]> git.proxmox.com Git - mirror_qemu.git/blob - include/hw/core/cpu.h
Merge tag 'for-upstream' of https://gitlab.com/bonzini/qemu into staging
[mirror_qemu.git] / include / hw / core / cpu.h
1 /*
2 * QEMU CPU model
3 *
4 * Copyright (c) 2012 SUSE LINUX Products GmbH
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version 2
9 * of the License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see
18 * <http://www.gnu.org/licenses/gpl-2.0.html>
19 */
20 #ifndef QEMU_CPU_H
21 #define QEMU_CPU_H
22
23 #include "hw/qdev-core.h"
24 #include "disas/dis-asm.h"
25 #include "exec/cpu-common.h"
26 #include "exec/hwaddr.h"
27 #include "exec/memattrs.h"
28 #include "qapi/qapi-types-run-state.h"
29 #include "qemu/bitmap.h"
30 #include "qemu/rcu_queue.h"
31 #include "qemu/queue.h"
32 #include "qemu/thread.h"
33 #include "qemu/plugin.h"
34 #include "qom/object.h"
35
36 typedef int (*WriteCoreDumpFunction)(const void *buf, size_t size,
37 void *opaque);
38
39 /**
40 * SECTION:cpu
41 * @section_id: QEMU-cpu
42 * @title: CPU Class
43 * @short_description: Base class for all CPUs
44 */
45
46 #define TYPE_CPU "cpu"
47
48 /* Since this macro is used a lot in hot code paths and in conjunction with
49 * FooCPU *foo_env_get_cpu(), we deviate from usual QOM practice by using
50 * an unchecked cast.
51 */
52 #define CPU(obj) ((CPUState *)(obj))
53
54 /*
55 * The class checkers bring in CPU_GET_CLASS() which is potentially
56 * expensive given the eventual call to
57 * object_class_dynamic_cast_assert(). Because of this the CPUState
58 * has a cached value for the class in cs->cc which is set up in
59 * cpu_exec_realizefn() for use in hot code paths.
60 */
61 typedef struct CPUClass CPUClass;
62 DECLARE_CLASS_CHECKERS(CPUClass, CPU,
63 TYPE_CPU)
64
65 /**
66 * OBJECT_DECLARE_CPU_TYPE:
67 * @CpuInstanceType: instance struct name
68 * @CpuClassType: class struct name
69 * @CPU_MODULE_OBJ_NAME: the CPU name in uppercase with underscore separators
70 *
71 * This macro is typically used in "cpu-qom.h" header file, and will:
72 *
73 * - create the typedefs for the CPU object and class structs
74 * - register the type for use with g_autoptr
75 * - provide three standard type cast functions
76 *
77 * The object struct and class struct need to be declared manually.
78 */
79 #define OBJECT_DECLARE_CPU_TYPE(CpuInstanceType, CpuClassType, CPU_MODULE_OBJ_NAME) \
80 typedef struct ArchCPU CpuInstanceType; \
81 OBJECT_DECLARE_TYPE(ArchCPU, CpuClassType, CPU_MODULE_OBJ_NAME);
82
83 typedef enum MMUAccessType {
84 MMU_DATA_LOAD = 0,
85 MMU_DATA_STORE = 1,
86 MMU_INST_FETCH = 2
87 } MMUAccessType;
88
89 typedef struct CPUWatchpoint CPUWatchpoint;
90
91 /* see tcg-cpu-ops.h */
92 struct TCGCPUOps;
93
94 /* see accel-cpu.h */
95 struct AccelCPUClass;
96
97 /* see sysemu-cpu-ops.h */
98 struct SysemuCPUOps;
99
100 /**
101 * CPUClass:
102 * @class_by_name: Callback to map -cpu command line model name to an
103 * instantiatable CPU type.
104 * @parse_features: Callback to parse command line arguments.
105 * @reset_dump_flags: #CPUDumpFlags to use for reset logging.
106 * @has_work: Callback for checking if there is work to do.
107 * @memory_rw_debug: Callback for GDB memory access.
108 * @dump_state: Callback for dumping state.
109 * @get_arch_id: Callback for getting architecture-dependent CPU ID.
110 * @set_pc: Callback for setting the Program Counter register. This
111 * should have the semantics used by the target architecture when
112 * setting the PC from a source such as an ELF file entry point;
113 * for example on Arm it will also set the Thumb mode bit based
114 * on the least significant bit of the new PC value.
115 * If the target behaviour here is anything other than "set
116 * the PC register to the value passed in" then the target must
117 * also implement the synchronize_from_tb hook.
118 * @get_pc: Callback for getting the Program Counter register.
119 * As above, with the semantics of the target architecture.
120 * @gdb_read_register: Callback for letting GDB read a register.
121 * @gdb_write_register: Callback for letting GDB write a register.
122 * @gdb_adjust_breakpoint: Callback for adjusting the address of a
123 * breakpoint. Used by AVR to handle a gdb mis-feature with
124 * its Harvard architecture split code and data.
125 * @gdb_num_core_regs: Number of core registers accessible to GDB.
126 * @gdb_core_xml_file: File name for core registers GDB XML description.
127 * @gdb_stop_before_watchpoint: Indicates whether GDB expects the CPU to stop
128 * before the insn which triggers a watchpoint rather than after it.
129 * @gdb_arch_name: Optional callback that returns the architecture name known
130 * to GDB. The caller must free the returned string with g_free.
131 * @gdb_get_dynamic_xml: Callback to return dynamically generated XML for the
132 * gdb stub. Returns a pointer to the XML contents for the specified XML file
133 * or NULL if the CPU doesn't have a dynamically generated content for it.
134 * @disas_set_info: Setup architecture specific components of disassembly info
135 * @adjust_watchpoint_address: Perform a target-specific adjustment to an
136 * address before attempting to match it against watchpoints.
137 * @deprecation_note: If this CPUClass is deprecated, this field provides
138 * related information.
139 *
140 * Represents a CPU family or model.
141 */
142 struct CPUClass {
143 /*< private >*/
144 DeviceClass parent_class;
145 /*< public >*/
146
147 ObjectClass *(*class_by_name)(const char *cpu_model);
148 void (*parse_features)(const char *typename, char *str, Error **errp);
149
150 bool (*has_work)(CPUState *cpu);
151 int (*memory_rw_debug)(CPUState *cpu, vaddr addr,
152 uint8_t *buf, int len, bool is_write);
153 void (*dump_state)(CPUState *cpu, FILE *, int flags);
154 int64_t (*get_arch_id)(CPUState *cpu);
155 void (*set_pc)(CPUState *cpu, vaddr value);
156 vaddr (*get_pc)(CPUState *cpu);
157 int (*gdb_read_register)(CPUState *cpu, GByteArray *buf, int reg);
158 int (*gdb_write_register)(CPUState *cpu, uint8_t *buf, int reg);
159 vaddr (*gdb_adjust_breakpoint)(CPUState *cpu, vaddr addr);
160
161 const char *gdb_core_xml_file;
162 gchar * (*gdb_arch_name)(CPUState *cpu);
163 const char * (*gdb_get_dynamic_xml)(CPUState *cpu, const char *xmlname);
164
165 void (*disas_set_info)(CPUState *cpu, disassemble_info *info);
166
167 const char *deprecation_note;
168 struct AccelCPUClass *accel_cpu;
169
170 /* when system emulation is not available, this pointer is NULL */
171 const struct SysemuCPUOps *sysemu_ops;
172
173 /* when TCG is not available, this pointer is NULL */
174 const struct TCGCPUOps *tcg_ops;
175
176 /*
177 * if not NULL, this is called in order for the CPUClass to initialize
178 * class data that depends on the accelerator, see accel/accel-common.c.
179 */
180 void (*init_accel_cpu)(struct AccelCPUClass *accel_cpu, CPUClass *cc);
181
182 /*
183 * Keep non-pointer data at the end to minimize holes.
184 */
185 int reset_dump_flags;
186 int gdb_num_core_regs;
187 bool gdb_stop_before_watchpoint;
188 };
189
190 /*
191 * Low 16 bits: number of cycles left, used only in icount mode.
192 * High 16 bits: Set to -1 to force TCG to stop executing linked TBs
193 * for this CPU and return to its top level loop (even in non-icount mode).
194 * This allows a single read-compare-cbranch-write sequence to test
195 * for both decrementer underflow and exceptions.
196 */
197 typedef union IcountDecr {
198 uint32_t u32;
199 struct {
200 #if HOST_BIG_ENDIAN
201 uint16_t high;
202 uint16_t low;
203 #else
204 uint16_t low;
205 uint16_t high;
206 #endif
207 } u16;
208 } IcountDecr;
209
210 typedef struct CPUBreakpoint {
211 vaddr pc;
212 int flags; /* BP_* */
213 QTAILQ_ENTRY(CPUBreakpoint) entry;
214 } CPUBreakpoint;
215
216 struct CPUWatchpoint {
217 vaddr vaddr;
218 vaddr len;
219 vaddr hitaddr;
220 MemTxAttrs hitattrs;
221 int flags; /* BP_* */
222 QTAILQ_ENTRY(CPUWatchpoint) entry;
223 };
224
225 #ifdef CONFIG_PLUGIN
226 /*
227 * For plugins we sometime need to save the resolved iotlb data before
228 * the memory regions get moved around by io_writex.
229 */
230 typedef struct SavedIOTLB {
231 MemoryRegionSection *section;
232 hwaddr mr_offset;
233 } SavedIOTLB;
234 #endif
235
236 struct KVMState;
237 struct kvm_run;
238
239 struct hax_vcpu_state;
240 struct hvf_vcpu_state;
241
242 /* work queue */
243
244 /* The union type allows passing of 64 bit target pointers on 32 bit
245 * hosts in a single parameter
246 */
247 typedef union {
248 int host_int;
249 unsigned long host_ulong;
250 void *host_ptr;
251 vaddr target_ptr;
252 } run_on_cpu_data;
253
254 #define RUN_ON_CPU_HOST_PTR(p) ((run_on_cpu_data){.host_ptr = (p)})
255 #define RUN_ON_CPU_HOST_INT(i) ((run_on_cpu_data){.host_int = (i)})
256 #define RUN_ON_CPU_HOST_ULONG(ul) ((run_on_cpu_data){.host_ulong = (ul)})
257 #define RUN_ON_CPU_TARGET_PTR(v) ((run_on_cpu_data){.target_ptr = (v)})
258 #define RUN_ON_CPU_NULL RUN_ON_CPU_HOST_PTR(NULL)
259
260 typedef void (*run_on_cpu_func)(CPUState *cpu, run_on_cpu_data data);
261
262 struct qemu_work_item;
263
264 #define CPU_UNSET_NUMA_NODE_ID -1
265 #define CPU_TRACE_DSTATE_MAX_EVENTS 32
266
267 /**
268 * CPUState:
269 * @cpu_index: CPU index (informative).
270 * @cluster_index: Identifies which cluster this CPU is in.
271 * For boards which don't define clusters or for "loose" CPUs not assigned
272 * to a cluster this will be UNASSIGNED_CLUSTER_INDEX; otherwise it will
273 * be the same as the cluster-id property of the CPU object's TYPE_CPU_CLUSTER
274 * QOM parent.
275 * @tcg_cflags: Pre-computed cflags for this cpu.
276 * @nr_cores: Number of cores within this CPU package.
277 * @nr_threads: Number of threads within this CPU.
278 * @running: #true if CPU is currently running (lockless).
279 * @has_waiter: #true if a CPU is currently waiting for the cpu_exec_end;
280 * valid under cpu_list_lock.
281 * @created: Indicates whether the CPU thread has been successfully created.
282 * @interrupt_request: Indicates a pending interrupt request.
283 * @halted: Nonzero if the CPU is in suspended state.
284 * @stop: Indicates a pending stop request.
285 * @stopped: Indicates the CPU has been artificially stopped.
286 * @unplug: Indicates a pending CPU unplug request.
287 * @crash_occurred: Indicates the OS reported a crash (panic) for this CPU
288 * @singlestep_enabled: Flags for single-stepping.
289 * @icount_extra: Instructions until next timer event.
290 * @can_do_io: Nonzero if memory-mapped IO is safe. Deterministic execution
291 * requires that IO only be performed on the last instruction of a TB
292 * so that interrupts take effect immediately.
293 * @cpu_ases: Pointer to array of CPUAddressSpaces (which define the
294 * AddressSpaces this CPU has)
295 * @num_ases: number of CPUAddressSpaces in @cpu_ases
296 * @as: Pointer to the first AddressSpace, for the convenience of targets which
297 * only have a single AddressSpace
298 * @env_ptr: Pointer to subclass-specific CPUArchState field.
299 * @icount_decr_ptr: Pointer to IcountDecr field within subclass.
300 * @gdb_regs: Additional GDB registers.
301 * @gdb_num_regs: Number of total registers accessible to GDB.
302 * @gdb_num_g_regs: Number of registers in GDB 'g' packets.
303 * @next_cpu: Next CPU sharing TB cache.
304 * @opaque: User data.
305 * @mem_io_pc: Host Program Counter at which the memory was accessed.
306 * @kvm_fd: vCPU file descriptor for KVM.
307 * @work_mutex: Lock to prevent multiple access to @work_list.
308 * @work_list: List of pending asynchronous work.
309 * @trace_dstate_delayed: Delayed changes to trace_dstate (includes all changes
310 * to @trace_dstate).
311 * @trace_dstate: Dynamic tracing state of events for this vCPU (bitmask).
312 * @plugin_mask: Plugin event bitmap. Modified only via async work.
313 * @ignore_memory_transaction_failures: Cached copy of the MachineState
314 * flag of the same name: allows the board to suppress calling of the
315 * CPU do_transaction_failed hook function.
316 * @kvm_dirty_gfns: Points to the KVM dirty ring for this CPU when KVM dirty
317 * ring is enabled.
318 * @kvm_fetch_index: Keeps the index that we last fetched from the per-vCPU
319 * dirty ring structure.
320 *
321 * State of one CPU core or thread.
322 */
323 struct CPUState {
324 /*< private >*/
325 DeviceState parent_obj;
326 /* cache to avoid expensive CPU_GET_CLASS */
327 CPUClass *cc;
328 /*< public >*/
329
330 int nr_cores;
331 int nr_threads;
332
333 struct QemuThread *thread;
334 #ifdef _WIN32
335 HANDLE hThread;
336 QemuSemaphore sem;
337 #endif
338 int thread_id;
339 bool running, has_waiter;
340 struct QemuCond *halt_cond;
341 bool thread_kicked;
342 bool created;
343 bool stop;
344 bool stopped;
345
346 /* Should CPU start in powered-off state? */
347 bool start_powered_off;
348
349 bool unplug;
350 bool crash_occurred;
351 bool exit_request;
352 bool in_exclusive_context;
353 uint32_t cflags_next_tb;
354 /* updates protected by BQL */
355 uint32_t interrupt_request;
356 int singlestep_enabled;
357 int64_t icount_budget;
358 int64_t icount_extra;
359 uint64_t random_seed;
360 sigjmp_buf jmp_env;
361
362 QemuMutex work_mutex;
363 QSIMPLEQ_HEAD(, qemu_work_item) work_list;
364
365 CPUAddressSpace *cpu_ases;
366 int num_ases;
367 AddressSpace *as;
368 MemoryRegion *memory;
369
370 CPUArchState *env_ptr;
371 IcountDecr *icount_decr_ptr;
372
373 CPUJumpCache *tb_jmp_cache;
374
375 struct GDBRegisterState *gdb_regs;
376 int gdb_num_regs;
377 int gdb_num_g_regs;
378 QTAILQ_ENTRY(CPUState) node;
379
380 /* ice debug support */
381 QTAILQ_HEAD(, CPUBreakpoint) breakpoints;
382
383 QTAILQ_HEAD(, CPUWatchpoint) watchpoints;
384 CPUWatchpoint *watchpoint_hit;
385
386 void *opaque;
387
388 /* In order to avoid passing too many arguments to the MMIO helpers,
389 * we store some rarely used information in the CPU context.
390 */
391 uintptr_t mem_io_pc;
392
393 /* Only used in KVM */
394 int kvm_fd;
395 struct KVMState *kvm_state;
396 struct kvm_run *kvm_run;
397 struct kvm_dirty_gfn *kvm_dirty_gfns;
398 uint32_t kvm_fetch_index;
399 uint64_t dirty_pages;
400
401 /* Use by accel-block: CPU is executing an ioctl() */
402 QemuLockCnt in_ioctl_lock;
403
404 /* Used for events with 'vcpu' and *without* the 'disabled' properties */
405 DECLARE_BITMAP(trace_dstate_delayed, CPU_TRACE_DSTATE_MAX_EVENTS);
406 DECLARE_BITMAP(trace_dstate, CPU_TRACE_DSTATE_MAX_EVENTS);
407
408 DECLARE_BITMAP(plugin_mask, QEMU_PLUGIN_EV_MAX);
409
410 #ifdef CONFIG_PLUGIN
411 GArray *plugin_mem_cbs;
412 /* saved iotlb data from io_writex */
413 SavedIOTLB saved_iotlb;
414 #endif
415
416 /* TODO Move common fields from CPUArchState here. */
417 int cpu_index;
418 int cluster_index;
419 uint32_t tcg_cflags;
420 uint32_t halted;
421 uint32_t can_do_io;
422 int32_t exception_index;
423
424 /* shared by kvm, hax and hvf */
425 bool vcpu_dirty;
426
427 /* Used to keep track of an outstanding cpu throttle thread for migration
428 * autoconverge
429 */
430 bool throttle_thread_scheduled;
431
432 /*
433 * Sleep throttle_us_per_full microseconds once dirty ring is full
434 * if dirty page rate limit is enabled.
435 */
436 int64_t throttle_us_per_full;
437
438 bool ignore_memory_transaction_failures;
439
440 /* Used for user-only emulation of prctl(PR_SET_UNALIGN). */
441 bool prctl_unalign_sigbus;
442
443 struct hax_vcpu_state *hax_vcpu;
444
445 struct hvf_vcpu_state *hvf;
446
447 /* track IOMMUs whose translations we've cached in the TCG TLB */
448 GArray *iommu_notifiers;
449 };
450
451 typedef QTAILQ_HEAD(CPUTailQ, CPUState) CPUTailQ;
452 extern CPUTailQ cpus;
453
454 #define first_cpu QTAILQ_FIRST_RCU(&cpus)
455 #define CPU_NEXT(cpu) QTAILQ_NEXT_RCU(cpu, node)
456 #define CPU_FOREACH(cpu) QTAILQ_FOREACH_RCU(cpu, &cpus, node)
457 #define CPU_FOREACH_SAFE(cpu, next_cpu) \
458 QTAILQ_FOREACH_SAFE_RCU(cpu, &cpus, node, next_cpu)
459
460 extern __thread CPUState *current_cpu;
461
462 /**
463 * qemu_tcg_mttcg_enabled:
464 * Check whether we are running MultiThread TCG or not.
465 *
466 * Returns: %true if we are in MTTCG mode %false otherwise.
467 */
468 extern bool mttcg_enabled;
469 #define qemu_tcg_mttcg_enabled() (mttcg_enabled)
470
471 /**
472 * cpu_paging_enabled:
473 * @cpu: The CPU whose state is to be inspected.
474 *
475 * Returns: %true if paging is enabled, %false otherwise.
476 */
477 bool cpu_paging_enabled(const CPUState *cpu);
478
479 /**
480 * cpu_get_memory_mapping:
481 * @cpu: The CPU whose memory mappings are to be obtained.
482 * @list: Where to write the memory mappings to.
483 * @errp: Pointer for reporting an #Error.
484 */
485 void cpu_get_memory_mapping(CPUState *cpu, MemoryMappingList *list,
486 Error **errp);
487
488 #if !defined(CONFIG_USER_ONLY)
489
490 /**
491 * cpu_write_elf64_note:
492 * @f: pointer to a function that writes memory to a file
493 * @cpu: The CPU whose memory is to be dumped
494 * @cpuid: ID number of the CPU
495 * @opaque: pointer to the CPUState struct
496 */
497 int cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cpu,
498 int cpuid, void *opaque);
499
500 /**
501 * cpu_write_elf64_qemunote:
502 * @f: pointer to a function that writes memory to a file
503 * @cpu: The CPU whose memory is to be dumped
504 * @cpuid: ID number of the CPU
505 * @opaque: pointer to the CPUState struct
506 */
507 int cpu_write_elf64_qemunote(WriteCoreDumpFunction f, CPUState *cpu,
508 void *opaque);
509
510 /**
511 * cpu_write_elf32_note:
512 * @f: pointer to a function that writes memory to a file
513 * @cpu: The CPU whose memory is to be dumped
514 * @cpuid: ID number of the CPU
515 * @opaque: pointer to the CPUState struct
516 */
517 int cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cpu,
518 int cpuid, void *opaque);
519
520 /**
521 * cpu_write_elf32_qemunote:
522 * @f: pointer to a function that writes memory to a file
523 * @cpu: The CPU whose memory is to be dumped
524 * @cpuid: ID number of the CPU
525 * @opaque: pointer to the CPUState struct
526 */
527 int cpu_write_elf32_qemunote(WriteCoreDumpFunction f, CPUState *cpu,
528 void *opaque);
529
530 /**
531 * cpu_get_crash_info:
532 * @cpu: The CPU to get crash information for
533 *
534 * Gets the previously saved crash information.
535 * Caller is responsible for freeing the data.
536 */
537 GuestPanicInformation *cpu_get_crash_info(CPUState *cpu);
538
539 #endif /* !CONFIG_USER_ONLY */
540
541 /**
542 * CPUDumpFlags:
543 * @CPU_DUMP_CODE:
544 * @CPU_DUMP_FPU: dump FPU register state, not just integer
545 * @CPU_DUMP_CCOP: dump info about TCG QEMU's condition code optimization state
546 */
547 enum CPUDumpFlags {
548 CPU_DUMP_CODE = 0x00010000,
549 CPU_DUMP_FPU = 0x00020000,
550 CPU_DUMP_CCOP = 0x00040000,
551 };
552
553 /**
554 * cpu_dump_state:
555 * @cpu: The CPU whose state is to be dumped.
556 * @f: If non-null, dump to this stream, else to current print sink.
557 *
558 * Dumps CPU state.
559 */
560 void cpu_dump_state(CPUState *cpu, FILE *f, int flags);
561
562 #ifndef CONFIG_USER_ONLY
563 /**
564 * cpu_get_phys_page_attrs_debug:
565 * @cpu: The CPU to obtain the physical page address for.
566 * @addr: The virtual address.
567 * @attrs: Updated on return with the memory transaction attributes to use
568 * for this access.
569 *
570 * Obtains the physical page corresponding to a virtual one, together
571 * with the corresponding memory transaction attributes to use for the access.
572 * Use it only for debugging because no protection checks are done.
573 *
574 * Returns: Corresponding physical page address or -1 if no page found.
575 */
576 hwaddr cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
577 MemTxAttrs *attrs);
578
579 /**
580 * cpu_get_phys_page_debug:
581 * @cpu: The CPU to obtain the physical page address for.
582 * @addr: The virtual address.
583 *
584 * Obtains the physical page corresponding to a virtual one.
585 * Use it only for debugging because no protection checks are done.
586 *
587 * Returns: Corresponding physical page address or -1 if no page found.
588 */
589 hwaddr cpu_get_phys_page_debug(CPUState *cpu, vaddr addr);
590
591 /** cpu_asidx_from_attrs:
592 * @cpu: CPU
593 * @attrs: memory transaction attributes
594 *
595 * Returns the address space index specifying the CPU AddressSpace
596 * to use for a memory access with the given transaction attributes.
597 */
598 int cpu_asidx_from_attrs(CPUState *cpu, MemTxAttrs attrs);
599
600 /**
601 * cpu_virtio_is_big_endian:
602 * @cpu: CPU
603
604 * Returns %true if a CPU which supports runtime configurable endianness
605 * is currently big-endian.
606 */
607 bool cpu_virtio_is_big_endian(CPUState *cpu);
608
609 #endif /* CONFIG_USER_ONLY */
610
611 /**
612 * cpu_list_add:
613 * @cpu: The CPU to be added to the list of CPUs.
614 */
615 void cpu_list_add(CPUState *cpu);
616
617 /**
618 * cpu_list_remove:
619 * @cpu: The CPU to be removed from the list of CPUs.
620 */
621 void cpu_list_remove(CPUState *cpu);
622
623 /**
624 * cpu_reset:
625 * @cpu: The CPU whose state is to be reset.
626 */
627 void cpu_reset(CPUState *cpu);
628
629 /**
630 * cpu_class_by_name:
631 * @typename: The CPU base type.
632 * @cpu_model: The model string without any parameters.
633 *
634 * Looks up a CPU #ObjectClass matching name @cpu_model.
635 *
636 * Returns: A #CPUClass or %NULL if not matching class is found.
637 */
638 ObjectClass *cpu_class_by_name(const char *typename, const char *cpu_model);
639
640 /**
641 * cpu_create:
642 * @typename: The CPU type.
643 *
644 * Instantiates a CPU and realizes the CPU.
645 *
646 * Returns: A #CPUState or %NULL if an error occurred.
647 */
648 CPUState *cpu_create(const char *typename);
649
650 /**
651 * parse_cpu_option:
652 * @cpu_option: The -cpu option including optional parameters.
653 *
654 * processes optional parameters and registers them as global properties
655 *
656 * Returns: type of CPU to create or prints error and terminates process
657 * if an error occurred.
658 */
659 const char *parse_cpu_option(const char *cpu_option);
660
661 /**
662 * cpu_has_work:
663 * @cpu: The vCPU to check.
664 *
665 * Checks whether the CPU has work to do.
666 *
667 * Returns: %true if the CPU has work, %false otherwise.
668 */
669 static inline bool cpu_has_work(CPUState *cpu)
670 {
671 CPUClass *cc = CPU_GET_CLASS(cpu);
672
673 g_assert(cc->has_work);
674 return cc->has_work(cpu);
675 }
676
677 /**
678 * qemu_cpu_is_self:
679 * @cpu: The vCPU to check against.
680 *
681 * Checks whether the caller is executing on the vCPU thread.
682 *
683 * Returns: %true if called from @cpu's thread, %false otherwise.
684 */
685 bool qemu_cpu_is_self(CPUState *cpu);
686
687 /**
688 * qemu_cpu_kick:
689 * @cpu: The vCPU to kick.
690 *
691 * Kicks @cpu's thread.
692 */
693 void qemu_cpu_kick(CPUState *cpu);
694
695 /**
696 * cpu_is_stopped:
697 * @cpu: The CPU to check.
698 *
699 * Checks whether the CPU is stopped.
700 *
701 * Returns: %true if run state is not running or if artificially stopped;
702 * %false otherwise.
703 */
704 bool cpu_is_stopped(CPUState *cpu);
705
706 /**
707 * do_run_on_cpu:
708 * @cpu: The vCPU to run on.
709 * @func: The function to be executed.
710 * @data: Data to pass to the function.
711 * @mutex: Mutex to release while waiting for @func to run.
712 *
713 * Used internally in the implementation of run_on_cpu.
714 */
715 void do_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data,
716 QemuMutex *mutex);
717
718 /**
719 * run_on_cpu:
720 * @cpu: The vCPU to run on.
721 * @func: The function to be executed.
722 * @data: Data to pass to the function.
723 *
724 * Schedules the function @func for execution on the vCPU @cpu.
725 */
726 void run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data);
727
728 /**
729 * async_run_on_cpu:
730 * @cpu: The vCPU to run on.
731 * @func: The function to be executed.
732 * @data: Data to pass to the function.
733 *
734 * Schedules the function @func for execution on the vCPU @cpu asynchronously.
735 */
736 void async_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data);
737
738 /**
739 * async_safe_run_on_cpu:
740 * @cpu: The vCPU to run on.
741 * @func: The function to be executed.
742 * @data: Data to pass to the function.
743 *
744 * Schedules the function @func for execution on the vCPU @cpu asynchronously,
745 * while all other vCPUs are sleeping.
746 *
747 * Unlike run_on_cpu and async_run_on_cpu, the function is run outside the
748 * BQL.
749 */
750 void async_safe_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data);
751
752 /**
753 * cpu_in_exclusive_context()
754 * @cpu: The vCPU to check
755 *
756 * Returns true if @cpu is an exclusive context, for example running
757 * something which has previously been queued via async_safe_run_on_cpu().
758 */
759 static inline bool cpu_in_exclusive_context(const CPUState *cpu)
760 {
761 return cpu->in_exclusive_context;
762 }
763
764 /**
765 * qemu_get_cpu:
766 * @index: The CPUState@cpu_index value of the CPU to obtain.
767 *
768 * Gets a CPU matching @index.
769 *
770 * Returns: The CPU or %NULL if there is no matching CPU.
771 */
772 CPUState *qemu_get_cpu(int index);
773
774 /**
775 * cpu_exists:
776 * @id: Guest-exposed CPU ID to lookup.
777 *
778 * Search for CPU with specified ID.
779 *
780 * Returns: %true - CPU is found, %false - CPU isn't found.
781 */
782 bool cpu_exists(int64_t id);
783
784 /**
785 * cpu_by_arch_id:
786 * @id: Guest-exposed CPU ID of the CPU to obtain.
787 *
788 * Get a CPU with matching @id.
789 *
790 * Returns: The CPU or %NULL if there is no matching CPU.
791 */
792 CPUState *cpu_by_arch_id(int64_t id);
793
794 /**
795 * cpu_interrupt:
796 * @cpu: The CPU to set an interrupt on.
797 * @mask: The interrupts to set.
798 *
799 * Invokes the interrupt handler.
800 */
801
802 void cpu_interrupt(CPUState *cpu, int mask);
803
804 /**
805 * cpu_set_pc:
806 * @cpu: The CPU to set the program counter for.
807 * @addr: Program counter value.
808 *
809 * Sets the program counter for a CPU.
810 */
811 static inline void cpu_set_pc(CPUState *cpu, vaddr addr)
812 {
813 CPUClass *cc = CPU_GET_CLASS(cpu);
814
815 cc->set_pc(cpu, addr);
816 }
817
818 /**
819 * cpu_reset_interrupt:
820 * @cpu: The CPU to clear the interrupt on.
821 * @mask: The interrupt mask to clear.
822 *
823 * Resets interrupts on the vCPU @cpu.
824 */
825 void cpu_reset_interrupt(CPUState *cpu, int mask);
826
827 /**
828 * cpu_exit:
829 * @cpu: The CPU to exit.
830 *
831 * Requests the CPU @cpu to exit execution.
832 */
833 void cpu_exit(CPUState *cpu);
834
835 /**
836 * cpu_resume:
837 * @cpu: The CPU to resume.
838 *
839 * Resumes CPU, i.e. puts CPU into runnable state.
840 */
841 void cpu_resume(CPUState *cpu);
842
843 /**
844 * cpu_remove_sync:
845 * @cpu: The CPU to remove.
846 *
847 * Requests the CPU to be removed and waits till it is removed.
848 */
849 void cpu_remove_sync(CPUState *cpu);
850
851 /**
852 * process_queued_cpu_work() - process all items on CPU work queue
853 * @cpu: The CPU which work queue to process.
854 */
855 void process_queued_cpu_work(CPUState *cpu);
856
857 /**
858 * cpu_exec_start:
859 * @cpu: The CPU for the current thread.
860 *
861 * Record that a CPU has started execution and can be interrupted with
862 * cpu_exit.
863 */
864 void cpu_exec_start(CPUState *cpu);
865
866 /**
867 * cpu_exec_end:
868 * @cpu: The CPU for the current thread.
869 *
870 * Record that a CPU has stopped execution and exclusive sections
871 * can be executed without interrupting it.
872 */
873 void cpu_exec_end(CPUState *cpu);
874
875 /**
876 * start_exclusive:
877 *
878 * Wait for a concurrent exclusive section to end, and then start
879 * a section of work that is run while other CPUs are not running
880 * between cpu_exec_start and cpu_exec_end. CPUs that are running
881 * cpu_exec are exited immediately. CPUs that call cpu_exec_start
882 * during the exclusive section go to sleep until this CPU calls
883 * end_exclusive.
884 */
885 void start_exclusive(void);
886
887 /**
888 * end_exclusive:
889 *
890 * Concludes an exclusive execution section started by start_exclusive.
891 */
892 void end_exclusive(void);
893
894 /**
895 * qemu_init_vcpu:
896 * @cpu: The vCPU to initialize.
897 *
898 * Initializes a vCPU.
899 */
900 void qemu_init_vcpu(CPUState *cpu);
901
902 #define SSTEP_ENABLE 0x1 /* Enable simulated HW single stepping */
903 #define SSTEP_NOIRQ 0x2 /* Do not use IRQ while single stepping */
904 #define SSTEP_NOTIMER 0x4 /* Do not Timers while single stepping */
905
906 /**
907 * cpu_single_step:
908 * @cpu: CPU to the flags for.
909 * @enabled: Flags to enable.
910 *
911 * Enables or disables single-stepping for @cpu.
912 */
913 void cpu_single_step(CPUState *cpu, int enabled);
914
915 /* Breakpoint/watchpoint flags */
916 #define BP_MEM_READ 0x01
917 #define BP_MEM_WRITE 0x02
918 #define BP_MEM_ACCESS (BP_MEM_READ | BP_MEM_WRITE)
919 #define BP_STOP_BEFORE_ACCESS 0x04
920 /* 0x08 currently unused */
921 #define BP_GDB 0x10
922 #define BP_CPU 0x20
923 #define BP_ANY (BP_GDB | BP_CPU)
924 #define BP_WATCHPOINT_HIT_READ 0x40
925 #define BP_WATCHPOINT_HIT_WRITE 0x80
926 #define BP_WATCHPOINT_HIT (BP_WATCHPOINT_HIT_READ | BP_WATCHPOINT_HIT_WRITE)
927
928 int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
929 CPUBreakpoint **breakpoint);
930 int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags);
931 void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint);
932 void cpu_breakpoint_remove_all(CPUState *cpu, int mask);
933
934 /* Return true if PC matches an installed breakpoint. */
935 static inline bool cpu_breakpoint_test(CPUState *cpu, vaddr pc, int mask)
936 {
937 CPUBreakpoint *bp;
938
939 if (unlikely(!QTAILQ_EMPTY(&cpu->breakpoints))) {
940 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
941 if (bp->pc == pc && (bp->flags & mask)) {
942 return true;
943 }
944 }
945 }
946 return false;
947 }
948
949 #ifdef CONFIG_USER_ONLY
950 static inline int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
951 int flags, CPUWatchpoint **watchpoint)
952 {
953 return -ENOSYS;
954 }
955
956 static inline int cpu_watchpoint_remove(CPUState *cpu, vaddr addr,
957 vaddr len, int flags)
958 {
959 return -ENOSYS;
960 }
961
962 static inline void cpu_watchpoint_remove_by_ref(CPUState *cpu,
963 CPUWatchpoint *wp)
964 {
965 }
966
967 static inline void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
968 {
969 }
970
971 static inline void cpu_check_watchpoint(CPUState *cpu, vaddr addr, vaddr len,
972 MemTxAttrs atr, int fl, uintptr_t ra)
973 {
974 }
975
976 static inline int cpu_watchpoint_address_matches(CPUState *cpu,
977 vaddr addr, vaddr len)
978 {
979 return 0;
980 }
981 #else
982 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
983 int flags, CPUWatchpoint **watchpoint);
984 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr,
985 vaddr len, int flags);
986 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint);
987 void cpu_watchpoint_remove_all(CPUState *cpu, int mask);
988
989 /**
990 * cpu_check_watchpoint:
991 * @cpu: cpu context
992 * @addr: guest virtual address
993 * @len: access length
994 * @attrs: memory access attributes
995 * @flags: watchpoint access type
996 * @ra: unwind return address
997 *
998 * Check for a watchpoint hit in [addr, addr+len) of the type
999 * specified by @flags. Exit via exception with a hit.
1000 */
1001 void cpu_check_watchpoint(CPUState *cpu, vaddr addr, vaddr len,
1002 MemTxAttrs attrs, int flags, uintptr_t ra);
1003
1004 /**
1005 * cpu_watchpoint_address_matches:
1006 * @cpu: cpu context
1007 * @addr: guest virtual address
1008 * @len: access length
1009 *
1010 * Return the watchpoint flags that apply to [addr, addr+len).
1011 * If no watchpoint is registered for the range, the result is 0.
1012 */
1013 int cpu_watchpoint_address_matches(CPUState *cpu, vaddr addr, vaddr len);
1014 #endif
1015
1016 /**
1017 * cpu_get_address_space:
1018 * @cpu: CPU to get address space from
1019 * @asidx: index identifying which address space to get
1020 *
1021 * Return the requested address space of this CPU. @asidx
1022 * specifies which address space to read.
1023 */
1024 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx);
1025
1026 G_NORETURN void cpu_abort(CPUState *cpu, const char *fmt, ...)
1027 G_GNUC_PRINTF(2, 3);
1028
1029 /* $(top_srcdir)/cpu.c */
1030 void cpu_class_init_props(DeviceClass *dc);
1031 void cpu_exec_initfn(CPUState *cpu);
1032 void cpu_exec_realizefn(CPUState *cpu, Error **errp);
1033 void cpu_exec_unrealizefn(CPUState *cpu);
1034
1035 /**
1036 * target_words_bigendian:
1037 * Returns true if the (default) endianness of the target is big endian,
1038 * false otherwise. Note that in target-specific code, you can use
1039 * TARGET_BIG_ENDIAN directly instead. On the other hand, common
1040 * code should normally never need to know about the endianness of the
1041 * target, so please do *not* use this function unless you know very well
1042 * what you are doing!
1043 */
1044 bool target_words_bigendian(void);
1045
1046 void page_size_init(void);
1047
1048 #ifdef NEED_CPU_H
1049
1050 #ifdef CONFIG_SOFTMMU
1051
1052 extern const VMStateDescription vmstate_cpu_common;
1053
1054 #define VMSTATE_CPU() { \
1055 .name = "parent_obj", \
1056 .size = sizeof(CPUState), \
1057 .vmsd = &vmstate_cpu_common, \
1058 .flags = VMS_STRUCT, \
1059 .offset = 0, \
1060 }
1061 #endif /* CONFIG_SOFTMMU */
1062
1063 #endif /* NEED_CPU_H */
1064
1065 #define UNASSIGNED_CPU_INDEX -1
1066 #define UNASSIGNED_CLUSTER_INDEX -1
1067
1068 #endif