]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - include/linux/blkdev.h
Merge tag 'iio-for-4.13b' of git://git.kernel.org/pub/scm/linux/kernel/git/jic23...
[mirror_ubuntu-artful-kernel.git] / include / linux / blkdev.h
1 #ifndef _LINUX_BLKDEV_H
2 #define _LINUX_BLKDEV_H
3
4 #include <linux/sched.h>
5 #include <linux/sched/clock.h>
6
7 #ifdef CONFIG_BLOCK
8
9 #include <linux/major.h>
10 #include <linux/genhd.h>
11 #include <linux/list.h>
12 #include <linux/llist.h>
13 #include <linux/timer.h>
14 #include <linux/workqueue.h>
15 #include <linux/pagemap.h>
16 #include <linux/backing-dev-defs.h>
17 #include <linux/wait.h>
18 #include <linux/mempool.h>
19 #include <linux/pfn.h>
20 #include <linux/bio.h>
21 #include <linux/stringify.h>
22 #include <linux/gfp.h>
23 #include <linux/bsg.h>
24 #include <linux/smp.h>
25 #include <linux/rcupdate.h>
26 #include <linux/percpu-refcount.h>
27 #include <linux/scatterlist.h>
28 #include <linux/blkzoned.h>
29
30 struct module;
31 struct scsi_ioctl_command;
32
33 struct request_queue;
34 struct elevator_queue;
35 struct blk_trace;
36 struct request;
37 struct sg_io_hdr;
38 struct bsg_job;
39 struct blkcg_gq;
40 struct blk_flush_queue;
41 struct pr_ops;
42 struct rq_wb;
43 struct blk_queue_stats;
44 struct blk_stat_callback;
45
46 #define BLKDEV_MIN_RQ 4
47 #define BLKDEV_MAX_RQ 128 /* Default maximum */
48
49 /* Must be consisitent with blk_mq_poll_stats_bkt() */
50 #define BLK_MQ_POLL_STATS_BKTS 16
51
52 /*
53 * Maximum number of blkcg policies allowed to be registered concurrently.
54 * Defined here to simplify include dependency.
55 */
56 #define BLKCG_MAX_POLS 3
57
58 typedef void (rq_end_io_fn)(struct request *, int);
59
60 #define BLK_RL_SYNCFULL (1U << 0)
61 #define BLK_RL_ASYNCFULL (1U << 1)
62
63 struct request_list {
64 struct request_queue *q; /* the queue this rl belongs to */
65 #ifdef CONFIG_BLK_CGROUP
66 struct blkcg_gq *blkg; /* blkg this request pool belongs to */
67 #endif
68 /*
69 * count[], starved[], and wait[] are indexed by
70 * BLK_RW_SYNC/BLK_RW_ASYNC
71 */
72 int count[2];
73 int starved[2];
74 mempool_t *rq_pool;
75 wait_queue_head_t wait[2];
76 unsigned int flags;
77 };
78
79 /*
80 * request flags */
81 typedef __u32 __bitwise req_flags_t;
82
83 /* elevator knows about this request */
84 #define RQF_SORTED ((__force req_flags_t)(1 << 0))
85 /* drive already may have started this one */
86 #define RQF_STARTED ((__force req_flags_t)(1 << 1))
87 /* uses tagged queueing */
88 #define RQF_QUEUED ((__force req_flags_t)(1 << 2))
89 /* may not be passed by ioscheduler */
90 #define RQF_SOFTBARRIER ((__force req_flags_t)(1 << 3))
91 /* request for flush sequence */
92 #define RQF_FLUSH_SEQ ((__force req_flags_t)(1 << 4))
93 /* merge of different types, fail separately */
94 #define RQF_MIXED_MERGE ((__force req_flags_t)(1 << 5))
95 /* track inflight for MQ */
96 #define RQF_MQ_INFLIGHT ((__force req_flags_t)(1 << 6))
97 /* don't call prep for this one */
98 #define RQF_DONTPREP ((__force req_flags_t)(1 << 7))
99 /* set for "ide_preempt" requests and also for requests for which the SCSI
100 "quiesce" state must be ignored. */
101 #define RQF_PREEMPT ((__force req_flags_t)(1 << 8))
102 /* contains copies of user pages */
103 #define RQF_COPY_USER ((__force req_flags_t)(1 << 9))
104 /* vaguely specified driver internal error. Ignored by the block layer */
105 #define RQF_FAILED ((__force req_flags_t)(1 << 10))
106 /* don't warn about errors */
107 #define RQF_QUIET ((__force req_flags_t)(1 << 11))
108 /* elevator private data attached */
109 #define RQF_ELVPRIV ((__force req_flags_t)(1 << 12))
110 /* account I/O stat */
111 #define RQF_IO_STAT ((__force req_flags_t)(1 << 13))
112 /* request came from our alloc pool */
113 #define RQF_ALLOCED ((__force req_flags_t)(1 << 14))
114 /* runtime pm request */
115 #define RQF_PM ((__force req_flags_t)(1 << 15))
116 /* on IO scheduler merge hash */
117 #define RQF_HASHED ((__force req_flags_t)(1 << 16))
118 /* IO stats tracking on */
119 #define RQF_STATS ((__force req_flags_t)(1 << 17))
120 /* Look at ->special_vec for the actual data payload instead of the
121 bio chain. */
122 #define RQF_SPECIAL_PAYLOAD ((__force req_flags_t)(1 << 18))
123
124 /* flags that prevent us from merging requests: */
125 #define RQF_NOMERGE_FLAGS \
126 (RQF_STARTED | RQF_SOFTBARRIER | RQF_FLUSH_SEQ | RQF_SPECIAL_PAYLOAD)
127
128 /*
129 * Try to put the fields that are referenced together in the same cacheline.
130 *
131 * If you modify this structure, make sure to update blk_rq_init() and
132 * especially blk_mq_rq_ctx_init() to take care of the added fields.
133 */
134 struct request {
135 struct list_head queuelist;
136 union {
137 struct call_single_data csd;
138 u64 fifo_time;
139 };
140
141 struct request_queue *q;
142 struct blk_mq_ctx *mq_ctx;
143
144 int cpu;
145 unsigned int cmd_flags; /* op and common flags */
146 req_flags_t rq_flags;
147
148 int internal_tag;
149
150 unsigned long atomic_flags;
151
152 /* the following two fields are internal, NEVER access directly */
153 unsigned int __data_len; /* total data len */
154 int tag;
155 sector_t __sector; /* sector cursor */
156
157 struct bio *bio;
158 struct bio *biotail;
159
160 /*
161 * The hash is used inside the scheduler, and killed once the
162 * request reaches the dispatch list. The ipi_list is only used
163 * to queue the request for softirq completion, which is long
164 * after the request has been unhashed (and even removed from
165 * the dispatch list).
166 */
167 union {
168 struct hlist_node hash; /* merge hash */
169 struct list_head ipi_list;
170 };
171
172 /*
173 * The rb_node is only used inside the io scheduler, requests
174 * are pruned when moved to the dispatch queue. So let the
175 * completion_data share space with the rb_node.
176 */
177 union {
178 struct rb_node rb_node; /* sort/lookup */
179 struct bio_vec special_vec;
180 void *completion_data;
181 int error_count; /* for legacy drivers, don't use */
182 };
183
184 /*
185 * Three pointers are available for the IO schedulers, if they need
186 * more they have to dynamically allocate it. Flush requests are
187 * never put on the IO scheduler. So let the flush fields share
188 * space with the elevator data.
189 */
190 union {
191 struct {
192 struct io_cq *icq;
193 void *priv[2];
194 } elv;
195
196 struct {
197 unsigned int seq;
198 struct list_head list;
199 rq_end_io_fn *saved_end_io;
200 } flush;
201 };
202
203 struct gendisk *rq_disk;
204 struct hd_struct *part;
205 unsigned long start_time;
206 struct blk_issue_stat issue_stat;
207 #ifdef CONFIG_BLK_CGROUP
208 struct request_list *rl; /* rl this rq is alloced from */
209 unsigned long long start_time_ns;
210 unsigned long long io_start_time_ns; /* when passed to hardware */
211 #endif
212 /* Number of scatter-gather DMA addr+len pairs after
213 * physical address coalescing is performed.
214 */
215 unsigned short nr_phys_segments;
216 #if defined(CONFIG_BLK_DEV_INTEGRITY)
217 unsigned short nr_integrity_segments;
218 #endif
219
220 unsigned short ioprio;
221
222 unsigned int timeout;
223
224 void *special; /* opaque pointer available for LLD use */
225
226 unsigned int extra_len; /* length of alignment and padding */
227
228 unsigned long deadline;
229 struct list_head timeout_list;
230
231 /*
232 * completion callback.
233 */
234 rq_end_io_fn *end_io;
235 void *end_io_data;
236
237 /* for bidi */
238 struct request *next_rq;
239 };
240
241 static inline bool blk_rq_is_scsi(struct request *rq)
242 {
243 return req_op(rq) == REQ_OP_SCSI_IN || req_op(rq) == REQ_OP_SCSI_OUT;
244 }
245
246 static inline bool blk_rq_is_private(struct request *rq)
247 {
248 return req_op(rq) == REQ_OP_DRV_IN || req_op(rq) == REQ_OP_DRV_OUT;
249 }
250
251 static inline bool blk_rq_is_passthrough(struct request *rq)
252 {
253 return blk_rq_is_scsi(rq) || blk_rq_is_private(rq);
254 }
255
256 static inline unsigned short req_get_ioprio(struct request *req)
257 {
258 return req->ioprio;
259 }
260
261 #include <linux/elevator.h>
262
263 struct blk_queue_ctx;
264
265 typedef void (request_fn_proc) (struct request_queue *q);
266 typedef blk_qc_t (make_request_fn) (struct request_queue *q, struct bio *bio);
267 typedef int (prep_rq_fn) (struct request_queue *, struct request *);
268 typedef void (unprep_rq_fn) (struct request_queue *, struct request *);
269
270 struct bio_vec;
271 typedef void (softirq_done_fn)(struct request *);
272 typedef int (dma_drain_needed_fn)(struct request *);
273 typedef int (lld_busy_fn) (struct request_queue *q);
274 typedef int (bsg_job_fn) (struct bsg_job *);
275 typedef int (init_rq_fn)(struct request_queue *, struct request *, gfp_t);
276 typedef void (exit_rq_fn)(struct request_queue *, struct request *);
277
278 enum blk_eh_timer_return {
279 BLK_EH_NOT_HANDLED,
280 BLK_EH_HANDLED,
281 BLK_EH_RESET_TIMER,
282 };
283
284 typedef enum blk_eh_timer_return (rq_timed_out_fn)(struct request *);
285
286 enum blk_queue_state {
287 Queue_down,
288 Queue_up,
289 };
290
291 struct blk_queue_tag {
292 struct request **tag_index; /* map of busy tags */
293 unsigned long *tag_map; /* bit map of free/busy tags */
294 int max_depth; /* what we will send to device */
295 int real_max_depth; /* what the array can hold */
296 atomic_t refcnt; /* map can be shared */
297 int alloc_policy; /* tag allocation policy */
298 int next_tag; /* next tag */
299 };
300 #define BLK_TAG_ALLOC_FIFO 0 /* allocate starting from 0 */
301 #define BLK_TAG_ALLOC_RR 1 /* allocate starting from last allocated tag */
302
303 #define BLK_SCSI_MAX_CMDS (256)
304 #define BLK_SCSI_CMD_PER_LONG (BLK_SCSI_MAX_CMDS / (sizeof(long) * 8))
305
306 /*
307 * Zoned block device models (zoned limit).
308 */
309 enum blk_zoned_model {
310 BLK_ZONED_NONE, /* Regular block device */
311 BLK_ZONED_HA, /* Host-aware zoned block device */
312 BLK_ZONED_HM, /* Host-managed zoned block device */
313 };
314
315 struct queue_limits {
316 unsigned long bounce_pfn;
317 unsigned long seg_boundary_mask;
318 unsigned long virt_boundary_mask;
319
320 unsigned int max_hw_sectors;
321 unsigned int max_dev_sectors;
322 unsigned int chunk_sectors;
323 unsigned int max_sectors;
324 unsigned int max_segment_size;
325 unsigned int physical_block_size;
326 unsigned int alignment_offset;
327 unsigned int io_min;
328 unsigned int io_opt;
329 unsigned int max_discard_sectors;
330 unsigned int max_hw_discard_sectors;
331 unsigned int max_write_same_sectors;
332 unsigned int max_write_zeroes_sectors;
333 unsigned int discard_granularity;
334 unsigned int discard_alignment;
335
336 unsigned short logical_block_size;
337 unsigned short max_segments;
338 unsigned short max_integrity_segments;
339 unsigned short max_discard_segments;
340
341 unsigned char misaligned;
342 unsigned char discard_misaligned;
343 unsigned char cluster;
344 unsigned char raid_partial_stripes_expensive;
345 enum blk_zoned_model zoned;
346 };
347
348 #ifdef CONFIG_BLK_DEV_ZONED
349
350 struct blk_zone_report_hdr {
351 unsigned int nr_zones;
352 u8 padding[60];
353 };
354
355 extern int blkdev_report_zones(struct block_device *bdev,
356 sector_t sector, struct blk_zone *zones,
357 unsigned int *nr_zones, gfp_t gfp_mask);
358 extern int blkdev_reset_zones(struct block_device *bdev, sector_t sectors,
359 sector_t nr_sectors, gfp_t gfp_mask);
360
361 extern int blkdev_report_zones_ioctl(struct block_device *bdev, fmode_t mode,
362 unsigned int cmd, unsigned long arg);
363 extern int blkdev_reset_zones_ioctl(struct block_device *bdev, fmode_t mode,
364 unsigned int cmd, unsigned long arg);
365
366 #else /* CONFIG_BLK_DEV_ZONED */
367
368 static inline int blkdev_report_zones_ioctl(struct block_device *bdev,
369 fmode_t mode, unsigned int cmd,
370 unsigned long arg)
371 {
372 return -ENOTTY;
373 }
374
375 static inline int blkdev_reset_zones_ioctl(struct block_device *bdev,
376 fmode_t mode, unsigned int cmd,
377 unsigned long arg)
378 {
379 return -ENOTTY;
380 }
381
382 #endif /* CONFIG_BLK_DEV_ZONED */
383
384 struct request_queue {
385 /*
386 * Together with queue_head for cacheline sharing
387 */
388 struct list_head queue_head;
389 struct request *last_merge;
390 struct elevator_queue *elevator;
391 int nr_rqs[2]; /* # allocated [a]sync rqs */
392 int nr_rqs_elvpriv; /* # allocated rqs w/ elvpriv */
393
394 struct blk_queue_stats *stats;
395 struct rq_wb *rq_wb;
396
397 /*
398 * If blkcg is not used, @q->root_rl serves all requests. If blkcg
399 * is used, root blkg allocates from @q->root_rl and all other
400 * blkgs from their own blkg->rl. Which one to use should be
401 * determined using bio_request_list().
402 */
403 struct request_list root_rl;
404
405 request_fn_proc *request_fn;
406 make_request_fn *make_request_fn;
407 prep_rq_fn *prep_rq_fn;
408 unprep_rq_fn *unprep_rq_fn;
409 softirq_done_fn *softirq_done_fn;
410 rq_timed_out_fn *rq_timed_out_fn;
411 dma_drain_needed_fn *dma_drain_needed;
412 lld_busy_fn *lld_busy_fn;
413 init_rq_fn *init_rq_fn;
414 exit_rq_fn *exit_rq_fn;
415
416 const struct blk_mq_ops *mq_ops;
417
418 unsigned int *mq_map;
419
420 /* sw queues */
421 struct blk_mq_ctx __percpu *queue_ctx;
422 unsigned int nr_queues;
423
424 unsigned int queue_depth;
425
426 /* hw dispatch queues */
427 struct blk_mq_hw_ctx **queue_hw_ctx;
428 unsigned int nr_hw_queues;
429
430 /*
431 * Dispatch queue sorting
432 */
433 sector_t end_sector;
434 struct request *boundary_rq;
435
436 /*
437 * Delayed queue handling
438 */
439 struct delayed_work delay_work;
440
441 struct backing_dev_info *backing_dev_info;
442
443 /*
444 * The queue owner gets to use this for whatever they like.
445 * ll_rw_blk doesn't touch it.
446 */
447 void *queuedata;
448
449 /*
450 * various queue flags, see QUEUE_* below
451 */
452 unsigned long queue_flags;
453
454 /*
455 * ida allocated id for this queue. Used to index queues from
456 * ioctx.
457 */
458 int id;
459
460 /*
461 * queue needs bounce pages for pages above this limit
462 */
463 gfp_t bounce_gfp;
464
465 /*
466 * protects queue structures from reentrancy. ->__queue_lock should
467 * _never_ be used directly, it is queue private. always use
468 * ->queue_lock.
469 */
470 spinlock_t __queue_lock;
471 spinlock_t *queue_lock;
472
473 /*
474 * queue kobject
475 */
476 struct kobject kobj;
477
478 /*
479 * mq queue kobject
480 */
481 struct kobject mq_kobj;
482
483 #ifdef CONFIG_BLK_DEV_INTEGRITY
484 struct blk_integrity integrity;
485 #endif /* CONFIG_BLK_DEV_INTEGRITY */
486
487 #ifdef CONFIG_PM
488 struct device *dev;
489 int rpm_status;
490 unsigned int nr_pending;
491 #endif
492
493 /*
494 * queue settings
495 */
496 unsigned long nr_requests; /* Max # of requests */
497 unsigned int nr_congestion_on;
498 unsigned int nr_congestion_off;
499 unsigned int nr_batching;
500
501 unsigned int dma_drain_size;
502 void *dma_drain_buffer;
503 unsigned int dma_pad_mask;
504 unsigned int dma_alignment;
505
506 struct blk_queue_tag *queue_tags;
507 struct list_head tag_busy_list;
508
509 unsigned int nr_sorted;
510 unsigned int in_flight[2];
511
512 /*
513 * Number of active block driver functions for which blk_drain_queue()
514 * must wait. Must be incremented around functions that unlock the
515 * queue_lock internally, e.g. scsi_request_fn().
516 */
517 unsigned int request_fn_active;
518
519 unsigned int rq_timeout;
520 int poll_nsec;
521
522 struct blk_stat_callback *poll_cb;
523 struct blk_rq_stat poll_stat[BLK_MQ_POLL_STATS_BKTS];
524
525 struct timer_list timeout;
526 struct work_struct timeout_work;
527 struct list_head timeout_list;
528
529 struct list_head icq_list;
530 #ifdef CONFIG_BLK_CGROUP
531 DECLARE_BITMAP (blkcg_pols, BLKCG_MAX_POLS);
532 struct blkcg_gq *root_blkg;
533 struct list_head blkg_list;
534 #endif
535
536 struct queue_limits limits;
537
538 /*
539 * sg stuff
540 */
541 unsigned int sg_timeout;
542 unsigned int sg_reserved_size;
543 int node;
544 #ifdef CONFIG_BLK_DEV_IO_TRACE
545 struct blk_trace *blk_trace;
546 #endif
547 /*
548 * for flush operations
549 */
550 struct blk_flush_queue *fq;
551
552 struct list_head requeue_list;
553 spinlock_t requeue_lock;
554 struct delayed_work requeue_work;
555
556 struct mutex sysfs_lock;
557
558 int bypass_depth;
559 atomic_t mq_freeze_depth;
560
561 #if defined(CONFIG_BLK_DEV_BSG)
562 bsg_job_fn *bsg_job_fn;
563 int bsg_job_size;
564 struct bsg_class_device bsg_dev;
565 #endif
566
567 #ifdef CONFIG_BLK_DEV_THROTTLING
568 /* Throttle data */
569 struct throtl_data *td;
570 #endif
571 struct rcu_head rcu_head;
572 wait_queue_head_t mq_freeze_wq;
573 struct percpu_ref q_usage_counter;
574 struct list_head all_q_node;
575
576 struct blk_mq_tag_set *tag_set;
577 struct list_head tag_set_list;
578 struct bio_set *bio_split;
579
580 #ifdef CONFIG_BLK_DEBUG_FS
581 struct dentry *debugfs_dir;
582 struct dentry *sched_debugfs_dir;
583 #endif
584
585 bool mq_sysfs_init_done;
586
587 size_t cmd_size;
588 void *rq_alloc_data;
589
590 struct work_struct release_work;
591 };
592
593 #define QUEUE_FLAG_QUEUED 1 /* uses generic tag queueing */
594 #define QUEUE_FLAG_STOPPED 2 /* queue is stopped */
595 #define QUEUE_FLAG_SYNCFULL 3 /* read queue has been filled */
596 #define QUEUE_FLAG_ASYNCFULL 4 /* write queue has been filled */
597 #define QUEUE_FLAG_DYING 5 /* queue being torn down */
598 #define QUEUE_FLAG_BYPASS 6 /* act as dumb FIFO queue */
599 #define QUEUE_FLAG_BIDI 7 /* queue supports bidi requests */
600 #define QUEUE_FLAG_NOMERGES 8 /* disable merge attempts */
601 #define QUEUE_FLAG_SAME_COMP 9 /* complete on same CPU-group */
602 #define QUEUE_FLAG_FAIL_IO 10 /* fake timeout */
603 #define QUEUE_FLAG_STACKABLE 11 /* supports request stacking */
604 #define QUEUE_FLAG_NONROT 12 /* non-rotational device (SSD) */
605 #define QUEUE_FLAG_VIRT QUEUE_FLAG_NONROT /* paravirt device */
606 #define QUEUE_FLAG_IO_STAT 13 /* do IO stats */
607 #define QUEUE_FLAG_DISCARD 14 /* supports DISCARD */
608 #define QUEUE_FLAG_NOXMERGES 15 /* No extended merges */
609 #define QUEUE_FLAG_ADD_RANDOM 16 /* Contributes to random pool */
610 #define QUEUE_FLAG_SECERASE 17 /* supports secure erase */
611 #define QUEUE_FLAG_SAME_FORCE 18 /* force complete on same CPU */
612 #define QUEUE_FLAG_DEAD 19 /* queue tear-down finished */
613 #define QUEUE_FLAG_INIT_DONE 20 /* queue is initialized */
614 #define QUEUE_FLAG_NO_SG_MERGE 21 /* don't attempt to merge SG segments*/
615 #define QUEUE_FLAG_POLL 22 /* IO polling enabled if set */
616 #define QUEUE_FLAG_WC 23 /* Write back caching */
617 #define QUEUE_FLAG_FUA 24 /* device supports FUA writes */
618 #define QUEUE_FLAG_FLUSH_NQ 25 /* flush not queueuable */
619 #define QUEUE_FLAG_DAX 26 /* device supports DAX */
620 #define QUEUE_FLAG_STATS 27 /* track rq completion times */
621 #define QUEUE_FLAG_POLL_STATS 28 /* collecting stats for hybrid polling */
622 #define QUEUE_FLAG_REGISTERED 29 /* queue has been registered to a disk */
623
624 #define QUEUE_FLAG_DEFAULT ((1 << QUEUE_FLAG_IO_STAT) | \
625 (1 << QUEUE_FLAG_STACKABLE) | \
626 (1 << QUEUE_FLAG_SAME_COMP) | \
627 (1 << QUEUE_FLAG_ADD_RANDOM))
628
629 #define QUEUE_FLAG_MQ_DEFAULT ((1 << QUEUE_FLAG_IO_STAT) | \
630 (1 << QUEUE_FLAG_STACKABLE) | \
631 (1 << QUEUE_FLAG_SAME_COMP) | \
632 (1 << QUEUE_FLAG_POLL))
633
634 static inline void queue_lockdep_assert_held(struct request_queue *q)
635 {
636 if (q->queue_lock)
637 lockdep_assert_held(q->queue_lock);
638 }
639
640 static inline void queue_flag_set_unlocked(unsigned int flag,
641 struct request_queue *q)
642 {
643 __set_bit(flag, &q->queue_flags);
644 }
645
646 static inline int queue_flag_test_and_clear(unsigned int flag,
647 struct request_queue *q)
648 {
649 queue_lockdep_assert_held(q);
650
651 if (test_bit(flag, &q->queue_flags)) {
652 __clear_bit(flag, &q->queue_flags);
653 return 1;
654 }
655
656 return 0;
657 }
658
659 static inline int queue_flag_test_and_set(unsigned int flag,
660 struct request_queue *q)
661 {
662 queue_lockdep_assert_held(q);
663
664 if (!test_bit(flag, &q->queue_flags)) {
665 __set_bit(flag, &q->queue_flags);
666 return 0;
667 }
668
669 return 1;
670 }
671
672 static inline void queue_flag_set(unsigned int flag, struct request_queue *q)
673 {
674 queue_lockdep_assert_held(q);
675 __set_bit(flag, &q->queue_flags);
676 }
677
678 static inline void queue_flag_clear_unlocked(unsigned int flag,
679 struct request_queue *q)
680 {
681 __clear_bit(flag, &q->queue_flags);
682 }
683
684 static inline int queue_in_flight(struct request_queue *q)
685 {
686 return q->in_flight[0] + q->in_flight[1];
687 }
688
689 static inline void queue_flag_clear(unsigned int flag, struct request_queue *q)
690 {
691 queue_lockdep_assert_held(q);
692 __clear_bit(flag, &q->queue_flags);
693 }
694
695 #define blk_queue_tagged(q) test_bit(QUEUE_FLAG_QUEUED, &(q)->queue_flags)
696 #define blk_queue_stopped(q) test_bit(QUEUE_FLAG_STOPPED, &(q)->queue_flags)
697 #define blk_queue_dying(q) test_bit(QUEUE_FLAG_DYING, &(q)->queue_flags)
698 #define blk_queue_dead(q) test_bit(QUEUE_FLAG_DEAD, &(q)->queue_flags)
699 #define blk_queue_bypass(q) test_bit(QUEUE_FLAG_BYPASS, &(q)->queue_flags)
700 #define blk_queue_init_done(q) test_bit(QUEUE_FLAG_INIT_DONE, &(q)->queue_flags)
701 #define blk_queue_nomerges(q) test_bit(QUEUE_FLAG_NOMERGES, &(q)->queue_flags)
702 #define blk_queue_noxmerges(q) \
703 test_bit(QUEUE_FLAG_NOXMERGES, &(q)->queue_flags)
704 #define blk_queue_nonrot(q) test_bit(QUEUE_FLAG_NONROT, &(q)->queue_flags)
705 #define blk_queue_io_stat(q) test_bit(QUEUE_FLAG_IO_STAT, &(q)->queue_flags)
706 #define blk_queue_add_random(q) test_bit(QUEUE_FLAG_ADD_RANDOM, &(q)->queue_flags)
707 #define blk_queue_stackable(q) \
708 test_bit(QUEUE_FLAG_STACKABLE, &(q)->queue_flags)
709 #define blk_queue_discard(q) test_bit(QUEUE_FLAG_DISCARD, &(q)->queue_flags)
710 #define blk_queue_secure_erase(q) \
711 (test_bit(QUEUE_FLAG_SECERASE, &(q)->queue_flags))
712 #define blk_queue_dax(q) test_bit(QUEUE_FLAG_DAX, &(q)->queue_flags)
713
714 #define blk_noretry_request(rq) \
715 ((rq)->cmd_flags & (REQ_FAILFAST_DEV|REQ_FAILFAST_TRANSPORT| \
716 REQ_FAILFAST_DRIVER))
717
718 static inline bool blk_account_rq(struct request *rq)
719 {
720 return (rq->rq_flags & RQF_STARTED) && !blk_rq_is_passthrough(rq);
721 }
722
723 #define blk_rq_cpu_valid(rq) ((rq)->cpu != -1)
724 #define blk_bidi_rq(rq) ((rq)->next_rq != NULL)
725 /* rq->queuelist of dequeued request must be list_empty() */
726 #define blk_queued_rq(rq) (!list_empty(&(rq)->queuelist))
727
728 #define list_entry_rq(ptr) list_entry((ptr), struct request, queuelist)
729
730 #define rq_data_dir(rq) (op_is_write(req_op(rq)) ? WRITE : READ)
731
732 /*
733 * Driver can handle struct request, if it either has an old style
734 * request_fn defined, or is blk-mq based.
735 */
736 static inline bool queue_is_rq_based(struct request_queue *q)
737 {
738 return q->request_fn || q->mq_ops;
739 }
740
741 static inline unsigned int blk_queue_cluster(struct request_queue *q)
742 {
743 return q->limits.cluster;
744 }
745
746 static inline enum blk_zoned_model
747 blk_queue_zoned_model(struct request_queue *q)
748 {
749 return q->limits.zoned;
750 }
751
752 static inline bool blk_queue_is_zoned(struct request_queue *q)
753 {
754 switch (blk_queue_zoned_model(q)) {
755 case BLK_ZONED_HA:
756 case BLK_ZONED_HM:
757 return true;
758 default:
759 return false;
760 }
761 }
762
763 static inline unsigned int blk_queue_zone_sectors(struct request_queue *q)
764 {
765 return blk_queue_is_zoned(q) ? q->limits.chunk_sectors : 0;
766 }
767
768 static inline bool rq_is_sync(struct request *rq)
769 {
770 return op_is_sync(rq->cmd_flags);
771 }
772
773 static inline bool blk_rl_full(struct request_list *rl, bool sync)
774 {
775 unsigned int flag = sync ? BLK_RL_SYNCFULL : BLK_RL_ASYNCFULL;
776
777 return rl->flags & flag;
778 }
779
780 static inline void blk_set_rl_full(struct request_list *rl, bool sync)
781 {
782 unsigned int flag = sync ? BLK_RL_SYNCFULL : BLK_RL_ASYNCFULL;
783
784 rl->flags |= flag;
785 }
786
787 static inline void blk_clear_rl_full(struct request_list *rl, bool sync)
788 {
789 unsigned int flag = sync ? BLK_RL_SYNCFULL : BLK_RL_ASYNCFULL;
790
791 rl->flags &= ~flag;
792 }
793
794 static inline bool rq_mergeable(struct request *rq)
795 {
796 if (blk_rq_is_passthrough(rq))
797 return false;
798
799 if (req_op(rq) == REQ_OP_FLUSH)
800 return false;
801
802 if (req_op(rq) == REQ_OP_WRITE_ZEROES)
803 return false;
804
805 if (rq->cmd_flags & REQ_NOMERGE_FLAGS)
806 return false;
807 if (rq->rq_flags & RQF_NOMERGE_FLAGS)
808 return false;
809
810 return true;
811 }
812
813 static inline bool blk_write_same_mergeable(struct bio *a, struct bio *b)
814 {
815 if (bio_data(a) == bio_data(b))
816 return true;
817
818 return false;
819 }
820
821 static inline unsigned int blk_queue_depth(struct request_queue *q)
822 {
823 if (q->queue_depth)
824 return q->queue_depth;
825
826 return q->nr_requests;
827 }
828
829 /*
830 * q->prep_rq_fn return values
831 */
832 enum {
833 BLKPREP_OK, /* serve it */
834 BLKPREP_KILL, /* fatal error, kill, return -EIO */
835 BLKPREP_DEFER, /* leave on queue */
836 BLKPREP_INVALID, /* invalid command, kill, return -EREMOTEIO */
837 };
838
839 extern unsigned long blk_max_low_pfn, blk_max_pfn;
840
841 /*
842 * standard bounce addresses:
843 *
844 * BLK_BOUNCE_HIGH : bounce all highmem pages
845 * BLK_BOUNCE_ANY : don't bounce anything
846 * BLK_BOUNCE_ISA : bounce pages above ISA DMA boundary
847 */
848
849 #if BITS_PER_LONG == 32
850 #define BLK_BOUNCE_HIGH ((u64)blk_max_low_pfn << PAGE_SHIFT)
851 #else
852 #define BLK_BOUNCE_HIGH -1ULL
853 #endif
854 #define BLK_BOUNCE_ANY (-1ULL)
855 #define BLK_BOUNCE_ISA (DMA_BIT_MASK(24))
856
857 /*
858 * default timeout for SG_IO if none specified
859 */
860 #define BLK_DEFAULT_SG_TIMEOUT (60 * HZ)
861 #define BLK_MIN_SG_TIMEOUT (7 * HZ)
862
863 #ifdef CONFIG_BOUNCE
864 extern int init_emergency_isa_pool(void);
865 extern void blk_queue_bounce(struct request_queue *q, struct bio **bio);
866 #else
867 static inline int init_emergency_isa_pool(void)
868 {
869 return 0;
870 }
871 static inline void blk_queue_bounce(struct request_queue *q, struct bio **bio)
872 {
873 }
874 #endif /* CONFIG_MMU */
875
876 struct rq_map_data {
877 struct page **pages;
878 int page_order;
879 int nr_entries;
880 unsigned long offset;
881 int null_mapped;
882 int from_user;
883 };
884
885 struct req_iterator {
886 struct bvec_iter iter;
887 struct bio *bio;
888 };
889
890 /* This should not be used directly - use rq_for_each_segment */
891 #define for_each_bio(_bio) \
892 for (; _bio; _bio = _bio->bi_next)
893 #define __rq_for_each_bio(_bio, rq) \
894 if ((rq->bio)) \
895 for (_bio = (rq)->bio; _bio; _bio = _bio->bi_next)
896
897 #define rq_for_each_segment(bvl, _rq, _iter) \
898 __rq_for_each_bio(_iter.bio, _rq) \
899 bio_for_each_segment(bvl, _iter.bio, _iter.iter)
900
901 #define rq_iter_last(bvec, _iter) \
902 (_iter.bio->bi_next == NULL && \
903 bio_iter_last(bvec, _iter.iter))
904
905 #ifndef ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
906 # error "You should define ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE for your platform"
907 #endif
908 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
909 extern void rq_flush_dcache_pages(struct request *rq);
910 #else
911 static inline void rq_flush_dcache_pages(struct request *rq)
912 {
913 }
914 #endif
915
916 #ifdef CONFIG_PRINTK
917 #define vfs_msg(sb, level, fmt, ...) \
918 __vfs_msg(sb, level, fmt, ##__VA_ARGS__)
919 #else
920 #define vfs_msg(sb, level, fmt, ...) \
921 do { \
922 no_printk(fmt, ##__VA_ARGS__); \
923 __vfs_msg(sb, "", " "); \
924 } while (0)
925 #endif
926
927 extern int blk_register_queue(struct gendisk *disk);
928 extern void blk_unregister_queue(struct gendisk *disk);
929 extern blk_qc_t generic_make_request(struct bio *bio);
930 extern void blk_rq_init(struct request_queue *q, struct request *rq);
931 extern void blk_init_request_from_bio(struct request *req, struct bio *bio);
932 extern void blk_put_request(struct request *);
933 extern void __blk_put_request(struct request_queue *, struct request *);
934 extern struct request *blk_get_request(struct request_queue *, int, gfp_t);
935 extern void blk_requeue_request(struct request_queue *, struct request *);
936 extern int blk_lld_busy(struct request_queue *q);
937 extern int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
938 struct bio_set *bs, gfp_t gfp_mask,
939 int (*bio_ctr)(struct bio *, struct bio *, void *),
940 void *data);
941 extern void blk_rq_unprep_clone(struct request *rq);
942 extern int blk_insert_cloned_request(struct request_queue *q,
943 struct request *rq);
944 extern int blk_rq_append_bio(struct request *rq, struct bio *bio);
945 extern void blk_delay_queue(struct request_queue *, unsigned long);
946 extern void blk_queue_split(struct request_queue *, struct bio **,
947 struct bio_set *);
948 extern void blk_recount_segments(struct request_queue *, struct bio *);
949 extern int scsi_verify_blk_ioctl(struct block_device *, unsigned int);
950 extern int scsi_cmd_blk_ioctl(struct block_device *, fmode_t,
951 unsigned int, void __user *);
952 extern int scsi_cmd_ioctl(struct request_queue *, struct gendisk *, fmode_t,
953 unsigned int, void __user *);
954 extern int sg_scsi_ioctl(struct request_queue *, struct gendisk *, fmode_t,
955 struct scsi_ioctl_command __user *);
956
957 extern int blk_queue_enter(struct request_queue *q, bool nowait);
958 extern void blk_queue_exit(struct request_queue *q);
959 extern void blk_start_queue(struct request_queue *q);
960 extern void blk_start_queue_async(struct request_queue *q);
961 extern void blk_stop_queue(struct request_queue *q);
962 extern void blk_sync_queue(struct request_queue *q);
963 extern void __blk_stop_queue(struct request_queue *q);
964 extern void __blk_run_queue(struct request_queue *q);
965 extern void __blk_run_queue_uncond(struct request_queue *q);
966 extern void blk_run_queue(struct request_queue *);
967 extern void blk_run_queue_async(struct request_queue *q);
968 extern void blk_mq_quiesce_queue(struct request_queue *q);
969 extern int blk_rq_map_user(struct request_queue *, struct request *,
970 struct rq_map_data *, void __user *, unsigned long,
971 gfp_t);
972 extern int blk_rq_unmap_user(struct bio *);
973 extern int blk_rq_map_kern(struct request_queue *, struct request *, void *, unsigned int, gfp_t);
974 extern int blk_rq_map_user_iov(struct request_queue *, struct request *,
975 struct rq_map_data *, const struct iov_iter *,
976 gfp_t);
977 extern void blk_execute_rq(struct request_queue *, struct gendisk *,
978 struct request *, int);
979 extern void blk_execute_rq_nowait(struct request_queue *, struct gendisk *,
980 struct request *, int, rq_end_io_fn *);
981
982 bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie);
983
984 static inline struct request_queue *bdev_get_queue(struct block_device *bdev)
985 {
986 return bdev->bd_disk->queue; /* this is never NULL */
987 }
988
989 /*
990 * blk_rq_pos() : the current sector
991 * blk_rq_bytes() : bytes left in the entire request
992 * blk_rq_cur_bytes() : bytes left in the current segment
993 * blk_rq_err_bytes() : bytes left till the next error boundary
994 * blk_rq_sectors() : sectors left in the entire request
995 * blk_rq_cur_sectors() : sectors left in the current segment
996 */
997 static inline sector_t blk_rq_pos(const struct request *rq)
998 {
999 return rq->__sector;
1000 }
1001
1002 static inline unsigned int blk_rq_bytes(const struct request *rq)
1003 {
1004 return rq->__data_len;
1005 }
1006
1007 static inline int blk_rq_cur_bytes(const struct request *rq)
1008 {
1009 return rq->bio ? bio_cur_bytes(rq->bio) : 0;
1010 }
1011
1012 extern unsigned int blk_rq_err_bytes(const struct request *rq);
1013
1014 static inline unsigned int blk_rq_sectors(const struct request *rq)
1015 {
1016 return blk_rq_bytes(rq) >> 9;
1017 }
1018
1019 static inline unsigned int blk_rq_cur_sectors(const struct request *rq)
1020 {
1021 return blk_rq_cur_bytes(rq) >> 9;
1022 }
1023
1024 /*
1025 * Some commands like WRITE SAME have a payload or data transfer size which
1026 * is different from the size of the request. Any driver that supports such
1027 * commands using the RQF_SPECIAL_PAYLOAD flag needs to use this helper to
1028 * calculate the data transfer size.
1029 */
1030 static inline unsigned int blk_rq_payload_bytes(struct request *rq)
1031 {
1032 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1033 return rq->special_vec.bv_len;
1034 return blk_rq_bytes(rq);
1035 }
1036
1037 static inline unsigned int blk_queue_get_max_sectors(struct request_queue *q,
1038 int op)
1039 {
1040 if (unlikely(op == REQ_OP_DISCARD || op == REQ_OP_SECURE_ERASE))
1041 return min(q->limits.max_discard_sectors, UINT_MAX >> 9);
1042
1043 if (unlikely(op == REQ_OP_WRITE_SAME))
1044 return q->limits.max_write_same_sectors;
1045
1046 if (unlikely(op == REQ_OP_WRITE_ZEROES))
1047 return q->limits.max_write_zeroes_sectors;
1048
1049 return q->limits.max_sectors;
1050 }
1051
1052 /*
1053 * Return maximum size of a request at given offset. Only valid for
1054 * file system requests.
1055 */
1056 static inline unsigned int blk_max_size_offset(struct request_queue *q,
1057 sector_t offset)
1058 {
1059 if (!q->limits.chunk_sectors)
1060 return q->limits.max_sectors;
1061
1062 return q->limits.chunk_sectors -
1063 (offset & (q->limits.chunk_sectors - 1));
1064 }
1065
1066 static inline unsigned int blk_rq_get_max_sectors(struct request *rq,
1067 sector_t offset)
1068 {
1069 struct request_queue *q = rq->q;
1070
1071 if (blk_rq_is_passthrough(rq))
1072 return q->limits.max_hw_sectors;
1073
1074 if (!q->limits.chunk_sectors ||
1075 req_op(rq) == REQ_OP_DISCARD ||
1076 req_op(rq) == REQ_OP_SECURE_ERASE)
1077 return blk_queue_get_max_sectors(q, req_op(rq));
1078
1079 return min(blk_max_size_offset(q, offset),
1080 blk_queue_get_max_sectors(q, req_op(rq)));
1081 }
1082
1083 static inline unsigned int blk_rq_count_bios(struct request *rq)
1084 {
1085 unsigned int nr_bios = 0;
1086 struct bio *bio;
1087
1088 __rq_for_each_bio(bio, rq)
1089 nr_bios++;
1090
1091 return nr_bios;
1092 }
1093
1094 /*
1095 * Request issue related functions.
1096 */
1097 extern struct request *blk_peek_request(struct request_queue *q);
1098 extern void blk_start_request(struct request *rq);
1099 extern struct request *blk_fetch_request(struct request_queue *q);
1100
1101 /*
1102 * Request completion related functions.
1103 *
1104 * blk_update_request() completes given number of bytes and updates
1105 * the request without completing it.
1106 *
1107 * blk_end_request() and friends. __blk_end_request() must be called
1108 * with the request queue spinlock acquired.
1109 *
1110 * Several drivers define their own end_request and call
1111 * blk_end_request() for parts of the original function.
1112 * This prevents code duplication in drivers.
1113 */
1114 extern bool blk_update_request(struct request *rq, int error,
1115 unsigned int nr_bytes);
1116 extern void blk_finish_request(struct request *rq, int error);
1117 extern bool blk_end_request(struct request *rq, int error,
1118 unsigned int nr_bytes);
1119 extern void blk_end_request_all(struct request *rq, int error);
1120 extern bool __blk_end_request(struct request *rq, int error,
1121 unsigned int nr_bytes);
1122 extern void __blk_end_request_all(struct request *rq, int error);
1123 extern bool __blk_end_request_cur(struct request *rq, int error);
1124
1125 extern void blk_complete_request(struct request *);
1126 extern void __blk_complete_request(struct request *);
1127 extern void blk_abort_request(struct request *);
1128 extern void blk_unprep_request(struct request *);
1129
1130 /*
1131 * Access functions for manipulating queue properties
1132 */
1133 extern struct request_queue *blk_init_queue_node(request_fn_proc *rfn,
1134 spinlock_t *lock, int node_id);
1135 extern struct request_queue *blk_init_queue(request_fn_proc *, spinlock_t *);
1136 extern int blk_init_allocated_queue(struct request_queue *);
1137 extern void blk_cleanup_queue(struct request_queue *);
1138 extern void blk_queue_make_request(struct request_queue *, make_request_fn *);
1139 extern void blk_queue_bounce_limit(struct request_queue *, u64);
1140 extern void blk_queue_max_hw_sectors(struct request_queue *, unsigned int);
1141 extern void blk_queue_chunk_sectors(struct request_queue *, unsigned int);
1142 extern void blk_queue_max_segments(struct request_queue *, unsigned short);
1143 extern void blk_queue_max_discard_segments(struct request_queue *,
1144 unsigned short);
1145 extern void blk_queue_max_segment_size(struct request_queue *, unsigned int);
1146 extern void blk_queue_max_discard_sectors(struct request_queue *q,
1147 unsigned int max_discard_sectors);
1148 extern void blk_queue_max_write_same_sectors(struct request_queue *q,
1149 unsigned int max_write_same_sectors);
1150 extern void blk_queue_max_write_zeroes_sectors(struct request_queue *q,
1151 unsigned int max_write_same_sectors);
1152 extern void blk_queue_logical_block_size(struct request_queue *, unsigned short);
1153 extern void blk_queue_physical_block_size(struct request_queue *, unsigned int);
1154 extern void blk_queue_alignment_offset(struct request_queue *q,
1155 unsigned int alignment);
1156 extern void blk_limits_io_min(struct queue_limits *limits, unsigned int min);
1157 extern void blk_queue_io_min(struct request_queue *q, unsigned int min);
1158 extern void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt);
1159 extern void blk_queue_io_opt(struct request_queue *q, unsigned int opt);
1160 extern void blk_set_queue_depth(struct request_queue *q, unsigned int depth);
1161 extern void blk_set_default_limits(struct queue_limits *lim);
1162 extern void blk_set_stacking_limits(struct queue_limits *lim);
1163 extern int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
1164 sector_t offset);
1165 extern int bdev_stack_limits(struct queue_limits *t, struct block_device *bdev,
1166 sector_t offset);
1167 extern void disk_stack_limits(struct gendisk *disk, struct block_device *bdev,
1168 sector_t offset);
1169 extern void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b);
1170 extern void blk_queue_dma_pad(struct request_queue *, unsigned int);
1171 extern void blk_queue_update_dma_pad(struct request_queue *, unsigned int);
1172 extern int blk_queue_dma_drain(struct request_queue *q,
1173 dma_drain_needed_fn *dma_drain_needed,
1174 void *buf, unsigned int size);
1175 extern void blk_queue_lld_busy(struct request_queue *q, lld_busy_fn *fn);
1176 extern void blk_queue_segment_boundary(struct request_queue *, unsigned long);
1177 extern void blk_queue_virt_boundary(struct request_queue *, unsigned long);
1178 extern void blk_queue_prep_rq(struct request_queue *, prep_rq_fn *pfn);
1179 extern void blk_queue_unprep_rq(struct request_queue *, unprep_rq_fn *ufn);
1180 extern void blk_queue_dma_alignment(struct request_queue *, int);
1181 extern void blk_queue_update_dma_alignment(struct request_queue *, int);
1182 extern void blk_queue_softirq_done(struct request_queue *, softirq_done_fn *);
1183 extern void blk_queue_rq_timed_out(struct request_queue *, rq_timed_out_fn *);
1184 extern void blk_queue_rq_timeout(struct request_queue *, unsigned int);
1185 extern void blk_queue_flush_queueable(struct request_queue *q, bool queueable);
1186 extern void blk_queue_write_cache(struct request_queue *q, bool enabled, bool fua);
1187
1188 /*
1189 * Number of physical segments as sent to the device.
1190 *
1191 * Normally this is the number of discontiguous data segments sent by the
1192 * submitter. But for data-less command like discard we might have no
1193 * actual data segments submitted, but the driver might have to add it's
1194 * own special payload. In that case we still return 1 here so that this
1195 * special payload will be mapped.
1196 */
1197 static inline unsigned short blk_rq_nr_phys_segments(struct request *rq)
1198 {
1199 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1200 return 1;
1201 return rq->nr_phys_segments;
1202 }
1203
1204 /*
1205 * Number of discard segments (or ranges) the driver needs to fill in.
1206 * Each discard bio merged into a request is counted as one segment.
1207 */
1208 static inline unsigned short blk_rq_nr_discard_segments(struct request *rq)
1209 {
1210 return max_t(unsigned short, rq->nr_phys_segments, 1);
1211 }
1212
1213 extern int blk_rq_map_sg(struct request_queue *, struct request *, struct scatterlist *);
1214 extern void blk_dump_rq_flags(struct request *, char *);
1215 extern long nr_blockdev_pages(void);
1216
1217 bool __must_check blk_get_queue(struct request_queue *);
1218 struct request_queue *blk_alloc_queue(gfp_t);
1219 struct request_queue *blk_alloc_queue_node(gfp_t, int);
1220 extern void blk_put_queue(struct request_queue *);
1221 extern void blk_set_queue_dying(struct request_queue *);
1222
1223 /*
1224 * block layer runtime pm functions
1225 */
1226 #ifdef CONFIG_PM
1227 extern void blk_pm_runtime_init(struct request_queue *q, struct device *dev);
1228 extern int blk_pre_runtime_suspend(struct request_queue *q);
1229 extern void blk_post_runtime_suspend(struct request_queue *q, int err);
1230 extern void blk_pre_runtime_resume(struct request_queue *q);
1231 extern void blk_post_runtime_resume(struct request_queue *q, int err);
1232 extern void blk_set_runtime_active(struct request_queue *q);
1233 #else
1234 static inline void blk_pm_runtime_init(struct request_queue *q,
1235 struct device *dev) {}
1236 static inline int blk_pre_runtime_suspend(struct request_queue *q)
1237 {
1238 return -ENOSYS;
1239 }
1240 static inline void blk_post_runtime_suspend(struct request_queue *q, int err) {}
1241 static inline void blk_pre_runtime_resume(struct request_queue *q) {}
1242 static inline void blk_post_runtime_resume(struct request_queue *q, int err) {}
1243 static inline void blk_set_runtime_active(struct request_queue *q) {}
1244 #endif
1245
1246 /*
1247 * blk_plug permits building a queue of related requests by holding the I/O
1248 * fragments for a short period. This allows merging of sequential requests
1249 * into single larger request. As the requests are moved from a per-task list to
1250 * the device's request_queue in a batch, this results in improved scalability
1251 * as the lock contention for request_queue lock is reduced.
1252 *
1253 * It is ok not to disable preemption when adding the request to the plug list
1254 * or when attempting a merge, because blk_schedule_flush_list() will only flush
1255 * the plug list when the task sleeps by itself. For details, please see
1256 * schedule() where blk_schedule_flush_plug() is called.
1257 */
1258 struct blk_plug {
1259 struct list_head list; /* requests */
1260 struct list_head mq_list; /* blk-mq requests */
1261 struct list_head cb_list; /* md requires an unplug callback */
1262 };
1263 #define BLK_MAX_REQUEST_COUNT 16
1264 #define BLK_PLUG_FLUSH_SIZE (128 * 1024)
1265
1266 struct blk_plug_cb;
1267 typedef void (*blk_plug_cb_fn)(struct blk_plug_cb *, bool);
1268 struct blk_plug_cb {
1269 struct list_head list;
1270 blk_plug_cb_fn callback;
1271 void *data;
1272 };
1273 extern struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug,
1274 void *data, int size);
1275 extern void blk_start_plug(struct blk_plug *);
1276 extern void blk_finish_plug(struct blk_plug *);
1277 extern void blk_flush_plug_list(struct blk_plug *, bool);
1278
1279 static inline void blk_flush_plug(struct task_struct *tsk)
1280 {
1281 struct blk_plug *plug = tsk->plug;
1282
1283 if (plug)
1284 blk_flush_plug_list(plug, false);
1285 }
1286
1287 static inline void blk_schedule_flush_plug(struct task_struct *tsk)
1288 {
1289 struct blk_plug *plug = tsk->plug;
1290
1291 if (plug)
1292 blk_flush_plug_list(plug, true);
1293 }
1294
1295 static inline bool blk_needs_flush_plug(struct task_struct *tsk)
1296 {
1297 struct blk_plug *plug = tsk->plug;
1298
1299 return plug &&
1300 (!list_empty(&plug->list) ||
1301 !list_empty(&plug->mq_list) ||
1302 !list_empty(&plug->cb_list));
1303 }
1304
1305 /*
1306 * tag stuff
1307 */
1308 extern int blk_queue_start_tag(struct request_queue *, struct request *);
1309 extern struct request *blk_queue_find_tag(struct request_queue *, int);
1310 extern void blk_queue_end_tag(struct request_queue *, struct request *);
1311 extern int blk_queue_init_tags(struct request_queue *, int, struct blk_queue_tag *, int);
1312 extern void blk_queue_free_tags(struct request_queue *);
1313 extern int blk_queue_resize_tags(struct request_queue *, int);
1314 extern void blk_queue_invalidate_tags(struct request_queue *);
1315 extern struct blk_queue_tag *blk_init_tags(int, int);
1316 extern void blk_free_tags(struct blk_queue_tag *);
1317
1318 static inline struct request *blk_map_queue_find_tag(struct blk_queue_tag *bqt,
1319 int tag)
1320 {
1321 if (unlikely(bqt == NULL || tag >= bqt->real_max_depth))
1322 return NULL;
1323 return bqt->tag_index[tag];
1324 }
1325
1326 extern int blkdev_issue_flush(struct block_device *, gfp_t, sector_t *);
1327 extern int blkdev_issue_write_same(struct block_device *bdev, sector_t sector,
1328 sector_t nr_sects, gfp_t gfp_mask, struct page *page);
1329
1330 #define BLKDEV_DISCARD_SECURE (1 << 0) /* issue a secure erase */
1331
1332 extern int blkdev_issue_discard(struct block_device *bdev, sector_t sector,
1333 sector_t nr_sects, gfp_t gfp_mask, unsigned long flags);
1334 extern int __blkdev_issue_discard(struct block_device *bdev, sector_t sector,
1335 sector_t nr_sects, gfp_t gfp_mask, int flags,
1336 struct bio **biop);
1337
1338 #define BLKDEV_ZERO_NOUNMAP (1 << 0) /* do not free blocks */
1339 #define BLKDEV_ZERO_NOFALLBACK (1 << 1) /* don't write explicit zeroes */
1340
1341 extern int __blkdev_issue_zeroout(struct block_device *bdev, sector_t sector,
1342 sector_t nr_sects, gfp_t gfp_mask, struct bio **biop,
1343 unsigned flags);
1344 extern int blkdev_issue_zeroout(struct block_device *bdev, sector_t sector,
1345 sector_t nr_sects, gfp_t gfp_mask, unsigned flags);
1346
1347 static inline int sb_issue_discard(struct super_block *sb, sector_t block,
1348 sector_t nr_blocks, gfp_t gfp_mask, unsigned long flags)
1349 {
1350 return blkdev_issue_discard(sb->s_bdev, block << (sb->s_blocksize_bits - 9),
1351 nr_blocks << (sb->s_blocksize_bits - 9),
1352 gfp_mask, flags);
1353 }
1354 static inline int sb_issue_zeroout(struct super_block *sb, sector_t block,
1355 sector_t nr_blocks, gfp_t gfp_mask)
1356 {
1357 return blkdev_issue_zeroout(sb->s_bdev,
1358 block << (sb->s_blocksize_bits - 9),
1359 nr_blocks << (sb->s_blocksize_bits - 9),
1360 gfp_mask, 0);
1361 }
1362
1363 extern int blk_verify_command(unsigned char *cmd, fmode_t has_write_perm);
1364
1365 enum blk_default_limits {
1366 BLK_MAX_SEGMENTS = 128,
1367 BLK_SAFE_MAX_SECTORS = 255,
1368 BLK_DEF_MAX_SECTORS = 2560,
1369 BLK_MAX_SEGMENT_SIZE = 65536,
1370 BLK_SEG_BOUNDARY_MASK = 0xFFFFFFFFUL,
1371 };
1372
1373 #define blkdev_entry_to_request(entry) list_entry((entry), struct request, queuelist)
1374
1375 static inline unsigned long queue_bounce_pfn(struct request_queue *q)
1376 {
1377 return q->limits.bounce_pfn;
1378 }
1379
1380 static inline unsigned long queue_segment_boundary(struct request_queue *q)
1381 {
1382 return q->limits.seg_boundary_mask;
1383 }
1384
1385 static inline unsigned long queue_virt_boundary(struct request_queue *q)
1386 {
1387 return q->limits.virt_boundary_mask;
1388 }
1389
1390 static inline unsigned int queue_max_sectors(struct request_queue *q)
1391 {
1392 return q->limits.max_sectors;
1393 }
1394
1395 static inline unsigned int queue_max_hw_sectors(struct request_queue *q)
1396 {
1397 return q->limits.max_hw_sectors;
1398 }
1399
1400 static inline unsigned short queue_max_segments(struct request_queue *q)
1401 {
1402 return q->limits.max_segments;
1403 }
1404
1405 static inline unsigned short queue_max_discard_segments(struct request_queue *q)
1406 {
1407 return q->limits.max_discard_segments;
1408 }
1409
1410 static inline unsigned int queue_max_segment_size(struct request_queue *q)
1411 {
1412 return q->limits.max_segment_size;
1413 }
1414
1415 static inline unsigned short queue_logical_block_size(struct request_queue *q)
1416 {
1417 int retval = 512;
1418
1419 if (q && q->limits.logical_block_size)
1420 retval = q->limits.logical_block_size;
1421
1422 return retval;
1423 }
1424
1425 static inline unsigned short bdev_logical_block_size(struct block_device *bdev)
1426 {
1427 return queue_logical_block_size(bdev_get_queue(bdev));
1428 }
1429
1430 static inline unsigned int queue_physical_block_size(struct request_queue *q)
1431 {
1432 return q->limits.physical_block_size;
1433 }
1434
1435 static inline unsigned int bdev_physical_block_size(struct block_device *bdev)
1436 {
1437 return queue_physical_block_size(bdev_get_queue(bdev));
1438 }
1439
1440 static inline unsigned int queue_io_min(struct request_queue *q)
1441 {
1442 return q->limits.io_min;
1443 }
1444
1445 static inline int bdev_io_min(struct block_device *bdev)
1446 {
1447 return queue_io_min(bdev_get_queue(bdev));
1448 }
1449
1450 static inline unsigned int queue_io_opt(struct request_queue *q)
1451 {
1452 return q->limits.io_opt;
1453 }
1454
1455 static inline int bdev_io_opt(struct block_device *bdev)
1456 {
1457 return queue_io_opt(bdev_get_queue(bdev));
1458 }
1459
1460 static inline int queue_alignment_offset(struct request_queue *q)
1461 {
1462 if (q->limits.misaligned)
1463 return -1;
1464
1465 return q->limits.alignment_offset;
1466 }
1467
1468 static inline int queue_limit_alignment_offset(struct queue_limits *lim, sector_t sector)
1469 {
1470 unsigned int granularity = max(lim->physical_block_size, lim->io_min);
1471 unsigned int alignment = sector_div(sector, granularity >> 9) << 9;
1472
1473 return (granularity + lim->alignment_offset - alignment) % granularity;
1474 }
1475
1476 static inline int bdev_alignment_offset(struct block_device *bdev)
1477 {
1478 struct request_queue *q = bdev_get_queue(bdev);
1479
1480 if (q->limits.misaligned)
1481 return -1;
1482
1483 if (bdev != bdev->bd_contains)
1484 return bdev->bd_part->alignment_offset;
1485
1486 return q->limits.alignment_offset;
1487 }
1488
1489 static inline int queue_discard_alignment(struct request_queue *q)
1490 {
1491 if (q->limits.discard_misaligned)
1492 return -1;
1493
1494 return q->limits.discard_alignment;
1495 }
1496
1497 static inline int queue_limit_discard_alignment(struct queue_limits *lim, sector_t sector)
1498 {
1499 unsigned int alignment, granularity, offset;
1500
1501 if (!lim->max_discard_sectors)
1502 return 0;
1503
1504 /* Why are these in bytes, not sectors? */
1505 alignment = lim->discard_alignment >> 9;
1506 granularity = lim->discard_granularity >> 9;
1507 if (!granularity)
1508 return 0;
1509
1510 /* Offset of the partition start in 'granularity' sectors */
1511 offset = sector_div(sector, granularity);
1512
1513 /* And why do we do this modulus *again* in blkdev_issue_discard()? */
1514 offset = (granularity + alignment - offset) % granularity;
1515
1516 /* Turn it back into bytes, gaah */
1517 return offset << 9;
1518 }
1519
1520 static inline int bdev_discard_alignment(struct block_device *bdev)
1521 {
1522 struct request_queue *q = bdev_get_queue(bdev);
1523
1524 if (bdev != bdev->bd_contains)
1525 return bdev->bd_part->discard_alignment;
1526
1527 return q->limits.discard_alignment;
1528 }
1529
1530 static inline unsigned int bdev_write_same(struct block_device *bdev)
1531 {
1532 struct request_queue *q = bdev_get_queue(bdev);
1533
1534 if (q)
1535 return q->limits.max_write_same_sectors;
1536
1537 return 0;
1538 }
1539
1540 static inline unsigned int bdev_write_zeroes_sectors(struct block_device *bdev)
1541 {
1542 struct request_queue *q = bdev_get_queue(bdev);
1543
1544 if (q)
1545 return q->limits.max_write_zeroes_sectors;
1546
1547 return 0;
1548 }
1549
1550 static inline enum blk_zoned_model bdev_zoned_model(struct block_device *bdev)
1551 {
1552 struct request_queue *q = bdev_get_queue(bdev);
1553
1554 if (q)
1555 return blk_queue_zoned_model(q);
1556
1557 return BLK_ZONED_NONE;
1558 }
1559
1560 static inline bool bdev_is_zoned(struct block_device *bdev)
1561 {
1562 struct request_queue *q = bdev_get_queue(bdev);
1563
1564 if (q)
1565 return blk_queue_is_zoned(q);
1566
1567 return false;
1568 }
1569
1570 static inline unsigned int bdev_zone_sectors(struct block_device *bdev)
1571 {
1572 struct request_queue *q = bdev_get_queue(bdev);
1573
1574 if (q)
1575 return blk_queue_zone_sectors(q);
1576
1577 return 0;
1578 }
1579
1580 static inline int queue_dma_alignment(struct request_queue *q)
1581 {
1582 return q ? q->dma_alignment : 511;
1583 }
1584
1585 static inline int blk_rq_aligned(struct request_queue *q, unsigned long addr,
1586 unsigned int len)
1587 {
1588 unsigned int alignment = queue_dma_alignment(q) | q->dma_pad_mask;
1589 return !(addr & alignment) && !(len & alignment);
1590 }
1591
1592 /* assumes size > 256 */
1593 static inline unsigned int blksize_bits(unsigned int size)
1594 {
1595 unsigned int bits = 8;
1596 do {
1597 bits++;
1598 size >>= 1;
1599 } while (size > 256);
1600 return bits;
1601 }
1602
1603 static inline unsigned int block_size(struct block_device *bdev)
1604 {
1605 return bdev->bd_block_size;
1606 }
1607
1608 static inline bool queue_flush_queueable(struct request_queue *q)
1609 {
1610 return !test_bit(QUEUE_FLAG_FLUSH_NQ, &q->queue_flags);
1611 }
1612
1613 typedef struct {struct page *v;} Sector;
1614
1615 unsigned char *read_dev_sector(struct block_device *, sector_t, Sector *);
1616
1617 static inline void put_dev_sector(Sector p)
1618 {
1619 put_page(p.v);
1620 }
1621
1622 static inline bool __bvec_gap_to_prev(struct request_queue *q,
1623 struct bio_vec *bprv, unsigned int offset)
1624 {
1625 return offset ||
1626 ((bprv->bv_offset + bprv->bv_len) & queue_virt_boundary(q));
1627 }
1628
1629 /*
1630 * Check if adding a bio_vec after bprv with offset would create a gap in
1631 * the SG list. Most drivers don't care about this, but some do.
1632 */
1633 static inline bool bvec_gap_to_prev(struct request_queue *q,
1634 struct bio_vec *bprv, unsigned int offset)
1635 {
1636 if (!queue_virt_boundary(q))
1637 return false;
1638 return __bvec_gap_to_prev(q, bprv, offset);
1639 }
1640
1641 /*
1642 * Check if the two bvecs from two bios can be merged to one segment.
1643 * If yes, no need to check gap between the two bios since the 1st bio
1644 * and the 1st bvec in the 2nd bio can be handled in one segment.
1645 */
1646 static inline bool bios_segs_mergeable(struct request_queue *q,
1647 struct bio *prev, struct bio_vec *prev_last_bv,
1648 struct bio_vec *next_first_bv)
1649 {
1650 if (!BIOVEC_PHYS_MERGEABLE(prev_last_bv, next_first_bv))
1651 return false;
1652 if (!BIOVEC_SEG_BOUNDARY(q, prev_last_bv, next_first_bv))
1653 return false;
1654 if (prev->bi_seg_back_size + next_first_bv->bv_len >
1655 queue_max_segment_size(q))
1656 return false;
1657 return true;
1658 }
1659
1660 static inline bool bio_will_gap(struct request_queue *q,
1661 struct request *prev_rq,
1662 struct bio *prev,
1663 struct bio *next)
1664 {
1665 if (bio_has_data(prev) && queue_virt_boundary(q)) {
1666 struct bio_vec pb, nb;
1667
1668 /*
1669 * don't merge if the 1st bio starts with non-zero
1670 * offset, otherwise it is quite difficult to respect
1671 * sg gap limit. We work hard to merge a huge number of small
1672 * single bios in case of mkfs.
1673 */
1674 if (prev_rq)
1675 bio_get_first_bvec(prev_rq->bio, &pb);
1676 else
1677 bio_get_first_bvec(prev, &pb);
1678 if (pb.bv_offset)
1679 return true;
1680
1681 /*
1682 * We don't need to worry about the situation that the
1683 * merged segment ends in unaligned virt boundary:
1684 *
1685 * - if 'pb' ends aligned, the merged segment ends aligned
1686 * - if 'pb' ends unaligned, the next bio must include
1687 * one single bvec of 'nb', otherwise the 'nb' can't
1688 * merge with 'pb'
1689 */
1690 bio_get_last_bvec(prev, &pb);
1691 bio_get_first_bvec(next, &nb);
1692
1693 if (!bios_segs_mergeable(q, prev, &pb, &nb))
1694 return __bvec_gap_to_prev(q, &pb, nb.bv_offset);
1695 }
1696
1697 return false;
1698 }
1699
1700 static inline bool req_gap_back_merge(struct request *req, struct bio *bio)
1701 {
1702 return bio_will_gap(req->q, req, req->biotail, bio);
1703 }
1704
1705 static inline bool req_gap_front_merge(struct request *req, struct bio *bio)
1706 {
1707 return bio_will_gap(req->q, NULL, bio, req->bio);
1708 }
1709
1710 int kblockd_schedule_work(struct work_struct *work);
1711 int kblockd_schedule_work_on(int cpu, struct work_struct *work);
1712 int kblockd_schedule_delayed_work(struct delayed_work *dwork, unsigned long delay);
1713 int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork, unsigned long delay);
1714 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, unsigned long delay);
1715
1716 #ifdef CONFIG_BLK_CGROUP
1717 /*
1718 * This should not be using sched_clock(). A real patch is in progress
1719 * to fix this up, until that is in place we need to disable preemption
1720 * around sched_clock() in this function and set_io_start_time_ns().
1721 */
1722 static inline void set_start_time_ns(struct request *req)
1723 {
1724 preempt_disable();
1725 req->start_time_ns = sched_clock();
1726 preempt_enable();
1727 }
1728
1729 static inline void set_io_start_time_ns(struct request *req)
1730 {
1731 preempt_disable();
1732 req->io_start_time_ns = sched_clock();
1733 preempt_enable();
1734 }
1735
1736 static inline uint64_t rq_start_time_ns(struct request *req)
1737 {
1738 return req->start_time_ns;
1739 }
1740
1741 static inline uint64_t rq_io_start_time_ns(struct request *req)
1742 {
1743 return req->io_start_time_ns;
1744 }
1745 #else
1746 static inline void set_start_time_ns(struct request *req) {}
1747 static inline void set_io_start_time_ns(struct request *req) {}
1748 static inline uint64_t rq_start_time_ns(struct request *req)
1749 {
1750 return 0;
1751 }
1752 static inline uint64_t rq_io_start_time_ns(struct request *req)
1753 {
1754 return 0;
1755 }
1756 #endif
1757
1758 #define MODULE_ALIAS_BLOCKDEV(major,minor) \
1759 MODULE_ALIAS("block-major-" __stringify(major) "-" __stringify(minor))
1760 #define MODULE_ALIAS_BLOCKDEV_MAJOR(major) \
1761 MODULE_ALIAS("block-major-" __stringify(major) "-*")
1762
1763 #if defined(CONFIG_BLK_DEV_INTEGRITY)
1764
1765 enum blk_integrity_flags {
1766 BLK_INTEGRITY_VERIFY = 1 << 0,
1767 BLK_INTEGRITY_GENERATE = 1 << 1,
1768 BLK_INTEGRITY_DEVICE_CAPABLE = 1 << 2,
1769 BLK_INTEGRITY_IP_CHECKSUM = 1 << 3,
1770 };
1771
1772 struct blk_integrity_iter {
1773 void *prot_buf;
1774 void *data_buf;
1775 sector_t seed;
1776 unsigned int data_size;
1777 unsigned short interval;
1778 const char *disk_name;
1779 };
1780
1781 typedef int (integrity_processing_fn) (struct blk_integrity_iter *);
1782
1783 struct blk_integrity_profile {
1784 integrity_processing_fn *generate_fn;
1785 integrity_processing_fn *verify_fn;
1786 const char *name;
1787 };
1788
1789 extern void blk_integrity_register(struct gendisk *, struct blk_integrity *);
1790 extern void blk_integrity_unregister(struct gendisk *);
1791 extern int blk_integrity_compare(struct gendisk *, struct gendisk *);
1792 extern int blk_rq_map_integrity_sg(struct request_queue *, struct bio *,
1793 struct scatterlist *);
1794 extern int blk_rq_count_integrity_sg(struct request_queue *, struct bio *);
1795 extern bool blk_integrity_merge_rq(struct request_queue *, struct request *,
1796 struct request *);
1797 extern bool blk_integrity_merge_bio(struct request_queue *, struct request *,
1798 struct bio *);
1799
1800 static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk)
1801 {
1802 struct blk_integrity *bi = &disk->queue->integrity;
1803
1804 if (!bi->profile)
1805 return NULL;
1806
1807 return bi;
1808 }
1809
1810 static inline
1811 struct blk_integrity *bdev_get_integrity(struct block_device *bdev)
1812 {
1813 return blk_get_integrity(bdev->bd_disk);
1814 }
1815
1816 static inline bool blk_integrity_rq(struct request *rq)
1817 {
1818 return rq->cmd_flags & REQ_INTEGRITY;
1819 }
1820
1821 static inline void blk_queue_max_integrity_segments(struct request_queue *q,
1822 unsigned int segs)
1823 {
1824 q->limits.max_integrity_segments = segs;
1825 }
1826
1827 static inline unsigned short
1828 queue_max_integrity_segments(struct request_queue *q)
1829 {
1830 return q->limits.max_integrity_segments;
1831 }
1832
1833 static inline bool integrity_req_gap_back_merge(struct request *req,
1834 struct bio *next)
1835 {
1836 struct bio_integrity_payload *bip = bio_integrity(req->bio);
1837 struct bio_integrity_payload *bip_next = bio_integrity(next);
1838
1839 return bvec_gap_to_prev(req->q, &bip->bip_vec[bip->bip_vcnt - 1],
1840 bip_next->bip_vec[0].bv_offset);
1841 }
1842
1843 static inline bool integrity_req_gap_front_merge(struct request *req,
1844 struct bio *bio)
1845 {
1846 struct bio_integrity_payload *bip = bio_integrity(bio);
1847 struct bio_integrity_payload *bip_next = bio_integrity(req->bio);
1848
1849 return bvec_gap_to_prev(req->q, &bip->bip_vec[bip->bip_vcnt - 1],
1850 bip_next->bip_vec[0].bv_offset);
1851 }
1852
1853 #else /* CONFIG_BLK_DEV_INTEGRITY */
1854
1855 struct bio;
1856 struct block_device;
1857 struct gendisk;
1858 struct blk_integrity;
1859
1860 static inline int blk_integrity_rq(struct request *rq)
1861 {
1862 return 0;
1863 }
1864 static inline int blk_rq_count_integrity_sg(struct request_queue *q,
1865 struct bio *b)
1866 {
1867 return 0;
1868 }
1869 static inline int blk_rq_map_integrity_sg(struct request_queue *q,
1870 struct bio *b,
1871 struct scatterlist *s)
1872 {
1873 return 0;
1874 }
1875 static inline struct blk_integrity *bdev_get_integrity(struct block_device *b)
1876 {
1877 return NULL;
1878 }
1879 static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk)
1880 {
1881 return NULL;
1882 }
1883 static inline int blk_integrity_compare(struct gendisk *a, struct gendisk *b)
1884 {
1885 return 0;
1886 }
1887 static inline void blk_integrity_register(struct gendisk *d,
1888 struct blk_integrity *b)
1889 {
1890 }
1891 static inline void blk_integrity_unregister(struct gendisk *d)
1892 {
1893 }
1894 static inline void blk_queue_max_integrity_segments(struct request_queue *q,
1895 unsigned int segs)
1896 {
1897 }
1898 static inline unsigned short queue_max_integrity_segments(struct request_queue *q)
1899 {
1900 return 0;
1901 }
1902 static inline bool blk_integrity_merge_rq(struct request_queue *rq,
1903 struct request *r1,
1904 struct request *r2)
1905 {
1906 return true;
1907 }
1908 static inline bool blk_integrity_merge_bio(struct request_queue *rq,
1909 struct request *r,
1910 struct bio *b)
1911 {
1912 return true;
1913 }
1914
1915 static inline bool integrity_req_gap_back_merge(struct request *req,
1916 struct bio *next)
1917 {
1918 return false;
1919 }
1920 static inline bool integrity_req_gap_front_merge(struct request *req,
1921 struct bio *bio)
1922 {
1923 return false;
1924 }
1925
1926 #endif /* CONFIG_BLK_DEV_INTEGRITY */
1927
1928 struct block_device_operations {
1929 int (*open) (struct block_device *, fmode_t);
1930 void (*release) (struct gendisk *, fmode_t);
1931 int (*rw_page)(struct block_device *, sector_t, struct page *, bool);
1932 int (*ioctl) (struct block_device *, fmode_t, unsigned, unsigned long);
1933 int (*compat_ioctl) (struct block_device *, fmode_t, unsigned, unsigned long);
1934 unsigned int (*check_events) (struct gendisk *disk,
1935 unsigned int clearing);
1936 /* ->media_changed() is DEPRECATED, use ->check_events() instead */
1937 int (*media_changed) (struct gendisk *);
1938 void (*unlock_native_capacity) (struct gendisk *);
1939 int (*revalidate_disk) (struct gendisk *);
1940 int (*getgeo)(struct block_device *, struct hd_geometry *);
1941 /* this callback is with swap_lock and sometimes page table lock held */
1942 void (*swap_slot_free_notify) (struct block_device *, unsigned long);
1943 struct module *owner;
1944 const struct pr_ops *pr_ops;
1945 };
1946
1947 extern int __blkdev_driver_ioctl(struct block_device *, fmode_t, unsigned int,
1948 unsigned long);
1949 extern int bdev_read_page(struct block_device *, sector_t, struct page *);
1950 extern int bdev_write_page(struct block_device *, sector_t, struct page *,
1951 struct writeback_control *);
1952 #else /* CONFIG_BLOCK */
1953
1954 struct block_device;
1955
1956 /*
1957 * stubs for when the block layer is configured out
1958 */
1959 #define buffer_heads_over_limit 0
1960
1961 static inline long nr_blockdev_pages(void)
1962 {
1963 return 0;
1964 }
1965
1966 struct blk_plug {
1967 };
1968
1969 static inline void blk_start_plug(struct blk_plug *plug)
1970 {
1971 }
1972
1973 static inline void blk_finish_plug(struct blk_plug *plug)
1974 {
1975 }
1976
1977 static inline void blk_flush_plug(struct task_struct *task)
1978 {
1979 }
1980
1981 static inline void blk_schedule_flush_plug(struct task_struct *task)
1982 {
1983 }
1984
1985
1986 static inline bool blk_needs_flush_plug(struct task_struct *tsk)
1987 {
1988 return false;
1989 }
1990
1991 static inline int blkdev_issue_flush(struct block_device *bdev, gfp_t gfp_mask,
1992 sector_t *error_sector)
1993 {
1994 return 0;
1995 }
1996
1997 #endif /* CONFIG_BLOCK */
1998
1999 #endif