]> git.proxmox.com Git - mirror_qemu.git/blob - include/hw/core/cpu.h
Merge tag 'for-upstream' of https://gitlab.com/bonzini/qemu into staging
[mirror_qemu.git] / include / hw / core / cpu.h
1 /*
2 * QEMU CPU model
3 *
4 * Copyright (c) 2012 SUSE LINUX Products GmbH
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version 2
9 * of the License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see
18 * <http://www.gnu.org/licenses/gpl-2.0.html>
19 */
20 #ifndef QEMU_CPU_H
21 #define QEMU_CPU_H
22
23 #include "hw/qdev-core.h"
24 #include "disas/dis-asm.h"
25 #include "exec/cpu-common.h"
26 #include "exec/hwaddr.h"
27 #include "exec/memattrs.h"
28 #include "qapi/qapi-types-run-state.h"
29 #include "qemu/bitmap.h"
30 #include "qemu/rcu_queue.h"
31 #include "qemu/queue.h"
32 #include "qemu/thread.h"
33 #include "qemu/plugin.h"
34 #include "qom/object.h"
35
36 typedef int (*WriteCoreDumpFunction)(const void *buf, size_t size,
37 void *opaque);
38
39 /**
40 * SECTION:cpu
41 * @section_id: QEMU-cpu
42 * @title: CPU Class
43 * @short_description: Base class for all CPUs
44 */
45
46 #define TYPE_CPU "cpu"
47
48 /* Since this macro is used a lot in hot code paths and in conjunction with
49 * FooCPU *foo_env_get_cpu(), we deviate from usual QOM practice by using
50 * an unchecked cast.
51 */
52 #define CPU(obj) ((CPUState *)(obj))
53
54 typedef struct CPUClass CPUClass;
55 DECLARE_CLASS_CHECKERS(CPUClass, CPU,
56 TYPE_CPU)
57
58 /**
59 * OBJECT_DECLARE_CPU_TYPE:
60 * @CpuInstanceType: instance struct name
61 * @CpuClassType: class struct name
62 * @CPU_MODULE_OBJ_NAME: the CPU name in uppercase with underscore separators
63 *
64 * This macro is typically used in "cpu-qom.h" header file, and will:
65 *
66 * - create the typedefs for the CPU object and class structs
67 * - register the type for use with g_autoptr
68 * - provide three standard type cast functions
69 *
70 * The object struct and class struct need to be declared manually.
71 */
72 #define OBJECT_DECLARE_CPU_TYPE(CpuInstanceType, CpuClassType, CPU_MODULE_OBJ_NAME) \
73 typedef struct ArchCPU CpuInstanceType; \
74 OBJECT_DECLARE_TYPE(ArchCPU, CpuClassType, CPU_MODULE_OBJ_NAME);
75
76 typedef enum MMUAccessType {
77 MMU_DATA_LOAD = 0,
78 MMU_DATA_STORE = 1,
79 MMU_INST_FETCH = 2
80 } MMUAccessType;
81
82 typedef struct CPUWatchpoint CPUWatchpoint;
83
84 /* see tcg-cpu-ops.h */
85 struct TCGCPUOps;
86
87 /* see accel-cpu.h */
88 struct AccelCPUClass;
89
90 /* see sysemu-cpu-ops.h */
91 struct SysemuCPUOps;
92
93 /**
94 * CPUClass:
95 * @class_by_name: Callback to map -cpu command line model name to an
96 * instantiatable CPU type.
97 * @parse_features: Callback to parse command line arguments.
98 * @reset_dump_flags: #CPUDumpFlags to use for reset logging.
99 * @has_work: Callback for checking if there is work to do.
100 * @memory_rw_debug: Callback for GDB memory access.
101 * @dump_state: Callback for dumping state.
102 * @get_arch_id: Callback for getting architecture-dependent CPU ID.
103 * @set_pc: Callback for setting the Program Counter register. This
104 * should have the semantics used by the target architecture when
105 * setting the PC from a source such as an ELF file entry point;
106 * for example on Arm it will also set the Thumb mode bit based
107 * on the least significant bit of the new PC value.
108 * If the target behaviour here is anything other than "set
109 * the PC register to the value passed in" then the target must
110 * also implement the synchronize_from_tb hook.
111 * @gdb_read_register: Callback for letting GDB read a register.
112 * @gdb_write_register: Callback for letting GDB write a register.
113 * @gdb_adjust_breakpoint: Callback for adjusting the address of a
114 * breakpoint. Used by AVR to handle a gdb mis-feature with
115 * its Harvard architecture split code and data.
116 * @gdb_num_core_regs: Number of core registers accessible to GDB.
117 * @gdb_core_xml_file: File name for core registers GDB XML description.
118 * @gdb_stop_before_watchpoint: Indicates whether GDB expects the CPU to stop
119 * before the insn which triggers a watchpoint rather than after it.
120 * @gdb_arch_name: Optional callback that returns the architecture name known
121 * to GDB. The caller must free the returned string with g_free.
122 * @gdb_get_dynamic_xml: Callback to return dynamically generated XML for the
123 * gdb stub. Returns a pointer to the XML contents for the specified XML file
124 * or NULL if the CPU doesn't have a dynamically generated content for it.
125 * @disas_set_info: Setup architecture specific components of disassembly info
126 * @adjust_watchpoint_address: Perform a target-specific adjustment to an
127 * address before attempting to match it against watchpoints.
128 * @deprecation_note: If this CPUClass is deprecated, this field provides
129 * related information.
130 *
131 * Represents a CPU family or model.
132 */
133 struct CPUClass {
134 /*< private >*/
135 DeviceClass parent_class;
136 /*< public >*/
137
138 ObjectClass *(*class_by_name)(const char *cpu_model);
139 void (*parse_features)(const char *typename, char *str, Error **errp);
140
141 bool (*has_work)(CPUState *cpu);
142 int (*memory_rw_debug)(CPUState *cpu, vaddr addr,
143 uint8_t *buf, int len, bool is_write);
144 void (*dump_state)(CPUState *cpu, FILE *, int flags);
145 int64_t (*get_arch_id)(CPUState *cpu);
146 void (*set_pc)(CPUState *cpu, vaddr value);
147 int (*gdb_read_register)(CPUState *cpu, GByteArray *buf, int reg);
148 int (*gdb_write_register)(CPUState *cpu, uint8_t *buf, int reg);
149 vaddr (*gdb_adjust_breakpoint)(CPUState *cpu, vaddr addr);
150
151 const char *gdb_core_xml_file;
152 gchar * (*gdb_arch_name)(CPUState *cpu);
153 const char * (*gdb_get_dynamic_xml)(CPUState *cpu, const char *xmlname);
154
155 void (*disas_set_info)(CPUState *cpu, disassemble_info *info);
156
157 const char *deprecation_note;
158 struct AccelCPUClass *accel_cpu;
159
160 /* when system emulation is not available, this pointer is NULL */
161 const struct SysemuCPUOps *sysemu_ops;
162
163 /* when TCG is not available, this pointer is NULL */
164 const struct TCGCPUOps *tcg_ops;
165
166 /*
167 * if not NULL, this is called in order for the CPUClass to initialize
168 * class data that depends on the accelerator, see accel/accel-common.c.
169 */
170 void (*init_accel_cpu)(struct AccelCPUClass *accel_cpu, CPUClass *cc);
171
172 /*
173 * Keep non-pointer data at the end to minimize holes.
174 */
175 int reset_dump_flags;
176 int gdb_num_core_regs;
177 bool gdb_stop_before_watchpoint;
178 };
179
180 /*
181 * Low 16 bits: number of cycles left, used only in icount mode.
182 * High 16 bits: Set to -1 to force TCG to stop executing linked TBs
183 * for this CPU and return to its top level loop (even in non-icount mode).
184 * This allows a single read-compare-cbranch-write sequence to test
185 * for both decrementer underflow and exceptions.
186 */
187 typedef union IcountDecr {
188 uint32_t u32;
189 struct {
190 #if HOST_BIG_ENDIAN
191 uint16_t high;
192 uint16_t low;
193 #else
194 uint16_t low;
195 uint16_t high;
196 #endif
197 } u16;
198 } IcountDecr;
199
200 typedef struct CPUBreakpoint {
201 vaddr pc;
202 int flags; /* BP_* */
203 QTAILQ_ENTRY(CPUBreakpoint) entry;
204 } CPUBreakpoint;
205
206 struct CPUWatchpoint {
207 vaddr vaddr;
208 vaddr len;
209 vaddr hitaddr;
210 MemTxAttrs hitattrs;
211 int flags; /* BP_* */
212 QTAILQ_ENTRY(CPUWatchpoint) entry;
213 };
214
215 #ifdef CONFIG_PLUGIN
216 /*
217 * For plugins we sometime need to save the resolved iotlb data before
218 * the memory regions get moved around by io_writex.
219 */
220 typedef struct SavedIOTLB {
221 hwaddr addr;
222 MemoryRegionSection *section;
223 hwaddr mr_offset;
224 } SavedIOTLB;
225 #endif
226
227 struct KVMState;
228 struct kvm_run;
229
230 struct hax_vcpu_state;
231 struct hvf_vcpu_state;
232
233 #define TB_JMP_CACHE_BITS 12
234 #define TB_JMP_CACHE_SIZE (1 << TB_JMP_CACHE_BITS)
235
236 /* work queue */
237
238 /* The union type allows passing of 64 bit target pointers on 32 bit
239 * hosts in a single parameter
240 */
241 typedef union {
242 int host_int;
243 unsigned long host_ulong;
244 void *host_ptr;
245 vaddr target_ptr;
246 } run_on_cpu_data;
247
248 #define RUN_ON_CPU_HOST_PTR(p) ((run_on_cpu_data){.host_ptr = (p)})
249 #define RUN_ON_CPU_HOST_INT(i) ((run_on_cpu_data){.host_int = (i)})
250 #define RUN_ON_CPU_HOST_ULONG(ul) ((run_on_cpu_data){.host_ulong = (ul)})
251 #define RUN_ON_CPU_TARGET_PTR(v) ((run_on_cpu_data){.target_ptr = (v)})
252 #define RUN_ON_CPU_NULL RUN_ON_CPU_HOST_PTR(NULL)
253
254 typedef void (*run_on_cpu_func)(CPUState *cpu, run_on_cpu_data data);
255
256 struct qemu_work_item;
257
258 #define CPU_UNSET_NUMA_NODE_ID -1
259 #define CPU_TRACE_DSTATE_MAX_EVENTS 32
260
261 /**
262 * CPUState:
263 * @cpu_index: CPU index (informative).
264 * @cluster_index: Identifies which cluster this CPU is in.
265 * For boards which don't define clusters or for "loose" CPUs not assigned
266 * to a cluster this will be UNASSIGNED_CLUSTER_INDEX; otherwise it will
267 * be the same as the cluster-id property of the CPU object's TYPE_CPU_CLUSTER
268 * QOM parent.
269 * @tcg_cflags: Pre-computed cflags for this cpu.
270 * @nr_cores: Number of cores within this CPU package.
271 * @nr_threads: Number of threads within this CPU.
272 * @running: #true if CPU is currently running (lockless).
273 * @has_waiter: #true if a CPU is currently waiting for the cpu_exec_end;
274 * valid under cpu_list_lock.
275 * @created: Indicates whether the CPU thread has been successfully created.
276 * @interrupt_request: Indicates a pending interrupt request.
277 * @halted: Nonzero if the CPU is in suspended state.
278 * @stop: Indicates a pending stop request.
279 * @stopped: Indicates the CPU has been artificially stopped.
280 * @unplug: Indicates a pending CPU unplug request.
281 * @crash_occurred: Indicates the OS reported a crash (panic) for this CPU
282 * @singlestep_enabled: Flags for single-stepping.
283 * @icount_extra: Instructions until next timer event.
284 * @can_do_io: Nonzero if memory-mapped IO is safe. Deterministic execution
285 * requires that IO only be performed on the last instruction of a TB
286 * so that interrupts take effect immediately.
287 * @cpu_ases: Pointer to array of CPUAddressSpaces (which define the
288 * AddressSpaces this CPU has)
289 * @num_ases: number of CPUAddressSpaces in @cpu_ases
290 * @as: Pointer to the first AddressSpace, for the convenience of targets which
291 * only have a single AddressSpace
292 * @env_ptr: Pointer to subclass-specific CPUArchState field.
293 * @icount_decr_ptr: Pointer to IcountDecr field within subclass.
294 * @gdb_regs: Additional GDB registers.
295 * @gdb_num_regs: Number of total registers accessible to GDB.
296 * @gdb_num_g_regs: Number of registers in GDB 'g' packets.
297 * @next_cpu: Next CPU sharing TB cache.
298 * @opaque: User data.
299 * @mem_io_pc: Host Program Counter at which the memory was accessed.
300 * @kvm_fd: vCPU file descriptor for KVM.
301 * @work_mutex: Lock to prevent multiple access to @work_list.
302 * @work_list: List of pending asynchronous work.
303 * @trace_dstate_delayed: Delayed changes to trace_dstate (includes all changes
304 * to @trace_dstate).
305 * @trace_dstate: Dynamic tracing state of events for this vCPU (bitmask).
306 * @plugin_mask: Plugin event bitmap. Modified only via async work.
307 * @ignore_memory_transaction_failures: Cached copy of the MachineState
308 * flag of the same name: allows the board to suppress calling of the
309 * CPU do_transaction_failed hook function.
310 * @kvm_dirty_gfns: Points to the KVM dirty ring for this CPU when KVM dirty
311 * ring is enabled.
312 * @kvm_fetch_index: Keeps the index that we last fetched from the per-vCPU
313 * dirty ring structure.
314 *
315 * State of one CPU core or thread.
316 */
317 struct CPUState {
318 /*< private >*/
319 DeviceState parent_obj;
320 /*< public >*/
321
322 int nr_cores;
323 int nr_threads;
324
325 struct QemuThread *thread;
326 #ifdef _WIN32
327 HANDLE hThread;
328 #endif
329 int thread_id;
330 bool running, has_waiter;
331 struct QemuCond *halt_cond;
332 bool thread_kicked;
333 bool created;
334 bool stop;
335 bool stopped;
336
337 /* Should CPU start in powered-off state? */
338 bool start_powered_off;
339
340 bool unplug;
341 bool crash_occurred;
342 bool exit_request;
343 bool in_exclusive_context;
344 uint32_t cflags_next_tb;
345 /* updates protected by BQL */
346 uint32_t interrupt_request;
347 int singlestep_enabled;
348 int64_t icount_budget;
349 int64_t icount_extra;
350 uint64_t random_seed;
351 sigjmp_buf jmp_env;
352
353 QemuMutex work_mutex;
354 QSIMPLEQ_HEAD(, qemu_work_item) work_list;
355
356 CPUAddressSpace *cpu_ases;
357 int num_ases;
358 AddressSpace *as;
359 MemoryRegion *memory;
360
361 CPUArchState *env_ptr;
362 IcountDecr *icount_decr_ptr;
363
364 /* Accessed in parallel; all accesses must be atomic */
365 TranslationBlock *tb_jmp_cache[TB_JMP_CACHE_SIZE];
366
367 struct GDBRegisterState *gdb_regs;
368 int gdb_num_regs;
369 int gdb_num_g_regs;
370 QTAILQ_ENTRY(CPUState) node;
371
372 /* ice debug support */
373 QTAILQ_HEAD(, CPUBreakpoint) breakpoints;
374
375 QTAILQ_HEAD(, CPUWatchpoint) watchpoints;
376 CPUWatchpoint *watchpoint_hit;
377
378 void *opaque;
379
380 /* In order to avoid passing too many arguments to the MMIO helpers,
381 * we store some rarely used information in the CPU context.
382 */
383 uintptr_t mem_io_pc;
384
385 /* Only used in KVM */
386 int kvm_fd;
387 struct KVMState *kvm_state;
388 struct kvm_run *kvm_run;
389 struct kvm_dirty_gfn *kvm_dirty_gfns;
390 uint32_t kvm_fetch_index;
391 uint64_t dirty_pages;
392
393 /* Used for events with 'vcpu' and *without* the 'disabled' properties */
394 DECLARE_BITMAP(trace_dstate_delayed, CPU_TRACE_DSTATE_MAX_EVENTS);
395 DECLARE_BITMAP(trace_dstate, CPU_TRACE_DSTATE_MAX_EVENTS);
396
397 DECLARE_BITMAP(plugin_mask, QEMU_PLUGIN_EV_MAX);
398
399 #ifdef CONFIG_PLUGIN
400 GArray *plugin_mem_cbs;
401 /* saved iotlb data from io_writex */
402 SavedIOTLB saved_iotlb;
403 #endif
404
405 /* TODO Move common fields from CPUArchState here. */
406 int cpu_index;
407 int cluster_index;
408 uint32_t tcg_cflags;
409 uint32_t halted;
410 uint32_t can_do_io;
411 int32_t exception_index;
412
413 /* shared by kvm, hax and hvf */
414 bool vcpu_dirty;
415
416 /* Used to keep track of an outstanding cpu throttle thread for migration
417 * autoconverge
418 */
419 bool throttle_thread_scheduled;
420
421 /*
422 * Sleep throttle_us_per_full microseconds once dirty ring is full
423 * if dirty page rate limit is enabled.
424 */
425 int64_t throttle_us_per_full;
426
427 bool ignore_memory_transaction_failures;
428
429 /* Used for user-only emulation of prctl(PR_SET_UNALIGN). */
430 bool prctl_unalign_sigbus;
431
432 struct hax_vcpu_state *hax_vcpu;
433
434 struct hvf_vcpu_state *hvf;
435
436 /* track IOMMUs whose translations we've cached in the TCG TLB */
437 GArray *iommu_notifiers;
438 };
439
440 typedef QTAILQ_HEAD(CPUTailQ, CPUState) CPUTailQ;
441 extern CPUTailQ cpus;
442
443 #define first_cpu QTAILQ_FIRST_RCU(&cpus)
444 #define CPU_NEXT(cpu) QTAILQ_NEXT_RCU(cpu, node)
445 #define CPU_FOREACH(cpu) QTAILQ_FOREACH_RCU(cpu, &cpus, node)
446 #define CPU_FOREACH_SAFE(cpu, next_cpu) \
447 QTAILQ_FOREACH_SAFE_RCU(cpu, &cpus, node, next_cpu)
448
449 extern __thread CPUState *current_cpu;
450
451 static inline void cpu_tb_jmp_cache_clear(CPUState *cpu)
452 {
453 unsigned int i;
454
455 for (i = 0; i < TB_JMP_CACHE_SIZE; i++) {
456 qatomic_set(&cpu->tb_jmp_cache[i], NULL);
457 }
458 }
459
460 /**
461 * qemu_tcg_mttcg_enabled:
462 * Check whether we are running MultiThread TCG or not.
463 *
464 * Returns: %true if we are in MTTCG mode %false otherwise.
465 */
466 extern bool mttcg_enabled;
467 #define qemu_tcg_mttcg_enabled() (mttcg_enabled)
468
469 /**
470 * cpu_paging_enabled:
471 * @cpu: The CPU whose state is to be inspected.
472 *
473 * Returns: %true if paging is enabled, %false otherwise.
474 */
475 bool cpu_paging_enabled(const CPUState *cpu);
476
477 /**
478 * cpu_get_memory_mapping:
479 * @cpu: The CPU whose memory mappings are to be obtained.
480 * @list: Where to write the memory mappings to.
481 * @errp: Pointer for reporting an #Error.
482 */
483 void cpu_get_memory_mapping(CPUState *cpu, MemoryMappingList *list,
484 Error **errp);
485
486 #if !defined(CONFIG_USER_ONLY)
487
488 /**
489 * cpu_write_elf64_note:
490 * @f: pointer to a function that writes memory to a file
491 * @cpu: The CPU whose memory is to be dumped
492 * @cpuid: ID number of the CPU
493 * @opaque: pointer to the CPUState struct
494 */
495 int cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cpu,
496 int cpuid, void *opaque);
497
498 /**
499 * cpu_write_elf64_qemunote:
500 * @f: pointer to a function that writes memory to a file
501 * @cpu: The CPU whose memory is to be dumped
502 * @cpuid: ID number of the CPU
503 * @opaque: pointer to the CPUState struct
504 */
505 int cpu_write_elf64_qemunote(WriteCoreDumpFunction f, CPUState *cpu,
506 void *opaque);
507
508 /**
509 * cpu_write_elf32_note:
510 * @f: pointer to a function that writes memory to a file
511 * @cpu: The CPU whose memory is to be dumped
512 * @cpuid: ID number of the CPU
513 * @opaque: pointer to the CPUState struct
514 */
515 int cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cpu,
516 int cpuid, void *opaque);
517
518 /**
519 * cpu_write_elf32_qemunote:
520 * @f: pointer to a function that writes memory to a file
521 * @cpu: The CPU whose memory is to be dumped
522 * @cpuid: ID number of the CPU
523 * @opaque: pointer to the CPUState struct
524 */
525 int cpu_write_elf32_qemunote(WriteCoreDumpFunction f, CPUState *cpu,
526 void *opaque);
527
528 /**
529 * cpu_get_crash_info:
530 * @cpu: The CPU to get crash information for
531 *
532 * Gets the previously saved crash information.
533 * Caller is responsible for freeing the data.
534 */
535 GuestPanicInformation *cpu_get_crash_info(CPUState *cpu);
536
537 #endif /* !CONFIG_USER_ONLY */
538
539 /**
540 * CPUDumpFlags:
541 * @CPU_DUMP_CODE:
542 * @CPU_DUMP_FPU: dump FPU register state, not just integer
543 * @CPU_DUMP_CCOP: dump info about TCG QEMU's condition code optimization state
544 */
545 enum CPUDumpFlags {
546 CPU_DUMP_CODE = 0x00010000,
547 CPU_DUMP_FPU = 0x00020000,
548 CPU_DUMP_CCOP = 0x00040000,
549 };
550
551 /**
552 * cpu_dump_state:
553 * @cpu: The CPU whose state is to be dumped.
554 * @f: If non-null, dump to this stream, else to current print sink.
555 *
556 * Dumps CPU state.
557 */
558 void cpu_dump_state(CPUState *cpu, FILE *f, int flags);
559
560 #ifndef CONFIG_USER_ONLY
561 /**
562 * cpu_get_phys_page_attrs_debug:
563 * @cpu: The CPU to obtain the physical page address for.
564 * @addr: The virtual address.
565 * @attrs: Updated on return with the memory transaction attributes to use
566 * for this access.
567 *
568 * Obtains the physical page corresponding to a virtual one, together
569 * with the corresponding memory transaction attributes to use for the access.
570 * Use it only for debugging because no protection checks are done.
571 *
572 * Returns: Corresponding physical page address or -1 if no page found.
573 */
574 hwaddr cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
575 MemTxAttrs *attrs);
576
577 /**
578 * cpu_get_phys_page_debug:
579 * @cpu: The CPU to obtain the physical page address for.
580 * @addr: The virtual address.
581 *
582 * Obtains the physical page corresponding to a virtual one.
583 * Use it only for debugging because no protection checks are done.
584 *
585 * Returns: Corresponding physical page address or -1 if no page found.
586 */
587 hwaddr cpu_get_phys_page_debug(CPUState *cpu, vaddr addr);
588
589 /** cpu_asidx_from_attrs:
590 * @cpu: CPU
591 * @attrs: memory transaction attributes
592 *
593 * Returns the address space index specifying the CPU AddressSpace
594 * to use for a memory access with the given transaction attributes.
595 */
596 int cpu_asidx_from_attrs(CPUState *cpu, MemTxAttrs attrs);
597
598 /**
599 * cpu_virtio_is_big_endian:
600 * @cpu: CPU
601
602 * Returns %true if a CPU which supports runtime configurable endianness
603 * is currently big-endian.
604 */
605 bool cpu_virtio_is_big_endian(CPUState *cpu);
606
607 #endif /* CONFIG_USER_ONLY */
608
609 /**
610 * cpu_list_add:
611 * @cpu: The CPU to be added to the list of CPUs.
612 */
613 void cpu_list_add(CPUState *cpu);
614
615 /**
616 * cpu_list_remove:
617 * @cpu: The CPU to be removed from the list of CPUs.
618 */
619 void cpu_list_remove(CPUState *cpu);
620
621 /**
622 * cpu_reset:
623 * @cpu: The CPU whose state is to be reset.
624 */
625 void cpu_reset(CPUState *cpu);
626
627 /**
628 * cpu_class_by_name:
629 * @typename: The CPU base type.
630 * @cpu_model: The model string without any parameters.
631 *
632 * Looks up a CPU #ObjectClass matching name @cpu_model.
633 *
634 * Returns: A #CPUClass or %NULL if not matching class is found.
635 */
636 ObjectClass *cpu_class_by_name(const char *typename, const char *cpu_model);
637
638 /**
639 * cpu_create:
640 * @typename: The CPU type.
641 *
642 * Instantiates a CPU and realizes the CPU.
643 *
644 * Returns: A #CPUState or %NULL if an error occurred.
645 */
646 CPUState *cpu_create(const char *typename);
647
648 /**
649 * parse_cpu_option:
650 * @cpu_option: The -cpu option including optional parameters.
651 *
652 * processes optional parameters and registers them as global properties
653 *
654 * Returns: type of CPU to create or prints error and terminates process
655 * if an error occurred.
656 */
657 const char *parse_cpu_option(const char *cpu_option);
658
659 /**
660 * cpu_has_work:
661 * @cpu: The vCPU to check.
662 *
663 * Checks whether the CPU has work to do.
664 *
665 * Returns: %true if the CPU has work, %false otherwise.
666 */
667 static inline bool cpu_has_work(CPUState *cpu)
668 {
669 CPUClass *cc = CPU_GET_CLASS(cpu);
670
671 g_assert(cc->has_work);
672 return cc->has_work(cpu);
673 }
674
675 /**
676 * qemu_cpu_is_self:
677 * @cpu: The vCPU to check against.
678 *
679 * Checks whether the caller is executing on the vCPU thread.
680 *
681 * Returns: %true if called from @cpu's thread, %false otherwise.
682 */
683 bool qemu_cpu_is_self(CPUState *cpu);
684
685 /**
686 * qemu_cpu_kick:
687 * @cpu: The vCPU to kick.
688 *
689 * Kicks @cpu's thread.
690 */
691 void qemu_cpu_kick(CPUState *cpu);
692
693 /**
694 * cpu_is_stopped:
695 * @cpu: The CPU to check.
696 *
697 * Checks whether the CPU is stopped.
698 *
699 * Returns: %true if run state is not running or if artificially stopped;
700 * %false otherwise.
701 */
702 bool cpu_is_stopped(CPUState *cpu);
703
704 /**
705 * do_run_on_cpu:
706 * @cpu: The vCPU to run on.
707 * @func: The function to be executed.
708 * @data: Data to pass to the function.
709 * @mutex: Mutex to release while waiting for @func to run.
710 *
711 * Used internally in the implementation of run_on_cpu.
712 */
713 void do_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data,
714 QemuMutex *mutex);
715
716 /**
717 * run_on_cpu:
718 * @cpu: The vCPU to run on.
719 * @func: The function to be executed.
720 * @data: Data to pass to the function.
721 *
722 * Schedules the function @func for execution on the vCPU @cpu.
723 */
724 void run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data);
725
726 /**
727 * async_run_on_cpu:
728 * @cpu: The vCPU to run on.
729 * @func: The function to be executed.
730 * @data: Data to pass to the function.
731 *
732 * Schedules the function @func for execution on the vCPU @cpu asynchronously.
733 */
734 void async_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data);
735
736 /**
737 * async_safe_run_on_cpu:
738 * @cpu: The vCPU to run on.
739 * @func: The function to be executed.
740 * @data: Data to pass to the function.
741 *
742 * Schedules the function @func for execution on the vCPU @cpu asynchronously,
743 * while all other vCPUs are sleeping.
744 *
745 * Unlike run_on_cpu and async_run_on_cpu, the function is run outside the
746 * BQL.
747 */
748 void async_safe_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data);
749
750 /**
751 * cpu_in_exclusive_context()
752 * @cpu: The vCPU to check
753 *
754 * Returns true if @cpu is an exclusive context, for example running
755 * something which has previously been queued via async_safe_run_on_cpu().
756 */
757 static inline bool cpu_in_exclusive_context(const CPUState *cpu)
758 {
759 return cpu->in_exclusive_context;
760 }
761
762 /**
763 * qemu_get_cpu:
764 * @index: The CPUState@cpu_index value of the CPU to obtain.
765 *
766 * Gets a CPU matching @index.
767 *
768 * Returns: The CPU or %NULL if there is no matching CPU.
769 */
770 CPUState *qemu_get_cpu(int index);
771
772 /**
773 * cpu_exists:
774 * @id: Guest-exposed CPU ID to lookup.
775 *
776 * Search for CPU with specified ID.
777 *
778 * Returns: %true - CPU is found, %false - CPU isn't found.
779 */
780 bool cpu_exists(int64_t id);
781
782 /**
783 * cpu_by_arch_id:
784 * @id: Guest-exposed CPU ID of the CPU to obtain.
785 *
786 * Get a CPU with matching @id.
787 *
788 * Returns: The CPU or %NULL if there is no matching CPU.
789 */
790 CPUState *cpu_by_arch_id(int64_t id);
791
792 /**
793 * cpu_interrupt:
794 * @cpu: The CPU to set an interrupt on.
795 * @mask: The interrupts to set.
796 *
797 * Invokes the interrupt handler.
798 */
799
800 void cpu_interrupt(CPUState *cpu, int mask);
801
802 /**
803 * cpu_set_pc:
804 * @cpu: The CPU to set the program counter for.
805 * @addr: Program counter value.
806 *
807 * Sets the program counter for a CPU.
808 */
809 static inline void cpu_set_pc(CPUState *cpu, vaddr addr)
810 {
811 CPUClass *cc = CPU_GET_CLASS(cpu);
812
813 cc->set_pc(cpu, addr);
814 }
815
816 /**
817 * cpu_reset_interrupt:
818 * @cpu: The CPU to clear the interrupt on.
819 * @mask: The interrupt mask to clear.
820 *
821 * Resets interrupts on the vCPU @cpu.
822 */
823 void cpu_reset_interrupt(CPUState *cpu, int mask);
824
825 /**
826 * cpu_exit:
827 * @cpu: The CPU to exit.
828 *
829 * Requests the CPU @cpu to exit execution.
830 */
831 void cpu_exit(CPUState *cpu);
832
833 /**
834 * cpu_resume:
835 * @cpu: The CPU to resume.
836 *
837 * Resumes CPU, i.e. puts CPU into runnable state.
838 */
839 void cpu_resume(CPUState *cpu);
840
841 /**
842 * cpu_remove_sync:
843 * @cpu: The CPU to remove.
844 *
845 * Requests the CPU to be removed and waits till it is removed.
846 */
847 void cpu_remove_sync(CPUState *cpu);
848
849 /**
850 * process_queued_cpu_work() - process all items on CPU work queue
851 * @cpu: The CPU which work queue to process.
852 */
853 void process_queued_cpu_work(CPUState *cpu);
854
855 /**
856 * cpu_exec_start:
857 * @cpu: The CPU for the current thread.
858 *
859 * Record that a CPU has started execution and can be interrupted with
860 * cpu_exit.
861 */
862 void cpu_exec_start(CPUState *cpu);
863
864 /**
865 * cpu_exec_end:
866 * @cpu: The CPU for the current thread.
867 *
868 * Record that a CPU has stopped execution and exclusive sections
869 * can be executed without interrupting it.
870 */
871 void cpu_exec_end(CPUState *cpu);
872
873 /**
874 * start_exclusive:
875 *
876 * Wait for a concurrent exclusive section to end, and then start
877 * a section of work that is run while other CPUs are not running
878 * between cpu_exec_start and cpu_exec_end. CPUs that are running
879 * cpu_exec are exited immediately. CPUs that call cpu_exec_start
880 * during the exclusive section go to sleep until this CPU calls
881 * end_exclusive.
882 */
883 void start_exclusive(void);
884
885 /**
886 * end_exclusive:
887 *
888 * Concludes an exclusive execution section started by start_exclusive.
889 */
890 void end_exclusive(void);
891
892 /**
893 * qemu_init_vcpu:
894 * @cpu: The vCPU to initialize.
895 *
896 * Initializes a vCPU.
897 */
898 void qemu_init_vcpu(CPUState *cpu);
899
900 #define SSTEP_ENABLE 0x1 /* Enable simulated HW single stepping */
901 #define SSTEP_NOIRQ 0x2 /* Do not use IRQ while single stepping */
902 #define SSTEP_NOTIMER 0x4 /* Do not Timers while single stepping */
903
904 /**
905 * cpu_single_step:
906 * @cpu: CPU to the flags for.
907 * @enabled: Flags to enable.
908 *
909 * Enables or disables single-stepping for @cpu.
910 */
911 void cpu_single_step(CPUState *cpu, int enabled);
912
913 /* Breakpoint/watchpoint flags */
914 #define BP_MEM_READ 0x01
915 #define BP_MEM_WRITE 0x02
916 #define BP_MEM_ACCESS (BP_MEM_READ | BP_MEM_WRITE)
917 #define BP_STOP_BEFORE_ACCESS 0x04
918 /* 0x08 currently unused */
919 #define BP_GDB 0x10
920 #define BP_CPU 0x20
921 #define BP_ANY (BP_GDB | BP_CPU)
922 #define BP_WATCHPOINT_HIT_READ 0x40
923 #define BP_WATCHPOINT_HIT_WRITE 0x80
924 #define BP_WATCHPOINT_HIT (BP_WATCHPOINT_HIT_READ | BP_WATCHPOINT_HIT_WRITE)
925
926 int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
927 CPUBreakpoint **breakpoint);
928 int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags);
929 void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint);
930 void cpu_breakpoint_remove_all(CPUState *cpu, int mask);
931
932 /* Return true if PC matches an installed breakpoint. */
933 static inline bool cpu_breakpoint_test(CPUState *cpu, vaddr pc, int mask)
934 {
935 CPUBreakpoint *bp;
936
937 if (unlikely(!QTAILQ_EMPTY(&cpu->breakpoints))) {
938 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
939 if (bp->pc == pc && (bp->flags & mask)) {
940 return true;
941 }
942 }
943 }
944 return false;
945 }
946
947 #ifdef CONFIG_USER_ONLY
948 static inline int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
949 int flags, CPUWatchpoint **watchpoint)
950 {
951 return -ENOSYS;
952 }
953
954 static inline int cpu_watchpoint_remove(CPUState *cpu, vaddr addr,
955 vaddr len, int flags)
956 {
957 return -ENOSYS;
958 }
959
960 static inline void cpu_watchpoint_remove_by_ref(CPUState *cpu,
961 CPUWatchpoint *wp)
962 {
963 }
964
965 static inline void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
966 {
967 }
968
969 static inline void cpu_check_watchpoint(CPUState *cpu, vaddr addr, vaddr len,
970 MemTxAttrs atr, int fl, uintptr_t ra)
971 {
972 }
973
974 static inline int cpu_watchpoint_address_matches(CPUState *cpu,
975 vaddr addr, vaddr len)
976 {
977 return 0;
978 }
979 #else
980 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
981 int flags, CPUWatchpoint **watchpoint);
982 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr,
983 vaddr len, int flags);
984 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint);
985 void cpu_watchpoint_remove_all(CPUState *cpu, int mask);
986
987 /**
988 * cpu_check_watchpoint:
989 * @cpu: cpu context
990 * @addr: guest virtual address
991 * @len: access length
992 * @attrs: memory access attributes
993 * @flags: watchpoint access type
994 * @ra: unwind return address
995 *
996 * Check for a watchpoint hit in [addr, addr+len) of the type
997 * specified by @flags. Exit via exception with a hit.
998 */
999 void cpu_check_watchpoint(CPUState *cpu, vaddr addr, vaddr len,
1000 MemTxAttrs attrs, int flags, uintptr_t ra);
1001
1002 /**
1003 * cpu_watchpoint_address_matches:
1004 * @cpu: cpu context
1005 * @addr: guest virtual address
1006 * @len: access length
1007 *
1008 * Return the watchpoint flags that apply to [addr, addr+len).
1009 * If no watchpoint is registered for the range, the result is 0.
1010 */
1011 int cpu_watchpoint_address_matches(CPUState *cpu, vaddr addr, vaddr len);
1012 #endif
1013
1014 /**
1015 * cpu_get_address_space:
1016 * @cpu: CPU to get address space from
1017 * @asidx: index identifying which address space to get
1018 *
1019 * Return the requested address space of this CPU. @asidx
1020 * specifies which address space to read.
1021 */
1022 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx);
1023
1024 G_NORETURN void cpu_abort(CPUState *cpu, const char *fmt, ...)
1025 G_GNUC_PRINTF(2, 3);
1026
1027 /* $(top_srcdir)/cpu.c */
1028 void cpu_class_init_props(DeviceClass *dc);
1029 void cpu_exec_initfn(CPUState *cpu);
1030 void cpu_exec_realizefn(CPUState *cpu, Error **errp);
1031 void cpu_exec_unrealizefn(CPUState *cpu);
1032
1033 /**
1034 * target_words_bigendian:
1035 * Returns true if the (default) endianness of the target is big endian,
1036 * false otherwise. Note that in target-specific code, you can use
1037 * TARGET_BIG_ENDIAN directly instead. On the other hand, common
1038 * code should normally never need to know about the endianness of the
1039 * target, so please do *not* use this function unless you know very well
1040 * what you are doing!
1041 */
1042 bool target_words_bigendian(void);
1043
1044 void page_size_init(void);
1045
1046 #ifdef NEED_CPU_H
1047
1048 #ifdef CONFIG_SOFTMMU
1049
1050 extern const VMStateDescription vmstate_cpu_common;
1051
1052 #define VMSTATE_CPU() { \
1053 .name = "parent_obj", \
1054 .size = sizeof(CPUState), \
1055 .vmsd = &vmstate_cpu_common, \
1056 .flags = VMS_STRUCT, \
1057 .offset = 0, \
1058 }
1059 #endif /* CONFIG_SOFTMMU */
1060
1061 #endif /* NEED_CPU_H */
1062
1063 #define UNASSIGNED_CPU_INDEX -1
1064 #define UNASSIGNED_CLUSTER_INDEX -1
1065
1066 #endif