]> git.proxmox.com Git - mirror_qemu.git/blob - include/hw/ppc/xive.h
Merge tag 'for_upstream' of https://git.kernel.org/pub/scm/virt/kvm/mst/qemu into...
[mirror_qemu.git] / include / hw / ppc / xive.h
1 /*
2 * QEMU PowerPC XIVE interrupt controller model
3 *
4 *
5 * The POWER9 processor comes with a new interrupt controller, called
6 * XIVE as "eXternal Interrupt Virtualization Engine".
7 *
8 * = Overall architecture
9 *
10 *
11 * XIVE Interrupt Controller
12 * +------------------------------------+ IPIs
13 * | +---------+ +---------+ +--------+ | +-------+
14 * | |VC | |CQ | |PC |----> | CORES |
15 * | | esb | | | | |----> | |
16 * | | eas | | Bridge | | tctx |----> | |
17 * | |SC end | | | | nvt | | | |
18 * +------+ | +---------+ +----+----+ +--------+ | +-+-+-+-+
19 * | RAM | +------------------|-----------------+ | | |
20 * | | | | | |
21 * | | | | | |
22 * | | +--------------------v------------------------v-v-v--+ other
23 * | <--+ Power Bus +--> chips
24 * | esb | +---------+-----------------------+------------------+
25 * | eas | | |
26 * | end | +--|------+ |
27 * | nvt | +----+----+ | +----+----+
28 * +------+ |SC | | |SC |
29 * | | | | |
30 * | PQ-bits | | | PQ-bits |
31 * | local |-+ | in VC |
32 * +---------+ +---------+
33 * PCIe NX,NPU,CAPI
34 *
35 * SC: Source Controller (aka. IVSE)
36 * VC: Virtualization Controller (aka. IVRE)
37 * PC: Presentation Controller (aka. IVPE)
38 * CQ: Common Queue (Bridge)
39 *
40 * PQ-bits: 2 bits source state machine (P:pending Q:queued)
41 * esb: Event State Buffer (Array of PQ bits in an IVSE)
42 * eas: Event Assignment Structure
43 * end: Event Notification Descriptor
44 * nvt: Notification Virtual Target
45 * tctx: Thread interrupt Context
46 *
47 *
48 * The XIVE IC is composed of three sub-engines :
49 *
50 * - Interrupt Virtualization Source Engine (IVSE), or Source
51 * Controller (SC). These are found in PCI PHBs, in the PSI host
52 * bridge controller, but also inside the main controller for the
53 * core IPIs and other sub-chips (NX, CAP, NPU) of the
54 * chip/processor. They are configured to feed the IVRE with events.
55 *
56 * - Interrupt Virtualization Routing Engine (IVRE) or Virtualization
57 * Controller (VC). Its job is to match an event source with an
58 * Event Notification Descriptor (END).
59 *
60 * - Interrupt Virtualization Presentation Engine (IVPE) or
61 * Presentation Controller (PC). It maintains the interrupt context
62 * state of each thread and handles the delivery of the external
63 * exception to the thread.
64 *
65 * In XIVE 1.0, the sub-engines used to be referred as:
66 *
67 * SC Source Controller
68 * VC Virtualization Controller
69 * PC Presentation Controller
70 * CQ Common Queue (PowerBUS Bridge)
71 *
72 *
73 * = XIVE internal tables
74 *
75 * Each of the sub-engines uses a set of tables to redirect exceptions
76 * from event sources to CPU threads.
77 *
78 * +-------+
79 * User or OS | EQ |
80 * or +------>|entries|
81 * Hypervisor | | .. |
82 * Memory | +-------+
83 * | ^
84 * | |
85 * +-------------------------------------------------+
86 * | |
87 * Hypervisor +------+ +---+--+ +---+--+ +------+
88 * Memory | ESB | | EAT | | ENDT | | NVTT |
89 * (skiboot) +----+-+ +----+-+ +----+-+ +------+
90 * ^ | ^ | ^ | ^
91 * | | | | | | |
92 * +-------------------------------------------------+
93 * | | | | | | |
94 * | | | | | | |
95 * +----|--|--------|--|--------|--|-+ +-|-----+ +------+
96 * | | | | | | | | | | tctx| |Thread|
97 * IPI or --> | + v + v + v |---| + .. |-----> |
98 * HW events --> | | | | | |
99 * IVSE | IVRE | | IVPE | +------+
100 * +---------------------------------+ +-------+
101 *
102 *
103 *
104 * The IVSE have a 2-bits state machine, P for pending and Q for queued,
105 * for each source that allows events to be triggered. They are stored in
106 * an Event State Buffer (ESB) array and can be controlled by MMIOs.
107 *
108 * If the event is let through, the IVRE looks up in the Event Assignment
109 * Structure (EAS) table for an Event Notification Descriptor (END)
110 * configured for the source. Each Event Notification Descriptor defines
111 * a notification path to a CPU and an in-memory Event Queue, in which
112 * will be enqueued an EQ data for the OS to pull.
113 *
114 * The IVPE determines if a Notification Virtual Target (NVT) can
115 * handle the event by scanning the thread contexts of the VCPUs
116 * dispatched on the processor HW threads. It maintains the state of
117 * the thread interrupt context (TCTX) of each thread in a NVT table.
118 *
119 * = Acronyms
120 *
121 * Description In XIVE 1.0, used to be referred as
122 *
123 * EAS Event Assignment Structure IVE Interrupt Virt. Entry
124 * EAT Event Assignment Table IVT Interrupt Virt. Table
125 * ENDT Event Notif. Descriptor Table EQDT Event Queue Desc. Table
126 * EQ Event Queue same
127 * ESB Event State Buffer SBE State Bit Entry
128 * NVT Notif. Virtual Target VPD Virtual Processor Desc.
129 * NVTT Notif. Virtual Target Table VPDT Virtual Processor Desc. Table
130 * TCTX Thread interrupt Context
131 *
132 *
133 * Copyright (c) 2017-2018, IBM Corporation.
134 *
135 * This code is licensed under the GPL version 2 or later. See the
136 * COPYING file in the top-level directory.
137 *
138 */
139
140 #ifndef PPC_XIVE_H
141 #define PPC_XIVE_H
142
143 #include "sysemu/kvm.h"
144 #include "hw/sysbus.h"
145 #include "hw/ppc/xive_regs.h"
146 #include "qom/object.h"
147
148 /*
149 * XIVE Notifier (Interface between Source and Router)
150 */
151
152 typedef struct XiveNotifier XiveNotifier;
153
154 #define TYPE_XIVE_NOTIFIER "xive-notifier"
155 #define XIVE_NOTIFIER(obj) \
156 INTERFACE_CHECK(XiveNotifier, (obj), TYPE_XIVE_NOTIFIER)
157 typedef struct XiveNotifierClass XiveNotifierClass;
158 DECLARE_CLASS_CHECKERS(XiveNotifierClass, XIVE_NOTIFIER,
159 TYPE_XIVE_NOTIFIER)
160
161 struct XiveNotifierClass {
162 InterfaceClass parent;
163 void (*notify)(XiveNotifier *xn, uint32_t lisn, bool pq_checked);
164 };
165
166 /*
167 * XIVE Interrupt Source
168 */
169
170 #define TYPE_XIVE_SOURCE "xive-source"
171 OBJECT_DECLARE_SIMPLE_TYPE(XiveSource, XIVE_SOURCE)
172
173 /*
174 * XIVE Interrupt Source characteristics, which define how the ESB are
175 * controlled.
176 */
177 #define XIVE_SRC_H_INT_ESB 0x1 /* ESB managed with hcall H_INT_ESB */
178 #define XIVE_SRC_STORE_EOI 0x2 /* Store EOI supported */
179 #define XIVE_SRC_PQ_DISABLE 0x4 /* Disable check on the PQ state bits */
180
181 struct XiveSource {
182 DeviceState parent;
183
184 /* IRQs */
185 uint32_t nr_irqs;
186 unsigned long *lsi_map;
187
188 /* PQ bits and LSI assertion bit */
189 uint8_t *status;
190
191 /* ESB memory region */
192 uint64_t esb_flags;
193 uint32_t esb_shift;
194 MemoryRegion esb_mmio;
195 MemoryRegion esb_mmio_emulated;
196
197 /* KVM support */
198 void *esb_mmap;
199 MemoryRegion esb_mmio_kvm;
200
201 XiveNotifier *xive;
202 };
203
204 /*
205 * ESB MMIO setting. Can be one page, for both source triggering and
206 * source management, or two different pages. See below for magic
207 * values.
208 */
209 #define XIVE_ESB_4K 12 /* PSI HB only */
210 #define XIVE_ESB_4K_2PAGE 13
211 #define XIVE_ESB_64K 16
212 #define XIVE_ESB_64K_2PAGE 17
213
214 static inline bool xive_source_esb_has_2page(XiveSource *xsrc)
215 {
216 return xsrc->esb_shift == XIVE_ESB_64K_2PAGE ||
217 xsrc->esb_shift == XIVE_ESB_4K_2PAGE;
218 }
219
220 static inline size_t xive_source_esb_len(XiveSource *xsrc)
221 {
222 return (1ull << xsrc->esb_shift) * xsrc->nr_irqs;
223 }
224
225 /* The trigger page is always the first/even page */
226 static inline hwaddr xive_source_esb_page(XiveSource *xsrc, uint32_t srcno)
227 {
228 assert(srcno < xsrc->nr_irqs);
229 return (1ull << xsrc->esb_shift) * srcno;
230 }
231
232 /* In a two pages ESB MMIO setting, the odd page is for management */
233 static inline hwaddr xive_source_esb_mgmt(XiveSource *xsrc, int srcno)
234 {
235 hwaddr addr = xive_source_esb_page(xsrc, srcno);
236
237 if (xive_source_esb_has_2page(xsrc)) {
238 addr += (1 << (xsrc->esb_shift - 1));
239 }
240
241 return addr;
242 }
243
244 /*
245 * Each interrupt source has a 2-bit state machine which can be
246 * controlled by MMIO. P indicates that an interrupt is pending (has
247 * been sent to a queue and is waiting for an EOI). Q indicates that
248 * the interrupt has been triggered while pending.
249 *
250 * This acts as a coalescing mechanism in order to guarantee that a
251 * given interrupt only occurs at most once in a queue.
252 *
253 * When doing an EOI, the Q bit will indicate if the interrupt
254 * needs to be re-triggered.
255 */
256 #define XIVE_STATUS_ASSERTED 0x4 /* Extra bit for LSI */
257 #define XIVE_ESB_VAL_P 0x2
258 #define XIVE_ESB_VAL_Q 0x1
259
260 #define XIVE_ESB_RESET 0x0
261 #define XIVE_ESB_PENDING XIVE_ESB_VAL_P
262 #define XIVE_ESB_QUEUED (XIVE_ESB_VAL_P | XIVE_ESB_VAL_Q)
263 #define XIVE_ESB_OFF XIVE_ESB_VAL_Q
264
265 bool xive_esb_trigger(uint8_t *pq);
266 bool xive_esb_eoi(uint8_t *pq);
267 uint8_t xive_esb_set(uint8_t *pq, uint8_t value);
268
269 /*
270 * "magic" Event State Buffer (ESB) MMIO offsets.
271 *
272 * The following offsets into the ESB MMIO allow to read or manipulate
273 * the PQ bits. They must be used with an 8-byte load instruction.
274 * They all return the previous state of the interrupt (atomically).
275 *
276 * Additionally, some ESB pages support doing an EOI via a store and
277 * some ESBs support doing a trigger via a separate trigger page.
278 */
279 #define XIVE_ESB_STORE_EOI 0x400 /* Store */
280 #define XIVE_ESB_LOAD_EOI 0x000 /* Load */
281 #define XIVE_ESB_GET 0x800 /* Load */
282 #define XIVE_ESB_INJECT 0x800 /* Store */
283 #define XIVE_ESB_SET_PQ_00 0xc00 /* Load */
284 #define XIVE_ESB_SET_PQ_01 0xd00 /* Load */
285 #define XIVE_ESB_SET_PQ_10 0xe00 /* Load */
286 #define XIVE_ESB_SET_PQ_11 0xf00 /* Load */
287
288 uint8_t xive_source_esb_get(XiveSource *xsrc, uint32_t srcno);
289 uint8_t xive_source_esb_set(XiveSource *xsrc, uint32_t srcno, uint8_t pq);
290
291 /*
292 * Source status helpers
293 */
294 static inline void xive_source_set_status(XiveSource *xsrc, uint32_t srcno,
295 uint8_t status, bool enable)
296 {
297 if (enable) {
298 xsrc->status[srcno] |= status;
299 } else {
300 xsrc->status[srcno] &= ~status;
301 }
302 }
303
304 static inline void xive_source_set_asserted(XiveSource *xsrc, uint32_t srcno,
305 bool enable)
306 {
307 xive_source_set_status(xsrc, srcno, XIVE_STATUS_ASSERTED, enable);
308 }
309
310 static inline bool xive_source_is_asserted(XiveSource *xsrc, uint32_t srcno)
311 {
312 return xsrc->status[srcno] & XIVE_STATUS_ASSERTED;
313 }
314
315 void xive_source_pic_print_info(XiveSource *xsrc, uint32_t offset,
316 Monitor *mon);
317
318 static inline bool xive_source_irq_is_lsi(XiveSource *xsrc, uint32_t srcno)
319 {
320 assert(srcno < xsrc->nr_irqs);
321 return test_bit(srcno, xsrc->lsi_map);
322 }
323
324 static inline void xive_source_irq_set_lsi(XiveSource *xsrc, uint32_t srcno)
325 {
326 assert(srcno < xsrc->nr_irqs);
327 bitmap_set(xsrc->lsi_map, srcno, 1);
328 }
329
330 void xive_source_set_irq(void *opaque, int srcno, int val);
331
332 /*
333 * XIVE Thread interrupt Management (TM) context
334 */
335
336 #define TYPE_XIVE_TCTX "xive-tctx"
337 OBJECT_DECLARE_SIMPLE_TYPE(XiveTCTX, XIVE_TCTX)
338
339 /*
340 * XIVE Thread interrupt Management register rings :
341 *
342 * QW-0 User event-based exception state
343 * QW-1 O/S OS context for priority management, interrupt acks
344 * QW-2 Pool hypervisor pool context for virtual processors dispatched
345 * QW-3 Physical physical thread context and security context
346 */
347 #define XIVE_TM_RING_COUNT 4
348 #define XIVE_TM_RING_SIZE 0x10
349
350 typedef struct XivePresenter XivePresenter;
351
352 struct XiveTCTX {
353 DeviceState parent_obj;
354
355 CPUState *cs;
356 qemu_irq hv_output;
357 qemu_irq os_output;
358
359 uint8_t regs[XIVE_TM_RING_COUNT * XIVE_TM_RING_SIZE];
360
361 XivePresenter *xptr;
362 };
363
364 static inline uint32_t xive_tctx_word2(uint8_t *ring)
365 {
366 return *((uint32_t *) &ring[TM_WORD2]);
367 }
368
369 /*
370 * XIVE Router
371 */
372 typedef struct XiveFabric XiveFabric;
373
374 struct XiveRouter {
375 SysBusDevice parent;
376
377 XiveFabric *xfb;
378 };
379
380 #define TYPE_XIVE_ROUTER "xive-router"
381 OBJECT_DECLARE_TYPE(XiveRouter, XiveRouterClass,
382 XIVE_ROUTER)
383
384 struct XiveRouterClass {
385 SysBusDeviceClass parent;
386
387 /* XIVE table accessors */
388 int (*get_eas)(XiveRouter *xrtr, uint8_t eas_blk, uint32_t eas_idx,
389 XiveEAS *eas);
390 int (*get_pq)(XiveRouter *xrtr, uint8_t eas_blk, uint32_t eas_idx,
391 uint8_t *pq);
392 int (*set_pq)(XiveRouter *xrtr, uint8_t eas_blk, uint32_t eas_idx,
393 uint8_t *pq);
394 int (*get_end)(XiveRouter *xrtr, uint8_t end_blk, uint32_t end_idx,
395 XiveEND *end);
396 int (*write_end)(XiveRouter *xrtr, uint8_t end_blk, uint32_t end_idx,
397 XiveEND *end, uint8_t word_number);
398 int (*get_nvt)(XiveRouter *xrtr, uint8_t nvt_blk, uint32_t nvt_idx,
399 XiveNVT *nvt);
400 int (*write_nvt)(XiveRouter *xrtr, uint8_t nvt_blk, uint32_t nvt_idx,
401 XiveNVT *nvt, uint8_t word_number);
402 uint8_t (*get_block_id)(XiveRouter *xrtr);
403 };
404
405 int xive_router_get_eas(XiveRouter *xrtr, uint8_t eas_blk, uint32_t eas_idx,
406 XiveEAS *eas);
407 int xive_router_get_end(XiveRouter *xrtr, uint8_t end_blk, uint32_t end_idx,
408 XiveEND *end);
409 int xive_router_write_end(XiveRouter *xrtr, uint8_t end_blk, uint32_t end_idx,
410 XiveEND *end, uint8_t word_number);
411 int xive_router_get_nvt(XiveRouter *xrtr, uint8_t nvt_blk, uint32_t nvt_idx,
412 XiveNVT *nvt);
413 int xive_router_write_nvt(XiveRouter *xrtr, uint8_t nvt_blk, uint32_t nvt_idx,
414 XiveNVT *nvt, uint8_t word_number);
415 void xive_router_notify(XiveNotifier *xn, uint32_t lisn, bool pq_checked);
416
417 /*
418 * XIVE Presenter
419 */
420
421 typedef struct XiveTCTXMatch {
422 XiveTCTX *tctx;
423 uint8_t ring;
424 } XiveTCTXMatch;
425
426 #define TYPE_XIVE_PRESENTER "xive-presenter"
427 #define XIVE_PRESENTER(obj) \
428 INTERFACE_CHECK(XivePresenter, (obj), TYPE_XIVE_PRESENTER)
429 typedef struct XivePresenterClass XivePresenterClass;
430 DECLARE_CLASS_CHECKERS(XivePresenterClass, XIVE_PRESENTER,
431 TYPE_XIVE_PRESENTER)
432
433 #define XIVE_PRESENTER_GEN1_TIMA_OS 0x1
434
435 struct XivePresenterClass {
436 InterfaceClass parent;
437 int (*match_nvt)(XivePresenter *xptr, uint8_t format,
438 uint8_t nvt_blk, uint32_t nvt_idx,
439 bool cam_ignore, uint8_t priority,
440 uint32_t logic_serv, XiveTCTXMatch *match);
441 bool (*in_kernel)(const XivePresenter *xptr);
442 uint32_t (*get_config)(XivePresenter *xptr);
443 };
444
445 int xive_presenter_tctx_match(XivePresenter *xptr, XiveTCTX *tctx,
446 uint8_t format,
447 uint8_t nvt_blk, uint32_t nvt_idx,
448 bool cam_ignore, uint32_t logic_serv);
449 bool xive_presenter_notify(XiveFabric *xfb, uint8_t format,
450 uint8_t nvt_blk, uint32_t nvt_idx,
451 bool cam_ignore, uint8_t priority,
452 uint32_t logic_serv);
453
454 /*
455 * XIVE Fabric (Interface between Interrupt Controller and Machine)
456 */
457
458 #define TYPE_XIVE_FABRIC "xive-fabric"
459 #define XIVE_FABRIC(obj) \
460 INTERFACE_CHECK(XiveFabric, (obj), TYPE_XIVE_FABRIC)
461 typedef struct XiveFabricClass XiveFabricClass;
462 DECLARE_CLASS_CHECKERS(XiveFabricClass, XIVE_FABRIC,
463 TYPE_XIVE_FABRIC)
464
465 struct XiveFabricClass {
466 InterfaceClass parent;
467 int (*match_nvt)(XiveFabric *xfb, uint8_t format,
468 uint8_t nvt_blk, uint32_t nvt_idx,
469 bool cam_ignore, uint8_t priority,
470 uint32_t logic_serv, XiveTCTXMatch *match);
471 };
472
473 /*
474 * XIVE END ESBs
475 */
476
477 #define TYPE_XIVE_END_SOURCE "xive-end-source"
478 OBJECT_DECLARE_SIMPLE_TYPE(XiveENDSource, XIVE_END_SOURCE)
479
480 struct XiveENDSource {
481 DeviceState parent;
482
483 uint32_t nr_ends;
484
485 /* ESB memory region */
486 uint32_t esb_shift;
487 MemoryRegion esb_mmio;
488
489 XiveRouter *xrtr;
490 };
491
492 /*
493 * For legacy compatibility, the exceptions define up to 256 different
494 * priorities. P9 implements only 9 levels : 8 active levels [0 - 7]
495 * and the least favored level 0xFF.
496 */
497 #define XIVE_PRIORITY_MAX 7
498
499 /*
500 * Convert a priority number to an Interrupt Pending Buffer (IPB)
501 * register, which indicates a pending interrupt at the priority
502 * corresponding to the bit number
503 */
504 static inline uint8_t xive_priority_to_ipb(uint8_t priority)
505 {
506 return priority > XIVE_PRIORITY_MAX ?
507 0 : 1 << (XIVE_PRIORITY_MAX - priority);
508 }
509
510 /*
511 * XIVE Thread Interrupt Management Aera (TIMA)
512 *
513 * This region gives access to the registers of the thread interrupt
514 * management context. It is four page wide, each page providing a
515 * different view of the registers. The page with the lower offset is
516 * the most privileged and gives access to the entire context.
517 */
518 #define XIVE_TM_HW_PAGE 0x0
519 #define XIVE_TM_HV_PAGE 0x1
520 #define XIVE_TM_OS_PAGE 0x2
521 #define XIVE_TM_USER_PAGE 0x3
522
523 void xive_tctx_tm_write(XivePresenter *xptr, XiveTCTX *tctx, hwaddr offset,
524 uint64_t value, unsigned size);
525 uint64_t xive_tctx_tm_read(XivePresenter *xptr, XiveTCTX *tctx, hwaddr offset,
526 unsigned size);
527
528 void xive_tctx_pic_print_info(XiveTCTX *tctx, Monitor *mon);
529 Object *xive_tctx_create(Object *cpu, XivePresenter *xptr, Error **errp);
530 void xive_tctx_reset(XiveTCTX *tctx);
531 void xive_tctx_destroy(XiveTCTX *tctx);
532 void xive_tctx_ipb_update(XiveTCTX *tctx, uint8_t ring, uint8_t ipb);
533 void xive_tctx_reset_os_signal(XiveTCTX *tctx);
534
535 /*
536 * KVM XIVE device helpers
537 */
538
539 int kvmppc_xive_source_reset_one(XiveSource *xsrc, int srcno, Error **errp);
540 void kvmppc_xive_source_set_irq(void *opaque, int srcno, int val);
541 int kvmppc_xive_cpu_connect(XiveTCTX *tctx, Error **errp);
542 int kvmppc_xive_cpu_synchronize_state(XiveTCTX *tctx, Error **errp);
543 int kvmppc_xive_cpu_get_state(XiveTCTX *tctx, Error **errp);
544 int kvmppc_xive_cpu_set_state(XiveTCTX *tctx, Error **errp);
545
546 #endif /* PPC_XIVE_H */