]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - include/linux/blkdev.h
block: Introduce queue flag QUEUE_FLAG_SCSI_PASSTHROUGH
[mirror_ubuntu-bionic-kernel.git] / include / linux / blkdev.h
1 #ifndef _LINUX_BLKDEV_H
2 #define _LINUX_BLKDEV_H
3
4 #include <linux/sched.h>
5 #include <linux/sched/clock.h>
6
7 #ifdef CONFIG_BLOCK
8
9 #include <linux/major.h>
10 #include <linux/genhd.h>
11 #include <linux/list.h>
12 #include <linux/llist.h>
13 #include <linux/timer.h>
14 #include <linux/workqueue.h>
15 #include <linux/pagemap.h>
16 #include <linux/backing-dev-defs.h>
17 #include <linux/wait.h>
18 #include <linux/mempool.h>
19 #include <linux/pfn.h>
20 #include <linux/bio.h>
21 #include <linux/stringify.h>
22 #include <linux/gfp.h>
23 #include <linux/bsg.h>
24 #include <linux/smp.h>
25 #include <linux/rcupdate.h>
26 #include <linux/percpu-refcount.h>
27 #include <linux/scatterlist.h>
28 #include <linux/blkzoned.h>
29
30 struct module;
31 struct scsi_ioctl_command;
32
33 struct request_queue;
34 struct elevator_queue;
35 struct blk_trace;
36 struct request;
37 struct sg_io_hdr;
38 struct bsg_job;
39 struct blkcg_gq;
40 struct blk_flush_queue;
41 struct pr_ops;
42 struct rq_wb;
43 struct blk_queue_stats;
44 struct blk_stat_callback;
45
46 #define BLKDEV_MIN_RQ 4
47 #define BLKDEV_MAX_RQ 128 /* Default maximum */
48
49 /* Must be consisitent with blk_mq_poll_stats_bkt() */
50 #define BLK_MQ_POLL_STATS_BKTS 16
51
52 /*
53 * Maximum number of blkcg policies allowed to be registered concurrently.
54 * Defined here to simplify include dependency.
55 */
56 #define BLKCG_MAX_POLS 3
57
58 typedef void (rq_end_io_fn)(struct request *, int);
59
60 #define BLK_RL_SYNCFULL (1U << 0)
61 #define BLK_RL_ASYNCFULL (1U << 1)
62
63 struct request_list {
64 struct request_queue *q; /* the queue this rl belongs to */
65 #ifdef CONFIG_BLK_CGROUP
66 struct blkcg_gq *blkg; /* blkg this request pool belongs to */
67 #endif
68 /*
69 * count[], starved[], and wait[] are indexed by
70 * BLK_RW_SYNC/BLK_RW_ASYNC
71 */
72 int count[2];
73 int starved[2];
74 mempool_t *rq_pool;
75 wait_queue_head_t wait[2];
76 unsigned int flags;
77 };
78
79 /*
80 * request flags */
81 typedef __u32 __bitwise req_flags_t;
82
83 /* elevator knows about this request */
84 #define RQF_SORTED ((__force req_flags_t)(1 << 0))
85 /* drive already may have started this one */
86 #define RQF_STARTED ((__force req_flags_t)(1 << 1))
87 /* uses tagged queueing */
88 #define RQF_QUEUED ((__force req_flags_t)(1 << 2))
89 /* may not be passed by ioscheduler */
90 #define RQF_SOFTBARRIER ((__force req_flags_t)(1 << 3))
91 /* request for flush sequence */
92 #define RQF_FLUSH_SEQ ((__force req_flags_t)(1 << 4))
93 /* merge of different types, fail separately */
94 #define RQF_MIXED_MERGE ((__force req_flags_t)(1 << 5))
95 /* track inflight for MQ */
96 #define RQF_MQ_INFLIGHT ((__force req_flags_t)(1 << 6))
97 /* don't call prep for this one */
98 #define RQF_DONTPREP ((__force req_flags_t)(1 << 7))
99 /* set for "ide_preempt" requests and also for requests for which the SCSI
100 "quiesce" state must be ignored. */
101 #define RQF_PREEMPT ((__force req_flags_t)(1 << 8))
102 /* contains copies of user pages */
103 #define RQF_COPY_USER ((__force req_flags_t)(1 << 9))
104 /* vaguely specified driver internal error. Ignored by the block layer */
105 #define RQF_FAILED ((__force req_flags_t)(1 << 10))
106 /* don't warn about errors */
107 #define RQF_QUIET ((__force req_flags_t)(1 << 11))
108 /* elevator private data attached */
109 #define RQF_ELVPRIV ((__force req_flags_t)(1 << 12))
110 /* account I/O stat */
111 #define RQF_IO_STAT ((__force req_flags_t)(1 << 13))
112 /* request came from our alloc pool */
113 #define RQF_ALLOCED ((__force req_flags_t)(1 << 14))
114 /* runtime pm request */
115 #define RQF_PM ((__force req_flags_t)(1 << 15))
116 /* on IO scheduler merge hash */
117 #define RQF_HASHED ((__force req_flags_t)(1 << 16))
118 /* IO stats tracking on */
119 #define RQF_STATS ((__force req_flags_t)(1 << 17))
120 /* Look at ->special_vec for the actual data payload instead of the
121 bio chain. */
122 #define RQF_SPECIAL_PAYLOAD ((__force req_flags_t)(1 << 18))
123
124 /* flags that prevent us from merging requests: */
125 #define RQF_NOMERGE_FLAGS \
126 (RQF_STARTED | RQF_SOFTBARRIER | RQF_FLUSH_SEQ | RQF_SPECIAL_PAYLOAD)
127
128 /*
129 * Try to put the fields that are referenced together in the same cacheline.
130 *
131 * If you modify this structure, make sure to update blk_rq_init() and
132 * especially blk_mq_rq_ctx_init() to take care of the added fields.
133 */
134 struct request {
135 struct list_head queuelist;
136 union {
137 struct call_single_data csd;
138 u64 fifo_time;
139 };
140
141 struct request_queue *q;
142 struct blk_mq_ctx *mq_ctx;
143
144 int cpu;
145 unsigned int cmd_flags; /* op and common flags */
146 req_flags_t rq_flags;
147
148 int internal_tag;
149
150 unsigned long atomic_flags;
151
152 /* the following two fields are internal, NEVER access directly */
153 unsigned int __data_len; /* total data len */
154 int tag;
155 sector_t __sector; /* sector cursor */
156
157 struct bio *bio;
158 struct bio *biotail;
159
160 /*
161 * The hash is used inside the scheduler, and killed once the
162 * request reaches the dispatch list. The ipi_list is only used
163 * to queue the request for softirq completion, which is long
164 * after the request has been unhashed (and even removed from
165 * the dispatch list).
166 */
167 union {
168 struct hlist_node hash; /* merge hash */
169 struct list_head ipi_list;
170 };
171
172 /*
173 * The rb_node is only used inside the io scheduler, requests
174 * are pruned when moved to the dispatch queue. So let the
175 * completion_data share space with the rb_node.
176 */
177 union {
178 struct rb_node rb_node; /* sort/lookup */
179 struct bio_vec special_vec;
180 void *completion_data;
181 int error_count; /* for legacy drivers, don't use */
182 };
183
184 /*
185 * Three pointers are available for the IO schedulers, if they need
186 * more they have to dynamically allocate it. Flush requests are
187 * never put on the IO scheduler. So let the flush fields share
188 * space with the elevator data.
189 */
190 union {
191 struct {
192 struct io_cq *icq;
193 void *priv[2];
194 } elv;
195
196 struct {
197 unsigned int seq;
198 struct list_head list;
199 rq_end_io_fn *saved_end_io;
200 } flush;
201 };
202
203 struct gendisk *rq_disk;
204 struct hd_struct *part;
205 unsigned long start_time;
206 struct blk_issue_stat issue_stat;
207 #ifdef CONFIG_BLK_CGROUP
208 struct request_list *rl; /* rl this rq is alloced from */
209 unsigned long long start_time_ns;
210 unsigned long long io_start_time_ns; /* when passed to hardware */
211 #endif
212 /* Number of scatter-gather DMA addr+len pairs after
213 * physical address coalescing is performed.
214 */
215 unsigned short nr_phys_segments;
216 #if defined(CONFIG_BLK_DEV_INTEGRITY)
217 unsigned short nr_integrity_segments;
218 #endif
219
220 unsigned short ioprio;
221
222 unsigned int timeout;
223
224 void *special; /* opaque pointer available for LLD use */
225
226 unsigned int extra_len; /* length of alignment and padding */
227
228 unsigned long deadline;
229 struct list_head timeout_list;
230
231 /*
232 * completion callback.
233 */
234 rq_end_io_fn *end_io;
235 void *end_io_data;
236
237 /* for bidi */
238 struct request *next_rq;
239 };
240
241 static inline bool blk_rq_is_scsi(struct request *rq)
242 {
243 return req_op(rq) == REQ_OP_SCSI_IN || req_op(rq) == REQ_OP_SCSI_OUT;
244 }
245
246 static inline bool blk_rq_is_private(struct request *rq)
247 {
248 return req_op(rq) == REQ_OP_DRV_IN || req_op(rq) == REQ_OP_DRV_OUT;
249 }
250
251 static inline bool blk_rq_is_passthrough(struct request *rq)
252 {
253 return blk_rq_is_scsi(rq) || blk_rq_is_private(rq);
254 }
255
256 static inline unsigned short req_get_ioprio(struct request *req)
257 {
258 return req->ioprio;
259 }
260
261 #include <linux/elevator.h>
262
263 struct blk_queue_ctx;
264
265 typedef void (request_fn_proc) (struct request_queue *q);
266 typedef blk_qc_t (make_request_fn) (struct request_queue *q, struct bio *bio);
267 typedef int (prep_rq_fn) (struct request_queue *, struct request *);
268 typedef void (unprep_rq_fn) (struct request_queue *, struct request *);
269
270 struct bio_vec;
271 typedef void (softirq_done_fn)(struct request *);
272 typedef int (dma_drain_needed_fn)(struct request *);
273 typedef int (lld_busy_fn) (struct request_queue *q);
274 typedef int (bsg_job_fn) (struct bsg_job *);
275 typedef int (init_rq_fn)(struct request_queue *, struct request *, gfp_t);
276 typedef void (exit_rq_fn)(struct request_queue *, struct request *);
277
278 enum blk_eh_timer_return {
279 BLK_EH_NOT_HANDLED,
280 BLK_EH_HANDLED,
281 BLK_EH_RESET_TIMER,
282 };
283
284 typedef enum blk_eh_timer_return (rq_timed_out_fn)(struct request *);
285
286 enum blk_queue_state {
287 Queue_down,
288 Queue_up,
289 };
290
291 struct blk_queue_tag {
292 struct request **tag_index; /* map of busy tags */
293 unsigned long *tag_map; /* bit map of free/busy tags */
294 int max_depth; /* what we will send to device */
295 int real_max_depth; /* what the array can hold */
296 atomic_t refcnt; /* map can be shared */
297 int alloc_policy; /* tag allocation policy */
298 int next_tag; /* next tag */
299 };
300 #define BLK_TAG_ALLOC_FIFO 0 /* allocate starting from 0 */
301 #define BLK_TAG_ALLOC_RR 1 /* allocate starting from last allocated tag */
302
303 #define BLK_SCSI_MAX_CMDS (256)
304 #define BLK_SCSI_CMD_PER_LONG (BLK_SCSI_MAX_CMDS / (sizeof(long) * 8))
305
306 /*
307 * Zoned block device models (zoned limit).
308 */
309 enum blk_zoned_model {
310 BLK_ZONED_NONE, /* Regular block device */
311 BLK_ZONED_HA, /* Host-aware zoned block device */
312 BLK_ZONED_HM, /* Host-managed zoned block device */
313 };
314
315 struct queue_limits {
316 unsigned long bounce_pfn;
317 unsigned long seg_boundary_mask;
318 unsigned long virt_boundary_mask;
319
320 unsigned int max_hw_sectors;
321 unsigned int max_dev_sectors;
322 unsigned int chunk_sectors;
323 unsigned int max_sectors;
324 unsigned int max_segment_size;
325 unsigned int physical_block_size;
326 unsigned int alignment_offset;
327 unsigned int io_min;
328 unsigned int io_opt;
329 unsigned int max_discard_sectors;
330 unsigned int max_hw_discard_sectors;
331 unsigned int max_write_same_sectors;
332 unsigned int max_write_zeroes_sectors;
333 unsigned int discard_granularity;
334 unsigned int discard_alignment;
335
336 unsigned short logical_block_size;
337 unsigned short max_segments;
338 unsigned short max_integrity_segments;
339 unsigned short max_discard_segments;
340
341 unsigned char misaligned;
342 unsigned char discard_misaligned;
343 unsigned char cluster;
344 unsigned char raid_partial_stripes_expensive;
345 enum blk_zoned_model zoned;
346 };
347
348 #ifdef CONFIG_BLK_DEV_ZONED
349
350 struct blk_zone_report_hdr {
351 unsigned int nr_zones;
352 u8 padding[60];
353 };
354
355 extern int blkdev_report_zones(struct block_device *bdev,
356 sector_t sector, struct blk_zone *zones,
357 unsigned int *nr_zones, gfp_t gfp_mask);
358 extern int blkdev_reset_zones(struct block_device *bdev, sector_t sectors,
359 sector_t nr_sectors, gfp_t gfp_mask);
360
361 extern int blkdev_report_zones_ioctl(struct block_device *bdev, fmode_t mode,
362 unsigned int cmd, unsigned long arg);
363 extern int blkdev_reset_zones_ioctl(struct block_device *bdev, fmode_t mode,
364 unsigned int cmd, unsigned long arg);
365
366 #else /* CONFIG_BLK_DEV_ZONED */
367
368 static inline int blkdev_report_zones_ioctl(struct block_device *bdev,
369 fmode_t mode, unsigned int cmd,
370 unsigned long arg)
371 {
372 return -ENOTTY;
373 }
374
375 static inline int blkdev_reset_zones_ioctl(struct block_device *bdev,
376 fmode_t mode, unsigned int cmd,
377 unsigned long arg)
378 {
379 return -ENOTTY;
380 }
381
382 #endif /* CONFIG_BLK_DEV_ZONED */
383
384 struct request_queue {
385 /*
386 * Together with queue_head for cacheline sharing
387 */
388 struct list_head queue_head;
389 struct request *last_merge;
390 struct elevator_queue *elevator;
391 int nr_rqs[2]; /* # allocated [a]sync rqs */
392 int nr_rqs_elvpriv; /* # allocated rqs w/ elvpriv */
393
394 struct blk_queue_stats *stats;
395 struct rq_wb *rq_wb;
396
397 /*
398 * If blkcg is not used, @q->root_rl serves all requests. If blkcg
399 * is used, root blkg allocates from @q->root_rl and all other
400 * blkgs from their own blkg->rl. Which one to use should be
401 * determined using bio_request_list().
402 */
403 struct request_list root_rl;
404
405 request_fn_proc *request_fn;
406 make_request_fn *make_request_fn;
407 prep_rq_fn *prep_rq_fn;
408 unprep_rq_fn *unprep_rq_fn;
409 softirq_done_fn *softirq_done_fn;
410 rq_timed_out_fn *rq_timed_out_fn;
411 dma_drain_needed_fn *dma_drain_needed;
412 lld_busy_fn *lld_busy_fn;
413 init_rq_fn *init_rq_fn;
414 exit_rq_fn *exit_rq_fn;
415
416 const struct blk_mq_ops *mq_ops;
417
418 unsigned int *mq_map;
419
420 /* sw queues */
421 struct blk_mq_ctx __percpu *queue_ctx;
422 unsigned int nr_queues;
423
424 unsigned int queue_depth;
425
426 /* hw dispatch queues */
427 struct blk_mq_hw_ctx **queue_hw_ctx;
428 unsigned int nr_hw_queues;
429
430 /*
431 * Dispatch queue sorting
432 */
433 sector_t end_sector;
434 struct request *boundary_rq;
435
436 /*
437 * Delayed queue handling
438 */
439 struct delayed_work delay_work;
440
441 struct backing_dev_info *backing_dev_info;
442
443 /*
444 * The queue owner gets to use this for whatever they like.
445 * ll_rw_blk doesn't touch it.
446 */
447 void *queuedata;
448
449 /*
450 * various queue flags, see QUEUE_* below
451 */
452 unsigned long queue_flags;
453
454 /*
455 * ida allocated id for this queue. Used to index queues from
456 * ioctx.
457 */
458 int id;
459
460 /*
461 * queue needs bounce pages for pages above this limit
462 */
463 gfp_t bounce_gfp;
464
465 /*
466 * protects queue structures from reentrancy. ->__queue_lock should
467 * _never_ be used directly, it is queue private. always use
468 * ->queue_lock.
469 */
470 spinlock_t __queue_lock;
471 spinlock_t *queue_lock;
472
473 /*
474 * queue kobject
475 */
476 struct kobject kobj;
477
478 /*
479 * mq queue kobject
480 */
481 struct kobject mq_kobj;
482
483 #ifdef CONFIG_BLK_DEV_INTEGRITY
484 struct blk_integrity integrity;
485 #endif /* CONFIG_BLK_DEV_INTEGRITY */
486
487 #ifdef CONFIG_PM
488 struct device *dev;
489 int rpm_status;
490 unsigned int nr_pending;
491 #endif
492
493 /*
494 * queue settings
495 */
496 unsigned long nr_requests; /* Max # of requests */
497 unsigned int nr_congestion_on;
498 unsigned int nr_congestion_off;
499 unsigned int nr_batching;
500
501 unsigned int dma_drain_size;
502 void *dma_drain_buffer;
503 unsigned int dma_pad_mask;
504 unsigned int dma_alignment;
505
506 struct blk_queue_tag *queue_tags;
507 struct list_head tag_busy_list;
508
509 unsigned int nr_sorted;
510 unsigned int in_flight[2];
511
512 /*
513 * Number of active block driver functions for which blk_drain_queue()
514 * must wait. Must be incremented around functions that unlock the
515 * queue_lock internally, e.g. scsi_request_fn().
516 */
517 unsigned int request_fn_active;
518
519 unsigned int rq_timeout;
520 int poll_nsec;
521
522 struct blk_stat_callback *poll_cb;
523 struct blk_rq_stat poll_stat[BLK_MQ_POLL_STATS_BKTS];
524
525 struct timer_list timeout;
526 struct work_struct timeout_work;
527 struct list_head timeout_list;
528
529 struct list_head icq_list;
530 #ifdef CONFIG_BLK_CGROUP
531 DECLARE_BITMAP (blkcg_pols, BLKCG_MAX_POLS);
532 struct blkcg_gq *root_blkg;
533 struct list_head blkg_list;
534 #endif
535
536 struct queue_limits limits;
537
538 /*
539 * sg stuff
540 */
541 unsigned int sg_timeout;
542 unsigned int sg_reserved_size;
543 int node;
544 #ifdef CONFIG_BLK_DEV_IO_TRACE
545 struct blk_trace *blk_trace;
546 #endif
547 /*
548 * for flush operations
549 */
550 struct blk_flush_queue *fq;
551
552 struct list_head requeue_list;
553 spinlock_t requeue_lock;
554 struct delayed_work requeue_work;
555
556 struct mutex sysfs_lock;
557
558 int bypass_depth;
559 atomic_t mq_freeze_depth;
560
561 #if defined(CONFIG_BLK_DEV_BSG)
562 bsg_job_fn *bsg_job_fn;
563 int bsg_job_size;
564 struct bsg_class_device bsg_dev;
565 #endif
566
567 #ifdef CONFIG_BLK_DEV_THROTTLING
568 /* Throttle data */
569 struct throtl_data *td;
570 #endif
571 struct rcu_head rcu_head;
572 wait_queue_head_t mq_freeze_wq;
573 struct percpu_ref q_usage_counter;
574 struct list_head all_q_node;
575
576 struct blk_mq_tag_set *tag_set;
577 struct list_head tag_set_list;
578 struct bio_set *bio_split;
579
580 #ifdef CONFIG_BLK_DEBUG_FS
581 struct dentry *debugfs_dir;
582 struct dentry *sched_debugfs_dir;
583 #endif
584
585 bool mq_sysfs_init_done;
586
587 size_t cmd_size;
588 void *rq_alloc_data;
589 };
590
591 #define QUEUE_FLAG_QUEUED 1 /* uses generic tag queueing */
592 #define QUEUE_FLAG_STOPPED 2 /* queue is stopped */
593 #define QUEUE_FLAG_SYNCFULL 3 /* read queue has been filled */
594 #define QUEUE_FLAG_ASYNCFULL 4 /* write queue has been filled */
595 #define QUEUE_FLAG_DYING 5 /* queue being torn down */
596 #define QUEUE_FLAG_BYPASS 6 /* act as dumb FIFO queue */
597 #define QUEUE_FLAG_BIDI 7 /* queue supports bidi requests */
598 #define QUEUE_FLAG_NOMERGES 8 /* disable merge attempts */
599 #define QUEUE_FLAG_SAME_COMP 9 /* complete on same CPU-group */
600 #define QUEUE_FLAG_FAIL_IO 10 /* fake timeout */
601 #define QUEUE_FLAG_STACKABLE 11 /* supports request stacking */
602 #define QUEUE_FLAG_NONROT 12 /* non-rotational device (SSD) */
603 #define QUEUE_FLAG_VIRT QUEUE_FLAG_NONROT /* paravirt device */
604 #define QUEUE_FLAG_IO_STAT 13 /* do IO stats */
605 #define QUEUE_FLAG_DISCARD 14 /* supports DISCARD */
606 #define QUEUE_FLAG_NOXMERGES 15 /* No extended merges */
607 #define QUEUE_FLAG_ADD_RANDOM 16 /* Contributes to random pool */
608 #define QUEUE_FLAG_SECERASE 17 /* supports secure erase */
609 #define QUEUE_FLAG_SAME_FORCE 18 /* force complete on same CPU */
610 #define QUEUE_FLAG_DEAD 19 /* queue tear-down finished */
611 #define QUEUE_FLAG_INIT_DONE 20 /* queue is initialized */
612 #define QUEUE_FLAG_NO_SG_MERGE 21 /* don't attempt to merge SG segments*/
613 #define QUEUE_FLAG_POLL 22 /* IO polling enabled if set */
614 #define QUEUE_FLAG_WC 23 /* Write back caching */
615 #define QUEUE_FLAG_FUA 24 /* device supports FUA writes */
616 #define QUEUE_FLAG_FLUSH_NQ 25 /* flush not queueuable */
617 #define QUEUE_FLAG_DAX 26 /* device supports DAX */
618 #define QUEUE_FLAG_STATS 27 /* track rq completion times */
619 #define QUEUE_FLAG_POLL_STATS 28 /* collecting stats for hybrid polling */
620 #define QUEUE_FLAG_REGISTERED 29 /* queue has been registered to a disk */
621 #define QUEUE_FLAG_SCSI_PASSTHROUGH 30 /* queue supports SCSI commands */
622
623 #define QUEUE_FLAG_DEFAULT ((1 << QUEUE_FLAG_IO_STAT) | \
624 (1 << QUEUE_FLAG_STACKABLE) | \
625 (1 << QUEUE_FLAG_SAME_COMP) | \
626 (1 << QUEUE_FLAG_ADD_RANDOM))
627
628 #define QUEUE_FLAG_MQ_DEFAULT ((1 << QUEUE_FLAG_IO_STAT) | \
629 (1 << QUEUE_FLAG_STACKABLE) | \
630 (1 << QUEUE_FLAG_SAME_COMP) | \
631 (1 << QUEUE_FLAG_POLL))
632
633 static inline void queue_lockdep_assert_held(struct request_queue *q)
634 {
635 if (q->queue_lock)
636 lockdep_assert_held(q->queue_lock);
637 }
638
639 static inline void queue_flag_set_unlocked(unsigned int flag,
640 struct request_queue *q)
641 {
642 __set_bit(flag, &q->queue_flags);
643 }
644
645 static inline int queue_flag_test_and_clear(unsigned int flag,
646 struct request_queue *q)
647 {
648 queue_lockdep_assert_held(q);
649
650 if (test_bit(flag, &q->queue_flags)) {
651 __clear_bit(flag, &q->queue_flags);
652 return 1;
653 }
654
655 return 0;
656 }
657
658 static inline int queue_flag_test_and_set(unsigned int flag,
659 struct request_queue *q)
660 {
661 queue_lockdep_assert_held(q);
662
663 if (!test_bit(flag, &q->queue_flags)) {
664 __set_bit(flag, &q->queue_flags);
665 return 0;
666 }
667
668 return 1;
669 }
670
671 static inline void queue_flag_set(unsigned int flag, struct request_queue *q)
672 {
673 queue_lockdep_assert_held(q);
674 __set_bit(flag, &q->queue_flags);
675 }
676
677 static inline void queue_flag_clear_unlocked(unsigned int flag,
678 struct request_queue *q)
679 {
680 __clear_bit(flag, &q->queue_flags);
681 }
682
683 static inline int queue_in_flight(struct request_queue *q)
684 {
685 return q->in_flight[0] + q->in_flight[1];
686 }
687
688 static inline void queue_flag_clear(unsigned int flag, struct request_queue *q)
689 {
690 queue_lockdep_assert_held(q);
691 __clear_bit(flag, &q->queue_flags);
692 }
693
694 #define blk_queue_tagged(q) test_bit(QUEUE_FLAG_QUEUED, &(q)->queue_flags)
695 #define blk_queue_stopped(q) test_bit(QUEUE_FLAG_STOPPED, &(q)->queue_flags)
696 #define blk_queue_dying(q) test_bit(QUEUE_FLAG_DYING, &(q)->queue_flags)
697 #define blk_queue_dead(q) test_bit(QUEUE_FLAG_DEAD, &(q)->queue_flags)
698 #define blk_queue_bypass(q) test_bit(QUEUE_FLAG_BYPASS, &(q)->queue_flags)
699 #define blk_queue_init_done(q) test_bit(QUEUE_FLAG_INIT_DONE, &(q)->queue_flags)
700 #define blk_queue_nomerges(q) test_bit(QUEUE_FLAG_NOMERGES, &(q)->queue_flags)
701 #define blk_queue_noxmerges(q) \
702 test_bit(QUEUE_FLAG_NOXMERGES, &(q)->queue_flags)
703 #define blk_queue_nonrot(q) test_bit(QUEUE_FLAG_NONROT, &(q)->queue_flags)
704 #define blk_queue_io_stat(q) test_bit(QUEUE_FLAG_IO_STAT, &(q)->queue_flags)
705 #define blk_queue_add_random(q) test_bit(QUEUE_FLAG_ADD_RANDOM, &(q)->queue_flags)
706 #define blk_queue_stackable(q) \
707 test_bit(QUEUE_FLAG_STACKABLE, &(q)->queue_flags)
708 #define blk_queue_discard(q) test_bit(QUEUE_FLAG_DISCARD, &(q)->queue_flags)
709 #define blk_queue_secure_erase(q) \
710 (test_bit(QUEUE_FLAG_SECERASE, &(q)->queue_flags))
711 #define blk_queue_dax(q) test_bit(QUEUE_FLAG_DAX, &(q)->queue_flags)
712 #define blk_queue_scsi_passthrough(q) \
713 test_bit(QUEUE_FLAG_SCSI_PASSTHROUGH, &(q)->queue_flags)
714
715 #define blk_noretry_request(rq) \
716 ((rq)->cmd_flags & (REQ_FAILFAST_DEV|REQ_FAILFAST_TRANSPORT| \
717 REQ_FAILFAST_DRIVER))
718
719 static inline bool blk_account_rq(struct request *rq)
720 {
721 return (rq->rq_flags & RQF_STARTED) && !blk_rq_is_passthrough(rq);
722 }
723
724 #define blk_rq_cpu_valid(rq) ((rq)->cpu != -1)
725 #define blk_bidi_rq(rq) ((rq)->next_rq != NULL)
726 /* rq->queuelist of dequeued request must be list_empty() */
727 #define blk_queued_rq(rq) (!list_empty(&(rq)->queuelist))
728
729 #define list_entry_rq(ptr) list_entry((ptr), struct request, queuelist)
730
731 #define rq_data_dir(rq) (op_is_write(req_op(rq)) ? WRITE : READ)
732
733 /*
734 * Driver can handle struct request, if it either has an old style
735 * request_fn defined, or is blk-mq based.
736 */
737 static inline bool queue_is_rq_based(struct request_queue *q)
738 {
739 return q->request_fn || q->mq_ops;
740 }
741
742 static inline unsigned int blk_queue_cluster(struct request_queue *q)
743 {
744 return q->limits.cluster;
745 }
746
747 static inline enum blk_zoned_model
748 blk_queue_zoned_model(struct request_queue *q)
749 {
750 return q->limits.zoned;
751 }
752
753 static inline bool blk_queue_is_zoned(struct request_queue *q)
754 {
755 switch (blk_queue_zoned_model(q)) {
756 case BLK_ZONED_HA:
757 case BLK_ZONED_HM:
758 return true;
759 default:
760 return false;
761 }
762 }
763
764 static inline unsigned int blk_queue_zone_sectors(struct request_queue *q)
765 {
766 return blk_queue_is_zoned(q) ? q->limits.chunk_sectors : 0;
767 }
768
769 static inline bool rq_is_sync(struct request *rq)
770 {
771 return op_is_sync(rq->cmd_flags);
772 }
773
774 static inline bool blk_rl_full(struct request_list *rl, bool sync)
775 {
776 unsigned int flag = sync ? BLK_RL_SYNCFULL : BLK_RL_ASYNCFULL;
777
778 return rl->flags & flag;
779 }
780
781 static inline void blk_set_rl_full(struct request_list *rl, bool sync)
782 {
783 unsigned int flag = sync ? BLK_RL_SYNCFULL : BLK_RL_ASYNCFULL;
784
785 rl->flags |= flag;
786 }
787
788 static inline void blk_clear_rl_full(struct request_list *rl, bool sync)
789 {
790 unsigned int flag = sync ? BLK_RL_SYNCFULL : BLK_RL_ASYNCFULL;
791
792 rl->flags &= ~flag;
793 }
794
795 static inline bool rq_mergeable(struct request *rq)
796 {
797 if (blk_rq_is_passthrough(rq))
798 return false;
799
800 if (req_op(rq) == REQ_OP_FLUSH)
801 return false;
802
803 if (req_op(rq) == REQ_OP_WRITE_ZEROES)
804 return false;
805
806 if (rq->cmd_flags & REQ_NOMERGE_FLAGS)
807 return false;
808 if (rq->rq_flags & RQF_NOMERGE_FLAGS)
809 return false;
810
811 return true;
812 }
813
814 static inline bool blk_write_same_mergeable(struct bio *a, struct bio *b)
815 {
816 if (bio_data(a) == bio_data(b))
817 return true;
818
819 return false;
820 }
821
822 static inline unsigned int blk_queue_depth(struct request_queue *q)
823 {
824 if (q->queue_depth)
825 return q->queue_depth;
826
827 return q->nr_requests;
828 }
829
830 /*
831 * q->prep_rq_fn return values
832 */
833 enum {
834 BLKPREP_OK, /* serve it */
835 BLKPREP_KILL, /* fatal error, kill, return -EIO */
836 BLKPREP_DEFER, /* leave on queue */
837 BLKPREP_INVALID, /* invalid command, kill, return -EREMOTEIO */
838 };
839
840 extern unsigned long blk_max_low_pfn, blk_max_pfn;
841
842 /*
843 * standard bounce addresses:
844 *
845 * BLK_BOUNCE_HIGH : bounce all highmem pages
846 * BLK_BOUNCE_ANY : don't bounce anything
847 * BLK_BOUNCE_ISA : bounce pages above ISA DMA boundary
848 */
849
850 #if BITS_PER_LONG == 32
851 #define BLK_BOUNCE_HIGH ((u64)blk_max_low_pfn << PAGE_SHIFT)
852 #else
853 #define BLK_BOUNCE_HIGH -1ULL
854 #endif
855 #define BLK_BOUNCE_ANY (-1ULL)
856 #define BLK_BOUNCE_ISA (DMA_BIT_MASK(24))
857
858 /*
859 * default timeout for SG_IO if none specified
860 */
861 #define BLK_DEFAULT_SG_TIMEOUT (60 * HZ)
862 #define BLK_MIN_SG_TIMEOUT (7 * HZ)
863
864 #ifdef CONFIG_BOUNCE
865 extern int init_emergency_isa_pool(void);
866 extern void blk_queue_bounce(struct request_queue *q, struct bio **bio);
867 #else
868 static inline int init_emergency_isa_pool(void)
869 {
870 return 0;
871 }
872 static inline void blk_queue_bounce(struct request_queue *q, struct bio **bio)
873 {
874 }
875 #endif /* CONFIG_MMU */
876
877 struct rq_map_data {
878 struct page **pages;
879 int page_order;
880 int nr_entries;
881 unsigned long offset;
882 int null_mapped;
883 int from_user;
884 };
885
886 struct req_iterator {
887 struct bvec_iter iter;
888 struct bio *bio;
889 };
890
891 /* This should not be used directly - use rq_for_each_segment */
892 #define for_each_bio(_bio) \
893 for (; _bio; _bio = _bio->bi_next)
894 #define __rq_for_each_bio(_bio, rq) \
895 if ((rq->bio)) \
896 for (_bio = (rq)->bio; _bio; _bio = _bio->bi_next)
897
898 #define rq_for_each_segment(bvl, _rq, _iter) \
899 __rq_for_each_bio(_iter.bio, _rq) \
900 bio_for_each_segment(bvl, _iter.bio, _iter.iter)
901
902 #define rq_iter_last(bvec, _iter) \
903 (_iter.bio->bi_next == NULL && \
904 bio_iter_last(bvec, _iter.iter))
905
906 #ifndef ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
907 # error "You should define ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE for your platform"
908 #endif
909 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
910 extern void rq_flush_dcache_pages(struct request *rq);
911 #else
912 static inline void rq_flush_dcache_pages(struct request *rq)
913 {
914 }
915 #endif
916
917 #ifdef CONFIG_PRINTK
918 #define vfs_msg(sb, level, fmt, ...) \
919 __vfs_msg(sb, level, fmt, ##__VA_ARGS__)
920 #else
921 #define vfs_msg(sb, level, fmt, ...) \
922 do { \
923 no_printk(fmt, ##__VA_ARGS__); \
924 __vfs_msg(sb, "", " "); \
925 } while (0)
926 #endif
927
928 extern int blk_register_queue(struct gendisk *disk);
929 extern void blk_unregister_queue(struct gendisk *disk);
930 extern blk_qc_t generic_make_request(struct bio *bio);
931 extern void blk_rq_init(struct request_queue *q, struct request *rq);
932 extern void blk_init_request_from_bio(struct request *req, struct bio *bio);
933 extern void blk_put_request(struct request *);
934 extern void __blk_put_request(struct request_queue *, struct request *);
935 extern struct request *blk_get_request(struct request_queue *, int, gfp_t);
936 extern void blk_requeue_request(struct request_queue *, struct request *);
937 extern int blk_lld_busy(struct request_queue *q);
938 extern int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
939 struct bio_set *bs, gfp_t gfp_mask,
940 int (*bio_ctr)(struct bio *, struct bio *, void *),
941 void *data);
942 extern void blk_rq_unprep_clone(struct request *rq);
943 extern int blk_insert_cloned_request(struct request_queue *q,
944 struct request *rq);
945 extern int blk_rq_append_bio(struct request *rq, struct bio *bio);
946 extern void blk_delay_queue(struct request_queue *, unsigned long);
947 extern void blk_queue_split(struct request_queue *, struct bio **,
948 struct bio_set *);
949 extern void blk_recount_segments(struct request_queue *, struct bio *);
950 extern int scsi_verify_blk_ioctl(struct block_device *, unsigned int);
951 extern int scsi_cmd_blk_ioctl(struct block_device *, fmode_t,
952 unsigned int, void __user *);
953 extern int scsi_cmd_ioctl(struct request_queue *, struct gendisk *, fmode_t,
954 unsigned int, void __user *);
955 extern int sg_scsi_ioctl(struct request_queue *, struct gendisk *, fmode_t,
956 struct scsi_ioctl_command __user *);
957
958 extern int blk_queue_enter(struct request_queue *q, bool nowait);
959 extern void blk_queue_exit(struct request_queue *q);
960 extern void blk_start_queue(struct request_queue *q);
961 extern void blk_start_queue_async(struct request_queue *q);
962 extern void blk_stop_queue(struct request_queue *q);
963 extern void blk_sync_queue(struct request_queue *q);
964 extern void __blk_stop_queue(struct request_queue *q);
965 extern void __blk_run_queue(struct request_queue *q);
966 extern void __blk_run_queue_uncond(struct request_queue *q);
967 extern void blk_run_queue(struct request_queue *);
968 extern void blk_run_queue_async(struct request_queue *q);
969 extern void blk_mq_quiesce_queue(struct request_queue *q);
970 extern int blk_rq_map_user(struct request_queue *, struct request *,
971 struct rq_map_data *, void __user *, unsigned long,
972 gfp_t);
973 extern int blk_rq_unmap_user(struct bio *);
974 extern int blk_rq_map_kern(struct request_queue *, struct request *, void *, unsigned int, gfp_t);
975 extern int blk_rq_map_user_iov(struct request_queue *, struct request *,
976 struct rq_map_data *, const struct iov_iter *,
977 gfp_t);
978 extern void blk_execute_rq(struct request_queue *, struct gendisk *,
979 struct request *, int);
980 extern void blk_execute_rq_nowait(struct request_queue *, struct gendisk *,
981 struct request *, int, rq_end_io_fn *);
982
983 bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie);
984
985 static inline struct request_queue *bdev_get_queue(struct block_device *bdev)
986 {
987 return bdev->bd_disk->queue; /* this is never NULL */
988 }
989
990 /*
991 * blk_rq_pos() : the current sector
992 * blk_rq_bytes() : bytes left in the entire request
993 * blk_rq_cur_bytes() : bytes left in the current segment
994 * blk_rq_err_bytes() : bytes left till the next error boundary
995 * blk_rq_sectors() : sectors left in the entire request
996 * blk_rq_cur_sectors() : sectors left in the current segment
997 */
998 static inline sector_t blk_rq_pos(const struct request *rq)
999 {
1000 return rq->__sector;
1001 }
1002
1003 static inline unsigned int blk_rq_bytes(const struct request *rq)
1004 {
1005 return rq->__data_len;
1006 }
1007
1008 static inline int blk_rq_cur_bytes(const struct request *rq)
1009 {
1010 return rq->bio ? bio_cur_bytes(rq->bio) : 0;
1011 }
1012
1013 extern unsigned int blk_rq_err_bytes(const struct request *rq);
1014
1015 static inline unsigned int blk_rq_sectors(const struct request *rq)
1016 {
1017 return blk_rq_bytes(rq) >> 9;
1018 }
1019
1020 static inline unsigned int blk_rq_cur_sectors(const struct request *rq)
1021 {
1022 return blk_rq_cur_bytes(rq) >> 9;
1023 }
1024
1025 /*
1026 * Some commands like WRITE SAME have a payload or data transfer size which
1027 * is different from the size of the request. Any driver that supports such
1028 * commands using the RQF_SPECIAL_PAYLOAD flag needs to use this helper to
1029 * calculate the data transfer size.
1030 */
1031 static inline unsigned int blk_rq_payload_bytes(struct request *rq)
1032 {
1033 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1034 return rq->special_vec.bv_len;
1035 return blk_rq_bytes(rq);
1036 }
1037
1038 static inline unsigned int blk_queue_get_max_sectors(struct request_queue *q,
1039 int op)
1040 {
1041 if (unlikely(op == REQ_OP_DISCARD || op == REQ_OP_SECURE_ERASE))
1042 return min(q->limits.max_discard_sectors, UINT_MAX >> 9);
1043
1044 if (unlikely(op == REQ_OP_WRITE_SAME))
1045 return q->limits.max_write_same_sectors;
1046
1047 if (unlikely(op == REQ_OP_WRITE_ZEROES))
1048 return q->limits.max_write_zeroes_sectors;
1049
1050 return q->limits.max_sectors;
1051 }
1052
1053 /*
1054 * Return maximum size of a request at given offset. Only valid for
1055 * file system requests.
1056 */
1057 static inline unsigned int blk_max_size_offset(struct request_queue *q,
1058 sector_t offset)
1059 {
1060 if (!q->limits.chunk_sectors)
1061 return q->limits.max_sectors;
1062
1063 return q->limits.chunk_sectors -
1064 (offset & (q->limits.chunk_sectors - 1));
1065 }
1066
1067 static inline unsigned int blk_rq_get_max_sectors(struct request *rq,
1068 sector_t offset)
1069 {
1070 struct request_queue *q = rq->q;
1071
1072 if (blk_rq_is_passthrough(rq))
1073 return q->limits.max_hw_sectors;
1074
1075 if (!q->limits.chunk_sectors ||
1076 req_op(rq) == REQ_OP_DISCARD ||
1077 req_op(rq) == REQ_OP_SECURE_ERASE)
1078 return blk_queue_get_max_sectors(q, req_op(rq));
1079
1080 return min(blk_max_size_offset(q, offset),
1081 blk_queue_get_max_sectors(q, req_op(rq)));
1082 }
1083
1084 static inline unsigned int blk_rq_count_bios(struct request *rq)
1085 {
1086 unsigned int nr_bios = 0;
1087 struct bio *bio;
1088
1089 __rq_for_each_bio(bio, rq)
1090 nr_bios++;
1091
1092 return nr_bios;
1093 }
1094
1095 /*
1096 * Request issue related functions.
1097 */
1098 extern struct request *blk_peek_request(struct request_queue *q);
1099 extern void blk_start_request(struct request *rq);
1100 extern struct request *blk_fetch_request(struct request_queue *q);
1101
1102 /*
1103 * Request completion related functions.
1104 *
1105 * blk_update_request() completes given number of bytes and updates
1106 * the request without completing it.
1107 *
1108 * blk_end_request() and friends. __blk_end_request() must be called
1109 * with the request queue spinlock acquired.
1110 *
1111 * Several drivers define their own end_request and call
1112 * blk_end_request() for parts of the original function.
1113 * This prevents code duplication in drivers.
1114 */
1115 extern bool blk_update_request(struct request *rq, int error,
1116 unsigned int nr_bytes);
1117 extern void blk_finish_request(struct request *rq, int error);
1118 extern bool blk_end_request(struct request *rq, int error,
1119 unsigned int nr_bytes);
1120 extern void blk_end_request_all(struct request *rq, int error);
1121 extern bool __blk_end_request(struct request *rq, int error,
1122 unsigned int nr_bytes);
1123 extern void __blk_end_request_all(struct request *rq, int error);
1124 extern bool __blk_end_request_cur(struct request *rq, int error);
1125
1126 extern void blk_complete_request(struct request *);
1127 extern void __blk_complete_request(struct request *);
1128 extern void blk_abort_request(struct request *);
1129 extern void blk_unprep_request(struct request *);
1130
1131 /*
1132 * Access functions for manipulating queue properties
1133 */
1134 extern struct request_queue *blk_init_queue_node(request_fn_proc *rfn,
1135 spinlock_t *lock, int node_id);
1136 extern struct request_queue *blk_init_queue(request_fn_proc *, spinlock_t *);
1137 extern int blk_init_allocated_queue(struct request_queue *);
1138 extern void blk_cleanup_queue(struct request_queue *);
1139 extern void blk_queue_make_request(struct request_queue *, make_request_fn *);
1140 extern void blk_queue_bounce_limit(struct request_queue *, u64);
1141 extern void blk_queue_max_hw_sectors(struct request_queue *, unsigned int);
1142 extern void blk_queue_chunk_sectors(struct request_queue *, unsigned int);
1143 extern void blk_queue_max_segments(struct request_queue *, unsigned short);
1144 extern void blk_queue_max_discard_segments(struct request_queue *,
1145 unsigned short);
1146 extern void blk_queue_max_segment_size(struct request_queue *, unsigned int);
1147 extern void blk_queue_max_discard_sectors(struct request_queue *q,
1148 unsigned int max_discard_sectors);
1149 extern void blk_queue_max_write_same_sectors(struct request_queue *q,
1150 unsigned int max_write_same_sectors);
1151 extern void blk_queue_max_write_zeroes_sectors(struct request_queue *q,
1152 unsigned int max_write_same_sectors);
1153 extern void blk_queue_logical_block_size(struct request_queue *, unsigned short);
1154 extern void blk_queue_physical_block_size(struct request_queue *, unsigned int);
1155 extern void blk_queue_alignment_offset(struct request_queue *q,
1156 unsigned int alignment);
1157 extern void blk_limits_io_min(struct queue_limits *limits, unsigned int min);
1158 extern void blk_queue_io_min(struct request_queue *q, unsigned int min);
1159 extern void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt);
1160 extern void blk_queue_io_opt(struct request_queue *q, unsigned int opt);
1161 extern void blk_set_queue_depth(struct request_queue *q, unsigned int depth);
1162 extern void blk_set_default_limits(struct queue_limits *lim);
1163 extern void blk_set_stacking_limits(struct queue_limits *lim);
1164 extern int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
1165 sector_t offset);
1166 extern int bdev_stack_limits(struct queue_limits *t, struct block_device *bdev,
1167 sector_t offset);
1168 extern void disk_stack_limits(struct gendisk *disk, struct block_device *bdev,
1169 sector_t offset);
1170 extern void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b);
1171 extern void blk_queue_dma_pad(struct request_queue *, unsigned int);
1172 extern void blk_queue_update_dma_pad(struct request_queue *, unsigned int);
1173 extern int blk_queue_dma_drain(struct request_queue *q,
1174 dma_drain_needed_fn *dma_drain_needed,
1175 void *buf, unsigned int size);
1176 extern void blk_queue_lld_busy(struct request_queue *q, lld_busy_fn *fn);
1177 extern void blk_queue_segment_boundary(struct request_queue *, unsigned long);
1178 extern void blk_queue_virt_boundary(struct request_queue *, unsigned long);
1179 extern void blk_queue_prep_rq(struct request_queue *, prep_rq_fn *pfn);
1180 extern void blk_queue_unprep_rq(struct request_queue *, unprep_rq_fn *ufn);
1181 extern void blk_queue_dma_alignment(struct request_queue *, int);
1182 extern void blk_queue_update_dma_alignment(struct request_queue *, int);
1183 extern void blk_queue_softirq_done(struct request_queue *, softirq_done_fn *);
1184 extern void blk_queue_rq_timed_out(struct request_queue *, rq_timed_out_fn *);
1185 extern void blk_queue_rq_timeout(struct request_queue *, unsigned int);
1186 extern void blk_queue_flush_queueable(struct request_queue *q, bool queueable);
1187 extern void blk_queue_write_cache(struct request_queue *q, bool enabled, bool fua);
1188
1189 /*
1190 * Number of physical segments as sent to the device.
1191 *
1192 * Normally this is the number of discontiguous data segments sent by the
1193 * submitter. But for data-less command like discard we might have no
1194 * actual data segments submitted, but the driver might have to add it's
1195 * own special payload. In that case we still return 1 here so that this
1196 * special payload will be mapped.
1197 */
1198 static inline unsigned short blk_rq_nr_phys_segments(struct request *rq)
1199 {
1200 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1201 return 1;
1202 return rq->nr_phys_segments;
1203 }
1204
1205 /*
1206 * Number of discard segments (or ranges) the driver needs to fill in.
1207 * Each discard bio merged into a request is counted as one segment.
1208 */
1209 static inline unsigned short blk_rq_nr_discard_segments(struct request *rq)
1210 {
1211 return max_t(unsigned short, rq->nr_phys_segments, 1);
1212 }
1213
1214 extern int blk_rq_map_sg(struct request_queue *, struct request *, struct scatterlist *);
1215 extern void blk_dump_rq_flags(struct request *, char *);
1216 extern long nr_blockdev_pages(void);
1217
1218 bool __must_check blk_get_queue(struct request_queue *);
1219 struct request_queue *blk_alloc_queue(gfp_t);
1220 struct request_queue *blk_alloc_queue_node(gfp_t, int);
1221 extern void blk_put_queue(struct request_queue *);
1222 extern void blk_set_queue_dying(struct request_queue *);
1223
1224 /*
1225 * block layer runtime pm functions
1226 */
1227 #ifdef CONFIG_PM
1228 extern void blk_pm_runtime_init(struct request_queue *q, struct device *dev);
1229 extern int blk_pre_runtime_suspend(struct request_queue *q);
1230 extern void blk_post_runtime_suspend(struct request_queue *q, int err);
1231 extern void blk_pre_runtime_resume(struct request_queue *q);
1232 extern void blk_post_runtime_resume(struct request_queue *q, int err);
1233 extern void blk_set_runtime_active(struct request_queue *q);
1234 #else
1235 static inline void blk_pm_runtime_init(struct request_queue *q,
1236 struct device *dev) {}
1237 static inline int blk_pre_runtime_suspend(struct request_queue *q)
1238 {
1239 return -ENOSYS;
1240 }
1241 static inline void blk_post_runtime_suspend(struct request_queue *q, int err) {}
1242 static inline void blk_pre_runtime_resume(struct request_queue *q) {}
1243 static inline void blk_post_runtime_resume(struct request_queue *q, int err) {}
1244 static inline void blk_set_runtime_active(struct request_queue *q) {}
1245 #endif
1246
1247 /*
1248 * blk_plug permits building a queue of related requests by holding the I/O
1249 * fragments for a short period. This allows merging of sequential requests
1250 * into single larger request. As the requests are moved from a per-task list to
1251 * the device's request_queue in a batch, this results in improved scalability
1252 * as the lock contention for request_queue lock is reduced.
1253 *
1254 * It is ok not to disable preemption when adding the request to the plug list
1255 * or when attempting a merge, because blk_schedule_flush_list() will only flush
1256 * the plug list when the task sleeps by itself. For details, please see
1257 * schedule() where blk_schedule_flush_plug() is called.
1258 */
1259 struct blk_plug {
1260 struct list_head list; /* requests */
1261 struct list_head mq_list; /* blk-mq requests */
1262 struct list_head cb_list; /* md requires an unplug callback */
1263 };
1264 #define BLK_MAX_REQUEST_COUNT 16
1265 #define BLK_PLUG_FLUSH_SIZE (128 * 1024)
1266
1267 struct blk_plug_cb;
1268 typedef void (*blk_plug_cb_fn)(struct blk_plug_cb *, bool);
1269 struct blk_plug_cb {
1270 struct list_head list;
1271 blk_plug_cb_fn callback;
1272 void *data;
1273 };
1274 extern struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug,
1275 void *data, int size);
1276 extern void blk_start_plug(struct blk_plug *);
1277 extern void blk_finish_plug(struct blk_plug *);
1278 extern void blk_flush_plug_list(struct blk_plug *, bool);
1279
1280 static inline void blk_flush_plug(struct task_struct *tsk)
1281 {
1282 struct blk_plug *plug = tsk->plug;
1283
1284 if (plug)
1285 blk_flush_plug_list(plug, false);
1286 }
1287
1288 static inline void blk_schedule_flush_plug(struct task_struct *tsk)
1289 {
1290 struct blk_plug *plug = tsk->plug;
1291
1292 if (plug)
1293 blk_flush_plug_list(plug, true);
1294 }
1295
1296 static inline bool blk_needs_flush_plug(struct task_struct *tsk)
1297 {
1298 struct blk_plug *plug = tsk->plug;
1299
1300 return plug &&
1301 (!list_empty(&plug->list) ||
1302 !list_empty(&plug->mq_list) ||
1303 !list_empty(&plug->cb_list));
1304 }
1305
1306 /*
1307 * tag stuff
1308 */
1309 extern int blk_queue_start_tag(struct request_queue *, struct request *);
1310 extern struct request *blk_queue_find_tag(struct request_queue *, int);
1311 extern void blk_queue_end_tag(struct request_queue *, struct request *);
1312 extern int blk_queue_init_tags(struct request_queue *, int, struct blk_queue_tag *, int);
1313 extern void blk_queue_free_tags(struct request_queue *);
1314 extern int blk_queue_resize_tags(struct request_queue *, int);
1315 extern void blk_queue_invalidate_tags(struct request_queue *);
1316 extern struct blk_queue_tag *blk_init_tags(int, int);
1317 extern void blk_free_tags(struct blk_queue_tag *);
1318
1319 static inline struct request *blk_map_queue_find_tag(struct blk_queue_tag *bqt,
1320 int tag)
1321 {
1322 if (unlikely(bqt == NULL || tag >= bqt->real_max_depth))
1323 return NULL;
1324 return bqt->tag_index[tag];
1325 }
1326
1327 extern int blkdev_issue_flush(struct block_device *, gfp_t, sector_t *);
1328 extern int blkdev_issue_write_same(struct block_device *bdev, sector_t sector,
1329 sector_t nr_sects, gfp_t gfp_mask, struct page *page);
1330
1331 #define BLKDEV_DISCARD_SECURE (1 << 0) /* issue a secure erase */
1332
1333 extern int blkdev_issue_discard(struct block_device *bdev, sector_t sector,
1334 sector_t nr_sects, gfp_t gfp_mask, unsigned long flags);
1335 extern int __blkdev_issue_discard(struct block_device *bdev, sector_t sector,
1336 sector_t nr_sects, gfp_t gfp_mask, int flags,
1337 struct bio **biop);
1338
1339 #define BLKDEV_ZERO_NOUNMAP (1 << 0) /* do not free blocks */
1340 #define BLKDEV_ZERO_NOFALLBACK (1 << 1) /* don't write explicit zeroes */
1341
1342 extern int __blkdev_issue_zeroout(struct block_device *bdev, sector_t sector,
1343 sector_t nr_sects, gfp_t gfp_mask, struct bio **biop,
1344 unsigned flags);
1345 extern int blkdev_issue_zeroout(struct block_device *bdev, sector_t sector,
1346 sector_t nr_sects, gfp_t gfp_mask, unsigned flags);
1347
1348 static inline int sb_issue_discard(struct super_block *sb, sector_t block,
1349 sector_t nr_blocks, gfp_t gfp_mask, unsigned long flags)
1350 {
1351 return blkdev_issue_discard(sb->s_bdev, block << (sb->s_blocksize_bits - 9),
1352 nr_blocks << (sb->s_blocksize_bits - 9),
1353 gfp_mask, flags);
1354 }
1355 static inline int sb_issue_zeroout(struct super_block *sb, sector_t block,
1356 sector_t nr_blocks, gfp_t gfp_mask)
1357 {
1358 return blkdev_issue_zeroout(sb->s_bdev,
1359 block << (sb->s_blocksize_bits - 9),
1360 nr_blocks << (sb->s_blocksize_bits - 9),
1361 gfp_mask, 0);
1362 }
1363
1364 extern int blk_verify_command(unsigned char *cmd, fmode_t has_write_perm);
1365
1366 enum blk_default_limits {
1367 BLK_MAX_SEGMENTS = 128,
1368 BLK_SAFE_MAX_SECTORS = 255,
1369 BLK_DEF_MAX_SECTORS = 2560,
1370 BLK_MAX_SEGMENT_SIZE = 65536,
1371 BLK_SEG_BOUNDARY_MASK = 0xFFFFFFFFUL,
1372 };
1373
1374 #define blkdev_entry_to_request(entry) list_entry((entry), struct request, queuelist)
1375
1376 static inline unsigned long queue_bounce_pfn(struct request_queue *q)
1377 {
1378 return q->limits.bounce_pfn;
1379 }
1380
1381 static inline unsigned long queue_segment_boundary(struct request_queue *q)
1382 {
1383 return q->limits.seg_boundary_mask;
1384 }
1385
1386 static inline unsigned long queue_virt_boundary(struct request_queue *q)
1387 {
1388 return q->limits.virt_boundary_mask;
1389 }
1390
1391 static inline unsigned int queue_max_sectors(struct request_queue *q)
1392 {
1393 return q->limits.max_sectors;
1394 }
1395
1396 static inline unsigned int queue_max_hw_sectors(struct request_queue *q)
1397 {
1398 return q->limits.max_hw_sectors;
1399 }
1400
1401 static inline unsigned short queue_max_segments(struct request_queue *q)
1402 {
1403 return q->limits.max_segments;
1404 }
1405
1406 static inline unsigned short queue_max_discard_segments(struct request_queue *q)
1407 {
1408 return q->limits.max_discard_segments;
1409 }
1410
1411 static inline unsigned int queue_max_segment_size(struct request_queue *q)
1412 {
1413 return q->limits.max_segment_size;
1414 }
1415
1416 static inline unsigned short queue_logical_block_size(struct request_queue *q)
1417 {
1418 int retval = 512;
1419
1420 if (q && q->limits.logical_block_size)
1421 retval = q->limits.logical_block_size;
1422
1423 return retval;
1424 }
1425
1426 static inline unsigned short bdev_logical_block_size(struct block_device *bdev)
1427 {
1428 return queue_logical_block_size(bdev_get_queue(bdev));
1429 }
1430
1431 static inline unsigned int queue_physical_block_size(struct request_queue *q)
1432 {
1433 return q->limits.physical_block_size;
1434 }
1435
1436 static inline unsigned int bdev_physical_block_size(struct block_device *bdev)
1437 {
1438 return queue_physical_block_size(bdev_get_queue(bdev));
1439 }
1440
1441 static inline unsigned int queue_io_min(struct request_queue *q)
1442 {
1443 return q->limits.io_min;
1444 }
1445
1446 static inline int bdev_io_min(struct block_device *bdev)
1447 {
1448 return queue_io_min(bdev_get_queue(bdev));
1449 }
1450
1451 static inline unsigned int queue_io_opt(struct request_queue *q)
1452 {
1453 return q->limits.io_opt;
1454 }
1455
1456 static inline int bdev_io_opt(struct block_device *bdev)
1457 {
1458 return queue_io_opt(bdev_get_queue(bdev));
1459 }
1460
1461 static inline int queue_alignment_offset(struct request_queue *q)
1462 {
1463 if (q->limits.misaligned)
1464 return -1;
1465
1466 return q->limits.alignment_offset;
1467 }
1468
1469 static inline int queue_limit_alignment_offset(struct queue_limits *lim, sector_t sector)
1470 {
1471 unsigned int granularity = max(lim->physical_block_size, lim->io_min);
1472 unsigned int alignment = sector_div(sector, granularity >> 9) << 9;
1473
1474 return (granularity + lim->alignment_offset - alignment) % granularity;
1475 }
1476
1477 static inline int bdev_alignment_offset(struct block_device *bdev)
1478 {
1479 struct request_queue *q = bdev_get_queue(bdev);
1480
1481 if (q->limits.misaligned)
1482 return -1;
1483
1484 if (bdev != bdev->bd_contains)
1485 return bdev->bd_part->alignment_offset;
1486
1487 return q->limits.alignment_offset;
1488 }
1489
1490 static inline int queue_discard_alignment(struct request_queue *q)
1491 {
1492 if (q->limits.discard_misaligned)
1493 return -1;
1494
1495 return q->limits.discard_alignment;
1496 }
1497
1498 static inline int queue_limit_discard_alignment(struct queue_limits *lim, sector_t sector)
1499 {
1500 unsigned int alignment, granularity, offset;
1501
1502 if (!lim->max_discard_sectors)
1503 return 0;
1504
1505 /* Why are these in bytes, not sectors? */
1506 alignment = lim->discard_alignment >> 9;
1507 granularity = lim->discard_granularity >> 9;
1508 if (!granularity)
1509 return 0;
1510
1511 /* Offset of the partition start in 'granularity' sectors */
1512 offset = sector_div(sector, granularity);
1513
1514 /* And why do we do this modulus *again* in blkdev_issue_discard()? */
1515 offset = (granularity + alignment - offset) % granularity;
1516
1517 /* Turn it back into bytes, gaah */
1518 return offset << 9;
1519 }
1520
1521 static inline int bdev_discard_alignment(struct block_device *bdev)
1522 {
1523 struct request_queue *q = bdev_get_queue(bdev);
1524
1525 if (bdev != bdev->bd_contains)
1526 return bdev->bd_part->discard_alignment;
1527
1528 return q->limits.discard_alignment;
1529 }
1530
1531 static inline unsigned int bdev_write_same(struct block_device *bdev)
1532 {
1533 struct request_queue *q = bdev_get_queue(bdev);
1534
1535 if (q)
1536 return q->limits.max_write_same_sectors;
1537
1538 return 0;
1539 }
1540
1541 static inline unsigned int bdev_write_zeroes_sectors(struct block_device *bdev)
1542 {
1543 struct request_queue *q = bdev_get_queue(bdev);
1544
1545 if (q)
1546 return q->limits.max_write_zeroes_sectors;
1547
1548 return 0;
1549 }
1550
1551 static inline enum blk_zoned_model bdev_zoned_model(struct block_device *bdev)
1552 {
1553 struct request_queue *q = bdev_get_queue(bdev);
1554
1555 if (q)
1556 return blk_queue_zoned_model(q);
1557
1558 return BLK_ZONED_NONE;
1559 }
1560
1561 static inline bool bdev_is_zoned(struct block_device *bdev)
1562 {
1563 struct request_queue *q = bdev_get_queue(bdev);
1564
1565 if (q)
1566 return blk_queue_is_zoned(q);
1567
1568 return false;
1569 }
1570
1571 static inline unsigned int bdev_zone_sectors(struct block_device *bdev)
1572 {
1573 struct request_queue *q = bdev_get_queue(bdev);
1574
1575 if (q)
1576 return blk_queue_zone_sectors(q);
1577
1578 return 0;
1579 }
1580
1581 static inline int queue_dma_alignment(struct request_queue *q)
1582 {
1583 return q ? q->dma_alignment : 511;
1584 }
1585
1586 static inline int blk_rq_aligned(struct request_queue *q, unsigned long addr,
1587 unsigned int len)
1588 {
1589 unsigned int alignment = queue_dma_alignment(q) | q->dma_pad_mask;
1590 return !(addr & alignment) && !(len & alignment);
1591 }
1592
1593 /* assumes size > 256 */
1594 static inline unsigned int blksize_bits(unsigned int size)
1595 {
1596 unsigned int bits = 8;
1597 do {
1598 bits++;
1599 size >>= 1;
1600 } while (size > 256);
1601 return bits;
1602 }
1603
1604 static inline unsigned int block_size(struct block_device *bdev)
1605 {
1606 return bdev->bd_block_size;
1607 }
1608
1609 static inline bool queue_flush_queueable(struct request_queue *q)
1610 {
1611 return !test_bit(QUEUE_FLAG_FLUSH_NQ, &q->queue_flags);
1612 }
1613
1614 typedef struct {struct page *v;} Sector;
1615
1616 unsigned char *read_dev_sector(struct block_device *, sector_t, Sector *);
1617
1618 static inline void put_dev_sector(Sector p)
1619 {
1620 put_page(p.v);
1621 }
1622
1623 static inline bool __bvec_gap_to_prev(struct request_queue *q,
1624 struct bio_vec *bprv, unsigned int offset)
1625 {
1626 return offset ||
1627 ((bprv->bv_offset + bprv->bv_len) & queue_virt_boundary(q));
1628 }
1629
1630 /*
1631 * Check if adding a bio_vec after bprv with offset would create a gap in
1632 * the SG list. Most drivers don't care about this, but some do.
1633 */
1634 static inline bool bvec_gap_to_prev(struct request_queue *q,
1635 struct bio_vec *bprv, unsigned int offset)
1636 {
1637 if (!queue_virt_boundary(q))
1638 return false;
1639 return __bvec_gap_to_prev(q, bprv, offset);
1640 }
1641
1642 /*
1643 * Check if the two bvecs from two bios can be merged to one segment.
1644 * If yes, no need to check gap between the two bios since the 1st bio
1645 * and the 1st bvec in the 2nd bio can be handled in one segment.
1646 */
1647 static inline bool bios_segs_mergeable(struct request_queue *q,
1648 struct bio *prev, struct bio_vec *prev_last_bv,
1649 struct bio_vec *next_first_bv)
1650 {
1651 if (!BIOVEC_PHYS_MERGEABLE(prev_last_bv, next_first_bv))
1652 return false;
1653 if (!BIOVEC_SEG_BOUNDARY(q, prev_last_bv, next_first_bv))
1654 return false;
1655 if (prev->bi_seg_back_size + next_first_bv->bv_len >
1656 queue_max_segment_size(q))
1657 return false;
1658 return true;
1659 }
1660
1661 static inline bool bio_will_gap(struct request_queue *q,
1662 struct request *prev_rq,
1663 struct bio *prev,
1664 struct bio *next)
1665 {
1666 if (bio_has_data(prev) && queue_virt_boundary(q)) {
1667 struct bio_vec pb, nb;
1668
1669 /*
1670 * don't merge if the 1st bio starts with non-zero
1671 * offset, otherwise it is quite difficult to respect
1672 * sg gap limit. We work hard to merge a huge number of small
1673 * single bios in case of mkfs.
1674 */
1675 if (prev_rq)
1676 bio_get_first_bvec(prev_rq->bio, &pb);
1677 else
1678 bio_get_first_bvec(prev, &pb);
1679 if (pb.bv_offset)
1680 return true;
1681
1682 /*
1683 * We don't need to worry about the situation that the
1684 * merged segment ends in unaligned virt boundary:
1685 *
1686 * - if 'pb' ends aligned, the merged segment ends aligned
1687 * - if 'pb' ends unaligned, the next bio must include
1688 * one single bvec of 'nb', otherwise the 'nb' can't
1689 * merge with 'pb'
1690 */
1691 bio_get_last_bvec(prev, &pb);
1692 bio_get_first_bvec(next, &nb);
1693
1694 if (!bios_segs_mergeable(q, prev, &pb, &nb))
1695 return __bvec_gap_to_prev(q, &pb, nb.bv_offset);
1696 }
1697
1698 return false;
1699 }
1700
1701 static inline bool req_gap_back_merge(struct request *req, struct bio *bio)
1702 {
1703 return bio_will_gap(req->q, req, req->biotail, bio);
1704 }
1705
1706 static inline bool req_gap_front_merge(struct request *req, struct bio *bio)
1707 {
1708 return bio_will_gap(req->q, NULL, bio, req->bio);
1709 }
1710
1711 int kblockd_schedule_work(struct work_struct *work);
1712 int kblockd_schedule_work_on(int cpu, struct work_struct *work);
1713 int kblockd_schedule_delayed_work(struct delayed_work *dwork, unsigned long delay);
1714 int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork, unsigned long delay);
1715 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, unsigned long delay);
1716
1717 #ifdef CONFIG_BLK_CGROUP
1718 /*
1719 * This should not be using sched_clock(). A real patch is in progress
1720 * to fix this up, until that is in place we need to disable preemption
1721 * around sched_clock() in this function and set_io_start_time_ns().
1722 */
1723 static inline void set_start_time_ns(struct request *req)
1724 {
1725 preempt_disable();
1726 req->start_time_ns = sched_clock();
1727 preempt_enable();
1728 }
1729
1730 static inline void set_io_start_time_ns(struct request *req)
1731 {
1732 preempt_disable();
1733 req->io_start_time_ns = sched_clock();
1734 preempt_enable();
1735 }
1736
1737 static inline uint64_t rq_start_time_ns(struct request *req)
1738 {
1739 return req->start_time_ns;
1740 }
1741
1742 static inline uint64_t rq_io_start_time_ns(struct request *req)
1743 {
1744 return req->io_start_time_ns;
1745 }
1746 #else
1747 static inline void set_start_time_ns(struct request *req) {}
1748 static inline void set_io_start_time_ns(struct request *req) {}
1749 static inline uint64_t rq_start_time_ns(struct request *req)
1750 {
1751 return 0;
1752 }
1753 static inline uint64_t rq_io_start_time_ns(struct request *req)
1754 {
1755 return 0;
1756 }
1757 #endif
1758
1759 #define MODULE_ALIAS_BLOCKDEV(major,minor) \
1760 MODULE_ALIAS("block-major-" __stringify(major) "-" __stringify(minor))
1761 #define MODULE_ALIAS_BLOCKDEV_MAJOR(major) \
1762 MODULE_ALIAS("block-major-" __stringify(major) "-*")
1763
1764 #if defined(CONFIG_BLK_DEV_INTEGRITY)
1765
1766 enum blk_integrity_flags {
1767 BLK_INTEGRITY_VERIFY = 1 << 0,
1768 BLK_INTEGRITY_GENERATE = 1 << 1,
1769 BLK_INTEGRITY_DEVICE_CAPABLE = 1 << 2,
1770 BLK_INTEGRITY_IP_CHECKSUM = 1 << 3,
1771 };
1772
1773 struct blk_integrity_iter {
1774 void *prot_buf;
1775 void *data_buf;
1776 sector_t seed;
1777 unsigned int data_size;
1778 unsigned short interval;
1779 const char *disk_name;
1780 };
1781
1782 typedef int (integrity_processing_fn) (struct blk_integrity_iter *);
1783
1784 struct blk_integrity_profile {
1785 integrity_processing_fn *generate_fn;
1786 integrity_processing_fn *verify_fn;
1787 const char *name;
1788 };
1789
1790 extern void blk_integrity_register(struct gendisk *, struct blk_integrity *);
1791 extern void blk_integrity_unregister(struct gendisk *);
1792 extern int blk_integrity_compare(struct gendisk *, struct gendisk *);
1793 extern int blk_rq_map_integrity_sg(struct request_queue *, struct bio *,
1794 struct scatterlist *);
1795 extern int blk_rq_count_integrity_sg(struct request_queue *, struct bio *);
1796 extern bool blk_integrity_merge_rq(struct request_queue *, struct request *,
1797 struct request *);
1798 extern bool blk_integrity_merge_bio(struct request_queue *, struct request *,
1799 struct bio *);
1800
1801 static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk)
1802 {
1803 struct blk_integrity *bi = &disk->queue->integrity;
1804
1805 if (!bi->profile)
1806 return NULL;
1807
1808 return bi;
1809 }
1810
1811 static inline
1812 struct blk_integrity *bdev_get_integrity(struct block_device *bdev)
1813 {
1814 return blk_get_integrity(bdev->bd_disk);
1815 }
1816
1817 static inline bool blk_integrity_rq(struct request *rq)
1818 {
1819 return rq->cmd_flags & REQ_INTEGRITY;
1820 }
1821
1822 static inline void blk_queue_max_integrity_segments(struct request_queue *q,
1823 unsigned int segs)
1824 {
1825 q->limits.max_integrity_segments = segs;
1826 }
1827
1828 static inline unsigned short
1829 queue_max_integrity_segments(struct request_queue *q)
1830 {
1831 return q->limits.max_integrity_segments;
1832 }
1833
1834 static inline bool integrity_req_gap_back_merge(struct request *req,
1835 struct bio *next)
1836 {
1837 struct bio_integrity_payload *bip = bio_integrity(req->bio);
1838 struct bio_integrity_payload *bip_next = bio_integrity(next);
1839
1840 return bvec_gap_to_prev(req->q, &bip->bip_vec[bip->bip_vcnt - 1],
1841 bip_next->bip_vec[0].bv_offset);
1842 }
1843
1844 static inline bool integrity_req_gap_front_merge(struct request *req,
1845 struct bio *bio)
1846 {
1847 struct bio_integrity_payload *bip = bio_integrity(bio);
1848 struct bio_integrity_payload *bip_next = bio_integrity(req->bio);
1849
1850 return bvec_gap_to_prev(req->q, &bip->bip_vec[bip->bip_vcnt - 1],
1851 bip_next->bip_vec[0].bv_offset);
1852 }
1853
1854 #else /* CONFIG_BLK_DEV_INTEGRITY */
1855
1856 struct bio;
1857 struct block_device;
1858 struct gendisk;
1859 struct blk_integrity;
1860
1861 static inline int blk_integrity_rq(struct request *rq)
1862 {
1863 return 0;
1864 }
1865 static inline int blk_rq_count_integrity_sg(struct request_queue *q,
1866 struct bio *b)
1867 {
1868 return 0;
1869 }
1870 static inline int blk_rq_map_integrity_sg(struct request_queue *q,
1871 struct bio *b,
1872 struct scatterlist *s)
1873 {
1874 return 0;
1875 }
1876 static inline struct blk_integrity *bdev_get_integrity(struct block_device *b)
1877 {
1878 return NULL;
1879 }
1880 static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk)
1881 {
1882 return NULL;
1883 }
1884 static inline int blk_integrity_compare(struct gendisk *a, struct gendisk *b)
1885 {
1886 return 0;
1887 }
1888 static inline void blk_integrity_register(struct gendisk *d,
1889 struct blk_integrity *b)
1890 {
1891 }
1892 static inline void blk_integrity_unregister(struct gendisk *d)
1893 {
1894 }
1895 static inline void blk_queue_max_integrity_segments(struct request_queue *q,
1896 unsigned int segs)
1897 {
1898 }
1899 static inline unsigned short queue_max_integrity_segments(struct request_queue *q)
1900 {
1901 return 0;
1902 }
1903 static inline bool blk_integrity_merge_rq(struct request_queue *rq,
1904 struct request *r1,
1905 struct request *r2)
1906 {
1907 return true;
1908 }
1909 static inline bool blk_integrity_merge_bio(struct request_queue *rq,
1910 struct request *r,
1911 struct bio *b)
1912 {
1913 return true;
1914 }
1915
1916 static inline bool integrity_req_gap_back_merge(struct request *req,
1917 struct bio *next)
1918 {
1919 return false;
1920 }
1921 static inline bool integrity_req_gap_front_merge(struct request *req,
1922 struct bio *bio)
1923 {
1924 return false;
1925 }
1926
1927 #endif /* CONFIG_BLK_DEV_INTEGRITY */
1928
1929 struct block_device_operations {
1930 int (*open) (struct block_device *, fmode_t);
1931 void (*release) (struct gendisk *, fmode_t);
1932 int (*rw_page)(struct block_device *, sector_t, struct page *, bool);
1933 int (*ioctl) (struct block_device *, fmode_t, unsigned, unsigned long);
1934 int (*compat_ioctl) (struct block_device *, fmode_t, unsigned, unsigned long);
1935 unsigned int (*check_events) (struct gendisk *disk,
1936 unsigned int clearing);
1937 /* ->media_changed() is DEPRECATED, use ->check_events() instead */
1938 int (*media_changed) (struct gendisk *);
1939 void (*unlock_native_capacity) (struct gendisk *);
1940 int (*revalidate_disk) (struct gendisk *);
1941 int (*getgeo)(struct block_device *, struct hd_geometry *);
1942 /* this callback is with swap_lock and sometimes page table lock held */
1943 void (*swap_slot_free_notify) (struct block_device *, unsigned long);
1944 struct module *owner;
1945 const struct pr_ops *pr_ops;
1946 };
1947
1948 extern int __blkdev_driver_ioctl(struct block_device *, fmode_t, unsigned int,
1949 unsigned long);
1950 extern int bdev_read_page(struct block_device *, sector_t, struct page *);
1951 extern int bdev_write_page(struct block_device *, sector_t, struct page *,
1952 struct writeback_control *);
1953 #else /* CONFIG_BLOCK */
1954
1955 struct block_device;
1956
1957 /*
1958 * stubs for when the block layer is configured out
1959 */
1960 #define buffer_heads_over_limit 0
1961
1962 static inline long nr_blockdev_pages(void)
1963 {
1964 return 0;
1965 }
1966
1967 struct blk_plug {
1968 };
1969
1970 static inline void blk_start_plug(struct blk_plug *plug)
1971 {
1972 }
1973
1974 static inline void blk_finish_plug(struct blk_plug *plug)
1975 {
1976 }
1977
1978 static inline void blk_flush_plug(struct task_struct *task)
1979 {
1980 }
1981
1982 static inline void blk_schedule_flush_plug(struct task_struct *task)
1983 {
1984 }
1985
1986
1987 static inline bool blk_needs_flush_plug(struct task_struct *tsk)
1988 {
1989 return false;
1990 }
1991
1992 static inline int blkdev_issue_flush(struct block_device *bdev, gfp_t gfp_mask,
1993 sector_t *error_sector)
1994 {
1995 return 0;
1996 }
1997
1998 #endif /* CONFIG_BLOCK */
1999
2000 #endif