]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - include/linux/blk-mq.h
spi-imx: Implements handling of the SPI_READY mode flag.
[mirror_ubuntu-bionic-kernel.git] / include / linux / blk-mq.h
1 #ifndef BLK_MQ_H
2 #define BLK_MQ_H
3
4 #include <linux/blkdev.h>
5 #include <linux/sbitmap.h>
6 #include <linux/srcu.h>
7
8 struct blk_mq_tags;
9 struct blk_flush_queue;
10
11 struct blk_mq_hw_ctx {
12 struct {
13 spinlock_t lock;
14 struct list_head dispatch;
15 unsigned long state; /* BLK_MQ_S_* flags */
16 } ____cacheline_aligned_in_smp;
17
18 struct work_struct run_work;
19 cpumask_var_t cpumask;
20 int next_cpu;
21 int next_cpu_batch;
22
23 unsigned long flags; /* BLK_MQ_F_* flags */
24
25 void *sched_data;
26 struct request_queue *queue;
27 struct blk_flush_queue *fq;
28
29 void *driver_data;
30
31 struct sbitmap ctx_map;
32
33 struct blk_mq_ctx **ctxs;
34 unsigned int nr_ctx;
35
36 wait_queue_t dispatch_wait;
37 atomic_t wait_index;
38
39 struct blk_mq_tags *tags;
40 struct blk_mq_tags *sched_tags;
41
42 struct srcu_struct queue_rq_srcu;
43
44 unsigned long queued;
45 unsigned long run;
46 #define BLK_MQ_MAX_DISPATCH_ORDER 7
47 unsigned long dispatched[BLK_MQ_MAX_DISPATCH_ORDER];
48
49 unsigned int numa_node;
50 unsigned int queue_num;
51
52 atomic_t nr_active;
53
54 struct delayed_work delay_work;
55
56 struct hlist_node cpuhp_dead;
57 struct kobject kobj;
58
59 unsigned long poll_considered;
60 unsigned long poll_invoked;
61 unsigned long poll_success;
62 };
63
64 struct blk_mq_tag_set {
65 unsigned int *mq_map;
66 const struct blk_mq_ops *ops;
67 unsigned int nr_hw_queues;
68 unsigned int queue_depth; /* max hw supported */
69 unsigned int reserved_tags;
70 unsigned int cmd_size; /* per-request extra data */
71 int numa_node;
72 unsigned int timeout;
73 unsigned int flags; /* BLK_MQ_F_* */
74 void *driver_data;
75
76 struct blk_mq_tags **tags;
77
78 struct mutex tag_list_lock;
79 struct list_head tag_list;
80 };
81
82 struct blk_mq_queue_data {
83 struct request *rq;
84 struct list_head *list;
85 bool last;
86 };
87
88 typedef int (queue_rq_fn)(struct blk_mq_hw_ctx *, const struct blk_mq_queue_data *);
89 typedef enum blk_eh_timer_return (timeout_fn)(struct request *, bool);
90 typedef int (init_hctx_fn)(struct blk_mq_hw_ctx *, void *, unsigned int);
91 typedef void (exit_hctx_fn)(struct blk_mq_hw_ctx *, unsigned int);
92 typedef int (init_request_fn)(void *, struct request *, unsigned int,
93 unsigned int, unsigned int);
94 typedef void (exit_request_fn)(void *, struct request *, unsigned int,
95 unsigned int);
96 typedef int (reinit_request_fn)(void *, struct request *);
97
98 typedef void (busy_iter_fn)(struct blk_mq_hw_ctx *, struct request *, void *,
99 bool);
100 typedef void (busy_tag_iter_fn)(struct request *, void *, bool);
101 typedef int (poll_fn)(struct blk_mq_hw_ctx *, unsigned int);
102 typedef int (map_queues_fn)(struct blk_mq_tag_set *set);
103
104
105 struct blk_mq_ops {
106 /*
107 * Queue request
108 */
109 queue_rq_fn *queue_rq;
110
111 /*
112 * Called on request timeout
113 */
114 timeout_fn *timeout;
115
116 /*
117 * Called to poll for completion of a specific tag.
118 */
119 poll_fn *poll;
120
121 softirq_done_fn *complete;
122
123 /*
124 * Called when the block layer side of a hardware queue has been
125 * set up, allowing the driver to allocate/init matching structures.
126 * Ditto for exit/teardown.
127 */
128 init_hctx_fn *init_hctx;
129 exit_hctx_fn *exit_hctx;
130
131 /*
132 * Called for every command allocated by the block layer to allow
133 * the driver to set up driver specific data.
134 *
135 * Tag greater than or equal to queue_depth is for setting up
136 * flush request.
137 *
138 * Ditto for exit/teardown.
139 */
140 init_request_fn *init_request;
141 exit_request_fn *exit_request;
142 reinit_request_fn *reinit_request;
143
144 map_queues_fn *map_queues;
145 };
146
147 enum {
148 BLK_MQ_RQ_QUEUE_OK = 0, /* queued fine */
149 BLK_MQ_RQ_QUEUE_BUSY = 1, /* requeue IO for later */
150 BLK_MQ_RQ_QUEUE_ERROR = 2, /* end IO with error */
151
152 BLK_MQ_F_SHOULD_MERGE = 1 << 0,
153 BLK_MQ_F_TAG_SHARED = 1 << 1,
154 BLK_MQ_F_SG_MERGE = 1 << 2,
155 BLK_MQ_F_DEFER_ISSUE = 1 << 4,
156 BLK_MQ_F_BLOCKING = 1 << 5,
157 BLK_MQ_F_NO_SCHED = 1 << 6,
158 BLK_MQ_F_ALLOC_POLICY_START_BIT = 8,
159 BLK_MQ_F_ALLOC_POLICY_BITS = 1,
160
161 BLK_MQ_S_STOPPED = 0,
162 BLK_MQ_S_TAG_ACTIVE = 1,
163 BLK_MQ_S_SCHED_RESTART = 2,
164 BLK_MQ_S_TAG_WAITING = 3,
165
166 BLK_MQ_MAX_DEPTH = 10240,
167
168 BLK_MQ_CPU_WORK_BATCH = 8,
169 };
170 #define BLK_MQ_FLAG_TO_ALLOC_POLICY(flags) \
171 ((flags >> BLK_MQ_F_ALLOC_POLICY_START_BIT) & \
172 ((1 << BLK_MQ_F_ALLOC_POLICY_BITS) - 1))
173 #define BLK_ALLOC_POLICY_TO_MQ_FLAG(policy) \
174 ((policy & ((1 << BLK_MQ_F_ALLOC_POLICY_BITS) - 1)) \
175 << BLK_MQ_F_ALLOC_POLICY_START_BIT)
176
177 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *);
178 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
179 struct request_queue *q);
180 int blk_mq_register_dev(struct device *, struct request_queue *);
181 void blk_mq_unregister_dev(struct device *, struct request_queue *);
182
183 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set);
184 void blk_mq_free_tag_set(struct blk_mq_tag_set *set);
185
186 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule);
187
188 void blk_mq_free_request(struct request *rq);
189 bool blk_mq_can_queue(struct blk_mq_hw_ctx *);
190
191 enum {
192 BLK_MQ_REQ_NOWAIT = (1 << 0), /* return when out of requests */
193 BLK_MQ_REQ_RESERVED = (1 << 1), /* allocate from reserved pool */
194 BLK_MQ_REQ_INTERNAL = (1 << 2), /* allocate internal/sched tag */
195 };
196
197 struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
198 unsigned int flags);
199 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int op,
200 unsigned int flags, unsigned int hctx_idx);
201 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag);
202
203 enum {
204 BLK_MQ_UNIQUE_TAG_BITS = 16,
205 BLK_MQ_UNIQUE_TAG_MASK = (1 << BLK_MQ_UNIQUE_TAG_BITS) - 1,
206 };
207
208 u32 blk_mq_unique_tag(struct request *rq);
209
210 static inline u16 blk_mq_unique_tag_to_hwq(u32 unique_tag)
211 {
212 return unique_tag >> BLK_MQ_UNIQUE_TAG_BITS;
213 }
214
215 static inline u16 blk_mq_unique_tag_to_tag(u32 unique_tag)
216 {
217 return unique_tag & BLK_MQ_UNIQUE_TAG_MASK;
218 }
219
220
221 int blk_mq_request_started(struct request *rq);
222 void blk_mq_start_request(struct request *rq);
223 void blk_mq_end_request(struct request *rq, int error);
224 void __blk_mq_end_request(struct request *rq, int error);
225
226 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list);
227 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
228 bool kick_requeue_list);
229 void blk_mq_kick_requeue_list(struct request_queue *q);
230 void blk_mq_delay_kick_requeue_list(struct request_queue *q, unsigned long msecs);
231 void blk_mq_abort_requeue_list(struct request_queue *q);
232 void blk_mq_complete_request(struct request *rq, int error);
233
234 bool blk_mq_queue_stopped(struct request_queue *q);
235 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx);
236 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx);
237 void blk_mq_stop_hw_queues(struct request_queue *q);
238 void blk_mq_start_hw_queues(struct request_queue *q);
239 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async);
240 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async);
241 void blk_mq_run_hw_queues(struct request_queue *q, bool async);
242 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs);
243 void blk_mq_tagset_busy_iter(struct blk_mq_tag_set *tagset,
244 busy_tag_iter_fn *fn, void *priv);
245 void blk_mq_freeze_queue(struct request_queue *q);
246 void blk_mq_unfreeze_queue(struct request_queue *q);
247 void blk_mq_freeze_queue_start(struct request_queue *q);
248 void blk_mq_freeze_queue_wait(struct request_queue *q);
249 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
250 unsigned long timeout);
251 int blk_mq_reinit_tagset(struct blk_mq_tag_set *set);
252
253 int blk_mq_map_queues(struct blk_mq_tag_set *set);
254 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues);
255
256 /*
257 * Driver command data is immediately after the request. So subtract request
258 * size to get back to the original request, add request size to get the PDU.
259 */
260 static inline struct request *blk_mq_rq_from_pdu(void *pdu)
261 {
262 return pdu - sizeof(struct request);
263 }
264 static inline void *blk_mq_rq_to_pdu(struct request *rq)
265 {
266 return rq + 1;
267 }
268
269 #define queue_for_each_hw_ctx(q, hctx, i) \
270 for ((i) = 0; (i) < (q)->nr_hw_queues && \
271 ({ hctx = (q)->queue_hw_ctx[i]; 1; }); (i)++)
272
273 #define hctx_for_each_ctx(hctx, ctx, i) \
274 for ((i) = 0; (i) < (hctx)->nr_ctx && \
275 ({ ctx = (hctx)->ctxs[(i)]; 1; }); (i)++)
276
277 #endif