]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - include/linux/avf/virtchnl.h
net: rtnetlink: validate IFLA_MTU attribute in rtnl_create_link()
[mirror_ubuntu-bionic-kernel.git] / include / linux / avf / virtchnl.h
1 /*******************************************************************************
2 *
3 * Intel Ethernet Controller XL710 Family Linux Virtual Function Driver
4 * Copyright(c) 2013 - 2014 Intel Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along
16 * with this program. If not, see <http://www.gnu.org/licenses/>.
17 *
18 * The full GNU General Public License is included in this distribution in
19 * the file called "COPYING".
20 *
21 * Contact Information:
22 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
23 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24 *
25 ******************************************************************************/
26
27 #ifndef _VIRTCHNL_H_
28 #define _VIRTCHNL_H_
29
30 /* Description:
31 * This header file describes the VF-PF communication protocol used
32 * by the drivers for all devices starting from our 40G product line
33 *
34 * Admin queue buffer usage:
35 * desc->opcode is always aqc_opc_send_msg_to_pf
36 * flags, retval, datalen, and data addr are all used normally.
37 * The Firmware copies the cookie fields when sending messages between the
38 * PF and VF, but uses all other fields internally. Due to this limitation,
39 * we must send all messages as "indirect", i.e. using an external buffer.
40 *
41 * All the VSI indexes are relative to the VF. Each VF can have maximum of
42 * three VSIs. All the queue indexes are relative to the VSI. Each VF can
43 * have a maximum of sixteen queues for all of its VSIs.
44 *
45 * The PF is required to return a status code in v_retval for all messages
46 * except RESET_VF, which does not require any response. The return value
47 * is of status_code type, defined in the shared type.h.
48 *
49 * In general, VF driver initialization should roughly follow the order of
50 * these opcodes. The VF driver must first validate the API version of the
51 * PF driver, then request a reset, then get resources, then configure
52 * queues and interrupts. After these operations are complete, the VF
53 * driver may start its queues, optionally add MAC and VLAN filters, and
54 * process traffic.
55 */
56
57 /* START GENERIC DEFINES
58 * Need to ensure the following enums and defines hold the same meaning and
59 * value in current and future projects
60 */
61
62 /* Error Codes */
63 enum virtchnl_status_code {
64 VIRTCHNL_STATUS_SUCCESS = 0,
65 VIRTCHNL_ERR_PARAM = -5,
66 VIRTCHNL_STATUS_ERR_OPCODE_MISMATCH = -38,
67 VIRTCHNL_STATUS_ERR_CQP_COMPL_ERROR = -39,
68 VIRTCHNL_STATUS_ERR_INVALID_VF_ID = -40,
69 VIRTCHNL_STATUS_NOT_SUPPORTED = -64,
70 };
71
72 #define VIRTCHNL_LINK_SPEED_100MB_SHIFT 0x1
73 #define VIRTCHNL_LINK_SPEED_1000MB_SHIFT 0x2
74 #define VIRTCHNL_LINK_SPEED_10GB_SHIFT 0x3
75 #define VIRTCHNL_LINK_SPEED_40GB_SHIFT 0x4
76 #define VIRTCHNL_LINK_SPEED_20GB_SHIFT 0x5
77 #define VIRTCHNL_LINK_SPEED_25GB_SHIFT 0x6
78
79 enum virtchnl_link_speed {
80 VIRTCHNL_LINK_SPEED_UNKNOWN = 0,
81 VIRTCHNL_LINK_SPEED_100MB = BIT(VIRTCHNL_LINK_SPEED_100MB_SHIFT),
82 VIRTCHNL_LINK_SPEED_1GB = BIT(VIRTCHNL_LINK_SPEED_1000MB_SHIFT),
83 VIRTCHNL_LINK_SPEED_10GB = BIT(VIRTCHNL_LINK_SPEED_10GB_SHIFT),
84 VIRTCHNL_LINK_SPEED_40GB = BIT(VIRTCHNL_LINK_SPEED_40GB_SHIFT),
85 VIRTCHNL_LINK_SPEED_20GB = BIT(VIRTCHNL_LINK_SPEED_20GB_SHIFT),
86 VIRTCHNL_LINK_SPEED_25GB = BIT(VIRTCHNL_LINK_SPEED_25GB_SHIFT),
87 };
88
89 /* for hsplit_0 field of Rx HMC context */
90 /* deprecated with AVF 1.0 */
91 enum virtchnl_rx_hsplit {
92 VIRTCHNL_RX_HSPLIT_NO_SPLIT = 0,
93 VIRTCHNL_RX_HSPLIT_SPLIT_L2 = 1,
94 VIRTCHNL_RX_HSPLIT_SPLIT_IP = 2,
95 VIRTCHNL_RX_HSPLIT_SPLIT_TCP_UDP = 4,
96 VIRTCHNL_RX_HSPLIT_SPLIT_SCTP = 8,
97 };
98
99 /* END GENERIC DEFINES */
100
101 /* Opcodes for VF-PF communication. These are placed in the v_opcode field
102 * of the virtchnl_msg structure.
103 */
104 enum virtchnl_ops {
105 /* The PF sends status change events to VFs using
106 * the VIRTCHNL_OP_EVENT opcode.
107 * VFs send requests to the PF using the other ops.
108 * Use of "advanced opcode" features must be negotiated as part of capabilities
109 * exchange and are not considered part of base mode feature set.
110 */
111 VIRTCHNL_OP_UNKNOWN = 0,
112 VIRTCHNL_OP_VERSION = 1, /* must ALWAYS be 1 */
113 VIRTCHNL_OP_RESET_VF = 2,
114 VIRTCHNL_OP_GET_VF_RESOURCES = 3,
115 VIRTCHNL_OP_CONFIG_TX_QUEUE = 4,
116 VIRTCHNL_OP_CONFIG_RX_QUEUE = 5,
117 VIRTCHNL_OP_CONFIG_VSI_QUEUES = 6,
118 VIRTCHNL_OP_CONFIG_IRQ_MAP = 7,
119 VIRTCHNL_OP_ENABLE_QUEUES = 8,
120 VIRTCHNL_OP_DISABLE_QUEUES = 9,
121 VIRTCHNL_OP_ADD_ETH_ADDR = 10,
122 VIRTCHNL_OP_DEL_ETH_ADDR = 11,
123 VIRTCHNL_OP_ADD_VLAN = 12,
124 VIRTCHNL_OP_DEL_VLAN = 13,
125 VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE = 14,
126 VIRTCHNL_OP_GET_STATS = 15,
127 VIRTCHNL_OP_RSVD = 16,
128 VIRTCHNL_OP_EVENT = 17, /* must ALWAYS be 17 */
129 VIRTCHNL_OP_IWARP = 20, /* advanced opcode */
130 VIRTCHNL_OP_CONFIG_IWARP_IRQ_MAP = 21, /* advanced opcode */
131 VIRTCHNL_OP_RELEASE_IWARP_IRQ_MAP = 22, /* advanced opcode */
132 VIRTCHNL_OP_CONFIG_RSS_KEY = 23,
133 VIRTCHNL_OP_CONFIG_RSS_LUT = 24,
134 VIRTCHNL_OP_GET_RSS_HENA_CAPS = 25,
135 VIRTCHNL_OP_SET_RSS_HENA = 26,
136 VIRTCHNL_OP_ENABLE_VLAN_STRIPPING = 27,
137 VIRTCHNL_OP_DISABLE_VLAN_STRIPPING = 28,
138 VIRTCHNL_OP_REQUEST_QUEUES = 29,
139 };
140
141 /* This macro is used to generate a compilation error if a structure
142 * is not exactly the correct length. It gives a divide by zero error if the
143 * structure is not of the correct size, otherwise it creates an enum that is
144 * never used.
145 */
146 #define VIRTCHNL_CHECK_STRUCT_LEN(n, X) enum virtchnl_static_assert_enum_##X \
147 { virtchnl_static_assert_##X = (n)/((sizeof(struct X) == (n)) ? 1 : 0) }
148
149 /* Virtual channel message descriptor. This overlays the admin queue
150 * descriptor. All other data is passed in external buffers.
151 */
152
153 struct virtchnl_msg {
154 u8 pad[8]; /* AQ flags/opcode/len/retval fields */
155 enum virtchnl_ops v_opcode; /* avoid confusion with desc->opcode */
156 enum virtchnl_status_code v_retval; /* ditto for desc->retval */
157 u32 vfid; /* used by PF when sending to VF */
158 };
159
160 VIRTCHNL_CHECK_STRUCT_LEN(20, virtchnl_msg);
161
162 /* Message descriptions and data structures.*/
163
164 /* VIRTCHNL_OP_VERSION
165 * VF posts its version number to the PF. PF responds with its version number
166 * in the same format, along with a return code.
167 * Reply from PF has its major/minor versions also in param0 and param1.
168 * If there is a major version mismatch, then the VF cannot operate.
169 * If there is a minor version mismatch, then the VF can operate but should
170 * add a warning to the system log.
171 *
172 * This enum element MUST always be specified as == 1, regardless of other
173 * changes in the API. The PF must always respond to this message without
174 * error regardless of version mismatch.
175 */
176 #define VIRTCHNL_VERSION_MAJOR 1
177 #define VIRTCHNL_VERSION_MINOR 1
178 #define VIRTCHNL_VERSION_MINOR_NO_VF_CAPS 0
179
180 struct virtchnl_version_info {
181 u32 major;
182 u32 minor;
183 };
184
185 VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_version_info);
186
187 #define VF_IS_V10(_v) (((_v)->major == 1) && ((_v)->minor == 0))
188 #define VF_IS_V11(_ver) (((_ver)->major == 1) && ((_ver)->minor == 1))
189
190 /* VIRTCHNL_OP_RESET_VF
191 * VF sends this request to PF with no parameters
192 * PF does NOT respond! VF driver must delay then poll VFGEN_RSTAT register
193 * until reset completion is indicated. The admin queue must be reinitialized
194 * after this operation.
195 *
196 * When reset is complete, PF must ensure that all queues in all VSIs associated
197 * with the VF are stopped, all queue configurations in the HMC are set to 0,
198 * and all MAC and VLAN filters (except the default MAC address) on all VSIs
199 * are cleared.
200 */
201
202 /* VSI types that use VIRTCHNL interface for VF-PF communication. VSI_SRIOV
203 * vsi_type should always be 6 for backward compatibility. Add other fields
204 * as needed.
205 */
206 enum virtchnl_vsi_type {
207 VIRTCHNL_VSI_TYPE_INVALID = 0,
208 VIRTCHNL_VSI_SRIOV = 6,
209 };
210
211 /* VIRTCHNL_OP_GET_VF_RESOURCES
212 * Version 1.0 VF sends this request to PF with no parameters
213 * Version 1.1 VF sends this request to PF with u32 bitmap of its capabilities
214 * PF responds with an indirect message containing
215 * virtchnl_vf_resource and one or more
216 * virtchnl_vsi_resource structures.
217 */
218
219 struct virtchnl_vsi_resource {
220 u16 vsi_id;
221 u16 num_queue_pairs;
222 enum virtchnl_vsi_type vsi_type;
223 u16 qset_handle;
224 u8 default_mac_addr[ETH_ALEN];
225 };
226
227 VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_vsi_resource);
228
229 /* VF capability flags
230 * VIRTCHNL_VF_OFFLOAD_L2 flag is inclusive of base mode L2 offloads including
231 * TX/RX Checksum offloading and TSO for non-tunnelled packets.
232 */
233 #define VIRTCHNL_VF_OFFLOAD_L2 0x00000001
234 #define VIRTCHNL_VF_OFFLOAD_IWARP 0x00000002
235 #define VIRTCHNL_VF_OFFLOAD_RSVD 0x00000004
236 #define VIRTCHNL_VF_OFFLOAD_RSS_AQ 0x00000008
237 #define VIRTCHNL_VF_OFFLOAD_RSS_REG 0x00000010
238 #define VIRTCHNL_VF_OFFLOAD_WB_ON_ITR 0x00000020
239 #define VIRTCHNL_VF_OFFLOAD_REQ_QUEUES 0x00000040
240 #define VIRTCHNL_VF_OFFLOAD_VLAN 0x00010000
241 #define VIRTCHNL_VF_OFFLOAD_RX_POLLING 0x00020000
242 #define VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2 0x00040000
243 #define VIRTCHNL_VF_OFFLOAD_RSS_PF 0X00080000
244 #define VIRTCHNL_VF_OFFLOAD_ENCAP 0X00100000
245 #define VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM 0X00200000
246 #define VIRTCHNL_VF_OFFLOAD_RX_ENCAP_CSUM 0X00400000
247
248 #define VF_BASE_MODE_OFFLOADS (VIRTCHNL_VF_OFFLOAD_L2 | \
249 VIRTCHNL_VF_OFFLOAD_VLAN | \
250 VIRTCHNL_VF_OFFLOAD_RSS_PF)
251
252 struct virtchnl_vf_resource {
253 u16 num_vsis;
254 u16 num_queue_pairs;
255 u16 max_vectors;
256 u16 max_mtu;
257
258 u32 vf_cap_flags;
259 u32 rss_key_size;
260 u32 rss_lut_size;
261
262 struct virtchnl_vsi_resource vsi_res[1];
263 };
264
265 VIRTCHNL_CHECK_STRUCT_LEN(36, virtchnl_vf_resource);
266
267 /* VIRTCHNL_OP_CONFIG_TX_QUEUE
268 * VF sends this message to set up parameters for one TX queue.
269 * External data buffer contains one instance of virtchnl_txq_info.
270 * PF configures requested queue and returns a status code.
271 */
272
273 /* Tx queue config info */
274 struct virtchnl_txq_info {
275 u16 vsi_id;
276 u16 queue_id;
277 u16 ring_len; /* number of descriptors, multiple of 8 */
278 u16 headwb_enabled; /* deprecated with AVF 1.0 */
279 u64 dma_ring_addr;
280 u64 dma_headwb_addr; /* deprecated with AVF 1.0 */
281 };
282
283 VIRTCHNL_CHECK_STRUCT_LEN(24, virtchnl_txq_info);
284
285 /* VIRTCHNL_OP_CONFIG_RX_QUEUE
286 * VF sends this message to set up parameters for one RX queue.
287 * External data buffer contains one instance of virtchnl_rxq_info.
288 * PF configures requested queue and returns a status code.
289 */
290
291 /* Rx queue config info */
292 struct virtchnl_rxq_info {
293 u16 vsi_id;
294 u16 queue_id;
295 u32 ring_len; /* number of descriptors, multiple of 32 */
296 u16 hdr_size;
297 u16 splithdr_enabled; /* deprecated with AVF 1.0 */
298 u32 databuffer_size;
299 u32 max_pkt_size;
300 u32 pad1;
301 u64 dma_ring_addr;
302 enum virtchnl_rx_hsplit rx_split_pos; /* deprecated with AVF 1.0 */
303 u32 pad2;
304 };
305
306 VIRTCHNL_CHECK_STRUCT_LEN(40, virtchnl_rxq_info);
307
308 /* VIRTCHNL_OP_CONFIG_VSI_QUEUES
309 * VF sends this message to set parameters for all active TX and RX queues
310 * associated with the specified VSI.
311 * PF configures queues and returns status.
312 * If the number of queues specified is greater than the number of queues
313 * associated with the VSI, an error is returned and no queues are configured.
314 */
315 struct virtchnl_queue_pair_info {
316 /* NOTE: vsi_id and queue_id should be identical for both queues. */
317 struct virtchnl_txq_info txq;
318 struct virtchnl_rxq_info rxq;
319 };
320
321 VIRTCHNL_CHECK_STRUCT_LEN(64, virtchnl_queue_pair_info);
322
323 struct virtchnl_vsi_queue_config_info {
324 u16 vsi_id;
325 u16 num_queue_pairs;
326 u32 pad;
327 struct virtchnl_queue_pair_info qpair[1];
328 };
329
330 /* VIRTCHNL_OP_REQUEST_QUEUES
331 * VF sends this message to request the PF to allocate additional queues to
332 * this VF. Each VF gets a guaranteed number of queues on init but asking for
333 * additional queues must be negotiated. This is a best effort request as it
334 * is possible the PF does not have enough queues left to support the request.
335 * If the PF cannot support the number requested it will respond with the
336 * maximum number it is able to support. If the request is successful, PF will
337 * then reset the VF to institute required changes.
338 */
339
340 /* VF resource request */
341 struct virtchnl_vf_res_request {
342 u16 num_queue_pairs;
343 };
344
345 VIRTCHNL_CHECK_STRUCT_LEN(72, virtchnl_vsi_queue_config_info);
346
347 /* VIRTCHNL_OP_CONFIG_IRQ_MAP
348 * VF uses this message to map vectors to queues.
349 * The rxq_map and txq_map fields are bitmaps used to indicate which queues
350 * are to be associated with the specified vector.
351 * The "other" causes are always mapped to vector 0.
352 * PF configures interrupt mapping and returns status.
353 */
354 struct virtchnl_vector_map {
355 u16 vsi_id;
356 u16 vector_id;
357 u16 rxq_map;
358 u16 txq_map;
359 u16 rxitr_idx;
360 u16 txitr_idx;
361 };
362
363 VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_vector_map);
364
365 struct virtchnl_irq_map_info {
366 u16 num_vectors;
367 struct virtchnl_vector_map vecmap[1];
368 };
369
370 VIRTCHNL_CHECK_STRUCT_LEN(14, virtchnl_irq_map_info);
371
372 /* VIRTCHNL_OP_ENABLE_QUEUES
373 * VIRTCHNL_OP_DISABLE_QUEUES
374 * VF sends these message to enable or disable TX/RX queue pairs.
375 * The queues fields are bitmaps indicating which queues to act upon.
376 * (Currently, we only support 16 queues per VF, but we make the field
377 * u32 to allow for expansion.)
378 * PF performs requested action and returns status.
379 */
380 struct virtchnl_queue_select {
381 u16 vsi_id;
382 u16 pad;
383 u32 rx_queues;
384 u32 tx_queues;
385 };
386
387 VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_queue_select);
388
389 /* VIRTCHNL_OP_ADD_ETH_ADDR
390 * VF sends this message in order to add one or more unicast or multicast
391 * address filters for the specified VSI.
392 * PF adds the filters and returns status.
393 */
394
395 /* VIRTCHNL_OP_DEL_ETH_ADDR
396 * VF sends this message in order to remove one or more unicast or multicast
397 * filters for the specified VSI.
398 * PF removes the filters and returns status.
399 */
400
401 struct virtchnl_ether_addr {
402 u8 addr[ETH_ALEN];
403 u8 pad[2];
404 };
405
406 VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_ether_addr);
407
408 struct virtchnl_ether_addr_list {
409 u16 vsi_id;
410 u16 num_elements;
411 struct virtchnl_ether_addr list[1];
412 };
413
414 VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_ether_addr_list);
415
416 /* VIRTCHNL_OP_ADD_VLAN
417 * VF sends this message to add one or more VLAN tag filters for receives.
418 * PF adds the filters and returns status.
419 * If a port VLAN is configured by the PF, this operation will return an
420 * error to the VF.
421 */
422
423 /* VIRTCHNL_OP_DEL_VLAN
424 * VF sends this message to remove one or more VLAN tag filters for receives.
425 * PF removes the filters and returns status.
426 * If a port VLAN is configured by the PF, this operation will return an
427 * error to the VF.
428 */
429
430 struct virtchnl_vlan_filter_list {
431 u16 vsi_id;
432 u16 num_elements;
433 u16 vlan_id[1];
434 };
435
436 VIRTCHNL_CHECK_STRUCT_LEN(6, virtchnl_vlan_filter_list);
437
438 /* VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE
439 * VF sends VSI id and flags.
440 * PF returns status code in retval.
441 * Note: we assume that broadcast accept mode is always enabled.
442 */
443 struct virtchnl_promisc_info {
444 u16 vsi_id;
445 u16 flags;
446 };
447
448 VIRTCHNL_CHECK_STRUCT_LEN(4, virtchnl_promisc_info);
449
450 #define FLAG_VF_UNICAST_PROMISC 0x00000001
451 #define FLAG_VF_MULTICAST_PROMISC 0x00000002
452
453 /* VIRTCHNL_OP_GET_STATS
454 * VF sends this message to request stats for the selected VSI. VF uses
455 * the virtchnl_queue_select struct to specify the VSI. The queue_id
456 * field is ignored by the PF.
457 *
458 * PF replies with struct eth_stats in an external buffer.
459 */
460
461 /* VIRTCHNL_OP_CONFIG_RSS_KEY
462 * VIRTCHNL_OP_CONFIG_RSS_LUT
463 * VF sends these messages to configure RSS. Only supported if both PF
464 * and VF drivers set the VIRTCHNL_VF_OFFLOAD_RSS_PF bit during
465 * configuration negotiation. If this is the case, then the RSS fields in
466 * the VF resource struct are valid.
467 * Both the key and LUT are initialized to 0 by the PF, meaning that
468 * RSS is effectively disabled until set up by the VF.
469 */
470 struct virtchnl_rss_key {
471 u16 vsi_id;
472 u16 key_len;
473 u8 key[1]; /* RSS hash key, packed bytes */
474 };
475
476 VIRTCHNL_CHECK_STRUCT_LEN(6, virtchnl_rss_key);
477
478 struct virtchnl_rss_lut {
479 u16 vsi_id;
480 u16 lut_entries;
481 u8 lut[1]; /* RSS lookup table*/
482 };
483
484 VIRTCHNL_CHECK_STRUCT_LEN(6, virtchnl_rss_lut);
485
486 /* VIRTCHNL_OP_GET_RSS_HENA_CAPS
487 * VIRTCHNL_OP_SET_RSS_HENA
488 * VF sends these messages to get and set the hash filter enable bits for RSS.
489 * By default, the PF sets these to all possible traffic types that the
490 * hardware supports. The VF can query this value if it wants to change the
491 * traffic types that are hashed by the hardware.
492 */
493 struct virtchnl_rss_hena {
494 u64 hena;
495 };
496
497 VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_rss_hena);
498
499 /* VIRTCHNL_OP_EVENT
500 * PF sends this message to inform the VF driver of events that may affect it.
501 * No direct response is expected from the VF, though it may generate other
502 * messages in response to this one.
503 */
504 enum virtchnl_event_codes {
505 VIRTCHNL_EVENT_UNKNOWN = 0,
506 VIRTCHNL_EVENT_LINK_CHANGE,
507 VIRTCHNL_EVENT_RESET_IMPENDING,
508 VIRTCHNL_EVENT_PF_DRIVER_CLOSE,
509 };
510
511 #define PF_EVENT_SEVERITY_INFO 0
512 #define PF_EVENT_SEVERITY_CERTAIN_DOOM 255
513
514 struct virtchnl_pf_event {
515 enum virtchnl_event_codes event;
516 union {
517 struct {
518 enum virtchnl_link_speed link_speed;
519 bool link_status;
520 } link_event;
521 } event_data;
522
523 int severity;
524 };
525
526 VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_pf_event);
527
528 /* VIRTCHNL_OP_CONFIG_IWARP_IRQ_MAP
529 * VF uses this message to request PF to map IWARP vectors to IWARP queues.
530 * The request for this originates from the VF IWARP driver through
531 * a client interface between VF LAN and VF IWARP driver.
532 * A vector could have an AEQ and CEQ attached to it although
533 * there is a single AEQ per VF IWARP instance in which case
534 * most vectors will have an INVALID_IDX for aeq and valid idx for ceq.
535 * There will never be a case where there will be multiple CEQs attached
536 * to a single vector.
537 * PF configures interrupt mapping and returns status.
538 */
539
540 struct virtchnl_iwarp_qv_info {
541 u32 v_idx; /* msix_vector */
542 u16 ceq_idx;
543 u16 aeq_idx;
544 u8 itr_idx;
545 };
546
547 VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_iwarp_qv_info);
548
549 struct virtchnl_iwarp_qvlist_info {
550 u32 num_vectors;
551 struct virtchnl_iwarp_qv_info qv_info[1];
552 };
553
554 VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_iwarp_qvlist_info);
555
556 /* VF reset states - these are written into the RSTAT register:
557 * VFGEN_RSTAT on the VF
558 * When the PF initiates a reset, it writes 0
559 * When the reset is complete, it writes 1
560 * When the PF detects that the VF has recovered, it writes 2
561 * VF checks this register periodically to determine if a reset has occurred,
562 * then polls it to know when the reset is complete.
563 * If either the PF or VF reads the register while the hardware
564 * is in a reset state, it will return DEADBEEF, which, when masked
565 * will result in 3.
566 */
567 enum virtchnl_vfr_states {
568 VIRTCHNL_VFR_INPROGRESS = 0,
569 VIRTCHNL_VFR_COMPLETED,
570 VIRTCHNL_VFR_VFACTIVE,
571 };
572
573 /**
574 * virtchnl_vc_validate_vf_msg
575 * @ver: Virtchnl version info
576 * @v_opcode: Opcode for the message
577 * @msg: pointer to the msg buffer
578 * @msglen: msg length
579 *
580 * validate msg format against struct for each opcode
581 */
582 static inline int
583 virtchnl_vc_validate_vf_msg(struct virtchnl_version_info *ver, u32 v_opcode,
584 u8 *msg, u16 msglen)
585 {
586 bool err_msg_format = false;
587 int valid_len = 0;
588
589 /* Validate message length. */
590 switch (v_opcode) {
591 case VIRTCHNL_OP_VERSION:
592 valid_len = sizeof(struct virtchnl_version_info);
593 break;
594 case VIRTCHNL_OP_RESET_VF:
595 break;
596 case VIRTCHNL_OP_GET_VF_RESOURCES:
597 if (VF_IS_V11(ver))
598 valid_len = sizeof(u32);
599 break;
600 case VIRTCHNL_OP_CONFIG_TX_QUEUE:
601 valid_len = sizeof(struct virtchnl_txq_info);
602 break;
603 case VIRTCHNL_OP_CONFIG_RX_QUEUE:
604 valid_len = sizeof(struct virtchnl_rxq_info);
605 break;
606 case VIRTCHNL_OP_CONFIG_VSI_QUEUES:
607 valid_len = sizeof(struct virtchnl_vsi_queue_config_info);
608 if (msglen >= valid_len) {
609 struct virtchnl_vsi_queue_config_info *vqc =
610 (struct virtchnl_vsi_queue_config_info *)msg;
611 valid_len += (vqc->num_queue_pairs *
612 sizeof(struct
613 virtchnl_queue_pair_info));
614 if (vqc->num_queue_pairs == 0)
615 err_msg_format = true;
616 }
617 break;
618 case VIRTCHNL_OP_CONFIG_IRQ_MAP:
619 valid_len = sizeof(struct virtchnl_irq_map_info);
620 if (msglen >= valid_len) {
621 struct virtchnl_irq_map_info *vimi =
622 (struct virtchnl_irq_map_info *)msg;
623 valid_len += (vimi->num_vectors *
624 sizeof(struct virtchnl_vector_map));
625 if (vimi->num_vectors == 0)
626 err_msg_format = true;
627 }
628 break;
629 case VIRTCHNL_OP_ENABLE_QUEUES:
630 case VIRTCHNL_OP_DISABLE_QUEUES:
631 valid_len = sizeof(struct virtchnl_queue_select);
632 break;
633 case VIRTCHNL_OP_ADD_ETH_ADDR:
634 case VIRTCHNL_OP_DEL_ETH_ADDR:
635 valid_len = sizeof(struct virtchnl_ether_addr_list);
636 if (msglen >= valid_len) {
637 struct virtchnl_ether_addr_list *veal =
638 (struct virtchnl_ether_addr_list *)msg;
639 valid_len += veal->num_elements *
640 sizeof(struct virtchnl_ether_addr);
641 if (veal->num_elements == 0)
642 err_msg_format = true;
643 }
644 break;
645 case VIRTCHNL_OP_ADD_VLAN:
646 case VIRTCHNL_OP_DEL_VLAN:
647 valid_len = sizeof(struct virtchnl_vlan_filter_list);
648 if (msglen >= valid_len) {
649 struct virtchnl_vlan_filter_list *vfl =
650 (struct virtchnl_vlan_filter_list *)msg;
651 valid_len += vfl->num_elements * sizeof(u16);
652 if (vfl->num_elements == 0)
653 err_msg_format = true;
654 }
655 break;
656 case VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE:
657 valid_len = sizeof(struct virtchnl_promisc_info);
658 break;
659 case VIRTCHNL_OP_GET_STATS:
660 valid_len = sizeof(struct virtchnl_queue_select);
661 break;
662 case VIRTCHNL_OP_IWARP:
663 /* These messages are opaque to us and will be validated in
664 * the RDMA client code. We just need to check for nonzero
665 * length. The firmware will enforce max length restrictions.
666 */
667 if (msglen)
668 valid_len = msglen;
669 else
670 err_msg_format = true;
671 break;
672 case VIRTCHNL_OP_RELEASE_IWARP_IRQ_MAP:
673 break;
674 case VIRTCHNL_OP_CONFIG_IWARP_IRQ_MAP:
675 valid_len = sizeof(struct virtchnl_iwarp_qvlist_info);
676 if (msglen >= valid_len) {
677 struct virtchnl_iwarp_qvlist_info *qv =
678 (struct virtchnl_iwarp_qvlist_info *)msg;
679 if (qv->num_vectors == 0) {
680 err_msg_format = true;
681 break;
682 }
683 valid_len += ((qv->num_vectors - 1) *
684 sizeof(struct virtchnl_iwarp_qv_info));
685 }
686 break;
687 case VIRTCHNL_OP_CONFIG_RSS_KEY:
688 valid_len = sizeof(struct virtchnl_rss_key);
689 if (msglen >= valid_len) {
690 struct virtchnl_rss_key *vrk =
691 (struct virtchnl_rss_key *)msg;
692 valid_len += vrk->key_len - 1;
693 }
694 break;
695 case VIRTCHNL_OP_CONFIG_RSS_LUT:
696 valid_len = sizeof(struct virtchnl_rss_lut);
697 if (msglen >= valid_len) {
698 struct virtchnl_rss_lut *vrl =
699 (struct virtchnl_rss_lut *)msg;
700 valid_len += vrl->lut_entries - 1;
701 }
702 break;
703 case VIRTCHNL_OP_GET_RSS_HENA_CAPS:
704 break;
705 case VIRTCHNL_OP_SET_RSS_HENA:
706 valid_len = sizeof(struct virtchnl_rss_hena);
707 break;
708 case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING:
709 case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING:
710 break;
711 case VIRTCHNL_OP_REQUEST_QUEUES:
712 valid_len = sizeof(struct virtchnl_vf_res_request);
713 break;
714 /* These are always errors coming from the VF. */
715 case VIRTCHNL_OP_EVENT:
716 case VIRTCHNL_OP_UNKNOWN:
717 default:
718 return VIRTCHNL_ERR_PARAM;
719 }
720 /* few more checks */
721 if ((valid_len != msglen) || (err_msg_format))
722 return VIRTCHNL_STATUS_ERR_OPCODE_MISMATCH;
723
724 return 0;
725 }
726 #endif /* _VIRTCHNL_H_ */