]> git.proxmox.com Git - mirror_qemu.git/blob - include/hw/core/cpu.h
Merge tag 'pull-for-8.0-220323-1' of https://gitlab.com/stsquad/qemu into staging
[mirror_qemu.git] / include / hw / core / cpu.h
1 /*
2 * QEMU CPU model
3 *
4 * Copyright (c) 2012 SUSE LINUX Products GmbH
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version 2
9 * of the License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see
18 * <http://www.gnu.org/licenses/gpl-2.0.html>
19 */
20 #ifndef QEMU_CPU_H
21 #define QEMU_CPU_H
22
23 #include "hw/qdev-core.h"
24 #include "disas/dis-asm.h"
25 #include "exec/cpu-common.h"
26 #include "exec/hwaddr.h"
27 #include "exec/memattrs.h"
28 #include "qapi/qapi-types-run-state.h"
29 #include "qemu/bitmap.h"
30 #include "qemu/rcu_queue.h"
31 #include "qemu/queue.h"
32 #include "qemu/thread.h"
33 #include "qemu/plugin-event.h"
34 #include "qom/object.h"
35
36 typedef int (*WriteCoreDumpFunction)(const void *buf, size_t size,
37 void *opaque);
38
39 /**
40 * SECTION:cpu
41 * @section_id: QEMU-cpu
42 * @title: CPU Class
43 * @short_description: Base class for all CPUs
44 */
45
46 #define TYPE_CPU "cpu"
47
48 /* Since this macro is used a lot in hot code paths and in conjunction with
49 * FooCPU *foo_env_get_cpu(), we deviate from usual QOM practice by using
50 * an unchecked cast.
51 */
52 #define CPU(obj) ((CPUState *)(obj))
53
54 /*
55 * The class checkers bring in CPU_GET_CLASS() which is potentially
56 * expensive given the eventual call to
57 * object_class_dynamic_cast_assert(). Because of this the CPUState
58 * has a cached value for the class in cs->cc which is set up in
59 * cpu_exec_realizefn() for use in hot code paths.
60 */
61 typedef struct CPUClass CPUClass;
62 DECLARE_CLASS_CHECKERS(CPUClass, CPU,
63 TYPE_CPU)
64
65 /**
66 * OBJECT_DECLARE_CPU_TYPE:
67 * @CpuInstanceType: instance struct name
68 * @CpuClassType: class struct name
69 * @CPU_MODULE_OBJ_NAME: the CPU name in uppercase with underscore separators
70 *
71 * This macro is typically used in "cpu-qom.h" header file, and will:
72 *
73 * - create the typedefs for the CPU object and class structs
74 * - register the type for use with g_autoptr
75 * - provide three standard type cast functions
76 *
77 * The object struct and class struct need to be declared manually.
78 */
79 #define OBJECT_DECLARE_CPU_TYPE(CpuInstanceType, CpuClassType, CPU_MODULE_OBJ_NAME) \
80 typedef struct ArchCPU CpuInstanceType; \
81 OBJECT_DECLARE_TYPE(ArchCPU, CpuClassType, CPU_MODULE_OBJ_NAME);
82
83 typedef enum MMUAccessType {
84 MMU_DATA_LOAD = 0,
85 MMU_DATA_STORE = 1,
86 MMU_INST_FETCH = 2
87 } MMUAccessType;
88
89 typedef struct CPUWatchpoint CPUWatchpoint;
90
91 /* see tcg-cpu-ops.h */
92 struct TCGCPUOps;
93
94 /* see accel-cpu.h */
95 struct AccelCPUClass;
96
97 /* see sysemu-cpu-ops.h */
98 struct SysemuCPUOps;
99
100 /**
101 * CPUClass:
102 * @class_by_name: Callback to map -cpu command line model name to an
103 * instantiatable CPU type.
104 * @parse_features: Callback to parse command line arguments.
105 * @reset_dump_flags: #CPUDumpFlags to use for reset logging.
106 * @has_work: Callback for checking if there is work to do.
107 * @memory_rw_debug: Callback for GDB memory access.
108 * @dump_state: Callback for dumping state.
109 * @get_arch_id: Callback for getting architecture-dependent CPU ID.
110 * @set_pc: Callback for setting the Program Counter register. This
111 * should have the semantics used by the target architecture when
112 * setting the PC from a source such as an ELF file entry point;
113 * for example on Arm it will also set the Thumb mode bit based
114 * on the least significant bit of the new PC value.
115 * If the target behaviour here is anything other than "set
116 * the PC register to the value passed in" then the target must
117 * also implement the synchronize_from_tb hook.
118 * @get_pc: Callback for getting the Program Counter register.
119 * As above, with the semantics of the target architecture.
120 * @gdb_read_register: Callback for letting GDB read a register.
121 * @gdb_write_register: Callback for letting GDB write a register.
122 * @gdb_adjust_breakpoint: Callback for adjusting the address of a
123 * breakpoint. Used by AVR to handle a gdb mis-feature with
124 * its Harvard architecture split code and data.
125 * @gdb_num_core_regs: Number of core registers accessible to GDB.
126 * @gdb_core_xml_file: File name for core registers GDB XML description.
127 * @gdb_stop_before_watchpoint: Indicates whether GDB expects the CPU to stop
128 * before the insn which triggers a watchpoint rather than after it.
129 * @gdb_arch_name: Optional callback that returns the architecture name known
130 * to GDB. The caller must free the returned string with g_free.
131 * @gdb_get_dynamic_xml: Callback to return dynamically generated XML for the
132 * gdb stub. Returns a pointer to the XML contents for the specified XML file
133 * or NULL if the CPU doesn't have a dynamically generated content for it.
134 * @disas_set_info: Setup architecture specific components of disassembly info
135 * @adjust_watchpoint_address: Perform a target-specific adjustment to an
136 * address before attempting to match it against watchpoints.
137 * @deprecation_note: If this CPUClass is deprecated, this field provides
138 * related information.
139 *
140 * Represents a CPU family or model.
141 */
142 struct CPUClass {
143 /*< private >*/
144 DeviceClass parent_class;
145 /*< public >*/
146
147 ObjectClass *(*class_by_name)(const char *cpu_model);
148 void (*parse_features)(const char *typename, char *str, Error **errp);
149
150 bool (*has_work)(CPUState *cpu);
151 int (*memory_rw_debug)(CPUState *cpu, vaddr addr,
152 uint8_t *buf, int len, bool is_write);
153 void (*dump_state)(CPUState *cpu, FILE *, int flags);
154 int64_t (*get_arch_id)(CPUState *cpu);
155 void (*set_pc)(CPUState *cpu, vaddr value);
156 vaddr (*get_pc)(CPUState *cpu);
157 int (*gdb_read_register)(CPUState *cpu, GByteArray *buf, int reg);
158 int (*gdb_write_register)(CPUState *cpu, uint8_t *buf, int reg);
159 vaddr (*gdb_adjust_breakpoint)(CPUState *cpu, vaddr addr);
160
161 const char *gdb_core_xml_file;
162 gchar * (*gdb_arch_name)(CPUState *cpu);
163 const char * (*gdb_get_dynamic_xml)(CPUState *cpu, const char *xmlname);
164
165 void (*disas_set_info)(CPUState *cpu, disassemble_info *info);
166
167 const char *deprecation_note;
168 struct AccelCPUClass *accel_cpu;
169
170 /* when system emulation is not available, this pointer is NULL */
171 const struct SysemuCPUOps *sysemu_ops;
172
173 /* when TCG is not available, this pointer is NULL */
174 const struct TCGCPUOps *tcg_ops;
175
176 /*
177 * if not NULL, this is called in order for the CPUClass to initialize
178 * class data that depends on the accelerator, see accel/accel-common.c.
179 */
180 void (*init_accel_cpu)(struct AccelCPUClass *accel_cpu, CPUClass *cc);
181
182 /*
183 * Keep non-pointer data at the end to minimize holes.
184 */
185 int reset_dump_flags;
186 int gdb_num_core_regs;
187 bool gdb_stop_before_watchpoint;
188 };
189
190 /*
191 * Low 16 bits: number of cycles left, used only in icount mode.
192 * High 16 bits: Set to -1 to force TCG to stop executing linked TBs
193 * for this CPU and return to its top level loop (even in non-icount mode).
194 * This allows a single read-compare-cbranch-write sequence to test
195 * for both decrementer underflow and exceptions.
196 */
197 typedef union IcountDecr {
198 uint32_t u32;
199 struct {
200 #if HOST_BIG_ENDIAN
201 uint16_t high;
202 uint16_t low;
203 #else
204 uint16_t low;
205 uint16_t high;
206 #endif
207 } u16;
208 } IcountDecr;
209
210 typedef struct CPUBreakpoint {
211 vaddr pc;
212 int flags; /* BP_* */
213 QTAILQ_ENTRY(CPUBreakpoint) entry;
214 } CPUBreakpoint;
215
216 struct CPUWatchpoint {
217 vaddr vaddr;
218 vaddr len;
219 vaddr hitaddr;
220 MemTxAttrs hitattrs;
221 int flags; /* BP_* */
222 QTAILQ_ENTRY(CPUWatchpoint) entry;
223 };
224
225 #ifdef CONFIG_PLUGIN
226 /*
227 * For plugins we sometime need to save the resolved iotlb data before
228 * the memory regions get moved around by io_writex.
229 */
230 typedef struct SavedIOTLB {
231 MemoryRegionSection *section;
232 hwaddr mr_offset;
233 } SavedIOTLB;
234 #endif
235
236 struct KVMState;
237 struct kvm_run;
238
239 struct hax_vcpu_state;
240 struct hvf_vcpu_state;
241
242 /* work queue */
243
244 /* The union type allows passing of 64 bit target pointers on 32 bit
245 * hosts in a single parameter
246 */
247 typedef union {
248 int host_int;
249 unsigned long host_ulong;
250 void *host_ptr;
251 vaddr target_ptr;
252 } run_on_cpu_data;
253
254 #define RUN_ON_CPU_HOST_PTR(p) ((run_on_cpu_data){.host_ptr = (p)})
255 #define RUN_ON_CPU_HOST_INT(i) ((run_on_cpu_data){.host_int = (i)})
256 #define RUN_ON_CPU_HOST_ULONG(ul) ((run_on_cpu_data){.host_ulong = (ul)})
257 #define RUN_ON_CPU_TARGET_PTR(v) ((run_on_cpu_data){.target_ptr = (v)})
258 #define RUN_ON_CPU_NULL RUN_ON_CPU_HOST_PTR(NULL)
259
260 typedef void (*run_on_cpu_func)(CPUState *cpu, run_on_cpu_data data);
261
262 struct qemu_work_item;
263
264 #define CPU_UNSET_NUMA_NODE_ID -1
265 #define CPU_TRACE_DSTATE_MAX_EVENTS 32
266
267 /**
268 * CPUState:
269 * @cpu_index: CPU index (informative).
270 * @cluster_index: Identifies which cluster this CPU is in.
271 * For boards which don't define clusters or for "loose" CPUs not assigned
272 * to a cluster this will be UNASSIGNED_CLUSTER_INDEX; otherwise it will
273 * be the same as the cluster-id property of the CPU object's TYPE_CPU_CLUSTER
274 * QOM parent.
275 * Under TCG this value is propagated to @tcg_cflags.
276 * See TranslationBlock::TCG CF_CLUSTER_MASK.
277 * @tcg_cflags: Pre-computed cflags for this cpu.
278 * @nr_cores: Number of cores within this CPU package.
279 * @nr_threads: Number of threads within this CPU.
280 * @running: #true if CPU is currently running (lockless).
281 * @has_waiter: #true if a CPU is currently waiting for the cpu_exec_end;
282 * valid under cpu_list_lock.
283 * @created: Indicates whether the CPU thread has been successfully created.
284 * @interrupt_request: Indicates a pending interrupt request.
285 * @halted: Nonzero if the CPU is in suspended state.
286 * @stop: Indicates a pending stop request.
287 * @stopped: Indicates the CPU has been artificially stopped.
288 * @unplug: Indicates a pending CPU unplug request.
289 * @crash_occurred: Indicates the OS reported a crash (panic) for this CPU
290 * @singlestep_enabled: Flags for single-stepping.
291 * @icount_extra: Instructions until next timer event.
292 * @can_do_io: Nonzero if memory-mapped IO is safe. Deterministic execution
293 * requires that IO only be performed on the last instruction of a TB
294 * so that interrupts take effect immediately.
295 * @cpu_ases: Pointer to array of CPUAddressSpaces (which define the
296 * AddressSpaces this CPU has)
297 * @num_ases: number of CPUAddressSpaces in @cpu_ases
298 * @as: Pointer to the first AddressSpace, for the convenience of targets which
299 * only have a single AddressSpace
300 * @env_ptr: Pointer to subclass-specific CPUArchState field.
301 * @icount_decr_ptr: Pointer to IcountDecr field within subclass.
302 * @gdb_regs: Additional GDB registers.
303 * @gdb_num_regs: Number of total registers accessible to GDB.
304 * @gdb_num_g_regs: Number of registers in GDB 'g' packets.
305 * @next_cpu: Next CPU sharing TB cache.
306 * @opaque: User data.
307 * @mem_io_pc: Host Program Counter at which the memory was accessed.
308 * @kvm_fd: vCPU file descriptor for KVM.
309 * @work_mutex: Lock to prevent multiple access to @work_list.
310 * @work_list: List of pending asynchronous work.
311 * @trace_dstate_delayed: Delayed changes to trace_dstate (includes all changes
312 * to @trace_dstate).
313 * @trace_dstate: Dynamic tracing state of events for this vCPU (bitmask).
314 * @plugin_mask: Plugin event bitmap. Modified only via async work.
315 * @ignore_memory_transaction_failures: Cached copy of the MachineState
316 * flag of the same name: allows the board to suppress calling of the
317 * CPU do_transaction_failed hook function.
318 * @kvm_dirty_gfns: Points to the KVM dirty ring for this CPU when KVM dirty
319 * ring is enabled.
320 * @kvm_fetch_index: Keeps the index that we last fetched from the per-vCPU
321 * dirty ring structure.
322 *
323 * State of one CPU core or thread.
324 */
325 struct CPUState {
326 /*< private >*/
327 DeviceState parent_obj;
328 /* cache to avoid expensive CPU_GET_CLASS */
329 CPUClass *cc;
330 /*< public >*/
331
332 int nr_cores;
333 int nr_threads;
334
335 struct QemuThread *thread;
336 #ifdef _WIN32
337 HANDLE hThread;
338 QemuSemaphore sem;
339 #endif
340 int thread_id;
341 bool running, has_waiter;
342 struct QemuCond *halt_cond;
343 bool thread_kicked;
344 bool created;
345 bool stop;
346 bool stopped;
347
348 /* Should CPU start in powered-off state? */
349 bool start_powered_off;
350
351 bool unplug;
352 bool crash_occurred;
353 bool exit_request;
354 int exclusive_context_count;
355 uint32_t cflags_next_tb;
356 /* updates protected by BQL */
357 uint32_t interrupt_request;
358 int singlestep_enabled;
359 int64_t icount_budget;
360 int64_t icount_extra;
361 uint64_t random_seed;
362 sigjmp_buf jmp_env;
363
364 QemuMutex work_mutex;
365 QSIMPLEQ_HEAD(, qemu_work_item) work_list;
366
367 CPUAddressSpace *cpu_ases;
368 int num_ases;
369 AddressSpace *as;
370 MemoryRegion *memory;
371
372 CPUArchState *env_ptr;
373 IcountDecr *icount_decr_ptr;
374
375 CPUJumpCache *tb_jmp_cache;
376
377 struct GDBRegisterState *gdb_regs;
378 int gdb_num_regs;
379 int gdb_num_g_regs;
380 QTAILQ_ENTRY(CPUState) node;
381
382 /* ice debug support */
383 QTAILQ_HEAD(, CPUBreakpoint) breakpoints;
384
385 QTAILQ_HEAD(, CPUWatchpoint) watchpoints;
386 CPUWatchpoint *watchpoint_hit;
387
388 void *opaque;
389
390 /* In order to avoid passing too many arguments to the MMIO helpers,
391 * we store some rarely used information in the CPU context.
392 */
393 uintptr_t mem_io_pc;
394
395 /* Only used in KVM */
396 int kvm_fd;
397 struct KVMState *kvm_state;
398 struct kvm_run *kvm_run;
399 struct kvm_dirty_gfn *kvm_dirty_gfns;
400 uint32_t kvm_fetch_index;
401 uint64_t dirty_pages;
402
403 /* Use by accel-block: CPU is executing an ioctl() */
404 QemuLockCnt in_ioctl_lock;
405
406 /* Used for events with 'vcpu' and *without* the 'disabled' properties */
407 DECLARE_BITMAP(trace_dstate_delayed, CPU_TRACE_DSTATE_MAX_EVENTS);
408 DECLARE_BITMAP(trace_dstate, CPU_TRACE_DSTATE_MAX_EVENTS);
409
410 DECLARE_BITMAP(plugin_mask, QEMU_PLUGIN_EV_MAX);
411
412 #ifdef CONFIG_PLUGIN
413 GArray *plugin_mem_cbs;
414 /* saved iotlb data from io_writex */
415 SavedIOTLB saved_iotlb;
416 #endif
417
418 /* TODO Move common fields from CPUArchState here. */
419 int cpu_index;
420 int cluster_index;
421 uint32_t tcg_cflags;
422 uint32_t halted;
423 uint32_t can_do_io;
424 int32_t exception_index;
425
426 /* shared by kvm, hax and hvf */
427 bool vcpu_dirty;
428
429 /* Used to keep track of an outstanding cpu throttle thread for migration
430 * autoconverge
431 */
432 bool throttle_thread_scheduled;
433
434 /*
435 * Sleep throttle_us_per_full microseconds once dirty ring is full
436 * if dirty page rate limit is enabled.
437 */
438 int64_t throttle_us_per_full;
439
440 bool ignore_memory_transaction_failures;
441
442 /* Used for user-only emulation of prctl(PR_SET_UNALIGN). */
443 bool prctl_unalign_sigbus;
444
445 struct hax_vcpu_state *hax_vcpu;
446
447 struct hvf_vcpu_state *hvf;
448
449 /* track IOMMUs whose translations we've cached in the TCG TLB */
450 GArray *iommu_notifiers;
451 };
452
453 typedef QTAILQ_HEAD(CPUTailQ, CPUState) CPUTailQ;
454 extern CPUTailQ cpus;
455
456 #define first_cpu QTAILQ_FIRST_RCU(&cpus)
457 #define CPU_NEXT(cpu) QTAILQ_NEXT_RCU(cpu, node)
458 #define CPU_FOREACH(cpu) QTAILQ_FOREACH_RCU(cpu, &cpus, node)
459 #define CPU_FOREACH_SAFE(cpu, next_cpu) \
460 QTAILQ_FOREACH_SAFE_RCU(cpu, &cpus, node, next_cpu)
461
462 extern __thread CPUState *current_cpu;
463
464 /**
465 * qemu_tcg_mttcg_enabled:
466 * Check whether we are running MultiThread TCG or not.
467 *
468 * Returns: %true if we are in MTTCG mode %false otherwise.
469 */
470 extern bool mttcg_enabled;
471 #define qemu_tcg_mttcg_enabled() (mttcg_enabled)
472
473 /**
474 * cpu_paging_enabled:
475 * @cpu: The CPU whose state is to be inspected.
476 *
477 * Returns: %true if paging is enabled, %false otherwise.
478 */
479 bool cpu_paging_enabled(const CPUState *cpu);
480
481 /**
482 * cpu_get_memory_mapping:
483 * @cpu: The CPU whose memory mappings are to be obtained.
484 * @list: Where to write the memory mappings to.
485 * @errp: Pointer for reporting an #Error.
486 */
487 void cpu_get_memory_mapping(CPUState *cpu, MemoryMappingList *list,
488 Error **errp);
489
490 #if !defined(CONFIG_USER_ONLY)
491
492 /**
493 * cpu_write_elf64_note:
494 * @f: pointer to a function that writes memory to a file
495 * @cpu: The CPU whose memory is to be dumped
496 * @cpuid: ID number of the CPU
497 * @opaque: pointer to the CPUState struct
498 */
499 int cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cpu,
500 int cpuid, void *opaque);
501
502 /**
503 * cpu_write_elf64_qemunote:
504 * @f: pointer to a function that writes memory to a file
505 * @cpu: The CPU whose memory is to be dumped
506 * @cpuid: ID number of the CPU
507 * @opaque: pointer to the CPUState struct
508 */
509 int cpu_write_elf64_qemunote(WriteCoreDumpFunction f, CPUState *cpu,
510 void *opaque);
511
512 /**
513 * cpu_write_elf32_note:
514 * @f: pointer to a function that writes memory to a file
515 * @cpu: The CPU whose memory is to be dumped
516 * @cpuid: ID number of the CPU
517 * @opaque: pointer to the CPUState struct
518 */
519 int cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cpu,
520 int cpuid, void *opaque);
521
522 /**
523 * cpu_write_elf32_qemunote:
524 * @f: pointer to a function that writes memory to a file
525 * @cpu: The CPU whose memory is to be dumped
526 * @cpuid: ID number of the CPU
527 * @opaque: pointer to the CPUState struct
528 */
529 int cpu_write_elf32_qemunote(WriteCoreDumpFunction f, CPUState *cpu,
530 void *opaque);
531
532 /**
533 * cpu_get_crash_info:
534 * @cpu: The CPU to get crash information for
535 *
536 * Gets the previously saved crash information.
537 * Caller is responsible for freeing the data.
538 */
539 GuestPanicInformation *cpu_get_crash_info(CPUState *cpu);
540
541 #endif /* !CONFIG_USER_ONLY */
542
543 /**
544 * CPUDumpFlags:
545 * @CPU_DUMP_CODE:
546 * @CPU_DUMP_FPU: dump FPU register state, not just integer
547 * @CPU_DUMP_CCOP: dump info about TCG QEMU's condition code optimization state
548 */
549 enum CPUDumpFlags {
550 CPU_DUMP_CODE = 0x00010000,
551 CPU_DUMP_FPU = 0x00020000,
552 CPU_DUMP_CCOP = 0x00040000,
553 };
554
555 /**
556 * cpu_dump_state:
557 * @cpu: The CPU whose state is to be dumped.
558 * @f: If non-null, dump to this stream, else to current print sink.
559 *
560 * Dumps CPU state.
561 */
562 void cpu_dump_state(CPUState *cpu, FILE *f, int flags);
563
564 #ifndef CONFIG_USER_ONLY
565 /**
566 * cpu_get_phys_page_attrs_debug:
567 * @cpu: The CPU to obtain the physical page address for.
568 * @addr: The virtual address.
569 * @attrs: Updated on return with the memory transaction attributes to use
570 * for this access.
571 *
572 * Obtains the physical page corresponding to a virtual one, together
573 * with the corresponding memory transaction attributes to use for the access.
574 * Use it only for debugging because no protection checks are done.
575 *
576 * Returns: Corresponding physical page address or -1 if no page found.
577 */
578 hwaddr cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
579 MemTxAttrs *attrs);
580
581 /**
582 * cpu_get_phys_page_debug:
583 * @cpu: The CPU to obtain the physical page address for.
584 * @addr: The virtual address.
585 *
586 * Obtains the physical page corresponding to a virtual one.
587 * Use it only for debugging because no protection checks are done.
588 *
589 * Returns: Corresponding physical page address or -1 if no page found.
590 */
591 hwaddr cpu_get_phys_page_debug(CPUState *cpu, vaddr addr);
592
593 /** cpu_asidx_from_attrs:
594 * @cpu: CPU
595 * @attrs: memory transaction attributes
596 *
597 * Returns the address space index specifying the CPU AddressSpace
598 * to use for a memory access with the given transaction attributes.
599 */
600 int cpu_asidx_from_attrs(CPUState *cpu, MemTxAttrs attrs);
601
602 /**
603 * cpu_virtio_is_big_endian:
604 * @cpu: CPU
605
606 * Returns %true if a CPU which supports runtime configurable endianness
607 * is currently big-endian.
608 */
609 bool cpu_virtio_is_big_endian(CPUState *cpu);
610
611 #endif /* CONFIG_USER_ONLY */
612
613 /**
614 * cpu_list_add:
615 * @cpu: The CPU to be added to the list of CPUs.
616 */
617 void cpu_list_add(CPUState *cpu);
618
619 /**
620 * cpu_list_remove:
621 * @cpu: The CPU to be removed from the list of CPUs.
622 */
623 void cpu_list_remove(CPUState *cpu);
624
625 /**
626 * cpu_reset:
627 * @cpu: The CPU whose state is to be reset.
628 */
629 void cpu_reset(CPUState *cpu);
630
631 /**
632 * cpu_class_by_name:
633 * @typename: The CPU base type.
634 * @cpu_model: The model string without any parameters.
635 *
636 * Looks up a CPU #ObjectClass matching name @cpu_model.
637 *
638 * Returns: A #CPUClass or %NULL if not matching class is found.
639 */
640 ObjectClass *cpu_class_by_name(const char *typename, const char *cpu_model);
641
642 /**
643 * cpu_create:
644 * @typename: The CPU type.
645 *
646 * Instantiates a CPU and realizes the CPU.
647 *
648 * Returns: A #CPUState or %NULL if an error occurred.
649 */
650 CPUState *cpu_create(const char *typename);
651
652 /**
653 * parse_cpu_option:
654 * @cpu_option: The -cpu option including optional parameters.
655 *
656 * processes optional parameters and registers them as global properties
657 *
658 * Returns: type of CPU to create or prints error and terminates process
659 * if an error occurred.
660 */
661 const char *parse_cpu_option(const char *cpu_option);
662
663 /**
664 * cpu_has_work:
665 * @cpu: The vCPU to check.
666 *
667 * Checks whether the CPU has work to do.
668 *
669 * Returns: %true if the CPU has work, %false otherwise.
670 */
671 static inline bool cpu_has_work(CPUState *cpu)
672 {
673 CPUClass *cc = CPU_GET_CLASS(cpu);
674
675 g_assert(cc->has_work);
676 return cc->has_work(cpu);
677 }
678
679 /**
680 * qemu_cpu_is_self:
681 * @cpu: The vCPU to check against.
682 *
683 * Checks whether the caller is executing on the vCPU thread.
684 *
685 * Returns: %true if called from @cpu's thread, %false otherwise.
686 */
687 bool qemu_cpu_is_self(CPUState *cpu);
688
689 /**
690 * qemu_cpu_kick:
691 * @cpu: The vCPU to kick.
692 *
693 * Kicks @cpu's thread.
694 */
695 void qemu_cpu_kick(CPUState *cpu);
696
697 /**
698 * cpu_is_stopped:
699 * @cpu: The CPU to check.
700 *
701 * Checks whether the CPU is stopped.
702 *
703 * Returns: %true if run state is not running or if artificially stopped;
704 * %false otherwise.
705 */
706 bool cpu_is_stopped(CPUState *cpu);
707
708 /**
709 * do_run_on_cpu:
710 * @cpu: The vCPU to run on.
711 * @func: The function to be executed.
712 * @data: Data to pass to the function.
713 * @mutex: Mutex to release while waiting for @func to run.
714 *
715 * Used internally in the implementation of run_on_cpu.
716 */
717 void do_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data,
718 QemuMutex *mutex);
719
720 /**
721 * run_on_cpu:
722 * @cpu: The vCPU to run on.
723 * @func: The function to be executed.
724 * @data: Data to pass to the function.
725 *
726 * Schedules the function @func for execution on the vCPU @cpu.
727 */
728 void run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data);
729
730 /**
731 * async_run_on_cpu:
732 * @cpu: The vCPU to run on.
733 * @func: The function to be executed.
734 * @data: Data to pass to the function.
735 *
736 * Schedules the function @func for execution on the vCPU @cpu asynchronously.
737 */
738 void async_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data);
739
740 /**
741 * async_safe_run_on_cpu:
742 * @cpu: The vCPU to run on.
743 * @func: The function to be executed.
744 * @data: Data to pass to the function.
745 *
746 * Schedules the function @func for execution on the vCPU @cpu asynchronously,
747 * while all other vCPUs are sleeping.
748 *
749 * Unlike run_on_cpu and async_run_on_cpu, the function is run outside the
750 * BQL.
751 */
752 void async_safe_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data);
753
754 /**
755 * cpu_in_exclusive_context()
756 * @cpu: The vCPU to check
757 *
758 * Returns true if @cpu is an exclusive context, for example running
759 * something which has previously been queued via async_safe_run_on_cpu().
760 */
761 static inline bool cpu_in_exclusive_context(const CPUState *cpu)
762 {
763 return cpu->exclusive_context_count;
764 }
765
766 /**
767 * qemu_get_cpu:
768 * @index: The CPUState@cpu_index value of the CPU to obtain.
769 *
770 * Gets a CPU matching @index.
771 *
772 * Returns: The CPU or %NULL if there is no matching CPU.
773 */
774 CPUState *qemu_get_cpu(int index);
775
776 /**
777 * cpu_exists:
778 * @id: Guest-exposed CPU ID to lookup.
779 *
780 * Search for CPU with specified ID.
781 *
782 * Returns: %true - CPU is found, %false - CPU isn't found.
783 */
784 bool cpu_exists(int64_t id);
785
786 /**
787 * cpu_by_arch_id:
788 * @id: Guest-exposed CPU ID of the CPU to obtain.
789 *
790 * Get a CPU with matching @id.
791 *
792 * Returns: The CPU or %NULL if there is no matching CPU.
793 */
794 CPUState *cpu_by_arch_id(int64_t id);
795
796 /**
797 * cpu_interrupt:
798 * @cpu: The CPU to set an interrupt on.
799 * @mask: The interrupts to set.
800 *
801 * Invokes the interrupt handler.
802 */
803
804 void cpu_interrupt(CPUState *cpu, int mask);
805
806 /**
807 * cpu_set_pc:
808 * @cpu: The CPU to set the program counter for.
809 * @addr: Program counter value.
810 *
811 * Sets the program counter for a CPU.
812 */
813 static inline void cpu_set_pc(CPUState *cpu, vaddr addr)
814 {
815 CPUClass *cc = CPU_GET_CLASS(cpu);
816
817 cc->set_pc(cpu, addr);
818 }
819
820 /**
821 * cpu_reset_interrupt:
822 * @cpu: The CPU to clear the interrupt on.
823 * @mask: The interrupt mask to clear.
824 *
825 * Resets interrupts on the vCPU @cpu.
826 */
827 void cpu_reset_interrupt(CPUState *cpu, int mask);
828
829 /**
830 * cpu_exit:
831 * @cpu: The CPU to exit.
832 *
833 * Requests the CPU @cpu to exit execution.
834 */
835 void cpu_exit(CPUState *cpu);
836
837 /**
838 * cpu_resume:
839 * @cpu: The CPU to resume.
840 *
841 * Resumes CPU, i.e. puts CPU into runnable state.
842 */
843 void cpu_resume(CPUState *cpu);
844
845 /**
846 * cpu_remove_sync:
847 * @cpu: The CPU to remove.
848 *
849 * Requests the CPU to be removed and waits till it is removed.
850 */
851 void cpu_remove_sync(CPUState *cpu);
852
853 /**
854 * process_queued_cpu_work() - process all items on CPU work queue
855 * @cpu: The CPU which work queue to process.
856 */
857 void process_queued_cpu_work(CPUState *cpu);
858
859 /**
860 * cpu_exec_start:
861 * @cpu: The CPU for the current thread.
862 *
863 * Record that a CPU has started execution and can be interrupted with
864 * cpu_exit.
865 */
866 void cpu_exec_start(CPUState *cpu);
867
868 /**
869 * cpu_exec_end:
870 * @cpu: The CPU for the current thread.
871 *
872 * Record that a CPU has stopped execution and exclusive sections
873 * can be executed without interrupting it.
874 */
875 void cpu_exec_end(CPUState *cpu);
876
877 /**
878 * start_exclusive:
879 *
880 * Wait for a concurrent exclusive section to end, and then start
881 * a section of work that is run while other CPUs are not running
882 * between cpu_exec_start and cpu_exec_end. CPUs that are running
883 * cpu_exec are exited immediately. CPUs that call cpu_exec_start
884 * during the exclusive section go to sleep until this CPU calls
885 * end_exclusive.
886 */
887 void start_exclusive(void);
888
889 /**
890 * end_exclusive:
891 *
892 * Concludes an exclusive execution section started by start_exclusive.
893 */
894 void end_exclusive(void);
895
896 /**
897 * qemu_init_vcpu:
898 * @cpu: The vCPU to initialize.
899 *
900 * Initializes a vCPU.
901 */
902 void qemu_init_vcpu(CPUState *cpu);
903
904 #define SSTEP_ENABLE 0x1 /* Enable simulated HW single stepping */
905 #define SSTEP_NOIRQ 0x2 /* Do not use IRQ while single stepping */
906 #define SSTEP_NOTIMER 0x4 /* Do not Timers while single stepping */
907
908 /**
909 * cpu_single_step:
910 * @cpu: CPU to the flags for.
911 * @enabled: Flags to enable.
912 *
913 * Enables or disables single-stepping for @cpu.
914 */
915 void cpu_single_step(CPUState *cpu, int enabled);
916
917 /* Breakpoint/watchpoint flags */
918 #define BP_MEM_READ 0x01
919 #define BP_MEM_WRITE 0x02
920 #define BP_MEM_ACCESS (BP_MEM_READ | BP_MEM_WRITE)
921 #define BP_STOP_BEFORE_ACCESS 0x04
922 /* 0x08 currently unused */
923 #define BP_GDB 0x10
924 #define BP_CPU 0x20
925 #define BP_ANY (BP_GDB | BP_CPU)
926 #define BP_HIT_SHIFT 6
927 #define BP_WATCHPOINT_HIT_READ (BP_MEM_READ << BP_HIT_SHIFT)
928 #define BP_WATCHPOINT_HIT_WRITE (BP_MEM_WRITE << BP_HIT_SHIFT)
929 #define BP_WATCHPOINT_HIT (BP_MEM_ACCESS << BP_HIT_SHIFT)
930
931 int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
932 CPUBreakpoint **breakpoint);
933 int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags);
934 void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint);
935 void cpu_breakpoint_remove_all(CPUState *cpu, int mask);
936
937 /* Return true if PC matches an installed breakpoint. */
938 static inline bool cpu_breakpoint_test(CPUState *cpu, vaddr pc, int mask)
939 {
940 CPUBreakpoint *bp;
941
942 if (unlikely(!QTAILQ_EMPTY(&cpu->breakpoints))) {
943 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
944 if (bp->pc == pc && (bp->flags & mask)) {
945 return true;
946 }
947 }
948 }
949 return false;
950 }
951
952 #if !defined(CONFIG_TCG) || defined(CONFIG_USER_ONLY)
953 static inline int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
954 int flags, CPUWatchpoint **watchpoint)
955 {
956 return -ENOSYS;
957 }
958
959 static inline int cpu_watchpoint_remove(CPUState *cpu, vaddr addr,
960 vaddr len, int flags)
961 {
962 return -ENOSYS;
963 }
964
965 static inline void cpu_watchpoint_remove_by_ref(CPUState *cpu,
966 CPUWatchpoint *wp)
967 {
968 }
969
970 static inline void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
971 {
972 }
973
974 static inline void cpu_check_watchpoint(CPUState *cpu, vaddr addr, vaddr len,
975 MemTxAttrs atr, int fl, uintptr_t ra)
976 {
977 }
978
979 static inline int cpu_watchpoint_address_matches(CPUState *cpu,
980 vaddr addr, vaddr len)
981 {
982 return 0;
983 }
984 #else
985 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
986 int flags, CPUWatchpoint **watchpoint);
987 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr,
988 vaddr len, int flags);
989 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint);
990 void cpu_watchpoint_remove_all(CPUState *cpu, int mask);
991
992 /**
993 * cpu_check_watchpoint:
994 * @cpu: cpu context
995 * @addr: guest virtual address
996 * @len: access length
997 * @attrs: memory access attributes
998 * @flags: watchpoint access type
999 * @ra: unwind return address
1000 *
1001 * Check for a watchpoint hit in [addr, addr+len) of the type
1002 * specified by @flags. Exit via exception with a hit.
1003 */
1004 void cpu_check_watchpoint(CPUState *cpu, vaddr addr, vaddr len,
1005 MemTxAttrs attrs, int flags, uintptr_t ra);
1006
1007 /**
1008 * cpu_watchpoint_address_matches:
1009 * @cpu: cpu context
1010 * @addr: guest virtual address
1011 * @len: access length
1012 *
1013 * Return the watchpoint flags that apply to [addr, addr+len).
1014 * If no watchpoint is registered for the range, the result is 0.
1015 */
1016 int cpu_watchpoint_address_matches(CPUState *cpu, vaddr addr, vaddr len);
1017 #endif
1018
1019 /**
1020 * cpu_get_address_space:
1021 * @cpu: CPU to get address space from
1022 * @asidx: index identifying which address space to get
1023 *
1024 * Return the requested address space of this CPU. @asidx
1025 * specifies which address space to read.
1026 */
1027 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx);
1028
1029 G_NORETURN void cpu_abort(CPUState *cpu, const char *fmt, ...)
1030 G_GNUC_PRINTF(2, 3);
1031
1032 /* $(top_srcdir)/cpu.c */
1033 void cpu_class_init_props(DeviceClass *dc);
1034 void cpu_exec_initfn(CPUState *cpu);
1035 void cpu_exec_realizefn(CPUState *cpu, Error **errp);
1036 void cpu_exec_unrealizefn(CPUState *cpu);
1037
1038 /**
1039 * target_words_bigendian:
1040 * Returns true if the (default) endianness of the target is big endian,
1041 * false otherwise. Note that in target-specific code, you can use
1042 * TARGET_BIG_ENDIAN directly instead. On the other hand, common
1043 * code should normally never need to know about the endianness of the
1044 * target, so please do *not* use this function unless you know very well
1045 * what you are doing!
1046 */
1047 bool target_words_bigendian(void);
1048
1049 void page_size_init(void);
1050
1051 #ifdef NEED_CPU_H
1052
1053 #ifdef CONFIG_SOFTMMU
1054
1055 extern const VMStateDescription vmstate_cpu_common;
1056
1057 #define VMSTATE_CPU() { \
1058 .name = "parent_obj", \
1059 .size = sizeof(CPUState), \
1060 .vmsd = &vmstate_cpu_common, \
1061 .flags = VMS_STRUCT, \
1062 .offset = 0, \
1063 }
1064 #endif /* CONFIG_SOFTMMU */
1065
1066 #endif /* NEED_CPU_H */
1067
1068 #define UNASSIGNED_CPU_INDEX -1
1069 #define UNASSIGNED_CLUSTER_INDEX -1
1070
1071 #endif