]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - include/linux/blkdev.h
block: remove the bi_phys_segments field in struct bio
[mirror_ubuntu-hirsute-kernel.git] / include / linux / blkdev.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_BLKDEV_H
3 #define _LINUX_BLKDEV_H
4
5 #include <linux/sched.h>
6 #include <linux/sched/clock.h>
7
8 #ifdef CONFIG_BLOCK
9
10 #include <linux/major.h>
11 #include <linux/genhd.h>
12 #include <linux/list.h>
13 #include <linux/llist.h>
14 #include <linux/timer.h>
15 #include <linux/workqueue.h>
16 #include <linux/pagemap.h>
17 #include <linux/backing-dev-defs.h>
18 #include <linux/wait.h>
19 #include <linux/mempool.h>
20 #include <linux/pfn.h>
21 #include <linux/bio.h>
22 #include <linux/stringify.h>
23 #include <linux/gfp.h>
24 #include <linux/bsg.h>
25 #include <linux/smp.h>
26 #include <linux/rcupdate.h>
27 #include <linux/percpu-refcount.h>
28 #include <linux/scatterlist.h>
29 #include <linux/blkzoned.h>
30
31 struct module;
32 struct scsi_ioctl_command;
33
34 struct request_queue;
35 struct elevator_queue;
36 struct blk_trace;
37 struct request;
38 struct sg_io_hdr;
39 struct bsg_job;
40 struct blkcg_gq;
41 struct blk_flush_queue;
42 struct pr_ops;
43 struct rq_qos;
44 struct blk_queue_stats;
45 struct blk_stat_callback;
46
47 #define BLKDEV_MIN_RQ 4
48 #define BLKDEV_MAX_RQ 128 /* Default maximum */
49
50 /* Must be consistent with blk_mq_poll_stats_bkt() */
51 #define BLK_MQ_POLL_STATS_BKTS 16
52
53 /* Doing classic polling */
54 #define BLK_MQ_POLL_CLASSIC -1
55
56 /*
57 * Maximum number of blkcg policies allowed to be registered concurrently.
58 * Defined here to simplify include dependency.
59 */
60 #define BLKCG_MAX_POLS 5
61
62 typedef void (rq_end_io_fn)(struct request *, blk_status_t);
63
64 /*
65 * request flags */
66 typedef __u32 __bitwise req_flags_t;
67
68 /* elevator knows about this request */
69 #define RQF_SORTED ((__force req_flags_t)(1 << 0))
70 /* drive already may have started this one */
71 #define RQF_STARTED ((__force req_flags_t)(1 << 1))
72 /* may not be passed by ioscheduler */
73 #define RQF_SOFTBARRIER ((__force req_flags_t)(1 << 3))
74 /* request for flush sequence */
75 #define RQF_FLUSH_SEQ ((__force req_flags_t)(1 << 4))
76 /* merge of different types, fail separately */
77 #define RQF_MIXED_MERGE ((__force req_flags_t)(1 << 5))
78 /* track inflight for MQ */
79 #define RQF_MQ_INFLIGHT ((__force req_flags_t)(1 << 6))
80 /* don't call prep for this one */
81 #define RQF_DONTPREP ((__force req_flags_t)(1 << 7))
82 /* set for "ide_preempt" requests and also for requests for which the SCSI
83 "quiesce" state must be ignored. */
84 #define RQF_PREEMPT ((__force req_flags_t)(1 << 8))
85 /* contains copies of user pages */
86 #define RQF_COPY_USER ((__force req_flags_t)(1 << 9))
87 /* vaguely specified driver internal error. Ignored by the block layer */
88 #define RQF_FAILED ((__force req_flags_t)(1 << 10))
89 /* don't warn about errors */
90 #define RQF_QUIET ((__force req_flags_t)(1 << 11))
91 /* elevator private data attached */
92 #define RQF_ELVPRIV ((__force req_flags_t)(1 << 12))
93 /* account into disk and partition IO statistics */
94 #define RQF_IO_STAT ((__force req_flags_t)(1 << 13))
95 /* request came from our alloc pool */
96 #define RQF_ALLOCED ((__force req_flags_t)(1 << 14))
97 /* runtime pm request */
98 #define RQF_PM ((__force req_flags_t)(1 << 15))
99 /* on IO scheduler merge hash */
100 #define RQF_HASHED ((__force req_flags_t)(1 << 16))
101 /* track IO completion time */
102 #define RQF_STATS ((__force req_flags_t)(1 << 17))
103 /* Look at ->special_vec for the actual data payload instead of the
104 bio chain. */
105 #define RQF_SPECIAL_PAYLOAD ((__force req_flags_t)(1 << 18))
106 /* The per-zone write lock is held for this request */
107 #define RQF_ZONE_WRITE_LOCKED ((__force req_flags_t)(1 << 19))
108 /* already slept for hybrid poll */
109 #define RQF_MQ_POLL_SLEPT ((__force req_flags_t)(1 << 20))
110 /* ->timeout has been called, don't expire again */
111 #define RQF_TIMED_OUT ((__force req_flags_t)(1 << 21))
112
113 /* flags that prevent us from merging requests: */
114 #define RQF_NOMERGE_FLAGS \
115 (RQF_STARTED | RQF_SOFTBARRIER | RQF_FLUSH_SEQ | RQF_SPECIAL_PAYLOAD)
116
117 /*
118 * Request state for blk-mq.
119 */
120 enum mq_rq_state {
121 MQ_RQ_IDLE = 0,
122 MQ_RQ_IN_FLIGHT = 1,
123 MQ_RQ_COMPLETE = 2,
124 };
125
126 /*
127 * Try to put the fields that are referenced together in the same cacheline.
128 *
129 * If you modify this structure, make sure to update blk_rq_init() and
130 * especially blk_mq_rq_ctx_init() to take care of the added fields.
131 */
132 struct request {
133 struct request_queue *q;
134 struct blk_mq_ctx *mq_ctx;
135 struct blk_mq_hw_ctx *mq_hctx;
136
137 unsigned int cmd_flags; /* op and common flags */
138 req_flags_t rq_flags;
139
140 int tag;
141 int internal_tag;
142
143 /* the following two fields are internal, NEVER access directly */
144 unsigned int __data_len; /* total data len */
145 sector_t __sector; /* sector cursor */
146
147 struct bio *bio;
148 struct bio *biotail;
149
150 struct list_head queuelist;
151
152 /*
153 * The hash is used inside the scheduler, and killed once the
154 * request reaches the dispatch list. The ipi_list is only used
155 * to queue the request for softirq completion, which is long
156 * after the request has been unhashed (and even removed from
157 * the dispatch list).
158 */
159 union {
160 struct hlist_node hash; /* merge hash */
161 struct list_head ipi_list;
162 };
163
164 /*
165 * The rb_node is only used inside the io scheduler, requests
166 * are pruned when moved to the dispatch queue. So let the
167 * completion_data share space with the rb_node.
168 */
169 union {
170 struct rb_node rb_node; /* sort/lookup */
171 struct bio_vec special_vec;
172 void *completion_data;
173 int error_count; /* for legacy drivers, don't use */
174 };
175
176 /*
177 * Three pointers are available for the IO schedulers, if they need
178 * more they have to dynamically allocate it. Flush requests are
179 * never put on the IO scheduler. So let the flush fields share
180 * space with the elevator data.
181 */
182 union {
183 struct {
184 struct io_cq *icq;
185 void *priv[2];
186 } elv;
187
188 struct {
189 unsigned int seq;
190 struct list_head list;
191 rq_end_io_fn *saved_end_io;
192 } flush;
193 };
194
195 struct gendisk *rq_disk;
196 struct hd_struct *part;
197 /* Time that I/O was submitted to the kernel. */
198 u64 start_time_ns;
199 /* Time that I/O was submitted to the device. */
200 u64 io_start_time_ns;
201
202 #ifdef CONFIG_BLK_WBT
203 unsigned short wbt_flags;
204 #endif
205 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
206 unsigned short throtl_size;
207 #endif
208
209 /*
210 * Number of scatter-gather DMA addr+len pairs after
211 * physical address coalescing is performed.
212 */
213 unsigned short nr_phys_segments;
214
215 #if defined(CONFIG_BLK_DEV_INTEGRITY)
216 unsigned short nr_integrity_segments;
217 #endif
218
219 unsigned short write_hint;
220 unsigned short ioprio;
221
222 unsigned int extra_len; /* length of alignment and padding */
223
224 enum mq_rq_state state;
225 refcount_t ref;
226
227 unsigned int timeout;
228 unsigned long deadline;
229
230 union {
231 struct __call_single_data csd;
232 u64 fifo_time;
233 };
234
235 /*
236 * completion callback.
237 */
238 rq_end_io_fn *end_io;
239 void *end_io_data;
240 };
241
242 static inline bool blk_op_is_scsi(unsigned int op)
243 {
244 return op == REQ_OP_SCSI_IN || op == REQ_OP_SCSI_OUT;
245 }
246
247 static inline bool blk_op_is_private(unsigned int op)
248 {
249 return op == REQ_OP_DRV_IN || op == REQ_OP_DRV_OUT;
250 }
251
252 static inline bool blk_rq_is_scsi(struct request *rq)
253 {
254 return blk_op_is_scsi(req_op(rq));
255 }
256
257 static inline bool blk_rq_is_private(struct request *rq)
258 {
259 return blk_op_is_private(req_op(rq));
260 }
261
262 static inline bool blk_rq_is_passthrough(struct request *rq)
263 {
264 return blk_rq_is_scsi(rq) || blk_rq_is_private(rq);
265 }
266
267 static inline bool bio_is_passthrough(struct bio *bio)
268 {
269 unsigned op = bio_op(bio);
270
271 return blk_op_is_scsi(op) || blk_op_is_private(op);
272 }
273
274 static inline unsigned short req_get_ioprio(struct request *req)
275 {
276 return req->ioprio;
277 }
278
279 #include <linux/elevator.h>
280
281 struct blk_queue_ctx;
282
283 typedef blk_qc_t (make_request_fn) (struct request_queue *q, struct bio *bio);
284
285 struct bio_vec;
286 typedef int (dma_drain_needed_fn)(struct request *);
287
288 enum blk_eh_timer_return {
289 BLK_EH_DONE, /* drivers has completed the command */
290 BLK_EH_RESET_TIMER, /* reset timer and try again */
291 };
292
293 enum blk_queue_state {
294 Queue_down,
295 Queue_up,
296 };
297
298 #define BLK_TAG_ALLOC_FIFO 0 /* allocate starting from 0 */
299 #define BLK_TAG_ALLOC_RR 1 /* allocate starting from last allocated tag */
300
301 #define BLK_SCSI_MAX_CMDS (256)
302 #define BLK_SCSI_CMD_PER_LONG (BLK_SCSI_MAX_CMDS / (sizeof(long) * 8))
303
304 /*
305 * Zoned block device models (zoned limit).
306 */
307 enum blk_zoned_model {
308 BLK_ZONED_NONE, /* Regular block device */
309 BLK_ZONED_HA, /* Host-aware zoned block device */
310 BLK_ZONED_HM, /* Host-managed zoned block device */
311 };
312
313 struct queue_limits {
314 unsigned long bounce_pfn;
315 unsigned long seg_boundary_mask;
316 unsigned long virt_boundary_mask;
317
318 unsigned int max_hw_sectors;
319 unsigned int max_dev_sectors;
320 unsigned int chunk_sectors;
321 unsigned int max_sectors;
322 unsigned int max_segment_size;
323 unsigned int physical_block_size;
324 unsigned int alignment_offset;
325 unsigned int io_min;
326 unsigned int io_opt;
327 unsigned int max_discard_sectors;
328 unsigned int max_hw_discard_sectors;
329 unsigned int max_write_same_sectors;
330 unsigned int max_write_zeroes_sectors;
331 unsigned int discard_granularity;
332 unsigned int discard_alignment;
333
334 unsigned short logical_block_size;
335 unsigned short max_segments;
336 unsigned short max_integrity_segments;
337 unsigned short max_discard_segments;
338
339 unsigned char misaligned;
340 unsigned char discard_misaligned;
341 unsigned char raid_partial_stripes_expensive;
342 enum blk_zoned_model zoned;
343 };
344
345 #ifdef CONFIG_BLK_DEV_ZONED
346
347 extern unsigned int blkdev_nr_zones(struct block_device *bdev);
348 extern int blkdev_report_zones(struct block_device *bdev,
349 sector_t sector, struct blk_zone *zones,
350 unsigned int *nr_zones, gfp_t gfp_mask);
351 extern int blkdev_reset_zones(struct block_device *bdev, sector_t sectors,
352 sector_t nr_sectors, gfp_t gfp_mask);
353 extern int blk_revalidate_disk_zones(struct gendisk *disk);
354
355 extern int blkdev_report_zones_ioctl(struct block_device *bdev, fmode_t mode,
356 unsigned int cmd, unsigned long arg);
357 extern int blkdev_reset_zones_ioctl(struct block_device *bdev, fmode_t mode,
358 unsigned int cmd, unsigned long arg);
359
360 #else /* CONFIG_BLK_DEV_ZONED */
361
362 static inline unsigned int blkdev_nr_zones(struct block_device *bdev)
363 {
364 return 0;
365 }
366
367 static inline int blk_revalidate_disk_zones(struct gendisk *disk)
368 {
369 return 0;
370 }
371
372 static inline int blkdev_report_zones_ioctl(struct block_device *bdev,
373 fmode_t mode, unsigned int cmd,
374 unsigned long arg)
375 {
376 return -ENOTTY;
377 }
378
379 static inline int blkdev_reset_zones_ioctl(struct block_device *bdev,
380 fmode_t mode, unsigned int cmd,
381 unsigned long arg)
382 {
383 return -ENOTTY;
384 }
385
386 #endif /* CONFIG_BLK_DEV_ZONED */
387
388 struct request_queue {
389 /*
390 * Together with queue_head for cacheline sharing
391 */
392 struct list_head queue_head;
393 struct request *last_merge;
394 struct elevator_queue *elevator;
395
396 struct blk_queue_stats *stats;
397 struct rq_qos *rq_qos;
398
399 make_request_fn *make_request_fn;
400 dma_drain_needed_fn *dma_drain_needed;
401
402 const struct blk_mq_ops *mq_ops;
403
404 /* sw queues */
405 struct blk_mq_ctx __percpu *queue_ctx;
406 unsigned int nr_queues;
407
408 unsigned int queue_depth;
409
410 /* hw dispatch queues */
411 struct blk_mq_hw_ctx **queue_hw_ctx;
412 unsigned int nr_hw_queues;
413
414 struct backing_dev_info *backing_dev_info;
415
416 /*
417 * The queue owner gets to use this for whatever they like.
418 * ll_rw_blk doesn't touch it.
419 */
420 void *queuedata;
421
422 /*
423 * various queue flags, see QUEUE_* below
424 */
425 unsigned long queue_flags;
426 /*
427 * Number of contexts that have called blk_set_pm_only(). If this
428 * counter is above zero then only RQF_PM and RQF_PREEMPT requests are
429 * processed.
430 */
431 atomic_t pm_only;
432
433 /*
434 * ida allocated id for this queue. Used to index queues from
435 * ioctx.
436 */
437 int id;
438
439 /*
440 * queue needs bounce pages for pages above this limit
441 */
442 gfp_t bounce_gfp;
443
444 spinlock_t queue_lock;
445
446 /*
447 * queue kobject
448 */
449 struct kobject kobj;
450
451 /*
452 * mq queue kobject
453 */
454 struct kobject *mq_kobj;
455
456 #ifdef CONFIG_BLK_DEV_INTEGRITY
457 struct blk_integrity integrity;
458 #endif /* CONFIG_BLK_DEV_INTEGRITY */
459
460 #ifdef CONFIG_PM
461 struct device *dev;
462 int rpm_status;
463 unsigned int nr_pending;
464 #endif
465
466 /*
467 * queue settings
468 */
469 unsigned long nr_requests; /* Max # of requests */
470
471 unsigned int dma_drain_size;
472 void *dma_drain_buffer;
473 unsigned int dma_pad_mask;
474 unsigned int dma_alignment;
475
476 unsigned int rq_timeout;
477 int poll_nsec;
478
479 struct blk_stat_callback *poll_cb;
480 struct blk_rq_stat poll_stat[BLK_MQ_POLL_STATS_BKTS];
481
482 struct timer_list timeout;
483 struct work_struct timeout_work;
484
485 struct list_head icq_list;
486 #ifdef CONFIG_BLK_CGROUP
487 DECLARE_BITMAP (blkcg_pols, BLKCG_MAX_POLS);
488 struct blkcg_gq *root_blkg;
489 struct list_head blkg_list;
490 #endif
491
492 struct queue_limits limits;
493
494 #ifdef CONFIG_BLK_DEV_ZONED
495 /*
496 * Zoned block device information for request dispatch control.
497 * nr_zones is the total number of zones of the device. This is always
498 * 0 for regular block devices. seq_zones_bitmap is a bitmap of nr_zones
499 * bits which indicates if a zone is conventional (bit clear) or
500 * sequential (bit set). seq_zones_wlock is a bitmap of nr_zones
501 * bits which indicates if a zone is write locked, that is, if a write
502 * request targeting the zone was dispatched. All three fields are
503 * initialized by the low level device driver (e.g. scsi/sd.c).
504 * Stacking drivers (device mappers) may or may not initialize
505 * these fields.
506 *
507 * Reads of this information must be protected with blk_queue_enter() /
508 * blk_queue_exit(). Modifying this information is only allowed while
509 * no requests are being processed. See also blk_mq_freeze_queue() and
510 * blk_mq_unfreeze_queue().
511 */
512 unsigned int nr_zones;
513 unsigned long *seq_zones_bitmap;
514 unsigned long *seq_zones_wlock;
515 #endif /* CONFIG_BLK_DEV_ZONED */
516
517 /*
518 * sg stuff
519 */
520 unsigned int sg_timeout;
521 unsigned int sg_reserved_size;
522 int node;
523 #ifdef CONFIG_BLK_DEV_IO_TRACE
524 struct blk_trace *blk_trace;
525 struct mutex blk_trace_mutex;
526 #endif
527 /*
528 * for flush operations
529 */
530 struct blk_flush_queue *fq;
531
532 struct list_head requeue_list;
533 spinlock_t requeue_lock;
534 struct delayed_work requeue_work;
535
536 struct mutex sysfs_lock;
537
538 /*
539 * for reusing dead hctx instance in case of updating
540 * nr_hw_queues
541 */
542 struct list_head unused_hctx_list;
543 spinlock_t unused_hctx_lock;
544
545 int mq_freeze_depth;
546
547 #if defined(CONFIG_BLK_DEV_BSG)
548 struct bsg_class_device bsg_dev;
549 #endif
550
551 #ifdef CONFIG_BLK_DEV_THROTTLING
552 /* Throttle data */
553 struct throtl_data *td;
554 #endif
555 struct rcu_head rcu_head;
556 wait_queue_head_t mq_freeze_wq;
557 /*
558 * Protect concurrent access to q_usage_counter by
559 * percpu_ref_kill() and percpu_ref_reinit().
560 */
561 struct mutex mq_freeze_lock;
562 struct percpu_ref q_usage_counter;
563
564 struct blk_mq_tag_set *tag_set;
565 struct list_head tag_set_list;
566 struct bio_set bio_split;
567
568 #ifdef CONFIG_BLK_DEBUG_FS
569 struct dentry *debugfs_dir;
570 struct dentry *sched_debugfs_dir;
571 struct dentry *rqos_debugfs_dir;
572 #endif
573
574 bool mq_sysfs_init_done;
575
576 size_t cmd_size;
577
578 struct work_struct release_work;
579
580 #define BLK_MAX_WRITE_HINTS 5
581 u64 write_hints[BLK_MAX_WRITE_HINTS];
582 };
583
584 #define QUEUE_FLAG_STOPPED 0 /* queue is stopped */
585 #define QUEUE_FLAG_DYING 1 /* queue being torn down */
586 #define QUEUE_FLAG_NOMERGES 3 /* disable merge attempts */
587 #define QUEUE_FLAG_SAME_COMP 4 /* complete on same CPU-group */
588 #define QUEUE_FLAG_FAIL_IO 5 /* fake timeout */
589 #define QUEUE_FLAG_NONROT 6 /* non-rotational device (SSD) */
590 #define QUEUE_FLAG_VIRT QUEUE_FLAG_NONROT /* paravirt device */
591 #define QUEUE_FLAG_IO_STAT 7 /* do disk/partitions IO accounting */
592 #define QUEUE_FLAG_DISCARD 8 /* supports DISCARD */
593 #define QUEUE_FLAG_NOXMERGES 9 /* No extended merges */
594 #define QUEUE_FLAG_ADD_RANDOM 10 /* Contributes to random pool */
595 #define QUEUE_FLAG_SECERASE 11 /* supports secure erase */
596 #define QUEUE_FLAG_SAME_FORCE 12 /* force complete on same CPU */
597 #define QUEUE_FLAG_DEAD 13 /* queue tear-down finished */
598 #define QUEUE_FLAG_INIT_DONE 14 /* queue is initialized */
599 #define QUEUE_FLAG_POLL 16 /* IO polling enabled if set */
600 #define QUEUE_FLAG_WC 17 /* Write back caching */
601 #define QUEUE_FLAG_FUA 18 /* device supports FUA writes */
602 #define QUEUE_FLAG_DAX 19 /* device supports DAX */
603 #define QUEUE_FLAG_STATS 20 /* track IO start and completion times */
604 #define QUEUE_FLAG_POLL_STATS 21 /* collecting stats for hybrid polling */
605 #define QUEUE_FLAG_REGISTERED 22 /* queue has been registered to a disk */
606 #define QUEUE_FLAG_SCSI_PASSTHROUGH 23 /* queue supports SCSI commands */
607 #define QUEUE_FLAG_QUIESCED 24 /* queue has been quiesced */
608 #define QUEUE_FLAG_PCI_P2PDMA 25 /* device supports PCI p2p requests */
609
610 #define QUEUE_FLAG_MQ_DEFAULT ((1 << QUEUE_FLAG_IO_STAT) | \
611 (1 << QUEUE_FLAG_SAME_COMP))
612
613 void blk_queue_flag_set(unsigned int flag, struct request_queue *q);
614 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q);
615 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q);
616
617 #define blk_queue_stopped(q) test_bit(QUEUE_FLAG_STOPPED, &(q)->queue_flags)
618 #define blk_queue_dying(q) test_bit(QUEUE_FLAG_DYING, &(q)->queue_flags)
619 #define blk_queue_dead(q) test_bit(QUEUE_FLAG_DEAD, &(q)->queue_flags)
620 #define blk_queue_init_done(q) test_bit(QUEUE_FLAG_INIT_DONE, &(q)->queue_flags)
621 #define blk_queue_nomerges(q) test_bit(QUEUE_FLAG_NOMERGES, &(q)->queue_flags)
622 #define blk_queue_noxmerges(q) \
623 test_bit(QUEUE_FLAG_NOXMERGES, &(q)->queue_flags)
624 #define blk_queue_nonrot(q) test_bit(QUEUE_FLAG_NONROT, &(q)->queue_flags)
625 #define blk_queue_io_stat(q) test_bit(QUEUE_FLAG_IO_STAT, &(q)->queue_flags)
626 #define blk_queue_add_random(q) test_bit(QUEUE_FLAG_ADD_RANDOM, &(q)->queue_flags)
627 #define blk_queue_discard(q) test_bit(QUEUE_FLAG_DISCARD, &(q)->queue_flags)
628 #define blk_queue_secure_erase(q) \
629 (test_bit(QUEUE_FLAG_SECERASE, &(q)->queue_flags))
630 #define blk_queue_dax(q) test_bit(QUEUE_FLAG_DAX, &(q)->queue_flags)
631 #define blk_queue_scsi_passthrough(q) \
632 test_bit(QUEUE_FLAG_SCSI_PASSTHROUGH, &(q)->queue_flags)
633 #define blk_queue_pci_p2pdma(q) \
634 test_bit(QUEUE_FLAG_PCI_P2PDMA, &(q)->queue_flags)
635
636 #define blk_noretry_request(rq) \
637 ((rq)->cmd_flags & (REQ_FAILFAST_DEV|REQ_FAILFAST_TRANSPORT| \
638 REQ_FAILFAST_DRIVER))
639 #define blk_queue_quiesced(q) test_bit(QUEUE_FLAG_QUIESCED, &(q)->queue_flags)
640 #define blk_queue_pm_only(q) atomic_read(&(q)->pm_only)
641 #define blk_queue_fua(q) test_bit(QUEUE_FLAG_FUA, &(q)->queue_flags)
642
643 extern void blk_set_pm_only(struct request_queue *q);
644 extern void blk_clear_pm_only(struct request_queue *q);
645
646 static inline bool blk_account_rq(struct request *rq)
647 {
648 return (rq->rq_flags & RQF_STARTED) && !blk_rq_is_passthrough(rq);
649 }
650
651 #define list_entry_rq(ptr) list_entry((ptr), struct request, queuelist)
652
653 #define rq_data_dir(rq) (op_is_write(req_op(rq)) ? WRITE : READ)
654
655 #define rq_dma_dir(rq) \
656 (op_is_write(req_op(rq)) ? DMA_TO_DEVICE : DMA_FROM_DEVICE)
657
658 #define dma_map_bvec(dev, bv, dir, attrs) \
659 dma_map_page_attrs(dev, (bv)->bv_page, (bv)->bv_offset, (bv)->bv_len, \
660 (dir), (attrs))
661
662 static inline bool queue_is_mq(struct request_queue *q)
663 {
664 return q->mq_ops;
665 }
666
667 static inline enum blk_zoned_model
668 blk_queue_zoned_model(struct request_queue *q)
669 {
670 return q->limits.zoned;
671 }
672
673 static inline bool blk_queue_is_zoned(struct request_queue *q)
674 {
675 switch (blk_queue_zoned_model(q)) {
676 case BLK_ZONED_HA:
677 case BLK_ZONED_HM:
678 return true;
679 default:
680 return false;
681 }
682 }
683
684 static inline unsigned int blk_queue_zone_sectors(struct request_queue *q)
685 {
686 return blk_queue_is_zoned(q) ? q->limits.chunk_sectors : 0;
687 }
688
689 #ifdef CONFIG_BLK_DEV_ZONED
690 static inline unsigned int blk_queue_nr_zones(struct request_queue *q)
691 {
692 return blk_queue_is_zoned(q) ? q->nr_zones : 0;
693 }
694
695 static inline unsigned int blk_queue_zone_no(struct request_queue *q,
696 sector_t sector)
697 {
698 if (!blk_queue_is_zoned(q))
699 return 0;
700 return sector >> ilog2(q->limits.chunk_sectors);
701 }
702
703 static inline bool blk_queue_zone_is_seq(struct request_queue *q,
704 sector_t sector)
705 {
706 if (!blk_queue_is_zoned(q) || !q->seq_zones_bitmap)
707 return false;
708 return test_bit(blk_queue_zone_no(q, sector), q->seq_zones_bitmap);
709 }
710 #else /* CONFIG_BLK_DEV_ZONED */
711 static inline unsigned int blk_queue_nr_zones(struct request_queue *q)
712 {
713 return 0;
714 }
715 #endif /* CONFIG_BLK_DEV_ZONED */
716
717 static inline bool rq_is_sync(struct request *rq)
718 {
719 return op_is_sync(rq->cmd_flags);
720 }
721
722 static inline bool rq_mergeable(struct request *rq)
723 {
724 if (blk_rq_is_passthrough(rq))
725 return false;
726
727 if (req_op(rq) == REQ_OP_FLUSH)
728 return false;
729
730 if (req_op(rq) == REQ_OP_WRITE_ZEROES)
731 return false;
732
733 if (rq->cmd_flags & REQ_NOMERGE_FLAGS)
734 return false;
735 if (rq->rq_flags & RQF_NOMERGE_FLAGS)
736 return false;
737
738 return true;
739 }
740
741 static inline bool blk_write_same_mergeable(struct bio *a, struct bio *b)
742 {
743 if (bio_page(a) == bio_page(b) &&
744 bio_offset(a) == bio_offset(b))
745 return true;
746
747 return false;
748 }
749
750 static inline unsigned int blk_queue_depth(struct request_queue *q)
751 {
752 if (q->queue_depth)
753 return q->queue_depth;
754
755 return q->nr_requests;
756 }
757
758 extern unsigned long blk_max_low_pfn, blk_max_pfn;
759
760 /*
761 * standard bounce addresses:
762 *
763 * BLK_BOUNCE_HIGH : bounce all highmem pages
764 * BLK_BOUNCE_ANY : don't bounce anything
765 * BLK_BOUNCE_ISA : bounce pages above ISA DMA boundary
766 */
767
768 #if BITS_PER_LONG == 32
769 #define BLK_BOUNCE_HIGH ((u64)blk_max_low_pfn << PAGE_SHIFT)
770 #else
771 #define BLK_BOUNCE_HIGH -1ULL
772 #endif
773 #define BLK_BOUNCE_ANY (-1ULL)
774 #define BLK_BOUNCE_ISA (DMA_BIT_MASK(24))
775
776 /*
777 * default timeout for SG_IO if none specified
778 */
779 #define BLK_DEFAULT_SG_TIMEOUT (60 * HZ)
780 #define BLK_MIN_SG_TIMEOUT (7 * HZ)
781
782 struct rq_map_data {
783 struct page **pages;
784 int page_order;
785 int nr_entries;
786 unsigned long offset;
787 int null_mapped;
788 int from_user;
789 };
790
791 struct req_iterator {
792 struct bvec_iter iter;
793 struct bio *bio;
794 };
795
796 /* This should not be used directly - use rq_for_each_segment */
797 #define for_each_bio(_bio) \
798 for (; _bio; _bio = _bio->bi_next)
799 #define __rq_for_each_bio(_bio, rq) \
800 if ((rq->bio)) \
801 for (_bio = (rq)->bio; _bio; _bio = _bio->bi_next)
802
803 #define rq_for_each_segment(bvl, _rq, _iter) \
804 __rq_for_each_bio(_iter.bio, _rq) \
805 bio_for_each_segment(bvl, _iter.bio, _iter.iter)
806
807 #define rq_for_each_bvec(bvl, _rq, _iter) \
808 __rq_for_each_bio(_iter.bio, _rq) \
809 bio_for_each_bvec(bvl, _iter.bio, _iter.iter)
810
811 #define rq_iter_last(bvec, _iter) \
812 (_iter.bio->bi_next == NULL && \
813 bio_iter_last(bvec, _iter.iter))
814
815 #ifndef ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
816 # error "You should define ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE for your platform"
817 #endif
818 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
819 extern void rq_flush_dcache_pages(struct request *rq);
820 #else
821 static inline void rq_flush_dcache_pages(struct request *rq)
822 {
823 }
824 #endif
825
826 extern int blk_register_queue(struct gendisk *disk);
827 extern void blk_unregister_queue(struct gendisk *disk);
828 extern blk_qc_t generic_make_request(struct bio *bio);
829 extern blk_qc_t direct_make_request(struct bio *bio);
830 extern void blk_rq_init(struct request_queue *q, struct request *rq);
831 extern void blk_put_request(struct request *);
832 extern struct request *blk_get_request(struct request_queue *, unsigned int op,
833 blk_mq_req_flags_t flags);
834 extern int blk_lld_busy(struct request_queue *q);
835 extern int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
836 struct bio_set *bs, gfp_t gfp_mask,
837 int (*bio_ctr)(struct bio *, struct bio *, void *),
838 void *data);
839 extern void blk_rq_unprep_clone(struct request *rq);
840 extern blk_status_t blk_insert_cloned_request(struct request_queue *q,
841 struct request *rq);
842 extern int blk_rq_append_bio(struct request *rq, struct bio **bio);
843 extern void blk_queue_split(struct request_queue *, struct bio **);
844 extern int scsi_verify_blk_ioctl(struct block_device *, unsigned int);
845 extern int scsi_cmd_blk_ioctl(struct block_device *, fmode_t,
846 unsigned int, void __user *);
847 extern int scsi_cmd_ioctl(struct request_queue *, struct gendisk *, fmode_t,
848 unsigned int, void __user *);
849 extern int sg_scsi_ioctl(struct request_queue *, struct gendisk *, fmode_t,
850 struct scsi_ioctl_command __user *);
851
852 extern int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags);
853 extern void blk_queue_exit(struct request_queue *q);
854 extern void blk_sync_queue(struct request_queue *q);
855 extern int blk_rq_map_user(struct request_queue *, struct request *,
856 struct rq_map_data *, void __user *, unsigned long,
857 gfp_t);
858 extern int blk_rq_unmap_user(struct bio *);
859 extern int blk_rq_map_kern(struct request_queue *, struct request *, void *, unsigned int, gfp_t);
860 extern int blk_rq_map_user_iov(struct request_queue *, struct request *,
861 struct rq_map_data *, const struct iov_iter *,
862 gfp_t);
863 extern void blk_execute_rq(struct request_queue *, struct gendisk *,
864 struct request *, int);
865 extern void blk_execute_rq_nowait(struct request_queue *, struct gendisk *,
866 struct request *, int, rq_end_io_fn *);
867
868 int blk_status_to_errno(blk_status_t status);
869 blk_status_t errno_to_blk_status(int errno);
870
871 int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin);
872
873 static inline struct request_queue *bdev_get_queue(struct block_device *bdev)
874 {
875 return bdev->bd_disk->queue; /* this is never NULL */
876 }
877
878 /*
879 * The basic unit of block I/O is a sector. It is used in a number of contexts
880 * in Linux (blk, bio, genhd). The size of one sector is 512 = 2**9
881 * bytes. Variables of type sector_t represent an offset or size that is a
882 * multiple of 512 bytes. Hence these two constants.
883 */
884 #ifndef SECTOR_SHIFT
885 #define SECTOR_SHIFT 9
886 #endif
887 #ifndef SECTOR_SIZE
888 #define SECTOR_SIZE (1 << SECTOR_SHIFT)
889 #endif
890
891 /*
892 * blk_rq_pos() : the current sector
893 * blk_rq_bytes() : bytes left in the entire request
894 * blk_rq_cur_bytes() : bytes left in the current segment
895 * blk_rq_err_bytes() : bytes left till the next error boundary
896 * blk_rq_sectors() : sectors left in the entire request
897 * blk_rq_cur_sectors() : sectors left in the current segment
898 */
899 static inline sector_t blk_rq_pos(const struct request *rq)
900 {
901 return rq->__sector;
902 }
903
904 static inline unsigned int blk_rq_bytes(const struct request *rq)
905 {
906 return rq->__data_len;
907 }
908
909 static inline int blk_rq_cur_bytes(const struct request *rq)
910 {
911 return rq->bio ? bio_cur_bytes(rq->bio) : 0;
912 }
913
914 extern unsigned int blk_rq_err_bytes(const struct request *rq);
915
916 static inline unsigned int blk_rq_sectors(const struct request *rq)
917 {
918 return blk_rq_bytes(rq) >> SECTOR_SHIFT;
919 }
920
921 static inline unsigned int blk_rq_cur_sectors(const struct request *rq)
922 {
923 return blk_rq_cur_bytes(rq) >> SECTOR_SHIFT;
924 }
925
926 #ifdef CONFIG_BLK_DEV_ZONED
927 static inline unsigned int blk_rq_zone_no(struct request *rq)
928 {
929 return blk_queue_zone_no(rq->q, blk_rq_pos(rq));
930 }
931
932 static inline unsigned int blk_rq_zone_is_seq(struct request *rq)
933 {
934 return blk_queue_zone_is_seq(rq->q, blk_rq_pos(rq));
935 }
936 #endif /* CONFIG_BLK_DEV_ZONED */
937
938 /*
939 * Some commands like WRITE SAME have a payload or data transfer size which
940 * is different from the size of the request. Any driver that supports such
941 * commands using the RQF_SPECIAL_PAYLOAD flag needs to use this helper to
942 * calculate the data transfer size.
943 */
944 static inline unsigned int blk_rq_payload_bytes(struct request *rq)
945 {
946 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
947 return rq->special_vec.bv_len;
948 return blk_rq_bytes(rq);
949 }
950
951 /*
952 * Return the first full biovec in the request. The caller needs to check that
953 * there are any bvecs before calling this helper.
954 */
955 static inline struct bio_vec req_bvec(struct request *rq)
956 {
957 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
958 return rq->special_vec;
959 return mp_bvec_iter_bvec(rq->bio->bi_io_vec, rq->bio->bi_iter);
960 }
961
962 static inline unsigned int blk_queue_get_max_sectors(struct request_queue *q,
963 int op)
964 {
965 if (unlikely(op == REQ_OP_DISCARD || op == REQ_OP_SECURE_ERASE))
966 return min(q->limits.max_discard_sectors,
967 UINT_MAX >> SECTOR_SHIFT);
968
969 if (unlikely(op == REQ_OP_WRITE_SAME))
970 return q->limits.max_write_same_sectors;
971
972 if (unlikely(op == REQ_OP_WRITE_ZEROES))
973 return q->limits.max_write_zeroes_sectors;
974
975 return q->limits.max_sectors;
976 }
977
978 /*
979 * Return maximum size of a request at given offset. Only valid for
980 * file system requests.
981 */
982 static inline unsigned int blk_max_size_offset(struct request_queue *q,
983 sector_t offset)
984 {
985 if (!q->limits.chunk_sectors)
986 return q->limits.max_sectors;
987
988 return min(q->limits.max_sectors, (unsigned int)(q->limits.chunk_sectors -
989 (offset & (q->limits.chunk_sectors - 1))));
990 }
991
992 static inline unsigned int blk_rq_get_max_sectors(struct request *rq,
993 sector_t offset)
994 {
995 struct request_queue *q = rq->q;
996
997 if (blk_rq_is_passthrough(rq))
998 return q->limits.max_hw_sectors;
999
1000 if (!q->limits.chunk_sectors ||
1001 req_op(rq) == REQ_OP_DISCARD ||
1002 req_op(rq) == REQ_OP_SECURE_ERASE)
1003 return blk_queue_get_max_sectors(q, req_op(rq));
1004
1005 return min(blk_max_size_offset(q, offset),
1006 blk_queue_get_max_sectors(q, req_op(rq)));
1007 }
1008
1009 static inline unsigned int blk_rq_count_bios(struct request *rq)
1010 {
1011 unsigned int nr_bios = 0;
1012 struct bio *bio;
1013
1014 __rq_for_each_bio(bio, rq)
1015 nr_bios++;
1016
1017 return nr_bios;
1018 }
1019
1020 void blk_steal_bios(struct bio_list *list, struct request *rq);
1021
1022 /*
1023 * Request completion related functions.
1024 *
1025 * blk_update_request() completes given number of bytes and updates
1026 * the request without completing it.
1027 */
1028 extern bool blk_update_request(struct request *rq, blk_status_t error,
1029 unsigned int nr_bytes);
1030
1031 extern void __blk_complete_request(struct request *);
1032 extern void blk_abort_request(struct request *);
1033
1034 /*
1035 * Access functions for manipulating queue properties
1036 */
1037 extern void blk_cleanup_queue(struct request_queue *);
1038 extern void blk_queue_make_request(struct request_queue *, make_request_fn *);
1039 extern void blk_queue_bounce_limit(struct request_queue *, u64);
1040 extern void blk_queue_max_hw_sectors(struct request_queue *, unsigned int);
1041 extern void blk_queue_chunk_sectors(struct request_queue *, unsigned int);
1042 extern void blk_queue_max_segments(struct request_queue *, unsigned short);
1043 extern void blk_queue_max_discard_segments(struct request_queue *,
1044 unsigned short);
1045 extern void blk_queue_max_segment_size(struct request_queue *, unsigned int);
1046 extern void blk_queue_max_discard_sectors(struct request_queue *q,
1047 unsigned int max_discard_sectors);
1048 extern void blk_queue_max_write_same_sectors(struct request_queue *q,
1049 unsigned int max_write_same_sectors);
1050 extern void blk_queue_max_write_zeroes_sectors(struct request_queue *q,
1051 unsigned int max_write_same_sectors);
1052 extern void blk_queue_logical_block_size(struct request_queue *, unsigned short);
1053 extern void blk_queue_physical_block_size(struct request_queue *, unsigned int);
1054 extern void blk_queue_alignment_offset(struct request_queue *q,
1055 unsigned int alignment);
1056 extern void blk_limits_io_min(struct queue_limits *limits, unsigned int min);
1057 extern void blk_queue_io_min(struct request_queue *q, unsigned int min);
1058 extern void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt);
1059 extern void blk_queue_io_opt(struct request_queue *q, unsigned int opt);
1060 extern void blk_set_queue_depth(struct request_queue *q, unsigned int depth);
1061 extern void blk_set_default_limits(struct queue_limits *lim);
1062 extern void blk_set_stacking_limits(struct queue_limits *lim);
1063 extern int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
1064 sector_t offset);
1065 extern int bdev_stack_limits(struct queue_limits *t, struct block_device *bdev,
1066 sector_t offset);
1067 extern void disk_stack_limits(struct gendisk *disk, struct block_device *bdev,
1068 sector_t offset);
1069 extern void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b);
1070 extern void blk_queue_update_dma_pad(struct request_queue *, unsigned int);
1071 extern int blk_queue_dma_drain(struct request_queue *q,
1072 dma_drain_needed_fn *dma_drain_needed,
1073 void *buf, unsigned int size);
1074 extern void blk_queue_segment_boundary(struct request_queue *, unsigned long);
1075 extern void blk_queue_virt_boundary(struct request_queue *, unsigned long);
1076 extern void blk_queue_dma_alignment(struct request_queue *, int);
1077 extern void blk_queue_update_dma_alignment(struct request_queue *, int);
1078 extern void blk_queue_rq_timeout(struct request_queue *, unsigned int);
1079 extern void blk_queue_write_cache(struct request_queue *q, bool enabled, bool fua);
1080
1081 /*
1082 * Number of physical segments as sent to the device.
1083 *
1084 * Normally this is the number of discontiguous data segments sent by the
1085 * submitter. But for data-less command like discard we might have no
1086 * actual data segments submitted, but the driver might have to add it's
1087 * own special payload. In that case we still return 1 here so that this
1088 * special payload will be mapped.
1089 */
1090 static inline unsigned short blk_rq_nr_phys_segments(struct request *rq)
1091 {
1092 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1093 return 1;
1094 return rq->nr_phys_segments;
1095 }
1096
1097 /*
1098 * Number of discard segments (or ranges) the driver needs to fill in.
1099 * Each discard bio merged into a request is counted as one segment.
1100 */
1101 static inline unsigned short blk_rq_nr_discard_segments(struct request *rq)
1102 {
1103 return max_t(unsigned short, rq->nr_phys_segments, 1);
1104 }
1105
1106 extern int blk_rq_map_sg(struct request_queue *, struct request *, struct scatterlist *);
1107 extern void blk_dump_rq_flags(struct request *, char *);
1108 extern long nr_blockdev_pages(void);
1109
1110 bool __must_check blk_get_queue(struct request_queue *);
1111 struct request_queue *blk_alloc_queue(gfp_t);
1112 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id);
1113 extern void blk_put_queue(struct request_queue *);
1114 extern void blk_set_queue_dying(struct request_queue *);
1115
1116 /*
1117 * blk_plug permits building a queue of related requests by holding the I/O
1118 * fragments for a short period. This allows merging of sequential requests
1119 * into single larger request. As the requests are moved from a per-task list to
1120 * the device's request_queue in a batch, this results in improved scalability
1121 * as the lock contention for request_queue lock is reduced.
1122 *
1123 * It is ok not to disable preemption when adding the request to the plug list
1124 * or when attempting a merge, because blk_schedule_flush_list() will only flush
1125 * the plug list when the task sleeps by itself. For details, please see
1126 * schedule() where blk_schedule_flush_plug() is called.
1127 */
1128 struct blk_plug {
1129 struct list_head mq_list; /* blk-mq requests */
1130 struct list_head cb_list; /* md requires an unplug callback */
1131 unsigned short rq_count;
1132 bool multiple_queues;
1133 };
1134 #define BLK_MAX_REQUEST_COUNT 16
1135 #define BLK_PLUG_FLUSH_SIZE (128 * 1024)
1136
1137 struct blk_plug_cb;
1138 typedef void (*blk_plug_cb_fn)(struct blk_plug_cb *, bool);
1139 struct blk_plug_cb {
1140 struct list_head list;
1141 blk_plug_cb_fn callback;
1142 void *data;
1143 };
1144 extern struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug,
1145 void *data, int size);
1146 extern void blk_start_plug(struct blk_plug *);
1147 extern void blk_finish_plug(struct blk_plug *);
1148 extern void blk_flush_plug_list(struct blk_plug *, bool);
1149
1150 static inline void blk_flush_plug(struct task_struct *tsk)
1151 {
1152 struct blk_plug *plug = tsk->plug;
1153
1154 if (plug)
1155 blk_flush_plug_list(plug, false);
1156 }
1157
1158 static inline void blk_schedule_flush_plug(struct task_struct *tsk)
1159 {
1160 struct blk_plug *plug = tsk->plug;
1161
1162 if (plug)
1163 blk_flush_plug_list(plug, true);
1164 }
1165
1166 static inline bool blk_needs_flush_plug(struct task_struct *tsk)
1167 {
1168 struct blk_plug *plug = tsk->plug;
1169
1170 return plug &&
1171 (!list_empty(&plug->mq_list) ||
1172 !list_empty(&plug->cb_list));
1173 }
1174
1175 extern int blkdev_issue_flush(struct block_device *, gfp_t, sector_t *);
1176 extern int blkdev_issue_write_same(struct block_device *bdev, sector_t sector,
1177 sector_t nr_sects, gfp_t gfp_mask, struct page *page);
1178
1179 #define BLKDEV_DISCARD_SECURE (1 << 0) /* issue a secure erase */
1180
1181 extern int blkdev_issue_discard(struct block_device *bdev, sector_t sector,
1182 sector_t nr_sects, gfp_t gfp_mask, unsigned long flags);
1183 extern int __blkdev_issue_discard(struct block_device *bdev, sector_t sector,
1184 sector_t nr_sects, gfp_t gfp_mask, int flags,
1185 struct bio **biop);
1186
1187 #define BLKDEV_ZERO_NOUNMAP (1 << 0) /* do not free blocks */
1188 #define BLKDEV_ZERO_NOFALLBACK (1 << 1) /* don't write explicit zeroes */
1189
1190 extern int __blkdev_issue_zeroout(struct block_device *bdev, sector_t sector,
1191 sector_t nr_sects, gfp_t gfp_mask, struct bio **biop,
1192 unsigned flags);
1193 extern int blkdev_issue_zeroout(struct block_device *bdev, sector_t sector,
1194 sector_t nr_sects, gfp_t gfp_mask, unsigned flags);
1195
1196 static inline int sb_issue_discard(struct super_block *sb, sector_t block,
1197 sector_t nr_blocks, gfp_t gfp_mask, unsigned long flags)
1198 {
1199 return blkdev_issue_discard(sb->s_bdev,
1200 block << (sb->s_blocksize_bits -
1201 SECTOR_SHIFT),
1202 nr_blocks << (sb->s_blocksize_bits -
1203 SECTOR_SHIFT),
1204 gfp_mask, flags);
1205 }
1206 static inline int sb_issue_zeroout(struct super_block *sb, sector_t block,
1207 sector_t nr_blocks, gfp_t gfp_mask)
1208 {
1209 return blkdev_issue_zeroout(sb->s_bdev,
1210 block << (sb->s_blocksize_bits -
1211 SECTOR_SHIFT),
1212 nr_blocks << (sb->s_blocksize_bits -
1213 SECTOR_SHIFT),
1214 gfp_mask, 0);
1215 }
1216
1217 extern int blk_verify_command(unsigned char *cmd, fmode_t mode);
1218
1219 enum blk_default_limits {
1220 BLK_MAX_SEGMENTS = 128,
1221 BLK_SAFE_MAX_SECTORS = 255,
1222 BLK_DEF_MAX_SECTORS = 2560,
1223 BLK_MAX_SEGMENT_SIZE = 65536,
1224 BLK_SEG_BOUNDARY_MASK = 0xFFFFFFFFUL,
1225 };
1226
1227 static inline unsigned long queue_segment_boundary(struct request_queue *q)
1228 {
1229 return q->limits.seg_boundary_mask;
1230 }
1231
1232 static inline unsigned long queue_virt_boundary(struct request_queue *q)
1233 {
1234 return q->limits.virt_boundary_mask;
1235 }
1236
1237 static inline unsigned int queue_max_sectors(struct request_queue *q)
1238 {
1239 return q->limits.max_sectors;
1240 }
1241
1242 static inline unsigned int queue_max_hw_sectors(struct request_queue *q)
1243 {
1244 return q->limits.max_hw_sectors;
1245 }
1246
1247 static inline unsigned short queue_max_segments(struct request_queue *q)
1248 {
1249 return q->limits.max_segments;
1250 }
1251
1252 static inline unsigned short queue_max_discard_segments(struct request_queue *q)
1253 {
1254 return q->limits.max_discard_segments;
1255 }
1256
1257 static inline unsigned int queue_max_segment_size(struct request_queue *q)
1258 {
1259 return q->limits.max_segment_size;
1260 }
1261
1262 static inline unsigned short queue_logical_block_size(struct request_queue *q)
1263 {
1264 int retval = 512;
1265
1266 if (q && q->limits.logical_block_size)
1267 retval = q->limits.logical_block_size;
1268
1269 return retval;
1270 }
1271
1272 static inline unsigned short bdev_logical_block_size(struct block_device *bdev)
1273 {
1274 return queue_logical_block_size(bdev_get_queue(bdev));
1275 }
1276
1277 static inline unsigned int queue_physical_block_size(struct request_queue *q)
1278 {
1279 return q->limits.physical_block_size;
1280 }
1281
1282 static inline unsigned int bdev_physical_block_size(struct block_device *bdev)
1283 {
1284 return queue_physical_block_size(bdev_get_queue(bdev));
1285 }
1286
1287 static inline unsigned int queue_io_min(struct request_queue *q)
1288 {
1289 return q->limits.io_min;
1290 }
1291
1292 static inline int bdev_io_min(struct block_device *bdev)
1293 {
1294 return queue_io_min(bdev_get_queue(bdev));
1295 }
1296
1297 static inline unsigned int queue_io_opt(struct request_queue *q)
1298 {
1299 return q->limits.io_opt;
1300 }
1301
1302 static inline int bdev_io_opt(struct block_device *bdev)
1303 {
1304 return queue_io_opt(bdev_get_queue(bdev));
1305 }
1306
1307 static inline int queue_alignment_offset(struct request_queue *q)
1308 {
1309 if (q->limits.misaligned)
1310 return -1;
1311
1312 return q->limits.alignment_offset;
1313 }
1314
1315 static inline int queue_limit_alignment_offset(struct queue_limits *lim, sector_t sector)
1316 {
1317 unsigned int granularity = max(lim->physical_block_size, lim->io_min);
1318 unsigned int alignment = sector_div(sector, granularity >> SECTOR_SHIFT)
1319 << SECTOR_SHIFT;
1320
1321 return (granularity + lim->alignment_offset - alignment) % granularity;
1322 }
1323
1324 static inline int bdev_alignment_offset(struct block_device *bdev)
1325 {
1326 struct request_queue *q = bdev_get_queue(bdev);
1327
1328 if (q->limits.misaligned)
1329 return -1;
1330
1331 if (bdev != bdev->bd_contains)
1332 return bdev->bd_part->alignment_offset;
1333
1334 return q->limits.alignment_offset;
1335 }
1336
1337 static inline int queue_discard_alignment(struct request_queue *q)
1338 {
1339 if (q->limits.discard_misaligned)
1340 return -1;
1341
1342 return q->limits.discard_alignment;
1343 }
1344
1345 static inline int queue_limit_discard_alignment(struct queue_limits *lim, sector_t sector)
1346 {
1347 unsigned int alignment, granularity, offset;
1348
1349 if (!lim->max_discard_sectors)
1350 return 0;
1351
1352 /* Why are these in bytes, not sectors? */
1353 alignment = lim->discard_alignment >> SECTOR_SHIFT;
1354 granularity = lim->discard_granularity >> SECTOR_SHIFT;
1355 if (!granularity)
1356 return 0;
1357
1358 /* Offset of the partition start in 'granularity' sectors */
1359 offset = sector_div(sector, granularity);
1360
1361 /* And why do we do this modulus *again* in blkdev_issue_discard()? */
1362 offset = (granularity + alignment - offset) % granularity;
1363
1364 /* Turn it back into bytes, gaah */
1365 return offset << SECTOR_SHIFT;
1366 }
1367
1368 static inline int bdev_discard_alignment(struct block_device *bdev)
1369 {
1370 struct request_queue *q = bdev_get_queue(bdev);
1371
1372 if (bdev != bdev->bd_contains)
1373 return bdev->bd_part->discard_alignment;
1374
1375 return q->limits.discard_alignment;
1376 }
1377
1378 static inline unsigned int bdev_write_same(struct block_device *bdev)
1379 {
1380 struct request_queue *q = bdev_get_queue(bdev);
1381
1382 if (q)
1383 return q->limits.max_write_same_sectors;
1384
1385 return 0;
1386 }
1387
1388 static inline unsigned int bdev_write_zeroes_sectors(struct block_device *bdev)
1389 {
1390 struct request_queue *q = bdev_get_queue(bdev);
1391
1392 if (q)
1393 return q->limits.max_write_zeroes_sectors;
1394
1395 return 0;
1396 }
1397
1398 static inline enum blk_zoned_model bdev_zoned_model(struct block_device *bdev)
1399 {
1400 struct request_queue *q = bdev_get_queue(bdev);
1401
1402 if (q)
1403 return blk_queue_zoned_model(q);
1404
1405 return BLK_ZONED_NONE;
1406 }
1407
1408 static inline bool bdev_is_zoned(struct block_device *bdev)
1409 {
1410 struct request_queue *q = bdev_get_queue(bdev);
1411
1412 if (q)
1413 return blk_queue_is_zoned(q);
1414
1415 return false;
1416 }
1417
1418 static inline unsigned int bdev_zone_sectors(struct block_device *bdev)
1419 {
1420 struct request_queue *q = bdev_get_queue(bdev);
1421
1422 if (q)
1423 return blk_queue_zone_sectors(q);
1424 return 0;
1425 }
1426
1427 static inline int queue_dma_alignment(struct request_queue *q)
1428 {
1429 return q ? q->dma_alignment : 511;
1430 }
1431
1432 static inline int blk_rq_aligned(struct request_queue *q, unsigned long addr,
1433 unsigned int len)
1434 {
1435 unsigned int alignment = queue_dma_alignment(q) | q->dma_pad_mask;
1436 return !(addr & alignment) && !(len & alignment);
1437 }
1438
1439 /* assumes size > 256 */
1440 static inline unsigned int blksize_bits(unsigned int size)
1441 {
1442 unsigned int bits = 8;
1443 do {
1444 bits++;
1445 size >>= 1;
1446 } while (size > 256);
1447 return bits;
1448 }
1449
1450 static inline unsigned int block_size(struct block_device *bdev)
1451 {
1452 return bdev->bd_block_size;
1453 }
1454
1455 typedef struct {struct page *v;} Sector;
1456
1457 unsigned char *read_dev_sector(struct block_device *, sector_t, Sector *);
1458
1459 static inline void put_dev_sector(Sector p)
1460 {
1461 put_page(p.v);
1462 }
1463
1464 int kblockd_schedule_work(struct work_struct *work);
1465 int kblockd_schedule_work_on(int cpu, struct work_struct *work);
1466 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, unsigned long delay);
1467
1468 #define MODULE_ALIAS_BLOCKDEV(major,minor) \
1469 MODULE_ALIAS("block-major-" __stringify(major) "-" __stringify(minor))
1470 #define MODULE_ALIAS_BLOCKDEV_MAJOR(major) \
1471 MODULE_ALIAS("block-major-" __stringify(major) "-*")
1472
1473 #if defined(CONFIG_BLK_DEV_INTEGRITY)
1474
1475 enum blk_integrity_flags {
1476 BLK_INTEGRITY_VERIFY = 1 << 0,
1477 BLK_INTEGRITY_GENERATE = 1 << 1,
1478 BLK_INTEGRITY_DEVICE_CAPABLE = 1 << 2,
1479 BLK_INTEGRITY_IP_CHECKSUM = 1 << 3,
1480 };
1481
1482 struct blk_integrity_iter {
1483 void *prot_buf;
1484 void *data_buf;
1485 sector_t seed;
1486 unsigned int data_size;
1487 unsigned short interval;
1488 const char *disk_name;
1489 };
1490
1491 typedef blk_status_t (integrity_processing_fn) (struct blk_integrity_iter *);
1492
1493 struct blk_integrity_profile {
1494 integrity_processing_fn *generate_fn;
1495 integrity_processing_fn *verify_fn;
1496 const char *name;
1497 };
1498
1499 extern void blk_integrity_register(struct gendisk *, struct blk_integrity *);
1500 extern void blk_integrity_unregister(struct gendisk *);
1501 extern int blk_integrity_compare(struct gendisk *, struct gendisk *);
1502 extern int blk_rq_map_integrity_sg(struct request_queue *, struct bio *,
1503 struct scatterlist *);
1504 extern int blk_rq_count_integrity_sg(struct request_queue *, struct bio *);
1505 extern bool blk_integrity_merge_rq(struct request_queue *, struct request *,
1506 struct request *);
1507 extern bool blk_integrity_merge_bio(struct request_queue *, struct request *,
1508 struct bio *);
1509
1510 static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk)
1511 {
1512 struct blk_integrity *bi = &disk->queue->integrity;
1513
1514 if (!bi->profile)
1515 return NULL;
1516
1517 return bi;
1518 }
1519
1520 static inline
1521 struct blk_integrity *bdev_get_integrity(struct block_device *bdev)
1522 {
1523 return blk_get_integrity(bdev->bd_disk);
1524 }
1525
1526 static inline bool blk_integrity_rq(struct request *rq)
1527 {
1528 return rq->cmd_flags & REQ_INTEGRITY;
1529 }
1530
1531 static inline void blk_queue_max_integrity_segments(struct request_queue *q,
1532 unsigned int segs)
1533 {
1534 q->limits.max_integrity_segments = segs;
1535 }
1536
1537 static inline unsigned short
1538 queue_max_integrity_segments(struct request_queue *q)
1539 {
1540 return q->limits.max_integrity_segments;
1541 }
1542
1543 /**
1544 * bio_integrity_intervals - Return number of integrity intervals for a bio
1545 * @bi: blk_integrity profile for device
1546 * @sectors: Size of the bio in 512-byte sectors
1547 *
1548 * Description: The block layer calculates everything in 512 byte
1549 * sectors but integrity metadata is done in terms of the data integrity
1550 * interval size of the storage device. Convert the block layer sectors
1551 * to the appropriate number of integrity intervals.
1552 */
1553 static inline unsigned int bio_integrity_intervals(struct blk_integrity *bi,
1554 unsigned int sectors)
1555 {
1556 return sectors >> (bi->interval_exp - 9);
1557 }
1558
1559 static inline unsigned int bio_integrity_bytes(struct blk_integrity *bi,
1560 unsigned int sectors)
1561 {
1562 return bio_integrity_intervals(bi, sectors) * bi->tuple_size;
1563 }
1564
1565 /*
1566 * Return the first bvec that contains integrity data. Only drivers that are
1567 * limited to a single integrity segment should use this helper.
1568 */
1569 static inline struct bio_vec *rq_integrity_vec(struct request *rq)
1570 {
1571 if (WARN_ON_ONCE(queue_max_integrity_segments(rq->q) > 1))
1572 return NULL;
1573 return rq->bio->bi_integrity->bip_vec;
1574 }
1575
1576 #else /* CONFIG_BLK_DEV_INTEGRITY */
1577
1578 struct bio;
1579 struct block_device;
1580 struct gendisk;
1581 struct blk_integrity;
1582
1583 static inline int blk_integrity_rq(struct request *rq)
1584 {
1585 return 0;
1586 }
1587 static inline int blk_rq_count_integrity_sg(struct request_queue *q,
1588 struct bio *b)
1589 {
1590 return 0;
1591 }
1592 static inline int blk_rq_map_integrity_sg(struct request_queue *q,
1593 struct bio *b,
1594 struct scatterlist *s)
1595 {
1596 return 0;
1597 }
1598 static inline struct blk_integrity *bdev_get_integrity(struct block_device *b)
1599 {
1600 return NULL;
1601 }
1602 static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk)
1603 {
1604 return NULL;
1605 }
1606 static inline int blk_integrity_compare(struct gendisk *a, struct gendisk *b)
1607 {
1608 return 0;
1609 }
1610 static inline void blk_integrity_register(struct gendisk *d,
1611 struct blk_integrity *b)
1612 {
1613 }
1614 static inline void blk_integrity_unregister(struct gendisk *d)
1615 {
1616 }
1617 static inline void blk_queue_max_integrity_segments(struct request_queue *q,
1618 unsigned int segs)
1619 {
1620 }
1621 static inline unsigned short queue_max_integrity_segments(struct request_queue *q)
1622 {
1623 return 0;
1624 }
1625 static inline bool blk_integrity_merge_rq(struct request_queue *rq,
1626 struct request *r1,
1627 struct request *r2)
1628 {
1629 return true;
1630 }
1631 static inline bool blk_integrity_merge_bio(struct request_queue *rq,
1632 struct request *r,
1633 struct bio *b)
1634 {
1635 return true;
1636 }
1637
1638 static inline unsigned int bio_integrity_intervals(struct blk_integrity *bi,
1639 unsigned int sectors)
1640 {
1641 return 0;
1642 }
1643
1644 static inline unsigned int bio_integrity_bytes(struct blk_integrity *bi,
1645 unsigned int sectors)
1646 {
1647 return 0;
1648 }
1649
1650 static inline struct bio_vec *rq_integrity_vec(struct request *rq)
1651 {
1652 return NULL;
1653 }
1654
1655 #endif /* CONFIG_BLK_DEV_INTEGRITY */
1656
1657 struct block_device_operations {
1658 int (*open) (struct block_device *, fmode_t);
1659 void (*release) (struct gendisk *, fmode_t);
1660 int (*rw_page)(struct block_device *, sector_t, struct page *, unsigned int);
1661 int (*ioctl) (struct block_device *, fmode_t, unsigned, unsigned long);
1662 int (*compat_ioctl) (struct block_device *, fmode_t, unsigned, unsigned long);
1663 unsigned int (*check_events) (struct gendisk *disk,
1664 unsigned int clearing);
1665 /* ->media_changed() is DEPRECATED, use ->check_events() instead */
1666 int (*media_changed) (struct gendisk *);
1667 void (*unlock_native_capacity) (struct gendisk *);
1668 int (*revalidate_disk) (struct gendisk *);
1669 int (*getgeo)(struct block_device *, struct hd_geometry *);
1670 /* this callback is with swap_lock and sometimes page table lock held */
1671 void (*swap_slot_free_notify) (struct block_device *, unsigned long);
1672 int (*report_zones)(struct gendisk *, sector_t sector,
1673 struct blk_zone *zones, unsigned int *nr_zones,
1674 gfp_t gfp_mask);
1675 struct module *owner;
1676 const struct pr_ops *pr_ops;
1677 };
1678
1679 extern int __blkdev_driver_ioctl(struct block_device *, fmode_t, unsigned int,
1680 unsigned long);
1681 extern int bdev_read_page(struct block_device *, sector_t, struct page *);
1682 extern int bdev_write_page(struct block_device *, sector_t, struct page *,
1683 struct writeback_control *);
1684
1685 #ifdef CONFIG_BLK_DEV_ZONED
1686 bool blk_req_needs_zone_write_lock(struct request *rq);
1687 void __blk_req_zone_write_lock(struct request *rq);
1688 void __blk_req_zone_write_unlock(struct request *rq);
1689
1690 static inline void blk_req_zone_write_lock(struct request *rq)
1691 {
1692 if (blk_req_needs_zone_write_lock(rq))
1693 __blk_req_zone_write_lock(rq);
1694 }
1695
1696 static inline void blk_req_zone_write_unlock(struct request *rq)
1697 {
1698 if (rq->rq_flags & RQF_ZONE_WRITE_LOCKED)
1699 __blk_req_zone_write_unlock(rq);
1700 }
1701
1702 static inline bool blk_req_zone_is_write_locked(struct request *rq)
1703 {
1704 return rq->q->seq_zones_wlock &&
1705 test_bit(blk_rq_zone_no(rq), rq->q->seq_zones_wlock);
1706 }
1707
1708 static inline bool blk_req_can_dispatch_to_zone(struct request *rq)
1709 {
1710 if (!blk_req_needs_zone_write_lock(rq))
1711 return true;
1712 return !blk_req_zone_is_write_locked(rq);
1713 }
1714 #else
1715 static inline bool blk_req_needs_zone_write_lock(struct request *rq)
1716 {
1717 return false;
1718 }
1719
1720 static inline void blk_req_zone_write_lock(struct request *rq)
1721 {
1722 }
1723
1724 static inline void blk_req_zone_write_unlock(struct request *rq)
1725 {
1726 }
1727 static inline bool blk_req_zone_is_write_locked(struct request *rq)
1728 {
1729 return false;
1730 }
1731
1732 static inline bool blk_req_can_dispatch_to_zone(struct request *rq)
1733 {
1734 return true;
1735 }
1736 #endif /* CONFIG_BLK_DEV_ZONED */
1737
1738 #else /* CONFIG_BLOCK */
1739
1740 struct block_device;
1741
1742 /*
1743 * stubs for when the block layer is configured out
1744 */
1745 #define buffer_heads_over_limit 0
1746
1747 static inline long nr_blockdev_pages(void)
1748 {
1749 return 0;
1750 }
1751
1752 struct blk_plug {
1753 };
1754
1755 static inline void blk_start_plug(struct blk_plug *plug)
1756 {
1757 }
1758
1759 static inline void blk_finish_plug(struct blk_plug *plug)
1760 {
1761 }
1762
1763 static inline void blk_flush_plug(struct task_struct *task)
1764 {
1765 }
1766
1767 static inline void blk_schedule_flush_plug(struct task_struct *task)
1768 {
1769 }
1770
1771
1772 static inline bool blk_needs_flush_plug(struct task_struct *tsk)
1773 {
1774 return false;
1775 }
1776
1777 static inline int blkdev_issue_flush(struct block_device *bdev, gfp_t gfp_mask,
1778 sector_t *error_sector)
1779 {
1780 return 0;
1781 }
1782
1783 #endif /* CONFIG_BLOCK */
1784
1785 static inline void blk_wake_io_task(struct task_struct *waiter)
1786 {
1787 /*
1788 * If we're polling, the task itself is doing the completions. For
1789 * that case, we don't need to signal a wakeup, it's enough to just
1790 * mark us as RUNNING.
1791 */
1792 if (waiter == current)
1793 __set_current_state(TASK_RUNNING);
1794 else
1795 wake_up_process(waiter);
1796 }
1797
1798 #endif