;
930
931 if (unlikely(!QTAILQ_EMPTY(&cpu->breakpoints))) {
932 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
933 if (bp->pc == pc && (bp->flags & mask)) {
934 return true;
935 }
936 }
937 }
938 return false;
939 }
940
941 #ifdef CONFIG_USER_ONLY
942 static inline int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
943 int flags, CPUWatchpoint **watchpoint)
944 {
945 return -ENOSYS;
946 }
947
948 static inline int cpu_watchpoint_remove(CPUState *cpu, vaddr addr,
949 vaddr len, int flags)
950 {
951 return -ENOSYS;
952 }
953
954 static inline void cpu_watchpoint_remove_by_ref(CPUState *cpu,
955 CPUWatchpoint *wp)
956 {
957 }
958
959 static inline void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
960 {
961 }
962
963 static inline void cpu_check_watchpoint(CPUState *cpu, vaddr addr, vaddr len,
964 MemTxAttrs atr, int fl, uintptr_t ra)
965 {
966 }
967
968 static inline int cpu_watchpoint_address_matches(CPUState *cpu,
969 vaddr addr, vaddr len)
970 {
971 return 0;
972 }
973 #else
974 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
975 int flags, CPUWatchpoint **watchpoint);
976 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr,
977 vaddr len, int flags);
978 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint);
979 void cpu_watchpoint_remove_all(CPUState *cpu, int mask);
980
981 /**
982 * cpu_check_watchpoint:
983 * @cpu: cpu context
984 * @addr: guest virtual address
985 * @len: access length
986 * @attrs: memory access attributes
987 * @flags: watchpoint access type
988 * @ra: unwind return address
989 *
990 * Check for a watchpoint hit in [addr, addr+len) of the type
991 * specified by @flags. Exit via exception with a hit.
992 */
993 void cpu_check_watchpoint(CPUState *cpu, vaddr addr, vaddr len,
994 MemTxAttrs attrs, int flags, uintptr_t ra);
995
996 /**
997 * cpu_watchpoint_address_matches:
998 * @cpu: cpu context
999 * @addr: guest virtual address
1000 * @len: access length
1001 *
1002 * Return the watchpoint flags that apply to [addr, addr+len).
1003 * If no watchpoint is registered for the range, the result is 0.
1004 */
1005 int cpu_watchpoint_address_matches(CPUState *cpu, vaddr addr, vaddr len);
1006 #endif
1007
1008 /**
1009 * cpu_get_address_space:
1010 * @cpu: CPU to get address space from
1011 * @asidx: index identifying which address space to get
1012 *
1013 * Return the requested address space of this CPU. @asidx
1014 * specifies which address space to read.
1015 */
1016 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx);
1017
1018 void QEMU_NORETURN cpu_abort(CPUState *cpu, const char *fmt, ...)
1019 G_GNUC_PRINTF(2, 3);
1020
1021 /* $(top_srcdir)/cpu.c */
1022 void cpu_class_init_props(DeviceClass *dc);
1023 void cpu_exec_initfn(CPUState *cpu);
1024 void cpu_exec_realizefn(CPUState *cpu, Error **errp);
1025 void cpu_exec_unrealizefn(CPUState *cpu);
1026
1027 /**
1028 * target_words_bigendian:
1029 * Returns true if the (default) endianness of the target is big endian,
1030 * false otherwise. Note that in target-specific code, you can use
1031 * TARGET_BIG_ENDIAN directly instead. On the other hand, common
1032 * code should normally never need to know about the endianness of the
1033 * target, so please do *not* use this function unless you know very well
1034 * what you are doing!
1035 */
1036 bool target_words_bigendian(void);
1037
1038 void page_size_init(void);
1039
1040 #ifdef NEED_CPU_H
1041
1042 #ifdef CONFIG_SOFTMMU
1043
1044 extern const VMStateDescription vmstate_cpu_common;
1045
1046 #define VMSTATE_CPU() { \
1047 .name = "parent_obj", \
1048 .size = sizeof(CPUState), \
1049 .vmsd = &vmstate_cpu_common, \
1050 .flags = VMS_STRUCT, \
1051 .offset = 0, \
1052 }
1053 #endif /* CONFIG_SOFTMMU */
1054
1055 #endif /* NEED_CPU_H */
1056
1057 #define UNASSIGNED_CPU_INDEX -1
1058 #define UNASSIGNED_CLUSTER_INDEX -1
1059
1060 #endif